kvm.c 60.7 KB
Newer Older
A
aurel32 已提交
1 2 3 4
/*
 * PowerPC implementation of KVM hooks
 *
 * Copyright IBM Corp. 2007
S
Scott Wood 已提交
5
 * Copyright (C) 2011 Freescale Semiconductor, Inc.
A
aurel32 已提交
6 7 8 9 10 11 12 13 14 15 16
 *
 * Authors:
 *  Jerone Young <jyoung5@us.ibm.com>
 *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 *  Hollis Blanchard <hollisb@us.ibm.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

17
#include <dirent.h>
A
aurel32 已提交
18 19 20
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
21
#include <sys/vfs.h>
A
aurel32 已提交
22 23 24 25

#include <linux/kvm.h>

#include "qemu-common.h"
26
#include "qemu/timer.h"
27 28
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
A
aurel32 已提交
29 30
#include "kvm_ppc.h"
#include "cpu.h"
31 32
#include "sysemu/cpus.h"
#include "sysemu/device_tree.h"
33
#include "mmu-hash64.h"
A
aurel32 已提交
34

35
#include "hw/sysbus.h"
P
Paolo Bonzini 已提交
36 37
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
38
#include "hw/ppc/ppc.h"
B
Bharat Bhushan 已提交
39
#include "sysemu/watchdog.h"
40
#include "trace.h"
41

A
aurel32 已提交
42 43 44
//#define DEBUG_KVM

#ifdef DEBUG_KVM
45
#define DPRINTF(fmt, ...) \
A
aurel32 已提交
46 47
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
48
#define DPRINTF(fmt, ...) \
A
aurel32 已提交
49 50 51
    do { } while (0)
#endif

52 53
#define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"

54 55 56 57
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
    KVM_CAP_LAST_INFO
};

58 59
static int cap_interrupt_unset = false;
static int cap_interrupt_level = false;
S
Scott Wood 已提交
60 61
static int cap_segstate;
static int cap_booke_sregs;
62
static int cap_ppc_smt;
63
static int cap_ppc_rma;
64
static int cap_spapr_tce;
65
static int cap_spapr_multitce;
66
static int cap_spapr_vfio;
67
static int cap_hior;
68
static int cap_one_reg;
69
static int cap_epr;
B
Bharat Bhushan 已提交
70
static int cap_ppc_watchdog;
71
static int cap_papr;
72
static int cap_htab_fd;
73
static int cap_fixup_hcalls;
74

75 76
static uint32_t debug_inst_opcode;

A
Alexander Graf 已提交
77 78 79 80
/* XXX We have a race condition where we actually have a level triggered
 *     interrupt, but the infrastructure can't expose that yet, so the guest
 *     takes but ignores it, goes to sleep and never gets notified that there's
 *     still an interrupt pending.
A
Alexander Graf 已提交
81
 *
A
Alexander Graf 已提交
82 83 84
 *     As a quick workaround, let's just wake up again 20 ms after we injected
 *     an interrupt. That way we can assure that we're always reinjecting
 *     interrupts in case the guest swallowed them.
A
Alexander Graf 已提交
85 86 87
 */
static QEMUTimer *idle_timer;

88
static void kvm_kick_cpu(void *opaque)
A
Alexander Graf 已提交
89
{
90 91
    PowerPCCPU *cpu = opaque;

92
    qemu_cpu_kick(CPU(cpu));
A
Alexander Graf 已提交
93 94
}

95 96
static int kvm_ppc_register_host_cpu_type(void);

97
int kvm_arch_init(KVMState *s)
A
aurel32 已提交
98
{
99 100
    cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
    cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
S
Scott Wood 已提交
101 102
    cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
    cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
103
    cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT);
104
    cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA);
105
    cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
106
    cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
107
    cap_spapr_vfio = false;
108
    cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
109
    cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
110
    cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
B
Bharat Bhushan 已提交
111
    cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
112 113
    /* Note: we don't set cap_papr here, because this capability is
     * only activated after this by kvmppc_set_papr() */
114
    cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
115
    cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
116 117 118 119 120 121

    if (!cap_interrupt_level) {
        fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
                        "VM to stall at times!\n");
    }

122 123
    kvm_ppc_register_host_cpu_type();

A
aurel32 已提交
124 125 126
    return 0;
}

127
static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
A
aurel32 已提交
128
{
129 130
    CPUPPCState *cenv = &cpu->env;
    CPUState *cs = CPU(cpu);
A
Alexander Graf 已提交
131
    struct kvm_sregs sregs;
132 133 134
    int ret;

    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
A
Alexander Graf 已提交
135 136 137 138
        /* What we're really trying to say is "if we're on BookE, we use
           the native PVR for now". This is the only sane way to check
           it though, so we potentially confuse users that they can run
           BookE guests on BookS. Let's hope nobody dares enough :) */
139 140
        return 0;
    } else {
S
Scott Wood 已提交
141
        if (!cap_segstate) {
A
Alexander Graf 已提交
142 143
            fprintf(stderr, "kvm error: missing PVR setting capability\n");
            return -ENOSYS;
144 145 146
        }
    }

147
    ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
148 149 150
    if (ret) {
        return ret;
    }
A
Alexander Graf 已提交
151 152

    sregs.pvr = cenv->spr[SPR_PVR];
153
    return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
154 155
}

S
Scott Wood 已提交
156
/* Set up a shared TLB array with KVM */
157
static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
S
Scott Wood 已提交
158
{
159 160
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);
S
Scott Wood 已提交
161 162 163 164 165 166
    struct kvm_book3e_206_tlb_params params = {};
    struct kvm_config_tlb cfg = {};
    unsigned int entries = 0;
    int ret, i;

    if (!kvm_enabled() ||
167
        !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
S
Scott Wood 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
        return 0;
    }

    assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);

    for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
        params.tlb_sizes[i] = booke206_tlb_size(env, i);
        params.tlb_ways[i] = booke206_tlb_ways(env, i);
        entries += params.tlb_sizes[i];
    }

    assert(entries == env->nb_tlb);
    assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));

    env->tlb_dirty = true;

    cfg.array = (uintptr_t)env->tlb.tlbm;
    cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
    cfg.params = (uintptr_t)&params;
    cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;

C
Cornelia Huck 已提交
189
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
S
Scott Wood 已提交
190 191 192 193 194 195 196 197 198 199
    if (ret < 0) {
        fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
                __func__, strerror(-ret));
        return ret;
    }

    env->kvm_sw_tlb = true;
    return 0;
}

200 201

#if defined(TARGET_PPC64)
202
static void kvm_get_fallback_smmu_info(PowerPCCPU *cpu,
203 204
                                       struct kvm_ppc_smmu_info *info)
{
205 206 207
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    memset(info, 0, sizeof(*info));

    /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so
     * need to "guess" what the supported page sizes are.
     *
     * For that to work we make a few assumptions:
     *
     * - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR"
     *   KVM which only supports 4K and 16M pages, but supports them
     *   regardless of the backing store characteritics. We also don't
     *   support 1T segments.
     *
     *   This is safe as if HV KVM ever supports that capability or PR
     *   KVM grows supports for more page/segment sizes, those versions
     *   will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we
     *   will not hit this fallback
     *
     * - Else we are running HV KVM. This means we only support page
     *   sizes that fit in the backing store. Additionally we only
     *   advertize 64K pages if the processor is ARCH 2.06 and we assume
     *   P7 encodings for the SLB and hash table. Here too, we assume
     *   support for any newer processor will mean a kernel that
     *   implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit
     *   this fallback.
     */
233
    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        /* No flags */
        info->flags = 0;
        info->slb_size = 64;

