kvm.c 54.3 KB
Newer Older
A
aurel32 已提交
1 2 3 4
/*
 * PowerPC implementation of KVM hooks
 *
 * Copyright IBM Corp. 2007
S
Scott Wood 已提交
5
 * Copyright (C) 2011 Freescale Semiconductor, Inc.
A
aurel32 已提交
6 7 8 9 10 11 12 13 14 15 16
 *
 * Authors:
 *  Jerone Young <jyoung5@us.ibm.com>
 *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 *  Hollis Blanchard <hollisb@us.ibm.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

17
#include <dirent.h>
A
aurel32 已提交
18 19 20
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
21
#include <sys/vfs.h>
A
aurel32 已提交
22 23 24 25

#include <linux/kvm.h>

#include "qemu-common.h"
26
#include "qemu/timer.h"
27 28
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
A
aurel32 已提交
29 30
#include "kvm_ppc.h"
#include "cpu.h"
31 32
#include "sysemu/cpus.h"
#include "sysemu/device_tree.h"
33
#include "mmu-hash64.h"
A
aurel32 已提交
34

35
#include "hw/sysbus.h"
P
Paolo Bonzini 已提交
36 37
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
38
#include "hw/ppc/ppc.h"
B
Bharat Bhushan 已提交
39
#include "sysemu/watchdog.h"
40
#include "trace.h"
41

A
aurel32 已提交
42 43 44
//#define DEBUG_KVM

#ifdef DEBUG_KVM
45
#define DPRINTF(fmt, ...) \
A
aurel32 已提交
46 47
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
48
#define DPRINTF(fmt, ...) \
A
aurel32 已提交
49 50 51
    do { } while (0)
#endif

52 53
#define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"

54 55 56 57
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
    KVM_CAP_LAST_INFO
};

58 59
static int cap_interrupt_unset = false;
static int cap_interrupt_level = false;
S
Scott Wood 已提交
60 61
static int cap_segstate;
static int cap_booke_sregs;
62
static int cap_ppc_smt;
63
static int cap_ppc_rma;
64
static int cap_spapr_tce;
65
static int cap_spapr_multitce;
66
static int cap_hior;
67
static int cap_one_reg;
68
static int cap_epr;
B
Bharat Bhushan 已提交
69
static int cap_ppc_watchdog;
70
static int cap_papr;
71
static int cap_htab_fd;
72

A
Alexander Graf 已提交
73 74 75 76
/* XXX We have a race condition where we actually have a level triggered
 *     interrupt, but the infrastructure can't expose that yet, so the guest
 *     takes but ignores it, goes to sleep and never gets notified that there's
 *     still an interrupt pending.
A
Alexander Graf 已提交
77
 *
A
Alexander Graf 已提交
78 79 80
 *     As a quick workaround, let's just wake up again 20 ms after we injected
 *     an interrupt. That way we can assure that we're always reinjecting
 *     interrupts in case the guest swallowed them.
A
Alexander Graf 已提交
81 82 83
 */
static QEMUTimer *idle_timer;

84
static void kvm_kick_cpu(void *opaque)
A
Alexander Graf 已提交
85
{
86 87
    PowerPCCPU *cpu = opaque;

88
    qemu_cpu_kick(CPU(cpu));
A
Alexander Graf 已提交
89 90
}

91 92
static int kvm_ppc_register_host_cpu_type(void);

93
int kvm_arch_init(KVMState *s)
A
aurel32 已提交
94
{
95 96
    cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
    cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
S
Scott Wood 已提交
97 98
    cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
    cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
99
    cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT);
100
    cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA);
101
    cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
102
    cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
103
    cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
104
    cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
105
    cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
B
Bharat Bhushan 已提交
106
    cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
107 108
    /* Note: we don't set cap_papr here, because this capability is
     * only activated after this by kvmppc_set_papr() */
109
    cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
110 111 112 113 114 115

    if (!cap_interrupt_level) {
        fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
                        "VM to stall at times!\n");
    }

116 117
    kvm_ppc_register_host_cpu_type();

A
aurel32 已提交
118 119 120
    return 0;
}

121
static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
A
aurel32 已提交
122
{
123 124
    CPUPPCState *cenv = &cpu->env;
    CPUState *cs = CPU(cpu);
A
Alexander Graf 已提交
125
    struct kvm_sregs sregs;
126 127 128
    int ret;

    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
A
Alexander Graf 已提交
129 130 131 132
        /* What we're really trying to say is "if we're on BookE, we use
           the native PVR for now". This is the only sane way to check
           it though, so we potentially confuse users that they can run
           BookE guests on BookS. Let's hope nobody dares enough :) */
133 134
        return 0;
    } else {
S
Scott Wood 已提交
135
        if (!cap_segstate) {
A
Alexander Graf 已提交
136 137
            fprintf(stderr, "kvm error: missing PVR setting capability\n");
            return -ENOSYS;
138 139 140
        }
    }

141
    ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
142 143 144
    if (ret) {
        return ret;
    }
A
Alexander Graf 已提交
145 146

    sregs.pvr = cenv->spr[SPR_PVR];
147
    return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
148 149
}

S
Scott Wood 已提交
150
/* Set up a shared TLB array with KVM */
151
static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
S
Scott Wood 已提交
152
{
153 154
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);
S
Scott Wood 已提交
155 156 157 158 159 160
    struct kvm_book3e_206_tlb_params params = {};
    struct kvm_config_tlb cfg = {};
    unsigned int entries = 0;
    int ret, i;

    if (!kvm_enabled() ||
161
        !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
S
Scott Wood 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        return 0;
    }

    assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);

    for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
        params.tlb_sizes[i] = booke206_tlb_size(env, i);
        params.tlb_ways[i] = booke206_tlb_ways(env, i);
        entries += params.tlb_sizes[i];
    }

    assert(entries == env->nb_tlb);
    assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));

    env->tlb_dirty = true;

    cfg.array = (uintptr_t)env->tlb.tlbm;
    cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
    cfg.params = (uintptr_t)&params;
    cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;

C
Cornelia Huck 已提交
183
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
S
Scott Wood 已提交
184 185 186 187 188 189 190 191 192 193
    if (ret < 0) {
        fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
                __func__, strerror(-ret));
        return ret;
    }

    env->kvm_sw_tlb = true;
    return 0;
}

194 195

#if defined(TARGET_PPC64)
196
static void kvm_get_fallback_smmu_info(PowerPCCPU *cpu,
197 198
                                       struct kvm_ppc_smmu_info *info)
{
199 200 201
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    memset(info, 0, sizeof(*info));

