kvm.c 66.9 KB
Newer Older
A
aurel32 已提交
1 2 3 4
/*
 * PowerPC implementation of KVM hooks
 *
 * Copyright IBM Corp. 2007
S
Scott Wood 已提交
5
 * Copyright (C) 2011 Freescale Semiconductor, Inc.
A
aurel32 已提交
6 7 8 9 10 11 12 13 14 15 16
 *
 * Authors:
 *  Jerone Young <jyoung5@us.ibm.com>
 *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 *  Hollis Blanchard <hollisb@us.ibm.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

17
#include <dirent.h>
A
aurel32 已提交
18 19 20
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
21
#include <sys/vfs.h>
A
aurel32 已提交
22 23 24 25

#include <linux/kvm.h>

#include "qemu-common.h"
26
#include "qemu/timer.h"
27 28
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
A
aurel32 已提交
29 30
#include "kvm_ppc.h"
#include "cpu.h"
31 32
#include "sysemu/cpus.h"
#include "sysemu/device_tree.h"
33
#include "mmu-hash64.h"
A
aurel32 已提交
34

35
#include "hw/sysbus.h"
P
Paolo Bonzini 已提交
36 37
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
38
#include "hw/ppc/ppc.h"
B
Bharat Bhushan 已提交
39
#include "sysemu/watchdog.h"
40
#include "trace.h"
41
#include "exec/gdbstub.h"
42

A
aurel32 已提交
43 44 45
//#define DEBUG_KVM

#ifdef DEBUG_KVM
46
#define DPRINTF(fmt, ...) \
A
aurel32 已提交
47 48
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
49
#define DPRINTF(fmt, ...) \
A
aurel32 已提交
50 51 52
    do { } while (0)
#endif

53 54
#define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"

55 56 57 58
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
    KVM_CAP_LAST_INFO
};

59 60
static int cap_interrupt_unset = false;
static int cap_interrupt_level = false;
S
Scott Wood 已提交
61 62
static int cap_segstate;
static int cap_booke_sregs;
63
static int cap_ppc_smt;
64
static int cap_ppc_rma;
65
static int cap_spapr_tce;
66
static int cap_spapr_multitce;
67
static int cap_spapr_vfio;
68
static int cap_hior;
69
static int cap_one_reg;
70
static int cap_epr;
B
Bharat Bhushan 已提交
71
static int cap_ppc_watchdog;
72
static int cap_papr;
73
static int cap_htab_fd;
74
static int cap_fixup_hcalls;
75

76 77
static uint32_t debug_inst_opcode;

A
Alexander Graf 已提交
78 79 80 81
/* XXX We have a race condition where we actually have a level triggered
 *     interrupt, but the infrastructure can't expose that yet, so the guest
 *     takes but ignores it, goes to sleep and never gets notified that there's
 *     still an interrupt pending.
A
Alexander Graf 已提交
82
 *
A
Alexander Graf 已提交
83 84 85
 *     As a quick workaround, let's just wake up again 20 ms after we injected
 *     an interrupt. That way we can assure that we're always reinjecting
 *     interrupts in case the guest swallowed them.
A
Alexander Graf 已提交
86 87 88
 */
static QEMUTimer *idle_timer;

89
static void kvm_kick_cpu(void *opaque)
A
Alexander Graf 已提交
90
{
91 92
    PowerPCCPU *cpu = opaque;

93
    qemu_cpu_kick(CPU(cpu));
A
Alexander Graf 已提交
94 95
}

96 97
static int kvm_ppc_register_host_cpu_type(void);

98
int kvm_arch_init(KVMState *s)
A
aurel32 已提交
99
{
100 101
    cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
    cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
S
Scott Wood 已提交
102 103
    cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
    cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
104
    cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT);
105
    cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA);
106
    cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
107
    cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
108
    cap_spapr_vfio = false;
109
    cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
110
    cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
111
    cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
B
Bharat Bhushan 已提交
112
    cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
113 114
    /* Note: we don't set cap_papr here, because this capability is
     * only activated after this by kvmppc_set_papr() */
115
    cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
116
    cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
117 118 119 120 121 122

    if (!cap_interrupt_level) {
        fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
                        "VM to stall at times!\n");
    }

123 124
    kvm_ppc_register_host_cpu_type();

A
aurel32 已提交
125 126 127
    return 0;
}

128
static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
A
aurel32 已提交
129
{
130 131
    CPUPPCState *cenv = &cpu->env;
    CPUState *cs = CPU(cpu);
A
Alexander Graf 已提交
132
    struct kvm_sregs sregs;
133 134 135
    int ret;

    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
A
Alexander Graf 已提交
136 137 138 139
        /* What we're really trying to say is "if we're on BookE, we use
           the native PVR for now". This is the only sane way to check
           it though, so we potentially confuse users that they can run
           BookE guests on BookS. Let's hope nobody dares enough :) */
140 141
        return 0;
    } else {
S
Scott Wood 已提交
142
        if (!cap_segstate) {
A
Alexander Graf 已提交
143 144
            fprintf(stderr, "kvm error: missing PVR setting capability\n");
            return -ENOSYS;
145 146 147
        }
    }

148
    ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
149 150 151
    if (ret) {
        return ret;
    }
A
Alexander Graf 已提交
152 153

    sregs.pvr = cenv->spr[SPR_PVR];
154
    return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
155 156
}

S
Scott Wood 已提交
157
/* Set up a shared TLB array with KVM */
158
static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
S
Scott Wood 已提交
159
{
160 161
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);
S
Scott Wood 已提交
162 163 164 165 166 167
    struct kvm_book3e_206_tlb_params params = {};
    struct kvm_config_tlb cfg = {};
    unsigned int entries = 0;
    int ret, i;

    if (!kvm_enabled() ||
168
        !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
S
Scott Wood 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        return 0;
    }

    assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);

    for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
        params.tlb_sizes[i] = booke206_tlb_size(env, i);
        params.tlb_ways[i] = booke206_tlb_ways(env, i);
        entries += params.tlb_sizes[i];
    }

    assert(entries == env->nb_tlb);
    assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));

    env->tlb_dirty = true;

    cfg.array = (uintptr_t)env->tlb.tlbm;
    cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
    cfg.params = (uintptr_t)&params;
    cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;

C
Cornelia Huck 已提交
190
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
S
Scott Wood 已提交
191 192 193 194 195 196 197 198 199 200
    if (ret < 0) {
        fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
                __func__, strerror(-ret));
        return ret;
    }

    env->kvm_sw_tlb = true;
    return 0;
}

201 202

#if defined(TARGET_PPC64)
203
static void kvm_get_fallback_smmu_info(PowerPCCPU *cpu,
204 205
                                       struct kvm_ppc_smmu_info *info)
{
206 207 208
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    memset(info, 0, sizeof(*info));

    /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so
     * need to "guess" what the supported page sizes are.
     *
     * For that to work we make a few assumptions:
     *
     * - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR"
     *   KVM which only supports 4K and 16M pages, but supports them
     *   regardless of the backing store characteritics. We also don't
     *   support 1T segments.
     *
     *   This is safe as if HV KVM ever supports that capability or PR
     *   KVM grows supports for more page/segment sizes, those versions
     *   will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we
     *   will not hit this fallback
     *
     * - Else we are running HV KVM. This means we only support page
     *   sizes that fit in the backing store. Additionally we only
     *   advertize 64K pages if the processor is ARCH 2.06 and we assume
     *   P7 encodings for the SLB and hash table. Here too, we assume
     *   support for any newer processor will mean a kernel that
     *   implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit
     *   this fallback.
     */
234
    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
        /* No flags */
        info->flags = 0;
        info->slb_size = 64;

        /* Standard 4k base page size segment */
        info->sps[0].page_shift = 12;
        info->sps[0].slb_enc = 0;
        info->sps[0].enc[0].page_shift = 12;
        info->sps[0].enc[0].pte_enc = 0;

        /* Standard 16M large page size segment */
        info->sps[1].page_shift = 24;
        info->sps[1].slb_enc = SLB_VSID_L;
        info->sps[1].enc[0].page_shift = 24;
        info->sps[1].enc[0].pte_enc = 0;
    } else {
        int i = 0;