        /* Standard 4k base page size segment */
        info->sps[0].page_shift = 12;
        info->sps[0].slb_enc = 0;
        info->sps[0].enc[0].page_shift = 12;
        info->sps[0].enc[0].pte_enc = 0;

        /* Standard 16M large page size segment */
        info->sps[1].page_shift = 24;
        info->sps[1].slb_enc = SLB_VSID_L;
        info->sps[1].enc[0].page_shift = 24;
        info->sps[1].enc[0].pte_enc = 0;
    } else {
        int i = 0;

        /* HV KVM has backing store size restrictions */
        info->flags = KVM_PPC_PAGE_SIZES_REAL;

        if (env->mmu_model & POWERPC_MMU_1TSEG) {
            info->flags |= KVM_PPC_1T_SEGMENTS;
        }

        if (env->mmu_model == POWERPC_MMU_2_06) {
            info->slb_size = 32;
        } else {
            info->slb_size = 64;
        }

        /* Standard 4k base page size segment */
        info->sps[i].page_shift = 12;
        info->sps[i].slb_enc = 0;
        info->sps[i].enc[0].page_shift = 12;
        info->sps[i].enc[0].pte_enc = 0;
        i++;

        /* 64K on MMU 2.06 */
        if (env->mmu_model == POWERPC_MMU_2_06) {
            info->sps[i].page_shift = 16;
            info->sps[i].slb_enc = 0x110;
            info->sps[i].enc[0].page_shift = 16;
            info->sps[i].enc[0].pte_enc = 1;
            i++;
        }

        /* Standard 16M large page size segment */
        info->sps[i].page_shift = 24;
        info->sps[i].slb_enc = SLB_VSID_L;
        info->sps[i].enc[0].page_shift = 24;
        info->sps[i].enc[0].pte_enc = 0;
    }
}

289
static void kvm_get_smmu_info(PowerPCCPU *cpu, struct kvm_ppc_smmu_info *info)
290
{
291
    CPUState *cs = CPU(cpu);
292 293
    int ret;

294 295
    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
        ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_SMMU_INFO, info);
296 297 298 299 300
        if (ret == 0) {
            return;
        }
    }

301
    kvm_get_fallback_smmu_info(cpu, info);
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
}

static long getrampagesize(void)
{
    struct statfs fs;
    int ret;

    if (!mem_path) {
        /* guest RAM is backed by normal anonymous pages */
        return getpagesize();
    }

    do {
        ret = statfs(mem_path, &fs);
    } while (ret != 0 && errno == EINTR);

    if (ret != 0) {
        fprintf(stderr, "Couldn't statfs() memory path: %s\n",
                strerror(errno));
        exit(1);
    }

#define HUGETLBFS_MAGIC       0x958458f6

    if (fs.f_type != HUGETLBFS_MAGIC) {
        /* Explicit mempath, but it's ordinary pages */
        return getpagesize();
    }

    /* It's hugepage, return the huge page size */
    return fs.f_bsize;
}

static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift)
{
    if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) {
        return true;
    }

    return (1ul << shift) <= rampgsize;
}

344
static void kvm_fixup_page_sizes(PowerPCCPU *cpu)
345 346 347
{
    static struct kvm_ppc_smmu_info smmu_info;
    static bool has_smmu_info;
348
    CPUPPCState *env = &cpu->env;
349 350 351 352 353 354 355 356 357 358
    long rampagesize;
    int iq, ik, jq, jk;

    /* We only handle page sizes for 64-bit server guests for now */
    if (!(env->mmu_model & POWERPC_MMU_64)) {
        return;
    }

    /* Collect MMU info from kernel if not already */
    if (!has_smmu_info) {
359
        kvm_get_smmu_info(cpu, &smmu_info);
360 361 362 363 364 365 366 367
        has_smmu_info = true;
    }

    rampagesize = getrampagesize();

    /* Convert to QEMU form */
    memset(&env->sps, 0, sizeof(env->sps));

368 369 370 371
    /*
     * XXX This loop should be an entry wide AND of the capabilities that
     *     the selected CPU has with the capabilities that KVM supports.
     */
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
    for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) {
        struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq];
        struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik];

        if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
                                 ksps->page_shift)) {
            continue;
        }
        qsps->page_shift = ksps->page_shift;
        qsps->slb_enc = ksps->slb_enc;
        for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) {
            if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
                                     ksps->enc[jk].page_shift)) {
                continue;
            }
            qsps->enc[jq].page_shift = ksps->enc[jk].page_shift;
            qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc;
            if (++jq >= PPC_PAGE_SIZES_MAX_SZ) {
                break;
            }
        }
        if (++iq >= PPC_PAGE_SIZES_MAX_SZ) {
            break;
        }
    }
    env->slb_nr = smmu_info.slb_size;
398
    if (!(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
399 400 401 402 403
        env->mmu_model &= ~POWERPC_MMU_1TSEG;
    }
}
#else /* defined (TARGET_PPC64) */

404
static inline void kvm_fixup_page_sizes(PowerPCCPU *cpu)
405 406 407 408 409
{
}

#endif /* !defined (TARGET_PPC64) */

410 411
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
412
    return ppc_get_vcpu_dt_id(POWERPC_CPU(cpu));
413 414
}

A
Andreas Färber 已提交
415
int kvm_arch_init_vcpu(CPUState *cs)
416
{
A
Andreas Färber 已提交
417 418
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *cenv = &cpu->env;
419 420
    int ret;

421
    /* Gather server mmu info from KVM and update the CPU state */
422
    kvm_fixup_page_sizes(cpu);
423 424

    /* Synchronize sregs with kvm */
425
    ret = kvm_arch_sync_sregs(cpu);
426 427 428
    if (ret) {
        return ret;
    }
A
Alexander Graf 已提交
429

430
    idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu);
A
Alexander Graf 已提交
431

S
Scott Wood 已提交
432 433 434
    /* Some targets support access to KVM's guest TLB. */
    switch (cenv->mmu_model) {
    case POWERPC_MMU_BOOKE206:
435
        ret = kvm_booke206_tlb_init(cpu);
S
Scott Wood 已提交
436 437 438 439 440
        break;
    default:
        break;
    }

441 442
    kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);

A
Alexander Graf 已提交
443
    return ret;
A
aurel32 已提交
444 445
}

446
static void kvm_sw_tlb_put(PowerPCCPU *cpu)
S
Scott Wood 已提交
447
{
448 449
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);
S
Scott Wood 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463
    struct kvm_dirty_tlb dirty_tlb;
    unsigned char *bitmap;
    int ret;

    if (!env->kvm_sw_tlb) {
        return;
    }

    bitmap = g_malloc((env->nb_tlb + 7) / 8);
    memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);

    dirty_tlb.bitmap = (uintptr_t)bitmap;
    dirty_tlb.num_dirty = env->nb_tlb;

464
    ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
S
Scott Wood 已提交
465 466 467 468 469 470 471 472
    if (ret) {
        fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
                __func__, strerror(-ret));
    }

    g_free(bitmap);
}

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    union {
        uint32_t u32;
        uint64_t u64;
    } val;
    struct kvm_one_reg reg = {
        .id = id,
        .addr = (uintptr_t) &val,
    };
    int ret;