    /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so
     * need to "guess" what the supported page sizes are.
     *
     * For that to work we make a few assumptions:
     *
     * - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR"
     *   KVM which only supports 4K and 16M pages, but supports them
     *   regardless of the backing store characteritics. We also don't
     *   support 1T segments.
     *
     *   This is safe as if HV KVM ever supports that capability or PR
     *   KVM grows supports for more page/segment sizes, those versions
     *   will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we
     *   will not hit this fallback
     *
     * - Else we are running HV KVM. This means we only support page
     *   sizes that fit in the backing store. Additionally we only
     *   advertize 64K pages if the processor is ARCH 2.06 and we assume
     *   P7 encodings for the SLB and hash table. Here too, we assume
     *   support for any newer processor will mean a kernel that
     *   implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit
     *   this fallback.
     */
227
    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        /* No flags */
        info->flags = 0;
        info->slb_size = 64;

        /* Standard 4k base page size segment */
        info->sps[0].page_shift = 12;
        info->sps[0].slb_enc = 0;
        info->sps[0].enc[0].page_shift = 12;
        info->sps[0].enc[0].pte_enc = 0;

        /* Standard 16M large page size segment */
        info->sps[1].page_shift = 24;
        info->sps[1].slb_enc = SLB_VSID_L;
        info->sps[1].enc[0].page_shift = 24;
        info->sps[1].enc[0].pte_enc = 0;
    } else {
        int i = 0;

        /* HV KVM has backing store size restrictions */
        info->flags = KVM_PPC_PAGE_SIZES_REAL;

        if (env->mmu_model & POWERPC_MMU_1TSEG) {
            info->flags |= KVM_PPC_1T_SEGMENTS;
        }

        if (env->mmu_model == POWERPC_MMU_2_06) {
            info->slb_size = 32;
        } else {
            info->slb_size = 64;
        }

        /* Standard 4k base page size segment */
        info->sps[i].page_shift = 12;
        info->sps[i].slb_enc = 0;
        info->sps[i].enc[0].page_shift = 12;
        info->sps[i].enc[0].pte_enc = 0;
        i++;

        /* 64K on MMU 2.06 */
        if (env->mmu_model == POWERPC_MMU_2_06) {
            info->sps[i].page_shift = 16;
            info->sps[i].slb_enc = 0x110;
            info->sps[i].enc[0].page_shift = 16;
            info->sps[i].enc[0].pte_enc = 1;
            i++;
        }

        /* Standard 16M large page size segment */
        info->sps[i].page_shift = 24;
        info->sps[i].slb_enc = SLB_VSID_L;
        info->sps[i].enc[0].page_shift = 24;
        info->sps[i].enc[0].pte_enc = 0;
    }
}

283
static void kvm_get_smmu_info(PowerPCCPU *cpu, struct kvm_ppc_smmu_info *info)
284
{
285
    CPUState *cs = CPU(cpu);
286 287
    int ret;

288 289
    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
        ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_SMMU_INFO, info);
290 291 292 293 294
        if (ret == 0) {
            return;
        }
    }

295
    kvm_get_fallback_smmu_info(cpu, info);
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
}

static long getrampagesize(void)
{
    struct statfs fs;
    int ret;

    if (!mem_path) {
        /* guest RAM is backed by normal anonymous pages */
        return getpagesize();
    }

    do {
        ret = statfs(mem_path, &fs);
    } while (ret != 0 && errno == EINTR);

    if (ret != 0) {
        fprintf(stderr, "Couldn't statfs() memory path: %s\n",
                strerror(errno));
        exit(1);
    }

#define HUGETLBFS_MAGIC       0x958458f6

    if (fs.f_type != HUGETLBFS_MAGIC) {
        /* Explicit mempath, but it's ordinary pages */
        return getpagesize();
    }

    /* It's hugepage, return the huge page size */
    return fs.f_bsize;
}

static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift)
{
    if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) {
        return true;
    }

    return (1ul << shift) <= rampgsize;
}

338
static void kvm_fixup_page_sizes(PowerPCCPU *cpu)
339 340 341
{
    static struct kvm_ppc_smmu_info smmu_info;
    static bool has_smmu_info;
342
    CPUPPCState *env = &cpu->env;
343 344 345 346 347 348 349 350 351 352
    long rampagesize;
    int iq, ik, jq, jk;

    /* We only handle page sizes for 64-bit server guests for now */
    if (!(env->mmu_model & POWERPC_MMU_64)) {
        return;
    }

    /* Collect MMU info from kernel if not already */
    if (!has_smmu_info) {
353
        kvm_get_smmu_info(cpu, &smmu_info);
354 355 356 357 358 359 360 361
        has_smmu_info = true;
    }

    rampagesize = getrampagesize();

    /* Convert to QEMU form */
    memset(&env->sps, 0, sizeof(env->sps));

362 363 364 365
    /*
     * XXX This loop should be an entry wide AND of the capabilities that
     *     the selected CPU has with the capabilities that KVM supports.
     */
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) {
        struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq];
        struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik];

        if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
                                 ksps->page_shift)) {
            continue;
        }
        qsps->page_shift = ksps->page_shift;
        qsps->slb_enc = ksps->slb_enc;
        for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) {
            if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
                                     ksps->enc[jk].page_shift)) {
                continue;
            }
            qsps->enc[jq].page_shift = ksps->enc[jk].page_shift;
            qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc;
            if (++jq >= PPC_PAGE_SIZES_MAX_SZ) {
                break;
            }
        }
        if (++iq >= PPC_PAGE_SIZES_MAX_SZ) {
            break;
        }
    }
    env->slb_nr = smmu_info.slb_size;
392
    if (!(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
393 394 395 396 397
        env->mmu_model &= ~POWERPC_MMU_1TSEG;
    }
}
#else /* defined (TARGET_PPC64) */

398
static inline void kvm_fixup_page_sizes(PowerPCCPU *cpu)
399 400 401 402 403
{
}

#endif /* !defined (TARGET_PPC64) */

404 405
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
406
    return ppc_get_vcpu_dt_id(POWERPC_CPU(cpu));
407 408
}

A
Andreas Färber 已提交
409
int kvm_arch_init_vcpu(CPUState *cs)
410
{
A
Andreas Färber 已提交
411 412
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *cenv = &cpu->env;
413 414
    int ret;

415
    /* Gather server mmu info from KVM and update the CPU state */
416
    kvm_fixup_page_sizes(cpu);
417 418

    /* Synchronize sregs with kvm */
419
    ret = kvm_arch_sync_sregs(cpu);
420 421 422
    if (ret) {
        return ret;
    }
A
Alexander Graf 已提交
423

424
    idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu);
A
Alexander Graf 已提交
425

S
Scott Wood 已提交
426 427 428
    /* Some targets support access to KVM's guest TLB. */
    switch (cenv->mmu_model) {
    case POWERPC_MMU_BOOKE206:
429
        ret = kvm_booke206_tlb_init(cpu);
S
Scott Wood 已提交
430 431 432 433 434
        break;
    default:
        break;
    }

A
Alexander Graf 已提交
435
    return ret;
A
aurel32 已提交
436 437
}

438
static void kvm_sw_tlb_put(PowerPCCPU *cpu)
S
Scott Wood 已提交
439
{
440 441
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);
S
Scott Wood 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455
    struct kvm_dirty_tlb dirty_tlb;
    unsigned char *bitmap;
    int ret;

    if (!env->kvm_sw_tlb) {
        return;
    }

    bitmap = g_malloc((env->nb_tlb + 7) / 8);
    memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);

    dirty_tlb.bitmap = (uintptr_t)bitmap;
    dirty_tlb.num_dirty = env->nb_tlb;