        /* HV KVM has backing store size restrictions */
        info->flags = KVM_PPC_PAGE_SIZES_REAL;

        if (env->mmu_model & POWERPC_MMU_1TSEG) {
            info->flags |= KVM_PPC_1T_SEGMENTS;
        }

        if (env->mmu_model == POWERPC_MMU_2_06) {
            info->slb_size = 32;
        } else {
            info->slb_size = 64;
        }

        /* Standard 4k base page size segment */
        info->sps[i].page_shift = 12;
        info->sps[i].slb_enc = 0;
        info->sps[i].enc[0].page_shift = 12;
        info->sps[i].enc[0].pte_enc = 0;
        i++;

        /* 64K on MMU 2.06 */
        if (env->mmu_model == POWERPC_MMU_2_06) {
            info->sps[i].page_shift = 16;
            info->sps[i].slb_enc = 0x110;
            info->sps[i].enc[0].page_shift = 16;
            info->sps[i].enc[0].pte_enc = 1;
            i++;
        }

        /* Standard 16M large page size segment */
        info->sps[i].page_shift = 24;
        info->sps[i].slb_enc = SLB_VSID_L;
        info->sps[i].enc[0].page_shift = 24;
        info->sps[i].enc[0].pte_enc = 0;
    }
}

290
static void kvm_get_smmu_info(PowerPCCPU *cpu, struct kvm_ppc_smmu_info *info)
291
{
292
    CPUState *cs = CPU(cpu);
293 294
    int ret;

295 296
    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
        ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_SMMU_INFO, info);
297 298 299 300 301
        if (ret == 0) {
            return;
        }
    }

302
    kvm_get_fallback_smmu_info(cpu, info);
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
}

static long getrampagesize(void)
{
    struct statfs fs;
    int ret;

    if (!mem_path) {
        /* guest RAM is backed by normal anonymous pages */
        return getpagesize();
    }

    do {
        ret = statfs(mem_path, &fs);
    } while (ret != 0 && errno == EINTR);

    if (ret != 0) {
        fprintf(stderr, "Couldn't statfs() memory path: %s\n",
                strerror(errno));
        exit(1);
    }

#define HUGETLBFS_MAGIC       0x958458f6

    if (fs.f_type != HUGETLBFS_MAGIC) {
        /* Explicit mempath, but it's ordinary pages */
        return getpagesize();
    }

    /* It's hugepage, return the huge page size */
    return fs.f_bsize;
}

static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift)
{
    if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) {
        return true;
    }

    return (1ul << shift) <= rampgsize;
}

345
static void kvm_fixup_page_sizes(PowerPCCPU *cpu)
346 347 348
{
    static struct kvm_ppc_smmu_info smmu_info;
    static bool has_smmu_info;
349
    CPUPPCState *env = &cpu->env;
350 351 352 353 354 355 356 357 358 359
    long rampagesize;
    int iq, ik, jq, jk;

    /* We only handle page sizes for 64-bit server guests for now */
    if (!(env->mmu_model & POWERPC_MMU_64)) {
        return;
    }

    /* Collect MMU info from kernel if not already */
    if (!has_smmu_info) {
360
        kvm_get_smmu_info(cpu, &smmu_info);
361 362 363 364 365 366 367 368
        has_smmu_info = true;
    }

    rampagesize = getrampagesize();

    /* Convert to QEMU form */
    memset(&env->sps, 0, sizeof(env->sps));

369 370 371 372
    /*
     * XXX This loop should be an entry wide AND of the capabilities that
     *     the selected CPU has with the capabilities that KVM supports.
     */
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
    for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) {
        struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq];
        struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik];

        if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
                                 ksps->page_shift)) {
            continue;
        }
        qsps->page_shift = ksps->page_shift;
        qsps->slb_enc = ksps->slb_enc;
        for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) {
            if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
                                     ksps->enc[jk].page_shift)) {
                continue;
            }
            qsps->enc[jq].page_shift = ksps->enc[jk].page_shift;
            qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc;
            if (++jq >= PPC_PAGE_SIZES_MAX_SZ) {
                break;
            }
        }
        if (++iq >= PPC_PAGE_SIZES_MAX_SZ) {
            break;
        }
    }
    env->slb_nr = smmu_info.slb_size;
399
    if (!(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
400 401 402 403 404
        env->mmu_model &= ~POWERPC_MMU_1TSEG;
    }
}
#else /* defined (TARGET_PPC64) */

405
static inline void kvm_fixup_page_sizes(PowerPCCPU *cpu)
406 407 408 409 410
{
}

#endif /* !defined (TARGET_PPC64) */

411 412
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
413
    return ppc_get_vcpu_dt_id(POWERPC_CPU(cpu));
414 415
}

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
/* e500 supports 2 h/w breakpoint and 2 watchpoint.
 * book3s supports only 1 watchpoint, so array size
 * of 4 is sufficient for now.
 */
#define MAX_HW_BKPTS 4

static struct HWBreakpoint {
    target_ulong addr;
    int type;
} hw_debug_points[MAX_HW_BKPTS];

static CPUWatchpoint hw_watchpoint;

/* Default there is no breakpoint and watchpoint supported */
static int max_hw_breakpoint;
static int max_hw_watchpoint;
static int nb_hw_breakpoint;
static int nb_hw_watchpoint;

static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
{
    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
        max_hw_breakpoint = 2;
        max_hw_watchpoint = 2;
    }

    if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
        fprintf(stderr, "Error initializing h/w breakpoints\n");
        return;
    }
}

A
Andreas Färber 已提交
448
int kvm_arch_init_vcpu(CPUState *cs)
449
{
A
Andreas Färber 已提交
450 451
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *cenv = &cpu->env;
452 453
    int ret;

454
    /* Gather server mmu info from KVM and update the CPU state */
455
    kvm_fixup_page_sizes(cpu);
456 457

    /* Synchronize sregs with kvm */
458
    ret = kvm_arch_sync_sregs(cpu);
459 460 461
    if (ret) {
        return ret;
    }
A
Alexander Graf 已提交
462

463
    idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu);
A
Alexander Graf 已提交
464

S
Scott Wood 已提交
465 466 467
    /* Some targets support access to KVM's guest TLB. */
    switch (cenv->mmu_model) {
    case POWERPC_MMU_BOOKE206:
468
        ret = kvm_booke206_tlb_init(cpu);
S
Scott Wood 已提交
469 470 471 472 473
        break;
    default:
        break;
    }

474
    kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
475
    kvmppc_hw_debug_points_init(cenv);
476

A
Alexander Graf 已提交
477
    return ret;
A
aurel32 已提交
478 479
}

480
static void kvm_sw_tlb_put(PowerPCCPU *cpu)
S
Scott Wood 已提交
481
{
482 483
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);
S
Scott Wood 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497
    struct kvm_dirty_tlb dirty_tlb;
    unsigned char *bitmap;
    int ret;

    if (!env->kvm_sw_tlb) {
        return;
    }

    bitmap = g_malloc((env->nb_tlb + 7) / 8);
    memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);

    dirty_tlb.bitmap = (uintptr_t)bitmap;
    dirty_tlb.num_dirty = env->nb_tlb;

498
    ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
S
Scott Wood 已提交
499 500 501 502 503 504 505 506
    if (ret) {
        fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
                __func__, strerror(-ret));
    }

    g_free(bitmap);
}

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    union {
        uint32_t u32;
        uint64_t u64;
    } val;
    struct kvm_one_reg reg = {
        .id = id,
        .addr = (uintptr_t) &val,
    };
    int ret;