    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret != 0) {
489
        trace_kvm_failed_spr_get(spr, strerror(errno));
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    } else {
        switch (id & KVM_REG_SIZE_MASK) {
        case KVM_REG_SIZE_U32:
            env->spr[spr] = val.u32;
            break;

        case KVM_REG_SIZE_U64:
            env->spr[spr] = val.u64;
            break;

        default:
            /* Don't handle this size yet */
            abort();
        }
    }
}

static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    union {
        uint32_t u32;
        uint64_t u64;
    } val;
    struct kvm_one_reg reg = {
        .id = id,
        .addr = (uintptr_t) &val,
    };
    int ret;

    switch (id & KVM_REG_SIZE_MASK) {
    case KVM_REG_SIZE_U32:
        val.u32 = env->spr[spr];
        break;

    case KVM_REG_SIZE_U64:
        val.u64 = env->spr[spr];
        break;

    default:
        /* Don't handle this size yet */
        abort();
    }

    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret != 0) {
537
        trace_kvm_failed_spr_set(spr, strerror(errno));
538 539 540
    }
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
static int kvm_put_fp(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int i;
    int ret;

    if (env->insns_flags & PPC_FLOAT) {
        uint64_t fpscr = env->fpscr;
        bool vsx = !!(env->insns_flags2 & PPC2_VSX);

        reg.id = KVM_REG_PPC_FPSCR;
        reg.addr = (uintptr_t)&fpscr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
557
            DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno));
558 559 560 561 562 563 564 565 566 567 568 569 570
            return ret;
        }

        for (i = 0; i < 32; i++) {
            uint64_t vsr[2];

            vsr[0] = float64_val(env->fpr[i]);
            vsr[1] = env->vsr[i];
            reg.addr = (uintptr_t) &vsr;
            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);

            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
            if (ret < 0) {
571
                DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR",
572 573 574 575 576 577 578 579 580 581 582
                        i, strerror(errno));
                return ret;
            }
        }
    }

    if (env->insns_flags & PPC_ALTIVEC) {
        reg.id = KVM_REG_PPC_VSCR;
        reg.addr = (uintptr_t)&env->vscr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
583
            DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno));
584 585 586 587 588 589 590 591
            return ret;
        }

        for (i = 0; i < 32; i++) {
            reg.id = KVM_REG_PPC_VR(i);
            reg.addr = (uintptr_t)&env->avr[i];
            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
            if (ret < 0) {
592
                DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno));
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
                return ret;
            }
        }
    }

    return 0;
}

static int kvm_get_fp(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int i;
    int ret;

    if (env->insns_flags & PPC_FLOAT) {
        uint64_t fpscr;
        bool vsx = !!(env->insns_flags2 & PPC2_VSX);

        reg.id = KVM_REG_PPC_FPSCR;
        reg.addr = (uintptr_t)&fpscr;
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret < 0) {
617
            DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno));
618 619 620 621 622 623 624 625 626 627 628 629 630
            return ret;
        } else {
            env->fpscr = fpscr;
        }

        for (i = 0; i < 32; i++) {
            uint64_t vsr[2];

            reg.addr = (uintptr_t) &vsr;
            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);

            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
            if (ret < 0) {
631
                DPRINTF("Unable to get %s%d from KVM: %s\n",
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
                        vsx ? "VSR" : "FPR", i, strerror(errno));
                return ret;
            } else {
                env->fpr[i] = vsr[0];
                if (vsx) {
                    env->vsr[i] = vsr[1];
                }
            }
        }
    }

    if (env->insns_flags & PPC_ALTIVEC) {
        reg.id = KVM_REG_PPC_VSCR;
        reg.addr = (uintptr_t)&env->vscr;
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret < 0) {
648
            DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno));
649 650 651 652 653 654 655 656
            return ret;
        }

        for (i = 0; i < 32; i++) {
            reg.id = KVM_REG_PPC_VR(i);
            reg.addr = (uintptr_t)&env->avr[i];
            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
            if (ret < 0) {
657
                DPRINTF("Unable to get VR%d from KVM: %s\n",
658 659 660 661 662 663 664 665 666
                        i, strerror(errno));
                return ret;
            }
        }
    }

    return 0;
}

667 668 669 670 671 672 673 674 675 676 677 678
#if defined(TARGET_PPC64)
static int kvm_get_vpa(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int ret;

    reg.id = KVM_REG_PPC_VPA_ADDR;
    reg.addr = (uintptr_t)&env->vpa_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
679
        DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno));
680 681 682 683 684 685 686 687 688
        return ret;
    }

    assert((uintptr_t)&env->slb_shadow_size
           == ((uintptr_t)&env->slb_shadow_addr + 8));
    reg.id = KVM_REG_PPC_VPA_SLB;
    reg.addr = (uintptr_t)&env->slb_shadow_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
689
        DPRINTF("Unable to get SLB shadow state from KVM: %s\n",
690 691 692 693 694 695 696 697 698
                strerror(errno));
        return ret;
    }

    assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
    reg.id = KVM_REG_PPC_VPA_DTL;
    reg.addr = (uintptr_t)&env->dtl_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
699
        DPRINTF("Unable to get dispatch trace log state from KVM: %s\n",
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
                strerror(errno));
        return ret;
    }

    return 0;
}

static int kvm_put_vpa(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int ret;

    /* SLB shadow or DTL can't be registered unless a master VPA is
     * registered.  That means when restoring state, if a VPA *is*
     * registered, we need to set that up first.  If not, we need to
     * deregister the others before deregistering the master VPA */
    assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr));

    if (env->vpa_addr) {
        reg.id = KVM_REG_PPC_VPA_ADDR;
        reg.addr = (uintptr_t)&env->vpa_addr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
725
            DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
726 727 728 729 730 731 732 733 734 735
            return ret;
        }
    }

    assert((uintptr_t)&env->slb_shadow_size
           == ((uintptr_t)&env->slb_shadow_addr + 8));
    reg.id = KVM_REG_PPC_VPA_SLB;
    reg.addr = (uintptr_t)&env->slb_shadow_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret < 0) {
736
        DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno));
737 738 739 740 741 742 743 744
        return ret;
    }

    assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
    reg.id = KVM_REG_PPC_VPA_DTL;
    reg.addr = (uintptr_t)&env->dtl_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret < 0) {
745
        DPRINTF("Unable to set dispatch trace log state to KVM: %s\n",
746 747 748 749 750 751 752 753 754
                strerror(errno));
        return ret;
    }

    if (!env->vpa_addr) {
        reg.id = KVM_REG_PPC_VPA_ADDR;
        reg.addr = (uintptr_t)&env->vpa_addr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
755
            DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
756 757 758 759 760 761 762 763
            return ret;
        }
    }

    return 0;
}
#endif /* TARGET_PPC64 */

A
Andreas Färber 已提交
764
int kvm_arch_put_registers(CPUState *cs, int level)
A
aurel32 已提交
765
{
A
Andreas Färber 已提交
766 767
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
A
aurel32 已提交
768 769 770 771
    struct kvm_regs regs;
    int ret;
    int i;