456
    ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
S
Scott Wood 已提交
457 458 459 460 461 462 463 464
    if (ret) {
        fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
                __func__, strerror(-ret));
    }

    g_free(bitmap);
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    union {
        uint32_t u32;
        uint64_t u64;
    } val;
    struct kvm_one_reg reg = {
        .id = id,
        .addr = (uintptr_t) &val,
    };
    int ret;

    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret != 0) {
481
        trace_kvm_failed_spr_get(spr, strerror(errno));
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    } else {
        switch (id & KVM_REG_SIZE_MASK) {
        case KVM_REG_SIZE_U32:
            env->spr[spr] = val.u32;
            break;

        case KVM_REG_SIZE_U64:
            env->spr[spr] = val.u64;
            break;

        default:
            /* Don't handle this size yet */
            abort();
        }
    }
}

static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    union {
        uint32_t u32;
        uint64_t u64;
    } val;
    struct kvm_one_reg reg = {
        .id = id,
        .addr = (uintptr_t) &val,
    };
    int ret;

    switch (id & KVM_REG_SIZE_MASK) {
    case KVM_REG_SIZE_U32:
        val.u32 = env->spr[spr];
        break;

    case KVM_REG_SIZE_U64:
        val.u64 = env->spr[spr];
        break;

    default:
        /* Don't handle this size yet */
        abort();
    }

    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret != 0) {
529
        trace_kvm_failed_spr_set(spr, strerror(errno));
530 531 532
    }
}

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
static int kvm_put_fp(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int i;
    int ret;

    if (env->insns_flags & PPC_FLOAT) {
        uint64_t fpscr = env->fpscr;
        bool vsx = !!(env->insns_flags2 & PPC2_VSX);

        reg.id = KVM_REG_PPC_FPSCR;
        reg.addr = (uintptr_t)&fpscr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
549
            DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno));
550 551 552 553 554 555 556 557 558 559 560 561 562
            return ret;
        }

        for (i = 0; i < 32; i++) {
            uint64_t vsr[2];

            vsr[0] = float64_val(env->fpr[i]);
            vsr[1] = env->vsr[i];
            reg.addr = (uintptr_t) &vsr;
            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);

            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
            if (ret < 0) {
563
                DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR",
564 565 566 567 568 569 570 571 572 573 574
                        i, strerror(errno));
                return ret;
            }
        }
    }

    if (env->insns_flags & PPC_ALTIVEC) {
        reg.id = KVM_REG_PPC_VSCR;
        reg.addr = (uintptr_t)&env->vscr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
575
            DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno));
576 577 578 579 580 581 582 583
            return ret;
        }

        for (i = 0; i < 32; i++) {
            reg.id = KVM_REG_PPC_VR(i);
            reg.addr = (uintptr_t)&env->avr[i];
            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
            if (ret < 0) {
584
                DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno));
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
                return ret;
            }
        }
    }

    return 0;
}

static int kvm_get_fp(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int i;
    int ret;

    if (env->insns_flags & PPC_FLOAT) {
        uint64_t fpscr;
        bool vsx = !!(env->insns_flags2 & PPC2_VSX);

        reg.id = KVM_REG_PPC_FPSCR;
        reg.addr = (uintptr_t)&fpscr;
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret < 0) {
609
            DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno));
610 611 612 613 614 615 616 617 618 619 620 621 622
            return ret;
        } else {
            env->fpscr = fpscr;
        }

        for (i = 0; i < 32; i++) {
            uint64_t vsr[2];

            reg.addr = (uintptr_t) &vsr;
            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);

            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
            if (ret < 0) {
623
                DPRINTF("Unable to get %s%d from KVM: %s\n",
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
                        vsx ? "VSR" : "FPR", i, strerror(errno));
                return ret;
            } else {
                env->fpr[i] = vsr[0];
                if (vsx) {
                    env->vsr[i] = vsr[1];
                }
            }
        }
    }

    if (env->insns_flags & PPC_ALTIVEC) {
        reg.id = KVM_REG_PPC_VSCR;
        reg.addr = (uintptr_t)&env->vscr;
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret < 0) {
640
            DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno));
641 642 643 644 645 646 647 648
            return ret;
        }

        for (i = 0; i < 32; i++) {
            reg.id = KVM_REG_PPC_VR(i);
            reg.addr = (uintptr_t)&env->avr[i];
            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
            if (ret < 0) {
649
                DPRINTF("Unable to get VR%d from KVM: %s\n",
650 651 652 653 654 655 656 657 658
                        i, strerror(errno));
                return ret;
            }
        }
    }

    return 0;
}

659 660 661 662 663 664 665 666 667 668 669 670
#if defined(TARGET_PPC64)
static int kvm_get_vpa(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int ret;

    reg.id = KVM_REG_PPC_VPA_ADDR;
    reg.addr = (uintptr_t)&env->vpa_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
671
        DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno));
672 673 674 675 676 677 678 679 680
        return ret;
    }

    assert((uintptr_t)&env->slb_shadow_size
           == ((uintptr_t)&env->slb_shadow_addr + 8));
    reg.id = KVM_REG_PPC_VPA_SLB;
    reg.addr = (uintptr_t)&env->slb_shadow_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
681
        DPRINTF("Unable to get SLB shadow state from KVM: %s\n",
682 683 684 685 686 687 688 689 690
                strerror(errno));
        return ret;
    }

    assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
    reg.id = KVM_REG_PPC_VPA_DTL;
    reg.addr = (uintptr_t)&env->dtl_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
691
        DPRINTF("Unable to get dispatch trace log state from KVM: %s\n",
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
                strerror(errno));
        return ret;
    }

    return 0;
}

static int kvm_put_vpa(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int ret;

    /* SLB shadow or DTL can't be registered unless a master VPA is
     * registered.  That means when restoring state, if a VPA *is*
     * registered, we need to set that up first.  If not, we need to
     * deregister the others before deregistering the master VPA */
    assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr));

    if (env->vpa_addr) {
        reg.id = KVM_REG_PPC_VPA_ADDR;
        reg.addr = (uintptr_t)&env->vpa_addr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
717
            DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
718 719 720 721 722 723 724 725 726 727
            return ret;
        }
    }

    assert((uintptr_t)&env->slb_shadow_size
           == ((uintptr_t)&env->slb_shadow_addr + 8));
    reg.id = KVM_REG_PPC_VPA_SLB;
    reg.addr = (uintptr_t)&env->slb_shadow_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret < 0) {
728
        DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno));
729 730 731 732 733 734 735 736
        return ret;
    }

    assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
    reg.id = KVM_REG_PPC_VPA_DTL;
    reg.addr = (uintptr_t)&env->dtl_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret < 0) {
737
        DPRINTF("Unable to set dispatch trace log state to KVM: %s\n",
738 739 740 741 742 743 744 745 746
                strerror(errno));
        return ret;
    }

    if (!env->vpa_addr) {
        reg.id = KVM_REG_PPC_VPA_ADDR;
        reg.addr = (uintptr_t)&env->vpa_addr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
747
            DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
748 749 750 751 752 753 754 755
            return ret;
        }
    }

    return 0;
}
#endif /* TARGET_PPC64 */

A
Andreas Färber 已提交
756
int kvm_arch_put_registers(CPUState *cs, int level)
A
aurel32 已提交
757
{
A
Andreas Färber 已提交
758 759
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
A
aurel32 已提交
760 761 762 763
    struct kvm_regs regs;
    int ret;
    int i;