    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret != 0) {
523
        trace_kvm_failed_spr_get(spr, strerror(errno));
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
    } else {
        switch (id & KVM_REG_SIZE_MASK) {
        case KVM_REG_SIZE_U32:
            env->spr[spr] = val.u32;
            break;

        case KVM_REG_SIZE_U64:
            env->spr[spr] = val.u64;
            break;

        default:
            /* Don't handle this size yet */
            abort();
        }
    }
}

static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    union {
        uint32_t u32;
        uint64_t u64;
    } val;
    struct kvm_one_reg reg = {
        .id = id,
        .addr = (uintptr_t) &val,
    };
    int ret;

    switch (id & KVM_REG_SIZE_MASK) {
    case KVM_REG_SIZE_U32:
        val.u32 = env->spr[spr];
        break;

    case KVM_REG_SIZE_U64:
        val.u64 = env->spr[spr];
        break;

    default:
        /* Don't handle this size yet */
        abort();
    }

    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret != 0) {
571
        trace_kvm_failed_spr_set(spr, strerror(errno));
572 573 574
    }
}

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
static int kvm_put_fp(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int i;
    int ret;

    if (env->insns_flags & PPC_FLOAT) {
        uint64_t fpscr = env->fpscr;
        bool vsx = !!(env->insns_flags2 & PPC2_VSX);

        reg.id = KVM_REG_PPC_FPSCR;
        reg.addr = (uintptr_t)&fpscr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
591
            DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno));
592 593 594 595 596 597 598 599 600 601 602 603 604
            return ret;
        }

        for (i = 0; i < 32; i++) {
            uint64_t vsr[2];

            vsr[0] = float64_val(env->fpr[i]);
            vsr[1] = env->vsr[i];
            reg.addr = (uintptr_t) &vsr;
            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);

            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
            if (ret < 0) {
605
                DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR",
606 607 608 609 610 611 612 613 614 615 616
                        i, strerror(errno));
                return ret;
            }
        }
    }

    if (env->insns_flags & PPC_ALTIVEC) {
        reg.id = KVM_REG_PPC_VSCR;
        reg.addr = (uintptr_t)&env->vscr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
617
            DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno));
618 619 620 621 622 623 624 625
            return ret;
        }

        for (i = 0; i < 32; i++) {
            reg.id = KVM_REG_PPC_VR(i);
            reg.addr = (uintptr_t)&env->avr[i];
            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
            if (ret < 0) {
626
                DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno));
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
                return ret;
            }
        }
    }

    return 0;
}

static int kvm_get_fp(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int i;
    int ret;

    if (env->insns_flags & PPC_FLOAT) {
        uint64_t fpscr;
        bool vsx = !!(env->insns_flags2 & PPC2_VSX);

        reg.id = KVM_REG_PPC_FPSCR;
        reg.addr = (uintptr_t)&fpscr;
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret < 0) {
651
            DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno));
652 653 654 655 656 657 658 659 660 661 662 663 664
            return ret;
        } else {
            env->fpscr = fpscr;
        }

        for (i = 0; i < 32; i++) {
            uint64_t vsr[2];

            reg.addr = (uintptr_t) &vsr;
            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);

            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
            if (ret < 0) {
665
                DPRINTF("Unable to get %s%d from KVM: %s\n",
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
                        vsx ? "VSR" : "FPR", i, strerror(errno));
                return ret;
            } else {
                env->fpr[i] = vsr[0];
                if (vsx) {
                    env->vsr[i] = vsr[1];
                }
            }
        }
    }

    if (env->insns_flags & PPC_ALTIVEC) {
        reg.id = KVM_REG_PPC_VSCR;
        reg.addr = (uintptr_t)&env->vscr;
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret < 0) {
682
            DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno));
683 684 685 686 687 688 689 690
            return ret;
        }

        for (i = 0; i < 32; i++) {
            reg.id = KVM_REG_PPC_VR(i);
            reg.addr = (uintptr_t)&env->avr[i];
            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
            if (ret < 0) {
691
                DPRINTF("Unable to get VR%d from KVM: %s\n",
692 693 694 695 696 697 698 699 700
                        i, strerror(errno));
                return ret;
            }
        }
    }

    return 0;
}

701 702 703 704 705 706 707 708 709 710 711 712
#if defined(TARGET_PPC64)
static int kvm_get_vpa(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int ret;

    reg.id = KVM_REG_PPC_VPA_ADDR;
    reg.addr = (uintptr_t)&env->vpa_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
713
        DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno));
714 715 716 717 718 719 720 721 722
        return ret;
    }

    assert((uintptr_t)&env->slb_shadow_size
           == ((uintptr_t)&env->slb_shadow_addr + 8));
    reg.id = KVM_REG_PPC_VPA_SLB;
    reg.addr = (uintptr_t)&env->slb_shadow_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
723
        DPRINTF("Unable to get SLB shadow state from KVM: %s\n",
724 725 726 727 728 729 730 731 732
                strerror(errno));
        return ret;
    }

    assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
    reg.id = KVM_REG_PPC_VPA_DTL;
    reg.addr = (uintptr_t)&env->dtl_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
733
        DPRINTF("Unable to get dispatch trace log state from KVM: %s\n",
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
                strerror(errno));
        return ret;
    }

    return 0;
}

static int kvm_put_vpa(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int ret;

    /* SLB shadow or DTL can't be registered unless a master VPA is
     * registered.  That means when restoring state, if a VPA *is*
     * registered, we need to set that up first.  If not, we need to
     * deregister the others before deregistering the master VPA */
    assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr));

    if (env->vpa_addr) {
        reg.id = KVM_REG_PPC_VPA_ADDR;
        reg.addr = (uintptr_t)&env->vpa_addr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
759
            DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
760 761 762 763 764 765 766 767 768 769
            return ret;
        }
    }

    assert((uintptr_t)&env->slb_shadow_size
           == ((uintptr_t)&env->slb_shadow_addr + 8));
    reg.id = KVM_REG_PPC_VPA_SLB;
    reg.addr = (uintptr_t)&env->slb_shadow_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret < 0) {
770
        DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno));
771 772 773 774 775 776 777 778
        return ret;
    }

    assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
    reg.id = KVM_REG_PPC_VPA_DTL;
    reg.addr = (uintptr_t)&env->dtl_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret < 0) {
779
        DPRINTF("Unable to set dispatch trace log state to KVM: %s\n",
780 781 782 783 784 785 786 787 788
                strerror(errno));
        return ret;
    }

    if (!env->vpa_addr) {
        reg.id = KVM_REG_PPC_VPA_ADDR;
        reg.addr = (uintptr_t)&env->vpa_addr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
789
            DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
790 791 792 793 794 795 796 797
            return ret;
        }
    }

    return 0;
}
#endif /* TARGET_PPC64 */

A
Andreas Färber 已提交
798
int kvm_arch_put_registers(CPUState *cs, int level)
A
aurel32 已提交
799
{
A
Andreas Färber 已提交
800 801
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
A
aurel32 已提交
802 803 804 805
    struct kvm_regs regs;
    int ret;
    int i;

806 807
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
    if (ret < 0) {
A
aurel32 已提交
808
        return ret;
809
    }
A
aurel32 已提交
810 811 812

    regs.ctr = env->ctr;
    regs.lr  = env->lr;
813
    regs.xer = cpu_read_xer(env);
A
aurel32 已提交
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
    regs.msr = env->msr;
    regs.pc = env->nip;

    regs.srr0 = env->spr[SPR_SRR0];
    regs.srr1 = env->spr[SPR_SRR1];

    regs.sprg0 = env->spr[SPR_SPRG0];
    regs.sprg1 = env->spr[SPR_SPRG1];
    regs.sprg2 = env->spr[SPR_SPRG2];
    regs.sprg3 = env->spr[SPR_SPRG3];
    regs.sprg4 = env->spr[SPR_SPRG4];
    regs.sprg5 = env->spr[SPR_SPRG5];
    regs.sprg6 = env->spr[SPR_SPRG6];
    regs.sprg7 = env->spr[SPR_SPRG7];

S
Scott Wood 已提交
829 830
    regs.pid = env->spr[SPR_BOOKE_PID];

A
aurel32 已提交
831 832 833
    for (i = 0;i < 32; i++)
        regs.gpr[i] = env->gpr[i];

834 835 836 837 838
    regs.cr = 0;
    for (i = 0; i < 8; i++) {
        regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
    }

839
    ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
A
aurel32 已提交
840 841 842
    if (ret < 0)
        return ret;