772 773
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
    if (ret < 0) {
A
aurel32 已提交
774
        return ret;
775
    }
A
aurel32 已提交
776 777 778

    regs.ctr = env->ctr;
    regs.lr  = env->lr;
779
    regs.xer = cpu_read_xer(env);
A
aurel32 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
    regs.msr = env->msr;
    regs.pc = env->nip;

    regs.srr0 = env->spr[SPR_SRR0];
    regs.srr1 = env->spr[SPR_SRR1];

    regs.sprg0 = env->spr[SPR_SPRG0];
    regs.sprg1 = env->spr[SPR_SPRG1];
    regs.sprg2 = env->spr[SPR_SPRG2];
    regs.sprg3 = env->spr[SPR_SPRG3];
    regs.sprg4 = env->spr[SPR_SPRG4];
    regs.sprg5 = env->spr[SPR_SPRG5];
    regs.sprg6 = env->spr[SPR_SPRG6];
    regs.sprg7 = env->spr[SPR_SPRG7];

S
Scott Wood 已提交
795 796
    regs.pid = env->spr[SPR_BOOKE_PID];

A
aurel32 已提交
797 798 799
    for (i = 0;i < 32; i++)
        regs.gpr[i] = env->gpr[i];

800 801 802 803 804
    regs.cr = 0;
    for (i = 0; i < 8; i++) {
        regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
    }

805
    ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
A
aurel32 已提交
806 807 808
    if (ret < 0)
        return ret;

809 810
    kvm_put_fp(cs);

S
Scott Wood 已提交
811
    if (env->tlb_dirty) {
812
        kvm_sw_tlb_put(cpu);
S
Scott Wood 已提交
813 814 815
        env->tlb_dirty = false;
    }

816 817 818 819 820 821 822 823 824
    if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
        struct kvm_sregs sregs;

        sregs.pvr = env->spr[SPR_PVR];

        sregs.u.s.sdr1 = env->spr[SPR_SDR1];

        /* Sync SLB */
#ifdef TARGET_PPC64
825
        for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
826
            sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
827 828 829
            if (env->slb[i].esid & SLB_ESID_V) {
                sregs.u.s.ppc64.slb[i].slbe |= i;
            }
830 831 832 833 834 835 836 837 838 839 840
            sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
        }
#endif

        /* Sync SRs */
        for (i = 0; i < 16; i++) {
            sregs.u.s.ppc32.sr[i] = env->sr[i];
        }

        /* Sync BATs */
        for (i = 0; i < 8; i++) {
A
Alexander Graf 已提交
841 842 843 844 845
            /* Beware. We have to swap upper and lower bits here */
            sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
                | env->DBAT[1][i];
            sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
                | env->IBAT[1][i];
846 847
        }

848
        ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
849 850 851 852 853 854
        if (ret) {
            return ret;
        }
    }

    if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
855 856
        kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
    }
857

858 859 860 861 862 863 864 865 866 867 868 869 870
    if (cap_one_reg) {
        int i;

        /* We deliberately ignore errors here, for kernels which have
         * the ONE_REG calls, but don't support the specific
         * registers, there's a reasonable chance things will still
         * work, at least until we try to migrate. */
        for (i = 0; i < 1024; i++) {
            uint64_t id = env->spr_cb[i].one_reg_id;

            if (id != 0) {
                kvm_put_one_spr(cs, id, i);
            }
871
        }
872 873

#ifdef TARGET_PPC64
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
        if (msr_ts) {
            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
                kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
            }
            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
                kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
            }
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
        }

893 894
        if (cap_papr) {
            if (kvm_put_vpa(cs) < 0) {
895
                DPRINTF("Warning: Unable to set VPA information to KVM\n");
896 897
            }
        }
898 899

        kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
900
#endif /* TARGET_PPC64 */
901 902
    }

A
aurel32 已提交
903 904 905
    return ret;
}

906 907 908 909 910
static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
{
     env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
}

A
Andreas Färber 已提交
911
int kvm_arch_get_registers(CPUState *cs)
A
aurel32 已提交
912
{
A
Andreas Färber 已提交
913 914
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
A
aurel32 已提交
915
    struct kvm_regs regs;
916
    struct kvm_sregs sregs;
S
Scott Wood 已提交
917
    uint32_t cr;
A
Alexander Graf 已提交
918
    int i, ret;
A
aurel32 已提交
919

920
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
A
aurel32 已提交
921 922 923
    if (ret < 0)
        return ret;

S
Scott Wood 已提交
924 925 926 927 928
    cr = regs.cr;
    for (i = 7; i >= 0; i--) {
        env->crf[i] = cr & 15;
        cr >>= 4;
    }
929

A
aurel32 已提交
930 931
    env->ctr = regs.ctr;
    env->lr = regs.lr;
932
    cpu_write_xer(env, regs.xer);
A
aurel32 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
    env->msr = regs.msr;
    env->nip = regs.pc;

    env->spr[SPR_SRR0] = regs.srr0;
    env->spr[SPR_SRR1] = regs.srr1;

    env->spr[SPR_SPRG0] = regs.sprg0;
    env->spr[SPR_SPRG1] = regs.sprg1;
    env->spr[SPR_SPRG2] = regs.sprg2;
    env->spr[SPR_SPRG3] = regs.sprg3;
    env->spr[SPR_SPRG4] = regs.sprg4;
    env->spr[SPR_SPRG5] = regs.sprg5;
    env->spr[SPR_SPRG6] = regs.sprg6;
    env->spr[SPR_SPRG7] = regs.sprg7;

S
Scott Wood 已提交
948 949
    env->spr[SPR_BOOKE_PID] = regs.pid;

A
aurel32 已提交
950 951 952
    for (i = 0;i < 32; i++)
        env->gpr[i] = regs.gpr[i];

953 954
    kvm_get_fp(cs);

S
Scott Wood 已提交
955
    if (cap_booke_sregs) {
956
        ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
S
Scott Wood 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
        if (ret < 0) {
            return ret;
        }

        if (sregs.u.e.features & KVM_SREGS_E_BASE) {
            env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
            env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
            env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
            env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
            env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
            env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
            env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
            env->spr[SPR_DECR] = sregs.u.e.dec;
            env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
            env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
            env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
        }

        if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
            env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
            env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
            env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
            env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
            env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
        }

        if (sregs.u.e.features & KVM_SREGS_E_64) {
            env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
        }

        if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
            env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
        }

        if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
            env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
993
            kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
S
Scott Wood 已提交
994
            env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
995
            kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
S
Scott Wood 已提交
996
            env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
997
            kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
S
Scott Wood 已提交
998
            env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
999
            kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
S
Scott Wood 已提交
1000
            env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1001
            kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
S
Scott Wood 已提交
1002
            env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1003
            kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
S
Scott Wood 已提交
1004
            env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1005
            kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
S
Scott Wood 已提交
1006
            env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1007
            kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
S
Scott Wood 已提交
1008
            env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1009
            kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
S
Scott Wood 已提交
1010
            env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1011
            kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
S
Scott Wood 已提交
1012
            env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1013
            kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
S
Scott Wood 已提交
1014
            env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1015
            kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
S
Scott Wood 已提交
1016
            env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1017
            kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
S
Scott Wood 已提交
1018
            env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1019
            kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
S
Scott Wood 已提交
1020
            env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1021
            kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
S
Scott Wood 已提交
1022
            env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1023
            kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
S
Scott Wood 已提交
1024 1025 1026

            if (sregs.u.e.features & KVM_SREGS_E_SPE) {
                env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1027
                kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
S
Scott Wood 已提交
1028
                env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1029
                kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
S
Scott Wood 已提交
1030
                env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1031
                kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
S
Scott Wood 已提交
1032 1033 1034 1035
            }

            if (sregs.u.e.features & KVM_SREGS_E_PM) {
                env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1036
                kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
S
Scott Wood 已提交
1037 1038 1039 1040
            }

            if (sregs.u.e.features & KVM_SREGS_E_PC) {
                env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1041
                kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
S
Scott Wood 已提交
1042
                env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1043
                kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
S
Scott Wood 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
            }
        }

        if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
            env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
            env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
            env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
            env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
            env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
            env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
            env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
            env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
            env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
            env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
        }

        if (sregs.u.e.features & KVM_SREGS_EXP) {
            env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
        }

        if (sregs.u.e.features & KVM_SREGS_E_PD) {
            env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
            env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
        }

        if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
            env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
            env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
            env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;

            if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
                env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
                env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
            }
        }
A
Alexander Graf 已提交
1079
    }
S
Scott Wood 已提交
1080 1081

    if (cap_segstate) {
1082
        ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
S
Scott Wood 已提交
1083 1084 1085 1086
        if (ret < 0) {
            return ret;
        }