764 765
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
    if (ret < 0) {
A
aurel32 已提交
766
        return ret;
767
    }
A
aurel32 已提交
768 769 770

    regs.ctr = env->ctr;
    regs.lr  = env->lr;
771
    regs.xer = cpu_read_xer(env);
A
aurel32 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
    regs.msr = env->msr;
    regs.pc = env->nip;

    regs.srr0 = env->spr[SPR_SRR0];
    regs.srr1 = env->spr[SPR_SRR1];

    regs.sprg0 = env->spr[SPR_SPRG0];
    regs.sprg1 = env->spr[SPR_SPRG1];
    regs.sprg2 = env->spr[SPR_SPRG2];
    regs.sprg3 = env->spr[SPR_SPRG3];
    regs.sprg4 = env->spr[SPR_SPRG4];
    regs.sprg5 = env->spr[SPR_SPRG5];
    regs.sprg6 = env->spr[SPR_SPRG6];
    regs.sprg7 = env->spr[SPR_SPRG7];

S
Scott Wood 已提交
787 788
    regs.pid = env->spr[SPR_BOOKE_PID];

A
aurel32 已提交
789 790 791
    for (i = 0;i < 32; i++)
        regs.gpr[i] = env->gpr[i];

792 793 794 795 796
    regs.cr = 0;
    for (i = 0; i < 8; i++) {
        regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
    }

797
    ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
A
aurel32 已提交
798 799 800
    if (ret < 0)
        return ret;

801 802
    kvm_put_fp(cs);

S
Scott Wood 已提交
803
    if (env->tlb_dirty) {
804
        kvm_sw_tlb_put(cpu);
S
Scott Wood 已提交
805 806 807
        env->tlb_dirty = false;
    }

808 809 810 811 812 813 814 815 816
    if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
        struct kvm_sregs sregs;

        sregs.pvr = env->spr[SPR_PVR];

        sregs.u.s.sdr1 = env->spr[SPR_SDR1];

        /* Sync SLB */
#ifdef TARGET_PPC64
817
        for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
818
            sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
819 820 821
            if (env->slb[i].esid & SLB_ESID_V) {
                sregs.u.s.ppc64.slb[i].slbe |= i;
            }
822 823 824 825 826 827 828 829 830 831 832
            sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
        }
#endif

        /* Sync SRs */
        for (i = 0; i < 16; i++) {
            sregs.u.s.ppc32.sr[i] = env->sr[i];
        }

        /* Sync BATs */
        for (i = 0; i < 8; i++) {
A
Alexander Graf 已提交
833 834 835 836 837
            /* Beware. We have to swap upper and lower bits here */
            sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
                | env->DBAT[1][i];
            sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
                | env->IBAT[1][i];
838 839
        }

840
        ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
841 842 843 844 845 846
        if (ret) {
            return ret;
        }
    }

    if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
847 848
        kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
    }
849

850 851 852 853 854 855 856 857 858 859 860 861 862
    if (cap_one_reg) {
        int i;

        /* We deliberately ignore errors here, for kernels which have
         * the ONE_REG calls, but don't support the specific
         * registers, there's a reasonable chance things will still
         * work, at least until we try to migrate. */
        for (i = 0; i < 1024; i++) {
            uint64_t id = env->spr_cb[i].one_reg_id;

            if (id != 0) {
                kvm_put_one_spr(cs, id, i);
            }
863
        }
864 865 866 867

#ifdef TARGET_PPC64
        if (cap_papr) {
            if (kvm_put_vpa(cs) < 0) {
868
                DPRINTF("Warning: Unable to set VPA information to KVM\n");
869 870
            }
        }
871 872

        kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
873
#endif /* TARGET_PPC64 */
874 875
    }

A
aurel32 已提交
876 877 878
    return ret;
}

A
Andreas Färber 已提交
879
int kvm_arch_get_registers(CPUState *cs)
A
aurel32 已提交
880
{
A
Andreas Färber 已提交
881 882
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
A
aurel32 已提交
883
    struct kvm_regs regs;
884
    struct kvm_sregs sregs;
S
Scott Wood 已提交
885
    uint32_t cr;
A
Alexander Graf 已提交
886
    int i, ret;
A
aurel32 已提交
887

888
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
A
aurel32 已提交
889 890 891
    if (ret < 0)
        return ret;

S
Scott Wood 已提交
892 893 894 895 896
    cr = regs.cr;
    for (i = 7; i >= 0; i--) {
        env->crf[i] = cr & 15;
        cr >>= 4;
    }
897

A
aurel32 已提交
898 899
    env->ctr = regs.ctr;
    env->lr = regs.lr;
900
    cpu_write_xer(env, regs.xer);
A
aurel32 已提交
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
    env->msr = regs.msr;
    env->nip = regs.pc;

    env->spr[SPR_SRR0] = regs.srr0;
    env->spr[SPR_SRR1] = regs.srr1;

    env->spr[SPR_SPRG0] = regs.sprg0;
    env->spr[SPR_SPRG1] = regs.sprg1;
    env->spr[SPR_SPRG2] = regs.sprg2;
    env->spr[SPR_SPRG3] = regs.sprg3;
    env->spr[SPR_SPRG4] = regs.sprg4;
    env->spr[SPR_SPRG5] = regs.sprg5;
    env->spr[SPR_SPRG6] = regs.sprg6;
    env->spr[SPR_SPRG7] = regs.sprg7;

S
Scott Wood 已提交
916 917
    env->spr[SPR_BOOKE_PID] = regs.pid;

A
aurel32 已提交
918 919 920
    for (i = 0;i < 32; i++)
        env->gpr[i] = regs.gpr[i];

921 922
    kvm_get_fp(cs);