843 844
    kvm_put_fp(cs);

S
Scott Wood 已提交
845
    if (env->tlb_dirty) {
846
        kvm_sw_tlb_put(cpu);
S
Scott Wood 已提交
847 848 849
        env->tlb_dirty = false;
    }

850 851 852 853 854 855 856 857 858
    if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
        struct kvm_sregs sregs;

        sregs.pvr = env->spr[SPR_PVR];

        sregs.u.s.sdr1 = env->spr[SPR_SDR1];

        /* Sync SLB */
#ifdef TARGET_PPC64
859
        for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
860
            sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
861 862 863
            if (env->slb[i].esid & SLB_ESID_V) {
                sregs.u.s.ppc64.slb[i].slbe |= i;
            }
864 865 866 867 868 869 870 871 872 873 874
            sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
        }
#endif

        /* Sync SRs */
        for (i = 0; i < 16; i++) {
            sregs.u.s.ppc32.sr[i] = env->sr[i];
        }

        /* Sync BATs */
        for (i = 0; i < 8; i++) {
A
Alexander Graf 已提交
875 876 877 878 879
            /* Beware. We have to swap upper and lower bits here */
            sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
                | env->DBAT[1][i];
            sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
                | env->IBAT[1][i];
880 881
        }

882
        ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
883 884 885 886 887 888
        if (ret) {
            return ret;
        }
    }

    if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
889 890
        kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
    }
891

892 893 894 895 896 897 898 899 900 901 902 903 904
    if (cap_one_reg) {
        int i;

        /* We deliberately ignore errors here, for kernels which have
         * the ONE_REG calls, but don't support the specific
         * registers, there's a reasonable chance things will still
         * work, at least until we try to migrate. */
        for (i = 0; i < 1024; i++) {
            uint64_t id = env->spr_cb[i].one_reg_id;

            if (id != 0) {
                kvm_put_one_spr(cs, id, i);
            }
905
        }
906 907

#ifdef TARGET_PPC64
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
        if (msr_ts) {
            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
                kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
            }
            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
                kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
            }
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
        }

927 928
        if (cap_papr) {
            if (kvm_put_vpa(cs) < 0) {
929
                DPRINTF("Warning: Unable to set VPA information to KVM\n");
930 931
            }
        }
932 933

        kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
934
#endif /* TARGET_PPC64 */
935 936
    }

A
aurel32 已提交
937 938 939
    return ret;
}

940 941 942 943 944
static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
{
     env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
}

A
Andreas Färber 已提交
945
int kvm_arch_get_registers(CPUState *cs)
A
aurel32 已提交
946
{
A
Andreas Färber 已提交
947 948
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
A
aurel32 已提交
949
    struct kvm_regs regs;
950
    struct kvm_sregs sregs;
S
Scott Wood 已提交
951
    uint32_t cr;
A
Alexander Graf 已提交
952
    int i, ret;
A
aurel32 已提交
953

954
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
A
aurel32 已提交
955 956 957
    if (ret < 0)
        return ret;

S
Scott Wood 已提交
958 959 960 961 962
    cr = regs.cr;
    for (i = 7; i >= 0; i--) {
        env->crf[i] = cr & 15;
        cr >>= 4;
    }
963

A
aurel32 已提交
964 965
    env->ctr = regs.ctr;
    env->lr = regs.lr;
966
    cpu_write_xer(env, regs.xer);
A
aurel32 已提交
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
    env->msr = regs.msr;
    env->nip = regs.pc;

    env->spr[SPR_SRR0] = regs.srr0;
    env->spr[SPR_SRR1] = regs.srr1;

    env->spr[SPR_SPRG0] = regs.sprg0;
    env->spr[SPR_SPRG1] = regs.sprg1;
    env->spr[SPR_SPRG2] = regs.sprg2;
    env->spr[SPR_SPRG3] = regs.sprg3;
    env->spr[SPR_SPRG4] = regs.sprg4;
    env->spr[SPR_SPRG5] = regs.sprg5;
    env->spr[SPR_SPRG6] = regs.sprg6;
    env->spr[SPR_SPRG7] = regs.sprg7;

S
Scott Wood 已提交
982 983
    env->spr[SPR_BOOKE_PID] = regs.pid;

A
aurel32 已提交
984 985 986
    for (i = 0;i < 32; i++)
        env->gpr[i] = regs.gpr[i];

987 988
    kvm_get_fp(cs);

S
Scott Wood 已提交
989
    if (cap_booke_sregs) {
990
        ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
S
Scott Wood 已提交
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
        if (ret < 0) {
            return ret;
        }

        if (sregs.u.e.features & KVM_SREGS_E_BASE) {
            env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
            env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
            env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
            env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
            env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
            env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
            env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
            env->spr[SPR_DECR] = sregs.u.e.dec;
            env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
            env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
            env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
        }

        if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
            env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
            env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
            env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
            env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
            env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
        }

        if (sregs.u.e.features & KVM_SREGS_E_64) {
            env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
        }

        if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
            env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
        }

        if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
            env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1027
            kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
S
Scott Wood 已提交
1028
            env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1029
            kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
S
Scott Wood 已提交
1030
            env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1031
            kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
S
Scott Wood 已提交
1032
            env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1033
            kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
S
Scott Wood 已提交
1034
            env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1035
            kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
S
Scott Wood 已提交
1036
            env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1037
            kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
S
Scott Wood 已提交
1038
            env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1039
            kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
S
Scott Wood 已提交
1040
            env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1041
            kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
S
Scott Wood 已提交
1042
            env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1043
            kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
S
Scott Wood 已提交
1044
            env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1045
            kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
S
Scott Wood 已提交
1046
            env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1047
            kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
S
Scott Wood 已提交
1048
            env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1049
            kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
S
Scott Wood 已提交
1050
            env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1051
            kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
S
Scott Wood 已提交
1052
            env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1053
            kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
S
Scott Wood 已提交
1054
            env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1055
            kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
S
Scott Wood 已提交
1056
            env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1057
            kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
S
Scott Wood 已提交
1058 1059 1060

            if (sregs.u.e.features & KVM_SREGS_E_SPE) {
                env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1061
                kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
S
Scott Wood 已提交
1062
                env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1063
                kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
S
Scott Wood 已提交
1064
                env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1065
                kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
S
Scott Wood 已提交
1066 1067 1068 1069
            }

            if (sregs.u.e.features & KVM_SREGS_E_PM) {
                env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1070
                kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
S
Scott Wood 已提交
1071 1072 1073 1074
            }

            if (sregs.u.e.features & KVM_SREGS_E_PC) {
                env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1075
                kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
S
Scott Wood 已提交
1076
                env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1077
                kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
S
Scott Wood 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
            }
        }

        if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
            env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
            env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
            env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
            env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
            env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
            env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
            env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
            env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
            env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
            env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
        }

        if (sregs.u.e.features & KVM_SREGS_EXP) {
            env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
        }

        if (sregs.u.e.features & KVM_SREGS_E_PD) {
            env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
            env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
        }

        if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
            env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
            env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
            env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;

            if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
                env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
                env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
            }
        }
A
Alexander Graf 已提交
1113
    }
S
Scott Wood 已提交
1114 1115

    if (cap_segstate) {
1116
        ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
S
Scott Wood 已提交
1117 1118 1119 1120
        if (ret < 0) {
            return ret;
        }

1121 1122 1123
        if (!env->external_htab) {
            ppc_store_sdr1(env, sregs.u.s.sdr1);
        }
1124 1125

        /* Sync SLB */
A
Alexander Graf 已提交
1126
#ifdef TARGET_PPC64
1127 1128 1129 1130 1131 1132 1133
        /*
         * The packed SLB array we get from KVM_GET_SREGS only contains
         * information about valid entries. So we flush our internal
         * copy to get rid of stale ones, then put all valid SLB entries
         * back in.
         */
        memset(env->slb, 0, sizeof(env->slb));
1134
        for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1135 1136 1137 1138 1139 1140 1141 1142
            target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
            target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
            /*
             * Only restore valid entries
             */
            if (rb & SLB_ESID_V) {
                ppc_store_slb(env, rb, rs);
            }
1143
        }
A
Alexander Graf 已提交
1144
#endif
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