1087 1088 1089
        if (!env->external_htab) {
            ppc_store_sdr1(env, sregs.u.s.sdr1);
        }
1090 1091

        /* Sync SLB */
A
Alexander Graf 已提交
1092
#ifdef TARGET_PPC64
1093 1094 1095 1096 1097 1098 1099
        /*
         * The packed SLB array we get from KVM_GET_SREGS only contains
         * information about valid entries. So we flush our internal
         * copy to get rid of stale ones, then put all valid SLB entries
         * back in.
         */
        memset(env->slb, 0, sizeof(env->slb));
1100
        for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1101 1102 1103 1104 1105 1106 1107 1108
            target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
            target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
            /*
             * Only restore valid entries
             */
            if (rb & SLB_ESID_V) {
                ppc_store_slb(env, rb, rs);
            }
1109
        }
A
Alexander Graf 已提交
1110
#endif
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

        /* Sync SRs */
        for (i = 0; i < 16; i++) {
            env->sr[i] = sregs.u.s.ppc32.sr[i];
        }

        /* Sync BATs */
        for (i = 0; i < 8; i++) {
            env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
            env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
            env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
            env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
        }
A
Alexander Graf 已提交
1124
    }
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    if (cap_hior) {
        kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
    }

    if (cap_one_reg) {
        int i;

        /* We deliberately ignore errors here, for kernels which have
         * the ONE_REG calls, but don't support the specific
         * registers, there's a reasonable chance things will still
         * work, at least until we try to migrate. */
        for (i = 0; i < 1024; i++) {
            uint64_t id = env->spr_cb[i].one_reg_id;

            if (id != 0) {
                kvm_get_one_spr(cs, id, i);
            }
        }
1144 1145

#ifdef TARGET_PPC64
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
        if (msr_ts) {
            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
                kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
            }
            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
                kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
            }
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
        }

1165 1166
        if (cap_papr) {
            if (kvm_get_vpa(cs) < 0) {
1167
                DPRINTF("Warning: Unable to get VPA information from KVM\n");
1168 1169
            }
        }
1170 1171

        kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1172
#endif
1173 1174
    }

A
aurel32 已提交
1175 1176 1177
    return 0;
}

1178
int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
{
    unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;

    if (irq != PPC_INTERRUPT_EXT) {
        return 0;
    }

    if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
        return 0;
    }

1190
    kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1191 1192 1193 1194

    return 0;
}

A
Alexander Graf 已提交
1195 1196 1197 1198 1199 1200 1201 1202
#if defined(TARGET_PPCEMB)
#define PPC_INPUT_INT PPC40x_INPUT_INT
#elif defined(TARGET_PPC64)
#define PPC_INPUT_INT PPC970_INPUT_INT
#else
#define PPC_INPUT_INT PPC6xx_INPUT_INT
#endif

A
Andreas Färber 已提交
1203
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
A
aurel32 已提交
1204
{
A
Andreas Färber 已提交
1205 1206
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
A
aurel32 已提交
1207 1208 1209
    int r;
    unsigned irq;

S
Stefan Weil 已提交
1210
    /* PowerPC QEMU tracks the various core input pins (interrupt, critical
A
aurel32 已提交
1211
     * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
1212 1213
    if (!cap_interrupt_level &&
        run->ready_for_interrupt_injection &&
1214
        (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
A
Alexander Graf 已提交
1215
        (env->irq_input_state & (1<<PPC_INPUT_INT)))
A
aurel32 已提交
1216 1217 1218 1219 1220
    {
        /* For now KVM disregards the 'irq' argument. However, in the
         * future KVM could cache it in-kernel to avoid a heavyweight exit
         * when reading the UIC.
         */
1221
        irq = KVM_INTERRUPT_SET;
A
aurel32 已提交
1222

1223
        DPRINTF("injected interrupt %d\n", irq);
1224
        r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq);
1225 1226 1227
        if (r < 0) {
            printf("cpu %d fail inject %x\n", cs->cpu_index, irq);
        }
A
Alexander Graf 已提交
1228 1229

        /* Always wake up soon in case the interrupt was level based */
1230
        timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
A
Alexander Graf 已提交
1231
                       (get_ticks_per_sec() / 50));
A
aurel32 已提交
1232 1233 1234 1235 1236 1237 1238
    }

    /* We don't know if there are more interrupts pending after this. However,
     * the guest will return to userspace in the course of handling this one
     * anyways, so we will get a chance to deliver the rest. */
}

A
Andreas Färber 已提交
1239
void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
A
aurel32 已提交
1240 1241 1242
{
}

A
Andreas Färber 已提交
1243
int kvm_arch_process_async_events(CPUState *cs)
M
Marcelo Tosatti 已提交
1244
{
1245
    return cs->halted;
M
Marcelo Tosatti 已提交
1246 1247
}

1248
static int kvmppc_handle_halt(PowerPCCPU *cpu)
A
aurel32 已提交
1249
{
1250 1251 1252 1253 1254
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;

    if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
        cs->halted = 1;
1255
        cs->exception_index = EXCP_HLT;
A
aurel32 已提交
1256 1257
    }

1258
    return 0;
A
aurel32 已提交
1259 1260 1261
}

/* map dcr access to existing qemu dcr emulation */
1262
static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
A
aurel32 已提交
1263 1264 1265 1266
{
    if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
        fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);

1267
    return 0;
A
aurel32 已提交
1268 1269
}

1270
static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
A
aurel32 已提交
1271 1272 1273 1274
{
    if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
        fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);

1275
    return 0;
A
aurel32 已提交
1276 1277
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
    /* Mixed endian case is not handled */
    uint32_t sc = debug_inst_opcode;

    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
                            sizeof(sc), 0) ||
        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
        return -EINVAL;
    }

    return 0;
}

int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
    uint32_t sc;