S
Scott Wood 已提交
923
    if (cap_booke_sregs) {
924
        ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
S
Scott Wood 已提交
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
        if (ret < 0) {
            return ret;
        }

        if (sregs.u.e.features & KVM_SREGS_E_BASE) {
            env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
            env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
            env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
            env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
            env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
            env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
            env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
            env->spr[SPR_DECR] = sregs.u.e.dec;
            env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
            env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
            env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
        }

        if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
            env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
            env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
            env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
            env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
            env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
        }

        if (sregs.u.e.features & KVM_SREGS_E_64) {
            env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
        }

        if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
            env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
        }

        if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
            env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
            env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
            env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
            env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
            env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
            env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
            env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
            env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
            env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
            env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
            env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
            env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
            env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
            env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
            env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
            env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];

            if (sregs.u.e.features & KVM_SREGS_E_SPE) {
                env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
                env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
                env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
            }

            if (sregs.u.e.features & KVM_SREGS_E_PM) {
                env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
            }

            if (sregs.u.e.features & KVM_SREGS_E_PC) {
                env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
                env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
            }
        }

        if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
            env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
            env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
            env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
            env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
            env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
            env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
            env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
            env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
            env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
            env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
        }

        if (sregs.u.e.features & KVM_SREGS_EXP) {
            env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
        }

        if (sregs.u.e.features & KVM_SREGS_E_PD) {
            env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
            env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
        }

        if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
            env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
            env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
            env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;

            if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
                env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
                env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
            }
        }
A
Alexander Graf 已提交
1025
    }
S
Scott Wood 已提交
1026 1027

    if (cap_segstate) {
1028
        ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
S
Scott Wood 已提交
1029 1030 1031 1032
        if (ret < 0) {
            return ret;
        }

1033 1034 1035
        if (!env->external_htab) {
            ppc_store_sdr1(env, sregs.u.s.sdr1);
        }
1036 1037

        /* Sync SLB */
A
Alexander Graf 已提交
1038
#ifdef TARGET_PPC64
1039 1040 1041 1042 1043 1044 1045
        /*
         * The packed SLB array we get from KVM_GET_SREGS only contains
         * information about valid entries. So we flush our internal
         * copy to get rid of stale ones, then put all valid SLB entries
         * back in.
         */
        memset(env->slb, 0, sizeof(env->slb));
1046
        for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1047 1048 1049 1050 1051 1052 1053 1054
            target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
            target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
            /*
             * Only restore valid entries
             */
            if (rb & SLB_ESID_V) {
                ppc_store_slb(env, rb, rs);
            }
1055
        }
A
Alexander Graf 已提交
1056
#endif
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

        /* Sync SRs */
        for (i = 0; i < 16; i++) {
            env->sr[i] = sregs.u.s.ppc32.sr[i];
        }

        /* Sync BATs */
        for (i = 0; i < 8; i++) {
            env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
            env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
            env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
            env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
        }
A
Alexander Graf 已提交
1070
    }
1071

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    if (cap_hior) {
        kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
    }

    if (cap_one_reg) {
        int i;

        /* We deliberately ignore errors here, for kernels which have
         * the ONE_REG calls, but don't support the specific
         * registers, there's a reasonable chance things will still
         * work, at least until we try to migrate. */
        for (i = 0; i < 1024; i++) {
            uint64_t id = env->spr_cb[i].one_reg_id;

            if (id != 0) {
                kvm_get_one_spr(cs, id, i);
            }
        }
1090 1091 1092 1093

#ifdef TARGET_PPC64
        if (cap_papr) {
            if (kvm_get_vpa(cs) < 0) {
1094
                DPRINTF("Warning: Unable to get VPA information from KVM\n");
1095 1096
            }
        }
1097 1098

        kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1099
#endif
1100 1101
    }

A
aurel32 已提交
1102 1103 1104
    return 0;
}

1105
int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
{
    unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;

    if (irq != PPC_INTERRUPT_EXT) {
        return 0;
    }

    if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
        return 0;
    }

1117
    kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1118 1119 1120 1121

    return 0;
}

A
Alexander Graf 已提交
1122 1123 1124 1125 1126 1127 1128 1129
#if defined(TARGET_PPCEMB)
#define PPC_INPUT_INT PPC40x_INPUT_INT
#elif defined(TARGET_PPC64)
#define PPC_INPUT_INT PPC970_INPUT_INT
#else
#define PPC_INPUT_INT PPC6xx_INPUT_INT
#endif

A
Andreas Färber 已提交
1130
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
A
aurel32 已提交
1131
{
A
Andreas Färber 已提交
1132 1133
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
A
aurel32 已提交
1134 1135 1136
    int r;
    unsigned irq;

S
Stefan Weil 已提交
1137
    /* PowerPC QEMU tracks the various core input pins (interrupt, critical
A
aurel32 已提交
1138
     * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
1139 1140
    if (!cap_interrupt_level &&
        run->ready_for_interrupt_injection &&
1141
        (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
A
Alexander Graf 已提交
1142
        (env->irq_input_state & (1<<PPC_INPUT_INT)))
A
aurel32 已提交
1143 1144 1145 1146 1147
    {
        /* For now KVM disregards the 'irq' argument. However, in the
         * future KVM could cache it in-kernel to avoid a heavyweight exit
         * when reading the UIC.
         */
1148
        irq = KVM_INTERRUPT_SET;
A
aurel32 已提交
1149

1150
        DPRINTF("injected interrupt %d\n", irq);
1151
        r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq);
1152 1153 1154
        if (r < 0) {
            printf("cpu %d fail inject %x\n", cs->cpu_index, irq);
        }
A
Alexander Graf 已提交
1155 1156

        /* Always wake up soon in case the interrupt was level based */
1157
        timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
A
Alexander Graf 已提交
1158
                       (get_ticks_per_sec() / 50));
A
aurel32 已提交
1159 1160 1161 1162 1163 1164 1165
    }

    /* We don't know if there are more interrupts pending after this. However,
     * the guest will return to userspace in the course of handling this one
     * anyways, so we will get a chance to deliver the rest. */
}

A
Andreas Färber 已提交
1166
void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
A
aurel32 已提交
1167 1168 1169
{
}

A
Andreas Färber 已提交
1170
int kvm_arch_process_async_events(CPUState *cs)
M
Marcelo Tosatti 已提交
1171
{
1172
    return cs->halted;
M
Marcelo Tosatti 已提交
1173 1174
}

1175
static int kvmppc_handle_halt(PowerPCCPU *cpu)
A
aurel32 已提交
1176
{
1177 1178 1179 1180 1181
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;

    if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
        cs->halted = 1;
1182
        cs->exception_index = EXCP_HLT;
A
aurel32 已提交
1183 1184
    }

1185
    return 0;
A
aurel32 已提交
1186 1187 1188
}

/* map dcr access to existing qemu dcr emulation */
1189
static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
A
aurel32 已提交
1190 1191 1192 1193
{
    if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
        fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);

1194
    return 0;
A
aurel32 已提交
1195 1196
}

1197
static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
A
aurel32 已提交
1198 1199 1200 1201
{
    if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
        fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);