        /* Sync SRs */
        for (i = 0; i < 16; i++) {
            env->sr[i] = sregs.u.s.ppc32.sr[i];
        }

        /* Sync BATs */
        for (i = 0; i < 8; i++) {
            env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
            env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
            env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
            env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
        }
A
Alexander Graf 已提交
1158
    }
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
    if (cap_hior) {
        kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
    }

    if (cap_one_reg) {
        int i;

        /* We deliberately ignore errors here, for kernels which have
         * the ONE_REG calls, but don't support the specific
         * registers, there's a reasonable chance things will still
         * work, at least until we try to migrate. */
        for (i = 0; i < 1024; i++) {
            uint64_t id = env->spr_cb[i].one_reg_id;

            if (id != 0) {
                kvm_get_one_spr(cs, id, i);
            }
        }
1178 1179

#ifdef TARGET_PPC64
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
        if (msr_ts) {
            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
                kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
            }
            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
                kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
            }
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
        }

1199 1200
        if (cap_papr) {
            if (kvm_get_vpa(cs) < 0) {
1201
                DPRINTF("Warning: Unable to get VPA information from KVM\n");
1202 1203
            }
        }
1204 1205

        kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1206
#endif
1207 1208
    }

A
aurel32 已提交
1209 1210 1211
    return 0;
}

1212
int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
{
    unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;

    if (irq != PPC_INTERRUPT_EXT) {
        return 0;
    }

    if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
        return 0;
    }

1224
    kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1225 1226 1227 1228

    return 0;
}

A
Alexander Graf 已提交
1229 1230 1231 1232 1233 1234 1235 1236
#if defined(TARGET_PPCEMB)
#define PPC_INPUT_INT PPC40x_INPUT_INT
#elif defined(TARGET_PPC64)
#define PPC_INPUT_INT PPC970_INPUT_INT
#else
#define PPC_INPUT_INT PPC6xx_INPUT_INT
#endif

A
Andreas Färber 已提交
1237
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
A
aurel32 已提交
1238
{
A
Andreas Färber 已提交
1239 1240
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
A
aurel32 已提交
1241 1242 1243
    int r;
    unsigned irq;

S
Stefan Weil 已提交
1244
    /* PowerPC QEMU tracks the various core input pins (interrupt, critical
A
aurel32 已提交
1245
     * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
1246 1247
    if (!cap_interrupt_level &&
        run->ready_for_interrupt_injection &&
1248
        (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
A
Alexander Graf 已提交
1249
        (env->irq_input_state & (1<<PPC_INPUT_INT)))
A
aurel32 已提交
1250 1251 1252 1253 1254
    {
        /* For now KVM disregards the 'irq' argument. However, in the
         * future KVM could cache it in-kernel to avoid a heavyweight exit
         * when reading the UIC.
         */
1255
        irq = KVM_INTERRUPT_SET;
A
aurel32 已提交
1256

1257
        DPRINTF("injected interrupt %d\n", irq);
1258
        r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq);
1259 1260 1261
        if (r < 0) {
            printf("cpu %d fail inject %x\n", cs->cpu_index, irq);
        }
A
Alexander Graf 已提交
1262 1263

        /* Always wake up soon in case the interrupt was level based */
1264
        timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
A
Alexander Graf 已提交
1265
                       (get_ticks_per_sec() / 50));
A
aurel32 已提交
1266 1267 1268 1269 1270 1271 1272
    }

    /* We don't know if there are more interrupts pending after this. However,
     * the guest will return to userspace in the course of handling this one
     * anyways, so we will get a chance to deliver the rest. */
}

A
Andreas Färber 已提交
1273
void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
A
aurel32 已提交
1274 1275 1276
{
}

A
Andreas Färber 已提交
1277
int kvm_arch_process_async_events(CPUState *cs)
M
Marcelo Tosatti 已提交
1278
{
1279
    return cs->halted;
M
Marcelo Tosatti 已提交
1280 1281
}

1282
static int kvmppc_handle_halt(PowerPCCPU *cpu)
A
aurel32 已提交
1283
{
1284 1285 1286 1287 1288
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;

    if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
        cs->halted = 1;
1289
        cs->exception_index = EXCP_HLT;
A
aurel32 已提交
1290 1291
    }

1292
    return 0;
A
aurel32 已提交
1293 1294 1295
}

/* map dcr access to existing qemu dcr emulation */
1296
static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
A
aurel32 已提交
1297 1298 1299 1300
{
    if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
        fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);

1301
    return 0;
A
aurel32 已提交
1302 1303
}

1304
static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
A
aurel32 已提交
1305 1306 1307 1308
{
    if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
        fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);

1309
    return 0;
A
aurel32 已提交
1310 1311
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
    /* Mixed endian case is not handled */
    uint32_t sc = debug_inst_opcode;

    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
                            sizeof(sc), 0) ||
        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
        return -EINVAL;
    }

    return 0;
}

int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
    uint32_t sc;

    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
        sc != debug_inst_opcode ||
        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
                            sizeof(sc), 1)) {
        return -EINVAL;
    }

    return 0;
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
static int find_hw_breakpoint(target_ulong addr, int type)
{
    int n;

    assert((nb_hw_breakpoint + nb_hw_watchpoint)
           <= ARRAY_SIZE(hw_debug_points));

    for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
        if (hw_debug_points[n].addr == addr &&
             hw_debug_points[n].type == type) {
            return n;
        }
    }

    return -1;
}

static int find_hw_watchpoint(target_ulong addr, int *flag)
{
    int n;

    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
    if (n >= 0) {
        *flag = BP_MEM_ACCESS;
        return n;
    }

    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
    if (n >= 0) {
        *flag = BP_MEM_WRITE;
        return n;
    }

    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
    if (n >= 0) {
        *flag = BP_MEM_READ;
        return n;
    }

    return -1;
}

int kvm_arch_insert_hw_breakpoint(target_ulong addr,
                                  target_ulong len, int type)
{
    if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
        return -ENOBUFS;
    }

    hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
    hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;

    switch (type) {
    case GDB_BREAKPOINT_HW:
        if (nb_hw_breakpoint >= max_hw_breakpoint) {
            return -ENOBUFS;
        }

        if (find_hw_breakpoint(addr, type) >= 0) {
            return -EEXIST;
        }

        nb_hw_breakpoint++;
        break;

    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
        if (nb_hw_watchpoint >= max_hw_watchpoint) {
            return -ENOBUFS;
        }

        if (find_hw_breakpoint(addr, type) >= 0) {
            return -EEXIST;
        }

        nb_hw_watchpoint++;
        break;

    default:
        return -ENOSYS;
    }

    return 0;
}

int kvm_arch_remove_hw_breakpoint(target_ulong addr,
                                  target_ulong len, int type)
{
    int n;

    n = find_hw_breakpoint(addr, type);
    if (n < 0) {
        return -ENOENT;
    }

    switch (type) {
    case GDB_BREAKPOINT_HW:
        nb_hw_breakpoint--;
        break;

    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
        nb_hw_watchpoint--;
        break;

    default:
        return -ENOSYS;
    }
    hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];

    return 0;
}

void kvm_arch_remove_all_hw_breakpoints(void)
{
    nb_hw_breakpoint = nb_hw_watchpoint = 0;
}

1460 1461
void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
{
1462 1463
    int n;