    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
        sc != debug_inst_opcode ||
        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
                            sizeof(sc), 1)) {
        return -EINVAL;
    }

    return 0;
}

void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
{
    /* Software Breakpoint updates */
    if (kvm_sw_breakpoints_active(cs)) {
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
    }
}

static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;
    struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
    int handle = 0;

    if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
        handle = 1;
    } else {
        /* QEMU is not able to handle debug exception, so inject
         * program exception to guest;
         * Yes program exception NOT debug exception !!
         * For software breakpoint QEMU uses a privileged instruction;
         * So there cannot be any reason that we are here for guest
         * set debug exception, only possibility is guest executed a
         * privileged / illegal instruction and that's why we are
         * injecting a program interrupt.
         */

        cpu_synchronize_state(cs);
        /* env->nip is PC, so increment this by 4 to use
         * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
         */
        env->nip += 4;
        cs->exception_index = POWERPC_EXCP_PROGRAM;
        env->error_code = POWERPC_EXCP_INVAL;
        ppc_cpu_do_interrupt(cs);
    }

    return handle;
}

A
Andreas Färber 已提交
1347
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
A
aurel32 已提交
1348
{
A
Andreas Färber 已提交
1349 1350
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
1351
    int ret;
A
aurel32 已提交
1352 1353 1354 1355

    switch (run->exit_reason) {
    case KVM_EXIT_DCR:
        if (run->dcr.is_write) {
1356
            DPRINTF("handle dcr write\n");
A
aurel32 已提交
1357 1358
            ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
        } else {
1359
            DPRINTF("handle dcr read\n");
A
aurel32 已提交
1360 1361 1362 1363
            ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
        }
        break;
    case KVM_EXIT_HLT:
1364
        DPRINTF("handle halt\n");
1365
        ret = kvmppc_handle_halt(cpu);
A
aurel32 已提交
1366
        break;
1367
#if defined(TARGET_PPC64)
1368
    case KVM_EXIT_PAPR_HCALL:
1369
        DPRINTF("handle PAPR hypercall\n");
A
Andreas Färber 已提交
1370
        run->papr_hcall.ret = spapr_hypercall(cpu,
1371
                                              run->papr_hcall.nr,
1372
                                              run->papr_hcall.args);
1373
        ret = 0;
1374 1375
        break;
#endif
1376
    case KVM_EXIT_EPR:
1377
        DPRINTF("handle epr\n");
1378
        run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1379 1380
        ret = 0;
        break;
B
Bharat Bhushan 已提交
1381
    case KVM_EXIT_WATCHDOG:
1382
        DPRINTF("handle watchdog expiry\n");
B
Bharat Bhushan 已提交
1383 1384 1385 1386
        watchdog_perform_action();
        ret = 0;
        break;

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
    case KVM_EXIT_DEBUG:
        DPRINTF("handle debug exception\n");
        if (kvm_handle_debug(cpu, run)) {
            ret = EXCP_DEBUG;
            break;
        }
        /* re-enter, this exception was guest-internal */
        ret = 0;
        break;

J
Jan Kiszka 已提交
1397 1398 1399 1400
    default:
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
        ret = -1;
        break;
A
aurel32 已提交
1401 1402 1403 1404 1405
    }

    return ret;
}

B
Bharat Bhushan 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{
    CPUState *cs = CPU(cpu);
    uint32_t bits = tsr_bits;
    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_OR_TSR,
        .addr = (uintptr_t) &bits,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{

    CPUState *cs = CPU(cpu);
    uint32_t bits = tsr_bits;
    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_CLEAR_TSR,
        .addr = (uintptr_t) &bits,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_set_tcr(PowerPCCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;
    uint32_t tcr = env->spr[SPR_BOOKE_TCR];

    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_TCR,
        .addr = (uintptr_t) &tcr,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    int ret;

    if (!kvm_enabled()) {
        return -1;
    }

    if (!cap_ppc_watchdog) {
        printf("warning: KVM does not support watchdog");
        return -1;
    }

C
Cornelia Huck 已提交
1459
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
B
Bharat Bhushan 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468
    if (ret < 0) {
        fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
                __func__, strerror(-ret));
        return ret;
    }

    return ret;
}

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
static int read_cpuinfo(const char *field, char *value, int len)
{
    FILE *f;
    int ret = -1;
    int field_len = strlen(field);
    char line[512];

    f = fopen("/proc/cpuinfo", "r");
    if (!f) {
        return -1;
    }

    do {
1482
        if (!fgets(line, sizeof(line), f)) {
1483 1484 1485
            break;
        }
        if (!strncmp(line, field, field_len)) {
1486
            pstrcpy(value, len, line);
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
            ret = 0;
            break;
        }
    } while(*line);

    fclose(f);

    return ret;
}

uint32_t kvmppc_get_tbfreq(void)
{
    char line[512];
    char *ns;
    uint32_t retval = get_ticks_per_sec();

    if (read_cpuinfo("timebase", line, sizeof(line))) {
        return retval;
    }

    if (!(ns = strchr(line, ':'))) {
        return retval;
    }

    ns++;

    retval = atoi(ns);
    return retval;
}
1516

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
bool kvmppc_get_host_serial(char **value)
{
    return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
                               NULL);
}

bool kvmppc_get_host_model(char **value)
{
    return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
/* Try to find a device tree node for a CPU with clock-frequency property */
static int kvmppc_find_cpu_dt(char *buf, int buf_len)
{
    struct dirent *dirp;
    DIR *dp;

    if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
        printf("Can't open directory " PROC_DEVTREE_CPU "\n");
        return -1;
    }

    buf[0] = '\0';
    while ((dirp = readdir(dp)) != NULL) {
        FILE *f;
        snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
                 dirp->d_name);
        f = fopen(buf, "r");
        if (f) {
            snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
            fclose(f);
            break;
        }
        buf[0] = '\0';
    }
    closedir(dp);
    if (buf[0] == '\0') {
        printf("Unknown host!\n");
        return -1;
    }

    return 0;
}

1561 1562 1563 1564 1565
/* Read a CPU node property from the host device tree that's a single
 * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
 * (can't find or open the property, or doesn't understand the
 * format) */
static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1566
{
1567 1568 1569 1570 1571
    char buf[PATH_MAX];
    union {
        uint32_t v32;
        uint64_t v64;
    } u;
1572 1573 1574 1575
    FILE *f;
    int len;

    if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1576
        return -1;
1577 1578
    }

1579 1580
    strncat(buf, "/", sizeof(buf) - strlen(buf));
    strncat(buf, propname, sizeof(buf) - strlen(buf));
1581 1582 1583 1584 1585 1586

    f = fopen(buf, "rb");
    if (!f) {
        return -1;
    }

1587
    len = fread(&u, 1, sizeof(u), f);
1588 1589
    fclose(f);
    switch (len) {
1590 1591 1592 1593 1594
    case 4:
        /* property is a 32-bit quantity */
        return be32_to_cpu(u.v32);
    case 8:
        return be64_to_cpu(u.v64);
1595 1596 1597 1598 1599
    }

    return 0;
}

1600 1601 1602 1603 1604
uint64_t kvmppc_get_clockfreq(void)
{
    return kvmppc_read_int_cpu_dt("clock-frequency");
}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
uint32_t kvmppc_get_vmx(void)
{
    return kvmppc_read_int_cpu_dt("ibm,vmx");
}

uint32_t kvmppc_get_dfp(void)
{
    return kvmppc_read_int_cpu_dt("ibm,dfp");
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
 {
     PowerPCCPU *cpu = ppc_env_get_cpu(env);
     CPUState *cs = CPU(cpu);

    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
        !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
        return 0;
    }

    return 1;
}

int kvmppc_get_hasidle(CPUPPCState *env)
{
    struct kvm_ppc_pvinfo pvinfo;

    if (!kvmppc_get_pvinfo(env, &pvinfo) &&
        (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
        return 1;
    }

    return 0;
}

1640
int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1641 1642 1643 1644
{
    uint32_t *hc = (uint32_t*)buf;
    struct kvm_ppc_pvinfo pvinfo;