1202
    return 0;
A
aurel32 已提交
1203 1204
}

A
Andreas Färber 已提交
1205
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
A
aurel32 已提交
1206
{
A
Andreas Färber 已提交
1207 1208
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
1209
    int ret;
A
aurel32 已提交
1210 1211 1212 1213

    switch (run->exit_reason) {
    case KVM_EXIT_DCR:
        if (run->dcr.is_write) {
1214
            DPRINTF("handle dcr write\n");
A
aurel32 已提交
1215 1216
            ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
        } else {
1217
            DPRINTF("handle dcr read\n");
A
aurel32 已提交
1218 1219 1220 1221
            ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
        }
        break;
    case KVM_EXIT_HLT:
1222
        DPRINTF("handle halt\n");
1223
        ret = kvmppc_handle_halt(cpu);
A
aurel32 已提交
1224
        break;
1225
#if defined(TARGET_PPC64)
1226
    case KVM_EXIT_PAPR_HCALL:
1227
        DPRINTF("handle PAPR hypercall\n");
A
Andreas Färber 已提交
1228
        run->papr_hcall.ret = spapr_hypercall(cpu,
1229
                                              run->papr_hcall.nr,
1230
                                              run->papr_hcall.args);
1231
        ret = 0;
1232 1233
        break;
#endif
1234
    case KVM_EXIT_EPR:
1235
        DPRINTF("handle epr\n");
1236
        run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1237 1238
        ret = 0;
        break;
B
Bharat Bhushan 已提交
1239
    case KVM_EXIT_WATCHDOG:
1240
        DPRINTF("handle watchdog expiry\n");
B
Bharat Bhushan 已提交
1241 1242 1243 1244
        watchdog_perform_action();
        ret = 0;
        break;

J
Jan Kiszka 已提交
1245 1246 1247 1248
    default:
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
        ret = -1;
        break;
A
aurel32 已提交
1249 1250 1251 1252 1253
    }

    return ret;
}

B
Bharat Bhushan 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{
    CPUState *cs = CPU(cpu);
    uint32_t bits = tsr_bits;
    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_OR_TSR,
        .addr = (uintptr_t) &bits,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{

    CPUState *cs = CPU(cpu);
    uint32_t bits = tsr_bits;
    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_CLEAR_TSR,
        .addr = (uintptr_t) &bits,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_set_tcr(PowerPCCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;
    uint32_t tcr = env->spr[SPR_BOOKE_TCR];

    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_TCR,
        .addr = (uintptr_t) &tcr,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    int ret;

    if (!kvm_enabled()) {
        return -1;
    }

    if (!cap_ppc_watchdog) {
        printf("warning: KVM does not support watchdog");
        return -1;
    }

C
Cornelia Huck 已提交
1307
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
B
Bharat Bhushan 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316
    if (ret < 0) {
        fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
                __func__, strerror(-ret));
        return ret;
    }

    return ret;
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
static int read_cpuinfo(const char *field, char *value, int len)
{
    FILE *f;
    int ret = -1;
    int field_len = strlen(field);
    char line[512];

    f = fopen("/proc/cpuinfo", "r");
    if (!f) {
        return -1;
    }

    do {
        if(!fgets(line, sizeof(line), f)) {
            break;
        }
        if (!strncmp(line, field, field_len)) {
1334
            pstrcpy(value, len, line);
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
            ret = 0;
            break;
        }
    } while(*line);

    fclose(f);

    return ret;
}

uint32_t kvmppc_get_tbfreq(void)
{
    char line[512];
    char *ns;
    uint32_t retval = get_ticks_per_sec();

    if (read_cpuinfo("timebase", line, sizeof(line))) {
        return retval;
    }

    if (!(ns = strchr(line, ':'))) {
        return retval;
    }

    ns++;

    retval = atoi(ns);
    return retval;
}
1364

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
/* Try to find a device tree node for a CPU with clock-frequency property */
static int kvmppc_find_cpu_dt(char *buf, int buf_len)
{
    struct dirent *dirp;
    DIR *dp;

    if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
        printf("Can't open directory " PROC_DEVTREE_CPU "\n");
        return -1;
    }

    buf[0] = '\0';
    while ((dirp = readdir(dp)) != NULL) {
        FILE *f;
        snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
                 dirp->d_name);
        f = fopen(buf, "r");
        if (f) {
            snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
            fclose(f);
            break;
        }
        buf[0] = '\0';
    }
    closedir(dp);
    if (buf[0] == '\0') {
        printf("Unknown host!\n");
        return -1;
    }

    return 0;
}

1398 1399 1400 1401 1402
/* Read a CPU node property from the host device tree that's a single
 * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
 * (can't find or open the property, or doesn't understand the
 * format) */
static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1403
{
1404 1405 1406 1407 1408
    char buf[PATH_MAX];
    union {
        uint32_t v32;
        uint64_t v64;
    } u;
1409 1410 1411 1412
    FILE *f;
    int len;

    if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1413
        return -1;
1414 1415
    }

1416 1417
    strncat(buf, "/", sizeof(buf) - strlen(buf));
    strncat(buf, propname, sizeof(buf) - strlen(buf));
1418 1419 1420 1421 1422 1423

    f = fopen(buf, "rb");
    if (!f) {
        return -1;
    }

1424
    len = fread(&u, 1, sizeof(u), f);
1425 1426
    fclose(f);
    switch (len) {
1427 1428 1429 1430 1431
    case 4:
        /* property is a 32-bit quantity */
        return be32_to_cpu(u.v32);
    case 8:
        return be64_to_cpu(u.v64);
1432 1433 1434 1435 1436
    }

    return 0;
}

1437 1438 1439 1440 1441
uint64_t kvmppc_get_clockfreq(void)
{
    return kvmppc_read_int_cpu_dt("clock-frequency");
}

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
uint32_t kvmppc_get_vmx(void)
{
    return kvmppc_read_int_cpu_dt("ibm,vmx");
}

uint32_t kvmppc_get_dfp(void)
{
    return kvmppc_read_int_cpu_dt("ibm,dfp");
}

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
 {
     PowerPCCPU *cpu = ppc_env_get_cpu(env);
     CPUState *cs = CPU(cpu);

    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
        !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
        return 0;
    }

    return 1;
}

int kvmppc_get_hasidle(CPUPPCState *env)
{
    struct kvm_ppc_pvinfo pvinfo;

    if (!kvmppc_get_pvinfo(env, &pvinfo) &&
        (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
        return 1;
    }

    return 0;
}

1477
int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1478 1479 1480 1481
{
    uint32_t *hc = (uint32_t*)buf;
    struct kvm_ppc_pvinfo pvinfo;

1482
    if (!kvmppc_get_pvinfo(env, &pvinfo)) {
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
        memcpy(buf, pvinfo.hcall, buf_len);
        return 0;
    }

    /*
     * Fallback to always fail hypercalls:
     *
     *     li r3, -1
     *     nop
     *     nop
     *     nop
     */

    hc[0] = 0x3860ffff;
    hc[1] = 0x60000000;
    hc[2] = 0x60000000;
    hc[3] = 0x60000000;

    return 0;
}

1504
void kvmppc_set_papr(PowerPCCPU *cpu)
1505
{
1506
    CPUState *cs = CPU(cpu);
1507 1508
    int ret;