1464 1465 1466 1467
    /* Software Breakpoint updates */
    if (kvm_sw_breakpoints_active(cs)) {
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
    }
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

    assert((nb_hw_breakpoint + nb_hw_watchpoint)
           <= ARRAY_SIZE(hw_debug_points));
    assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));

    if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
        memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
        for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
            switch (hw_debug_points[n].type) {
            case GDB_BREAKPOINT_HW:
                dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
                break;
            case GDB_WATCHPOINT_WRITE:
                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
                break;
            case GDB_WATCHPOINT_READ:
                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
                break;
            case GDB_WATCHPOINT_ACCESS:
                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
                                        KVMPPC_DEBUG_WATCH_READ;
                break;
            default:
                cpu_abort(cs, "Unsupported breakpoint type\n");
            }
            dbg->arch.bp[n].addr = hw_debug_points[n].addr;
        }
    }
1497 1498 1499 1500 1501 1502 1503 1504
}

static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;
    struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
    int handle = 0;
1505 1506
    int n;
    int flag = 0;
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
    if (cs->singlestep_enabled) {
        handle = 1;
    } else if (arch_info->status) {
        if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
            if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
                n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
                if (n >= 0) {
                    handle = 1;
                }
            } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
                                            KVMPPC_DEBUG_WATCH_WRITE)) {
                n = find_hw_watchpoint(arch_info->address,  &flag);
                if (n >= 0) {
                    handle = 1;
                    cs->watchpoint_hit = &hw_watchpoint;
                    hw_watchpoint.vaddr = hw_debug_points[n].addr;
                    hw_watchpoint.flags = flag;
                }
            }
        }
    } else if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1529 1530 1531 1532 1533
        handle = 1;
    } else {
        /* QEMU is not able to handle debug exception, so inject
         * program exception to guest;
         * Yes program exception NOT debug exception !!
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
         * When QEMU is using debug resources then debug exception must
         * be always set. To achieve this we set MSR_DE and also set
         * MSRP_DEP so guest cannot change MSR_DE.
         * When emulating debug resource for guest we want guest
         * to control MSR_DE (enable/disable debug interrupt on need).
         * Supporting both configurations are NOT possible.
         * So the result is that we cannot share debug resources
         * between QEMU and Guest on BOOKE architecture.
         * In the current design QEMU gets the priority over guest,
         * this means that if QEMU is using debug resources then guest
         * cannot use them;
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
         * For software breakpoint QEMU uses a privileged instruction;
         * So there cannot be any reason that we are here for guest
         * set debug exception, only possibility is guest executed a
         * privileged / illegal instruction and that's why we are
         * injecting a program interrupt.
         */

        cpu_synchronize_state(cs);
        /* env->nip is PC, so increment this by 4 to use
         * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
         */
        env->nip += 4;
        cs->exception_index = POWERPC_EXCP_PROGRAM;
        env->error_code = POWERPC_EXCP_INVAL;
        ppc_cpu_do_interrupt(cs);
    }

    return handle;
}

A
Andreas Färber 已提交
1565
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
A
aurel32 已提交
1566
{
A
Andreas Färber 已提交
1567 1568
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
1569
    int ret;
A
aurel32 已提交
1570 1571 1572 1573

    switch (run->exit_reason) {
    case KVM_EXIT_DCR:
        if (run->dcr.is_write) {
1574
            DPRINTF("handle dcr write\n");
A
aurel32 已提交
1575 1576
            ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
        } else {
1577
            DPRINTF("handle dcr read\n");
A
aurel32 已提交
1578 1579 1580 1581
            ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
        }
        break;
    case KVM_EXIT_HLT:
1582
        DPRINTF("handle halt\n");
1583
        ret = kvmppc_handle_halt(cpu);
A
aurel32 已提交
1584
        break;
1585
#if defined(TARGET_PPC64)
1586
    case KVM_EXIT_PAPR_HCALL:
1587
        DPRINTF("handle PAPR hypercall\n");
A
Andreas Färber 已提交
1588
        run->papr_hcall.ret = spapr_hypercall(cpu,
1589
                                              run->papr_hcall.nr,
1590
                                              run->papr_hcall.args);
1591
        ret = 0;
1592 1593
        break;
#endif
1594
    case KVM_EXIT_EPR:
1595
        DPRINTF("handle epr\n");
1596
        run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1597 1598
        ret = 0;
        break;
B
Bharat Bhushan 已提交
1599
    case KVM_EXIT_WATCHDOG:
1600
        DPRINTF("handle watchdog expiry\n");
B
Bharat Bhushan 已提交
1601 1602 1603 1604
        watchdog_perform_action();
        ret = 0;
        break;

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
    case KVM_EXIT_DEBUG:
        DPRINTF("handle debug exception\n");
        if (kvm_handle_debug(cpu, run)) {
            ret = EXCP_DEBUG;
            break;
        }
        /* re-enter, this exception was guest-internal */
        ret = 0;
        break;

J
Jan Kiszka 已提交
1615 1616 1617 1618
    default:
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
        ret = -1;
        break;
A
aurel32 已提交
1619 1620 1621 1622 1623
    }

    return ret;
}

B
Bharat Bhushan 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{
    CPUState *cs = CPU(cpu);
    uint32_t bits = tsr_bits;
    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_OR_TSR,
        .addr = (uintptr_t) &bits,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{

    CPUState *cs = CPU(cpu);
    uint32_t bits = tsr_bits;
    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_CLEAR_TSR,
        .addr = (uintptr_t) &bits,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_set_tcr(PowerPCCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;
    uint32_t tcr = env->spr[SPR_BOOKE_TCR];

    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_TCR,
        .addr = (uintptr_t) &tcr,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    int ret;

    if (!kvm_enabled()) {
        return -1;
    }

    if (!cap_ppc_watchdog) {
        printf("warning: KVM does not support watchdog");
        return -1;
    }

C
Cornelia Huck 已提交
1677
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
B
Bharat Bhushan 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686
    if (ret < 0) {
        fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
                __func__, strerror(-ret));
        return ret;
    }

    return ret;
}

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
static int read_cpuinfo(const char *field, char *value, int len)
{
    FILE *f;
    int ret = -1;
    int field_len = strlen(field);
    char line[512];

    f = fopen("/proc/cpuinfo", "r");
    if (!f) {
        return -1;
    }

    do {
1700
        if (!fgets(line, sizeof(line), f)) {
1701 1702 1703
            break;
        }
        if (!strncmp(line, field, field_len)) {
1704
            pstrcpy(value, len, line);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
            ret = 0;
            break;
        }
    } while(*line);

    fclose(f);

    return ret;
}

uint32_t kvmppc_get_tbfreq(void)
{
    char line[512];
    char *ns;
    uint32_t retval = get_ticks_per_sec();

    if (read_cpuinfo("timebase", line, sizeof(line))) {
        return retval;
    }

    if (!(ns = strchr(line, ':'))) {
        return retval;
    }

    ns++;

    retval = atoi(ns);
    return retval;
}
1734

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
bool kvmppc_get_host_serial(char **value)
{
    return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
                               NULL);
}

bool kvmppc_get_host_model(char **value)
{
    return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
}

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
/* Try to find a device tree node for a CPU with clock-frequency property */
static int kvmppc_find_cpu_dt(char *buf, int buf_len)
{
    struct dirent *dirp;
    DIR *dp;

    if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
        printf("Can't open directory " PROC_DEVTREE_CPU "\n");
        return -1;
    }

    buf[0] = '\0';
    while ((dirp = readdir(dp)) != NULL) {
        FILE *f;
        snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
                 dirp->d_name);
        f = fopen(buf, "r");
        if (f) {
            snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
            fclose(f);
            break;
        }
        buf[0] = '\0';
    }
    closedir(dp);
    if (buf[0] == '\0') {
        printf("Unknown host!\n");
        return -1;
    }

    return 0;
}

1779 1780 1781 1782 1783
/* Read a CPU node property from the host device tree that's a single
 * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
 * (can't find or open the property, or doesn't understand the
 * format) */
static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1784
{
1785
    char buf[PATH_MAX], *tmp;
1786 1787 1788 1789
    union {
        uint32_t v32;
        uint64_t v64;
    } u;
1790 1791 1792 1793
    FILE *f;
    int len;

    if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1794
        return -1;
1795 1796
    }

1797
    tmp = g_strdup_printf("%s/%s", buf, propname);
1798

1799 1800
    f = fopen(tmp, "rb");
    g_free(tmp);
1801 1802 1803 1804
    if (!f) {
        return -1;
    }