1645
    if (!kvmppc_get_pvinfo(env, &pvinfo)) {
1646 1647 1648 1649 1650
        memcpy(buf, pvinfo.hcall, buf_len);
        return 0;
    }

    /*
1651
     * Fallback to always fail hypercalls regardless of endianness:
1652
     *
1653
     *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
1654
     *     li r3, -1
1655 1656
     *     b .+8       (becomes nop in wrong endian)
     *     bswap32(li r3, -1)
1657 1658
     */

1659 1660 1661 1662
    hc[0] = cpu_to_be32(0x08000048);
    hc[1] = cpu_to_be32(0x3860ffff);
    hc[2] = cpu_to_be32(0x48000008);
    hc[3] = cpu_to_be32(bswap32(0x3860ffff));
1663 1664 1665 1666

    return 0;
}

1667
void kvmppc_set_papr(PowerPCCPU *cpu)
1668
{
1669
    CPUState *cs = CPU(cpu);
1670 1671
    int ret;

C
Cornelia Huck 已提交
1672
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
1673
    if (ret) {
1674
        cpu_abort(cs, "This KVM version does not support PAPR\n");
1675
    }
1676 1677 1678 1679

    /* Update the capability flag so we sync the right information
     * with kvm */
    cap_papr = 1;
1680 1681
}

1682 1683 1684 1685 1686
int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t cpu_version)
{
    return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &cpu_version);
}

1687 1688 1689 1690 1691
void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
{
    CPUState *cs = CPU(cpu);
    int ret;

C
Cornelia Huck 已提交
1692
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
1693
    if (ret && mpic_proxy) {
1694
        cpu_abort(cs, "This KVM version does not support EPR\n");
1695 1696 1697
    }
}

1698 1699 1700 1701 1702
int kvmppc_smt_threads(void)
{
    return cap_ppc_smt ? cap_ppc_smt : 1;
}

1703
#ifdef TARGET_PPC64
1704
off_t kvmppc_alloc_rma(void **rma)
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
{
    off_t size;
    int fd;
    struct kvm_allocate_rma ret;

    /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported
     * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but
     *                      not necessary on this hardware
     * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware
     *
     * FIXME: We should allow the user to force contiguous RMA
     * allocation in the cap_ppc_rma==1 case.
     */
    if (cap_ppc_rma < 2) {
        return 0;
    }

    fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret);
    if (fd < 0) {
        fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
                strerror(errno));
        return -1;
    }

    size = MIN(ret.rma_size, 256ul << 20);

1731 1732
    *rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
    if (*rma == MAP_FAILED) {
1733 1734 1735 1736 1737 1738 1739
        fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno));
        return -1;
    };

    return size;
}

1740 1741
uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
{
1742 1743 1744 1745
    struct kvm_ppc_smmu_info info;
    long rampagesize, best_page_shift;
    int i;

1746 1747 1748
    if (cap_ppc_rma >= 2) {
        return current_size;
    }
1749 1750 1751

    /* Find the largest hardware supported page size that's less than
     * or equal to the (logical) backing page size of guest RAM */
1752
    kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info);
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
    rampagesize = getrampagesize();
    best_page_shift = 0;

    for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];

        if (!sps->page_shift) {
            continue;
        }

        if ((sps->page_shift > best_page_shift)
            && ((1UL << sps->page_shift) <= rampagesize)) {
            best_page_shift = sps->page_shift;
        }
    }

1769
    return MIN(current_size,
1770
               1ULL << (best_page_shift + hash_shift - 7));
1771 1772 1773
}
#endif

1774 1775 1776 1777 1778
bool kvmppc_spapr_use_multitce(void)
{
    return cap_spapr_multitce;
}

1779 1780
void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd,
                              bool vfio_accel)
1781 1782 1783 1784 1785 1786 1787 1788 1789
{
    struct kvm_create_spapr_tce args = {
        .liobn = liobn,
        .window_size = window_size,
    };
    long len;
    int fd;
    void *table;

1790 1791 1792 1793
    /* Must set fd to -1 so we don't try to munmap when called for
     * destroying the table, which the upper layers -will- do
     */
    *pfd = -1;
1794
    if (!cap_spapr_tce || (vfio_accel && !cap_spapr_vfio)) {
1795 1796 1797 1798 1799
        return NULL;
    }

    fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
    if (fd < 0) {
1800 1801
        fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
                liobn);
1802 1803 1804
        return NULL;
    }

1805
    len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(uint64_t);
1806 1807
    /* FIXME: round this up to page size */

1808
    table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
1809
    if (table == MAP_FAILED) {
1810 1811
        fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
                liobn);
1812 1813 1814 1815 1816 1817 1818 1819
        close(fd);
        return NULL;
    }

    *pfd = fd;
    return table;
}

1820
int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
1821 1822 1823 1824 1825 1826 1827
{
    long len;

    if (fd < 0) {
        return -1;
    }

1828
    len = nb_table * sizeof(uint64_t);
1829 1830
    if ((munmap(table, len) < 0) ||
        (close(fd) < 0)) {
1831 1832
        fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
                strerror(errno));
1833 1834 1835 1836 1837 1838
        /* Leak the table */
    }

    return 0;
}

1839 1840 1841 1842
int kvmppc_reset_htab(int shift_hint)
{
    uint32_t shift = shift_hint;

1843 1844 1845 1846 1847
    if (!kvm_enabled()) {
        /* Full emulation, tell caller to allocate htab itself */
        return 0;
    }
    if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
1848 1849
        int ret;
        ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
1850 1851 1852 1853 1854 1855 1856
        if (ret == -ENOTTY) {
            /* At least some versions of PR KVM advertise the
             * capability, but don't implement the ioctl().  Oops.
             * Return 0 so that we allocate the htab in qemu, as is
             * correct for PR. */
            return 0;
        } else if (ret < 0) {
1857 1858 1859 1860 1861
            return ret;
        }
        return shift;
    }

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
    /* We have a kernel that predates the htab reset calls.  For PR
     * KVM, we need to allocate the htab ourselves, for an HV KVM of
     * this era, it has allocated a 16MB fixed size hash table
     * already.  Kernels of this era have the GET_PVINFO capability
     * only on PR, so we use this hack to determine the right
     * answer */
    if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
        /* PR - tell caller to allocate htab */
        return 0;
    } else {
        /* HV - assume 16MB kernel allocated htab */
        return 24;
    }
1875 1876
}

1877 1878 1879 1880 1881 1882 1883 1884 1885
static inline uint32_t mfpvr(void)
{
    uint32_t pvr;

    asm ("mfpvr %0"
         : "=r"(pvr));
    return pvr;
}

1886 1887 1888 1889 1890 1891 1892 1893 1894
static void alter_insns(uint64_t *word, uint64_t flags, bool on)
{
    if (on) {
        *word |= flags;
    } else {
        *word &= ~flags;
    }
}

1895
static void kvmppc_host_cpu_initfn(Object *obj)
1896
{
1897 1898 1899 1900 1901 1902
    assert(kvm_enabled());
}

static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
{
    PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
1903 1904
    uint32_t vmx = kvmppc_get_vmx();
    uint32_t dfp = kvmppc_get_dfp();
1905 1906
    uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
    uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
1907

1908
    /* Now fix up the class with information we can query from the host */
1909
    pcc->pvr = mfpvr();
1910