C
Cornelia Huck 已提交
1509
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
1510
    if (ret) {
1511
        cpu_abort(cs, "This KVM version does not support PAPR\n");
1512
    }
1513 1514 1515 1516

    /* Update the capability flag so we sync the right information
     * with kvm */
    cap_papr = 1;
1517 1518
}

1519 1520 1521 1522 1523
int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t cpu_version)
{
    return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &cpu_version);
}

1524 1525 1526 1527 1528
void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
{
    CPUState *cs = CPU(cpu);
    int ret;

C
Cornelia Huck 已提交
1529
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
1530
    if (ret && mpic_proxy) {
1531
        cpu_abort(cs, "This KVM version does not support EPR\n");
1532 1533 1534
    }
}

1535 1536 1537 1538 1539
int kvmppc_smt_threads(void)
{
    return cap_ppc_smt ? cap_ppc_smt : 1;
}

1540
#ifdef TARGET_PPC64
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
off_t kvmppc_alloc_rma(const char *name, MemoryRegion *sysmem)
{
    void *rma;
    off_t size;
    int fd;
    struct kvm_allocate_rma ret;
    MemoryRegion *rma_region;

    /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported
     * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but
     *                      not necessary on this hardware
     * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware
     *
     * FIXME: We should allow the user to force contiguous RMA
     * allocation in the cap_ppc_rma==1 case.
     */
    if (cap_ppc_rma < 2) {
        return 0;
    }

    fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret);
    if (fd < 0) {
        fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
                strerror(errno));
        return -1;
    }

    size = MIN(ret.rma_size, 256ul << 20);

    rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
    if (rma == MAP_FAILED) {
        fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno));
        return -1;
    };

    rma_region = g_new(MemoryRegion, 1);
1577
    memory_region_init_ram_ptr(rma_region, NULL, name, size, rma);
1578
    vmstate_register_ram_global(rma_region);
1579 1580 1581 1582 1583
    memory_region_add_subregion(sysmem, 0, rma_region);

    return size;
}

1584 1585
uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
{
1586 1587 1588 1589
    struct kvm_ppc_smmu_info info;
    long rampagesize, best_page_shift;
    int i;

1590 1591 1592
    if (cap_ppc_rma >= 2) {
        return current_size;
    }
1593 1594 1595

    /* Find the largest hardware supported page size that's less than
     * or equal to the (logical) backing page size of guest RAM */
1596
    kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
    rampagesize = getrampagesize();
    best_page_shift = 0;

    for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];

        if (!sps->page_shift) {
            continue;
        }

        if ((sps->page_shift > best_page_shift)
            && ((1UL << sps->page_shift) <= rampagesize)) {
            best_page_shift = sps->page_shift;
        }
    }

1613
    return MIN(current_size,
1614
               1ULL << (best_page_shift + hash_shift - 7));
1615 1616 1617
}
#endif

1618 1619 1620 1621 1622
bool kvmppc_spapr_use_multitce(void)
{
    return cap_spapr_multitce;
}

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd)
{
    struct kvm_create_spapr_tce args = {
        .liobn = liobn,
        .window_size = window_size,
    };
    long len;
    int fd;
    void *table;

1633 1634 1635 1636
    /* Must set fd to -1 so we don't try to munmap when called for
     * destroying the table, which the upper layers -will- do
     */
    *pfd = -1;
1637 1638 1639 1640 1641 1642
    if (!cap_spapr_tce) {
        return NULL;
    }

    fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
    if (fd < 0) {
1643 1644
        fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
                liobn);
1645 1646 1647
        return NULL;
    }

1648
    len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(uint64_t);
1649 1650
    /* FIXME: round this up to page size */

1651
    table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
1652
    if (table == MAP_FAILED) {
1653 1654
        fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
                liobn);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
        close(fd);
        return NULL;
    }

    *pfd = fd;
    return table;
}

int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t window_size)
{
    long len;

    if (fd < 0) {
        return -1;
    }

1671
    len = (window_size / SPAPR_TCE_PAGE_SIZE)*sizeof(uint64_t);
1672 1673
    if ((munmap(table, len) < 0) ||
        (close(fd) < 0)) {
1674 1675
        fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
                strerror(errno));
1676 1677 1678 1679 1680 1681
        /* Leak the table */
    }

    return 0;
}

1682 1683 1684 1685
int kvmppc_reset_htab(int shift_hint)
{
    uint32_t shift = shift_hint;

1686 1687 1688 1689 1690
    if (!kvm_enabled()) {
        /* Full emulation, tell caller to allocate htab itself */
        return 0;
    }
    if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
1691 1692
        int ret;
        ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
1693 1694 1695 1696 1697 1698 1699
        if (ret == -ENOTTY) {
            /* At least some versions of PR KVM advertise the
             * capability, but don't implement the ioctl().  Oops.
             * Return 0 so that we allocate the htab in qemu, as is
             * correct for PR. */
            return 0;
        } else if (ret < 0) {
1700 1701 1702 1703 1704
            return ret;
        }
        return shift;
    }

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
    /* We have a kernel that predates the htab reset calls.  For PR
     * KVM, we need to allocate the htab ourselves, for an HV KVM of
     * this era, it has allocated a 16MB fixed size hash table
     * already.  Kernels of this era have the GET_PVINFO capability
     * only on PR, so we use this hack to determine the right
     * answer */
    if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
        /* PR - tell caller to allocate htab */
        return 0;
    } else {
        /* HV - assume 16MB kernel allocated htab */
        return 24;
    }
1718 1719
}

1720 1721 1722 1723 1724 1725 1726 1727 1728
static inline uint32_t mfpvr(void)
{
    uint32_t pvr;

    asm ("mfpvr %0"
         : "=r"(pvr));
    return pvr;
}

1729 1730 1731 1732 1733 1734 1735 1736 1737
static void alter_insns(uint64_t *word, uint64_t flags, bool on)
{
    if (on) {
        *word |= flags;
    } else {
        *word &= ~flags;
    }
}

1738
static void kvmppc_host_cpu_initfn(Object *obj)
1739
{
1740 1741 1742 1743 1744 1745
    assert(kvm_enabled());
}

static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
{
    PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
1746 1747
    uint32_t vmx = kvmppc_get_vmx();
    uint32_t dfp = kvmppc_get_dfp();
1748 1749
    uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
    uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
1750

1751
    /* Now fix up the class with information we can query from the host */
1752
    pcc->pvr = mfpvr();
1753

1754 1755
    if (vmx != -1) {
        /* Only override when we know what the host supports */
1756 1757
        alter_insns(&pcc->insns_flags, PPC_ALTIVEC, vmx > 0);
        alter_insns(&pcc->insns_flags2, PPC2_VSX, vmx > 1);
1758 1759 1760
    }
    if (dfp != -1) {
        /* Only override when we know what the host supports */
1761
        alter_insns(&pcc->insns_flags2, PPC2_DFP, dfp);
1762
    }
1763 1764 1765 1766 1767 1768 1769 1770

    if (dcache_size != -1) {
        pcc->l1_dcache_size = dcache_size;
    }

    if (icache_size != -1) {
        pcc->l1_icache_size = icache_size;
    }
1771 1772
}