1805
    len = fread(&u, 1, sizeof(u), f);
1806 1807
    fclose(f);
    switch (len) {
1808 1809 1810 1811 1812
    case 4:
        /* property is a 32-bit quantity */
        return be32_to_cpu(u.v32);
    case 8:
        return be64_to_cpu(u.v64);
1813 1814 1815 1816 1817
    }

    return 0;
}

1818 1819 1820 1821 1822
uint64_t kvmppc_get_clockfreq(void)
{
    return kvmppc_read_int_cpu_dt("clock-frequency");
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
uint32_t kvmppc_get_vmx(void)
{
    return kvmppc_read_int_cpu_dt("ibm,vmx");
}

uint32_t kvmppc_get_dfp(void)
{
    return kvmppc_read_int_cpu_dt("ibm,dfp");
}

1833 1834 1835 1836 1837
static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
 {
     PowerPCCPU *cpu = ppc_env_get_cpu(env);
     CPUState *cs = CPU(cpu);

1838
    if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
        !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
        return 0;
    }

    return 1;
}

int kvmppc_get_hasidle(CPUPPCState *env)
{
    struct kvm_ppc_pvinfo pvinfo;

    if (!kvmppc_get_pvinfo(env, &pvinfo) &&
        (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
        return 1;
    }

    return 0;
}

1858
int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1859 1860 1861 1862
{
    uint32_t *hc = (uint32_t*)buf;
    struct kvm_ppc_pvinfo pvinfo;

1863
    if (!kvmppc_get_pvinfo(env, &pvinfo)) {
1864 1865 1866 1867 1868
        memcpy(buf, pvinfo.hcall, buf_len);
        return 0;
    }

    /*
1869
     * Fallback to always fail hypercalls regardless of endianness:
1870
     *
1871
     *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
1872
     *     li r3, -1
1873 1874
     *     b .+8       (becomes nop in wrong endian)
     *     bswap32(li r3, -1)
1875 1876
     */

1877 1878 1879 1880
    hc[0] = cpu_to_be32(0x08000048);
    hc[1] = cpu_to_be32(0x3860ffff);
    hc[2] = cpu_to_be32(0x48000008);
    hc[3] = cpu_to_be32(bswap32(0x3860ffff));
1881 1882 1883 1884

    return 0;
}

1885
void kvmppc_set_papr(PowerPCCPU *cpu)
1886
{
1887
    CPUState *cs = CPU(cpu);
1888 1889
    int ret;

C
Cornelia Huck 已提交
1890
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
1891
    if (ret) {
1892
        cpu_abort(cs, "This KVM version does not support PAPR\n");
1893
    }
1894 1895 1896 1897

    /* Update the capability flag so we sync the right information
     * with kvm */
    cap_papr = 1;
1898 1899
}

1900 1901 1902 1903 1904
int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t cpu_version)
{
    return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &cpu_version);
}

1905 1906 1907 1908 1909
void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
{
    CPUState *cs = CPU(cpu);
    int ret;

C
Cornelia Huck 已提交
1910
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
1911
    if (ret && mpic_proxy) {
1912
        cpu_abort(cs, "This KVM version does not support EPR\n");
1913 1914 1915
    }
}

1916 1917 1918 1919 1920
int kvmppc_smt_threads(void)
{
    return cap_ppc_smt ? cap_ppc_smt : 1;
}

1921
#ifdef TARGET_PPC64
1922
off_t kvmppc_alloc_rma(void **rma)
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
{
    off_t size;
    int fd;
    struct kvm_allocate_rma ret;

    /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported
     * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but
     *                      not necessary on this hardware
     * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware
     *
     * FIXME: We should allow the user to force contiguous RMA
     * allocation in the cap_ppc_rma==1 case.
     */
    if (cap_ppc_rma < 2) {
        return 0;
    }

    fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret);
    if (fd < 0) {
        fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
                strerror(errno));
        return -1;
    }

    size = MIN(ret.rma_size, 256ul << 20);

1949 1950
    *rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
    if (*rma == MAP_FAILED) {
1951 1952 1953 1954 1955 1956 1957
        fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno));
        return -1;
    };

    return size;
}

1958 1959
uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
{
1960 1961 1962 1963
    struct kvm_ppc_smmu_info info;
    long rampagesize, best_page_shift;
    int i;

1964 1965 1966
    if (cap_ppc_rma >= 2) {
        return current_size;
    }
1967 1968 1969

    /* Find the largest hardware supported page size that's less than
     * or equal to the (logical) backing page size of guest RAM */
1970
    kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
    rampagesize = getrampagesize();
    best_page_shift = 0;

    for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];

        if (!sps->page_shift) {
            continue;
        }

        if ((sps->page_shift > best_page_shift)
            && ((1UL << sps->page_shift) <= rampagesize)) {
            best_page_shift = sps->page_shift;
        }
    }

1987
    return MIN(current_size,
1988
               1ULL << (best_page_shift + hash_shift - 7));
1989 1990 1991
}
#endif

1992 1993 1994 1995 1996
bool kvmppc_spapr_use_multitce(void)
{
    return cap_spapr_multitce;
}

1997 1998
void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd,
                              bool vfio_accel)
1999 2000 2001 2002 2003 2004 2005 2006 2007
{
    struct kvm_create_spapr_tce args = {
        .liobn = liobn,
        .window_size = window_size,
    };
    long len;
    int fd;
    void *table;

2008 2009 2010 2011
    /* Must set fd to -1 so we don't try to munmap when called for
     * destroying the table, which the upper layers -will- do
     */
    *pfd = -1;
2012
    if (!cap_spapr_tce || (vfio_accel && !cap_spapr_vfio)) {
2013 2014 2015 2016 2017
        return NULL;
    }

    fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
    if (fd < 0) {
2018 2019
        fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
                liobn);
2020 2021 2022
        return NULL;
    }

2023
    len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(uint64_t);
2024 2025
    /* FIXME: round this up to page size */

2026
    table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
2027
    if (table == MAP_FAILED) {
2028 2029
        fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
                liobn);
2030 2031 2032 2033 2034 2035 2036 2037
        close(fd);
        return NULL;
    }

    *pfd = fd;
    return table;
}

2038
int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2039 2040 2041 2042 2043 2044 2045
{
    long len;

    if (fd < 0) {
        return -1;
    }

2046
    len = nb_table * sizeof(uint64_t);
2047 2048
    if ((munmap(table, len) < 0) ||
        (close(fd) < 0)) {
2049 2050
        fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
                strerror(errno));
2051 2052 2053 2054 2055 2056
        /* Leak the table */
    }

    return 0;
}

2057 2058 2059 2060
int kvmppc_reset_htab(int shift_hint)
{
    uint32_t shift = shift_hint;

2061 2062 2063 2064 2065
    if (!kvm_enabled()) {
        /* Full emulation, tell caller to allocate htab itself */
        return 0;
    }
    if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2066 2067
        int ret;
        ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2068 2069 2070 2071 2072 2073 2074
        if (ret == -ENOTTY) {
            /* At least some versions of PR KVM advertise the
             * capability, but don't implement the ioctl().  Oops.
             * Return 0 so that we allocate the htab in qemu, as is
             * correct for PR. */
            return 0;
        } else if (ret < 0) {
2075 2076 2077 2078 2079
            return ret;
        }
        return shift;
    }

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
    /* We have a kernel that predates the htab reset calls.  For PR
     * KVM, we need to allocate the htab ourselves, for an HV KVM of
     * this era, it has allocated a 16MB fixed size hash table
     * already.  Kernels of this era have the GET_PVINFO capability
     * only on PR, so we use this hack to determine the right
     * answer */
    if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
        /* PR - tell caller to allocate htab */
        return 0;
    } else {
        /* HV - assume 16MB kernel allocated htab */
        return 24;
    }
2093 2094
}

2095 2096 2097 2098 2099 2100 2101 2102 2103
static inline uint32_t mfpvr(void)
{
    uint32_t pvr;

    asm ("mfpvr %0"
         : "=r"(pvr));
    return pvr;
}

2104 2105 2106 2107 2108 2109 2110 2111 2112
static void alter_insns(uint64_t *word, uint64_t flags, bool on)
{
    if (on) {
        *word |= flags;
    } else {
        *word &= ~flags;
    }
}