1911 1912
    if (vmx != -1) {
        /* Only override when we know what the host supports */
1913 1914
        alter_insns(&pcc->insns_flags, PPC_ALTIVEC, vmx > 0);
        alter_insns(&pcc->insns_flags2, PPC2_VSX, vmx > 1);
1915 1916 1917
    }
    if (dfp != -1) {
        /* Only override when we know what the host supports */
1918
        alter_insns(&pcc->insns_flags2, PPC2_DFP, dfp);
1919
    }
1920 1921 1922 1923 1924 1925 1926 1927

    if (dcache_size != -1) {
        pcc->l1_dcache_size = dcache_size;
    }

    if (icache_size != -1) {
        pcc->l1_icache_size = icache_size;
    }
1928 1929
}

1930 1931 1932 1933 1934
bool kvmppc_has_cap_epr(void)
{
    return cap_epr;
}

1935 1936 1937 1938 1939
bool kvmppc_has_cap_htab_fd(void)
{
    return cap_htab_fd;
}

1940 1941 1942 1943 1944
bool kvmppc_has_cap_fixup_hcalls(void)
{
    return cap_fixup_hcalls;
}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
static PowerPCCPUClass *ppc_cpu_get_family_class(PowerPCCPUClass *pcc)
{
    ObjectClass *oc = OBJECT_CLASS(pcc);

    while (oc && !object_class_is_abstract(oc)) {
        oc = object_class_get_parent(oc);
    }
    assert(oc);

    return POWERPC_CPU_CLASS(oc);
}

1957 1958 1959 1960 1961 1962 1963 1964 1965
static int kvm_ppc_register_host_cpu_type(void)
{
    TypeInfo type_info = {
        .name = TYPE_HOST_POWERPC_CPU,
        .instance_init = kvmppc_host_cpu_initfn,
        .class_init = kvmppc_host_cpu_class_init,
    };
    uint32_t host_pvr = mfpvr();
    PowerPCCPUClass *pvr_pcc;
1966
    DeviceClass *dc;
1967 1968

    pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
1969 1970 1971
    if (pvr_pcc == NULL) {
        pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
    }
1972 1973 1974 1975 1976
    if (pvr_pcc == NULL) {
        return -1;
    }
    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
    type_register(&type_info);
1977 1978 1979 1980 1981 1982 1983 1984

    /* Register generic family CPU class for a family */
    pvr_pcc = ppc_cpu_get_family_class(pvr_pcc);
    dc = DEVICE_CLASS(pvr_pcc);
    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
    type_info.name = g_strdup_printf("%s-"TYPE_POWERPC_CPU, dc->desc);
    type_register(&type_info);

1985 1986 1987
    return 0;
}

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
{
    struct kvm_rtas_token_args args = {
        .token = token,
    };

    if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
        return -ENOENT;
    }

    strncpy(args.name, function, sizeof(args.name));

    return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
}
2002

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
int kvmppc_get_htab_fd(bool write)
{
    struct kvm_get_htab_fd s = {
        .flags = write ? KVM_GET_HTAB_WRITE : 0,
        .start_index = 0,
    };

    if (!cap_htab_fd) {
        fprintf(stderr, "KVM version doesn't support saving the hash table\n");
        return -1;
    }

    return kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
}

int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
{
2020
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
    uint8_t buf[bufsize];
    ssize_t rc;

    do {
        rc = read(fd, buf, bufsize);
        if (rc < 0) {
            fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
                    strerror(errno));
            return rc;
        } else if (rc) {
            /* Kernel already retuns data in BE format for the file */
            qemu_put_buffer(f, buf, rc);
        }
    } while ((rc != 0)
             && ((max_ns < 0)
2036
                 || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

    return (rc == 0) ? 1 : 0;
}

int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
                           uint16_t n_valid, uint16_t n_invalid)
{
    struct kvm_get_htab_header *buf;
    size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64;
    ssize_t rc;

    buf = alloca(chunksize);
    /* This is KVM on ppc, so this is all big-endian */
    buf->index = index;
    buf->n_valid = n_valid;
    buf->n_invalid = n_invalid;

    qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid);

    rc = write(fd, buf, chunksize);
    if (rc < 0) {
        fprintf(stderr, "Error writing KVM hash table: %s\n",
                strerror(errno));
        return rc;
    }
    if (rc != chunksize) {
        /* We should never get a short write on a single chunk */
        fprintf(stderr, "Short write, restoring KVM hash table\n");
        return -1;
    }
    return 0;
}

A
Andreas Färber 已提交
2070
bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2071 2072 2073
{
    return true;
}
2074

A
Andreas Färber 已提交
2075
int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2076 2077 2078 2079 2080 2081 2082 2083
{
    return 1;
}

int kvm_arch_on_sigbus(int code, void *addr)
{
    return 1;
}
2084 2085 2086 2087

void kvm_arch_init_irq_routing(KVMState *s)
{
}
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102

int kvm_arch_insert_hw_breakpoint(target_ulong addr, target_ulong len, int type)
{
    return -EINVAL;
}

int kvm_arch_remove_hw_breakpoint(target_ulong addr, target_ulong len, int type)
{
    return -EINVAL;
}

void kvm_arch_remove_all_hw_breakpoints(void)
{
}

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
struct kvm_get_htab_buf {
    struct kvm_get_htab_header header;
    /*
     * We require one extra byte for read
     */
    target_ulong hpte[(HPTES_PER_GROUP * 2) + 1];
};

uint64_t kvmppc_hash64_read_pteg(PowerPCCPU *cpu, target_ulong pte_index)
{
    int htab_fd;
    struct kvm_get_htab_fd ghf;
    struct kvm_get_htab_buf  *hpte_buf;

    ghf.flags = 0;
    ghf.start_index = pte_index;
    htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
    if (htab_fd < 0) {
        goto error_out;
    }

    hpte_buf = g_malloc0(sizeof(*hpte_buf));
    /*
     * Read the hpte group
     */
    if (read(htab_fd, hpte_buf, sizeof(*hpte_buf)) < 0) {
        goto out_close;
    }

    close(htab_fd);
    return (uint64_t)(uintptr_t) hpte_buf->hpte;

out_close:
    g_free(hpte_buf);
    close(htab_fd);
error_out:
    return 0;
}

void kvmppc_hash64_free_pteg(uint64_t token)
{
    struct kvm_get_htab_buf *htab_buf;

    htab_buf = container_of((void *)(uintptr_t) token, struct kvm_get_htab_buf,
                            hpte);
    g_free(htab_buf);
    return;
}
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186

void kvmppc_hash64_write_pte(CPUPPCState *env, target_ulong pte_index,
                             target_ulong pte0, target_ulong pte1)
{
    int htab_fd;
    struct kvm_get_htab_fd ghf;
    struct kvm_get_htab_buf hpte_buf;

    ghf.flags = 0;
    ghf.start_index = 0;     /* Ignored */
    htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
    if (htab_fd < 0) {
        goto error_out;
    }

    hpte_buf.header.n_valid = 1;
    hpte_buf.header.n_invalid = 0;
    hpte_buf.header.index = pte_index;
    hpte_buf.hpte[0] = pte0;
    hpte_buf.hpte[1] = pte1;
    /*
     * Write the hpte entry.
     * CAUTION: write() has the warn_unused_result attribute. Hence we
     * need to check the return value, even though we do nothing.
     */
    if (write(htab_fd, &hpte_buf, sizeof(hpte_buf)) < 0) {
        goto out_close;
    }

out_close:
    close(htab_fd);
    return;

error_out:
    return;
}