1773 1774 1775 1776 1777
bool kvmppc_has_cap_epr(void)
{
    return cap_epr;
}

1778 1779 1780 1781 1782
bool kvmppc_has_cap_htab_fd(void)
{
    return cap_htab_fd;
}

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
static PowerPCCPUClass *ppc_cpu_get_family_class(PowerPCCPUClass *pcc)
{
    ObjectClass *oc = OBJECT_CLASS(pcc);

    while (oc && !object_class_is_abstract(oc)) {
        oc = object_class_get_parent(oc);
    }
    assert(oc);

    return POWERPC_CPU_CLASS(oc);
}

1795 1796 1797 1798 1799 1800 1801 1802 1803
static int kvm_ppc_register_host_cpu_type(void)
{
    TypeInfo type_info = {
        .name = TYPE_HOST_POWERPC_CPU,
        .instance_init = kvmppc_host_cpu_initfn,
        .class_init = kvmppc_host_cpu_class_init,
    };
    uint32_t host_pvr = mfpvr();
    PowerPCCPUClass *pvr_pcc;
1804
    DeviceClass *dc;
1805 1806

    pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
1807 1808 1809
    if (pvr_pcc == NULL) {
        pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
    }
1810 1811 1812 1813 1814
    if (pvr_pcc == NULL) {
        return -1;
    }
    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
    type_register(&type_info);
1815 1816 1817 1818 1819 1820 1821 1822

    /* Register generic family CPU class for a family */
    pvr_pcc = ppc_cpu_get_family_class(pvr_pcc);
    dc = DEVICE_CLASS(pvr_pcc);
    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
    type_info.name = g_strdup_printf("%s-"TYPE_POWERPC_CPU, dc->desc);
    type_register(&type_info);

1823 1824 1825
    return 0;
}

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
{
    struct kvm_rtas_token_args args = {
        .token = token,
    };

    if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
        return -ENOENT;
    }

    strncpy(args.name, function, sizeof(args.name));

    return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
}
1840

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
int kvmppc_get_htab_fd(bool write)
{
    struct kvm_get_htab_fd s = {
        .flags = write ? KVM_GET_HTAB_WRITE : 0,
        .start_index = 0,
    };

    if (!cap_htab_fd) {
        fprintf(stderr, "KVM version doesn't support saving the hash table\n");
        return -1;
    }

    return kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
}

int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
{
1858
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
    uint8_t buf[bufsize];
    ssize_t rc;

    do {
        rc = read(fd, buf, bufsize);
        if (rc < 0) {
            fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
                    strerror(errno));
            return rc;
        } else if (rc) {
            /* Kernel already retuns data in BE format for the file */
            qemu_put_buffer(f, buf, rc);
        }
    } while ((rc != 0)
             && ((max_ns < 0)
1874
                 || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

    return (rc == 0) ? 1 : 0;
}

int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
                           uint16_t n_valid, uint16_t n_invalid)
{
    struct kvm_get_htab_header *buf;
    size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64;
    ssize_t rc;

    buf = alloca(chunksize);
    /* This is KVM on ppc, so this is all big-endian */
    buf->index = index;
    buf->n_valid = n_valid;
    buf->n_invalid = n_invalid;

    qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid);

    rc = write(fd, buf, chunksize);
    if (rc < 0) {
        fprintf(stderr, "Error writing KVM hash table: %s\n",
                strerror(errno));
        return rc;
    }
    if (rc != chunksize) {
        /* We should never get a short write on a single chunk */
        fprintf(stderr, "Short write, restoring KVM hash table\n");
        return -1;
    }
    return 0;
}

A
Andreas Färber 已提交
1908
bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1909 1910 1911
{
    return true;
}
1912

A
Andreas Färber 已提交
1913
int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
1914 1915 1916 1917 1918 1919 1920 1921
{
    return 1;
}

int kvm_arch_on_sigbus(int code, void *addr)
{
    return 1;
}
1922 1923 1924 1925

void kvm_arch_init_irq_routing(KVMState *s)
{
}
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953

int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
{
    return -EINVAL;
}

int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
{
    return -EINVAL;
}

int kvm_arch_insert_hw_breakpoint(target_ulong addr, target_ulong len, int type)
{
    return -EINVAL;
}

int kvm_arch_remove_hw_breakpoint(target_ulong addr, target_ulong len, int type)
{
    return -EINVAL;
}

void kvm_arch_remove_all_hw_breakpoints(void)
{
}

void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
{
}
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

struct kvm_get_htab_buf {
    struct kvm_get_htab_header header;
    /*
     * We require one extra byte for read
     */
    target_ulong hpte[(HPTES_PER_GROUP * 2) + 1];
};

uint64_t kvmppc_hash64_read_pteg(PowerPCCPU *cpu, target_ulong pte_index)
{
    int htab_fd;
    struct kvm_get_htab_fd ghf;
    struct kvm_get_htab_buf  *hpte_buf;

    ghf.flags = 0;
    ghf.start_index = pte_index;
    htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
    if (htab_fd < 0) {
        goto error_out;
    }

    hpte_buf = g_malloc0(sizeof(*hpte_buf));
    /*
     * Read the hpte group
     */
    if (read(htab_fd, hpte_buf, sizeof(*hpte_buf)) < 0) {
        goto out_close;
    }

    close(htab_fd);
    return (uint64_t)(uintptr_t) hpte_buf->hpte;

out_close:
    g_free(hpte_buf);
    close(htab_fd);
error_out:
    return 0;
}

void kvmppc_hash64_free_pteg(uint64_t token)
{
    struct kvm_get_htab_buf *htab_buf;

    htab_buf = container_of((void *)(uintptr_t) token, struct kvm_get_htab_buf,
                            hpte);
    g_free(htab_buf);
    return;
}
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

void kvmppc_hash64_write_pte(CPUPPCState *env, target_ulong pte_index,
                             target_ulong pte0, target_ulong pte1)
{
    int htab_fd;
    struct kvm_get_htab_fd ghf;
    struct kvm_get_htab_buf hpte_buf;

    ghf.flags = 0;
    ghf.start_index = 0;     /* Ignored */
    htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
    if (htab_fd < 0) {
        goto error_out;
    }

    hpte_buf.header.n_valid = 1;
    hpte_buf.header.n_invalid = 0;
    hpte_buf.header.index = pte_index;
    hpte_buf.hpte[0] = pte0;
    hpte_buf.hpte[1] = pte1;
    /*
     * Write the hpte entry.
     * CAUTION: write() has the warn_unused_result attribute. Hence we
     * need to check the return value, even though we do nothing.
     */
    if (write(htab_fd, &hpte_buf, sizeof(hpte_buf)) < 0) {
        goto out_close;
    }

out_close:
    close(htab_fd);
    return;

error_out:
    return;
}