2113
static void kvmppc_host_cpu_initfn(Object *obj)
2114
{
2115 2116 2117 2118 2119 2120
    assert(kvm_enabled());
}

static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
{
    PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2121 2122
    uint32_t vmx = kvmppc_get_vmx();
    uint32_t dfp = kvmppc_get_dfp();
2123 2124
    uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
    uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2125

2126
    /* Now fix up the class with information we can query from the host */
2127
    pcc->pvr = mfpvr();
2128

2129 2130
    if (vmx != -1) {
        /* Only override when we know what the host supports */
2131 2132
        alter_insns(&pcc->insns_flags, PPC_ALTIVEC, vmx > 0);
        alter_insns(&pcc->insns_flags2, PPC2_VSX, vmx > 1);
2133 2134 2135
    }
    if (dfp != -1) {
        /* Only override when we know what the host supports */
2136
        alter_insns(&pcc->insns_flags2, PPC2_DFP, dfp);
2137
    }
2138 2139 2140 2141 2142 2143 2144 2145

    if (dcache_size != -1) {
        pcc->l1_dcache_size = dcache_size;
    }

    if (icache_size != -1) {
        pcc->l1_icache_size = icache_size;
    }
2146 2147
}

2148 2149 2150 2151 2152
bool kvmppc_has_cap_epr(void)
{
    return cap_epr;
}

2153 2154 2155 2156 2157
bool kvmppc_has_cap_htab_fd(void)
{
    return cap_htab_fd;
}

2158 2159 2160 2161 2162
bool kvmppc_has_cap_fixup_hcalls(void)
{
    return cap_fixup_hcalls;
}

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
static PowerPCCPUClass *ppc_cpu_get_family_class(PowerPCCPUClass *pcc)
{
    ObjectClass *oc = OBJECT_CLASS(pcc);

    while (oc && !object_class_is_abstract(oc)) {
        oc = object_class_get_parent(oc);
    }
    assert(oc);

    return POWERPC_CPU_CLASS(oc);
}

2175 2176 2177 2178 2179 2180 2181 2182 2183
static int kvm_ppc_register_host_cpu_type(void)
{
    TypeInfo type_info = {
        .name = TYPE_HOST_POWERPC_CPU,
        .instance_init = kvmppc_host_cpu_initfn,
        .class_init = kvmppc_host_cpu_class_init,
    };
    uint32_t host_pvr = mfpvr();
    PowerPCCPUClass *pvr_pcc;
2184
    DeviceClass *dc;
2185 2186

    pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2187 2188 2189
    if (pvr_pcc == NULL) {
        pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
    }
2190 2191 2192 2193 2194
    if (pvr_pcc == NULL) {
        return -1;
    }
    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
    type_register(&type_info);
2195 2196 2197 2198 2199 2200 2201 2202

    /* Register generic family CPU class for a family */
    pvr_pcc = ppc_cpu_get_family_class(pvr_pcc);
    dc = DEVICE_CLASS(pvr_pcc);
    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
    type_info.name = g_strdup_printf("%s-"TYPE_POWERPC_CPU, dc->desc);
    type_register(&type_info);

2203 2204 2205
    return 0;
}

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
{
    struct kvm_rtas_token_args args = {
        .token = token,
    };

    if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
        return -ENOENT;
    }

    strncpy(args.name, function, sizeof(args.name));

    return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
}
2220

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
int kvmppc_get_htab_fd(bool write)
{
    struct kvm_get_htab_fd s = {
        .flags = write ? KVM_GET_HTAB_WRITE : 0,
        .start_index = 0,
    };

    if (!cap_htab_fd) {
        fprintf(stderr, "KVM version doesn't support saving the hash table\n");
        return -1;
    }

    return kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
}

int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
{
2238
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
    uint8_t buf[bufsize];
    ssize_t rc;

    do {
        rc = read(fd, buf, bufsize);
        if (rc < 0) {
            fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
                    strerror(errno));
            return rc;
        } else if (rc) {
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
            uint8_t *buffer = buf;
            ssize_t n = rc;
            while (n) {
                struct kvm_get_htab_header *head =
                    (struct kvm_get_htab_header *) buffer;
                size_t chunksize = sizeof(*head) +
                     HASH_PTE_SIZE_64 * head->n_valid;

                qemu_put_be32(f, head->index);
                qemu_put_be16(f, head->n_valid);
                qemu_put_be16(f, head->n_invalid);
                qemu_put_buffer(f, (void *)(head + 1),
                                HASH_PTE_SIZE_64 * head->n_valid);

                buffer += chunksize;
                n -= chunksize;
            }
2266 2267 2268
        }
    } while ((rc != 0)
             && ((max_ns < 0)
2269
                 || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

    return (rc == 0) ? 1 : 0;
}

int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
                           uint16_t n_valid, uint16_t n_invalid)
{
    struct kvm_get_htab_header *buf;
    size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64;
    ssize_t rc;

    buf = alloca(chunksize);
    buf->index = index;
    buf->n_valid = n_valid;
    buf->n_invalid = n_invalid;

    qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid);

    rc = write(fd, buf, chunksize);
    if (rc < 0) {
        fprintf(stderr, "Error writing KVM hash table: %s\n",
                strerror(errno));
        return rc;
    }
    if (rc != chunksize) {
        /* We should never get a short write on a single chunk */
        fprintf(stderr, "Short write, restoring KVM hash table\n");
        return -1;
    }
    return 0;
}

A
Andreas Färber 已提交
2302
bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2303 2304 2305
{
    return true;
}
2306

A
Andreas Färber 已提交
2307
int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2308 2309 2310 2311 2312 2313 2314 2315
{
    return 1;
}

int kvm_arch_on_sigbus(int code, void *addr)
{
    return 1;
}
2316 2317 2318 2319

void kvm_arch_init_irq_routing(KVMState *s)
{
}
2320

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
struct kvm_get_htab_buf {
    struct kvm_get_htab_header header;
    /*
     * We require one extra byte for read
     */
    target_ulong hpte[(HPTES_PER_GROUP * 2) + 1];
};

uint64_t kvmppc_hash64_read_pteg(PowerPCCPU *cpu, target_ulong pte_index)
{
    int htab_fd;
    struct kvm_get_htab_fd ghf;
    struct kvm_get_htab_buf  *hpte_buf;

    ghf.flags = 0;
    ghf.start_index = pte_index;
    htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
    if (htab_fd < 0) {
        goto error_out;
    }

    hpte_buf = g_malloc0(sizeof(*hpte_buf));
    /*
     * Read the hpte group
     */
    if (read(htab_fd, hpte_buf, sizeof(*hpte_buf)) < 0) {
        goto out_close;
    }

    close(htab_fd);
    return (uint64_t)(uintptr_t) hpte_buf->hpte;

out_close:
    g_free(hpte_buf);
    close(htab_fd);
error_out:
    return 0;
}

void kvmppc_hash64_free_pteg(uint64_t token)
{
    struct kvm_get_htab_buf *htab_buf;

    htab_buf = container_of((void *)(uintptr_t) token, struct kvm_get_htab_buf,
                            hpte);
    g_free(htab_buf);
    return;
}
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

void kvmppc_hash64_write_pte(CPUPPCState *env, target_ulong pte_index,
                             target_ulong pte0, target_ulong pte1)
{
    int htab_fd;
    struct kvm_get_htab_fd ghf;
    struct kvm_get_htab_buf hpte_buf;

    ghf.flags = 0;
    ghf.start_index = 0;     /* Ignored */
    htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
    if (htab_fd < 0) {
        goto error_out;
    }

    hpte_buf.header.n_valid = 1;
    hpte_buf.header.n_invalid = 0;
    hpte_buf.header.index = pte_index;
    hpte_buf.hpte[0] = pte0;
    hpte_buf.hpte[1] = pte1;
    /*
     * Write the hpte entry.
     * CAUTION: write() has the warn_unused_result attribute. Hence we
     * need to check the return value, even though we do nothing.
     */
    if (write(htab_fd, &hpte_buf, sizeof(hpte_buf)) < 0) {
        goto out_close;
    }

out_close:
    close(htab_fd);
    return;

error_out:
    return;
}