kvm.c 56.5 KB
Newer Older
A
aurel32 已提交
1 2 3 4
/*
 * PowerPC implementation of KVM hooks
 *
 * Copyright IBM Corp. 2007
S
Scott Wood 已提交
5
 * Copyright (C) 2011 Freescale Semiconductor, Inc.
A
aurel32 已提交
6 7 8 9 10 11 12 13 14 15 16
 *
 * Authors:
 *  Jerone Young <jyoung5@us.ibm.com>
 *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 *  Hollis Blanchard <hollisb@us.ibm.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

17
#include <dirent.h>
A
aurel32 已提交
18 19 20
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
21
#include <sys/vfs.h>
A
aurel32 已提交
22 23 24 25

#include <linux/kvm.h>

#include "qemu-common.h"
26
#include "qemu/timer.h"
27 28
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
A
aurel32 已提交
29 30
#include "kvm_ppc.h"
#include "cpu.h"
31 32
#include "sysemu/cpus.h"
#include "sysemu/device_tree.h"
33
#include "mmu-hash64.h"
A
aurel32 已提交
34

35
#include "hw/sysbus.h"
P
Paolo Bonzini 已提交
36 37
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
38
#include "hw/ppc/ppc.h"
B
Bharat Bhushan 已提交
39
#include "sysemu/watchdog.h"
40
#include "trace.h"
41

A
aurel32 已提交
42 43 44
//#define DEBUG_KVM

#ifdef DEBUG_KVM
45
#define DPRINTF(fmt, ...) \
A
aurel32 已提交
46 47
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
48
#define DPRINTF(fmt, ...) \
A
aurel32 已提交
49 50 51
    do { } while (0)
#endif

52 53
#define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"

54 55 56 57
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
    KVM_CAP_LAST_INFO
};

58 59
static int cap_interrupt_unset = false;
static int cap_interrupt_level = false;
S
Scott Wood 已提交
60 61
static int cap_segstate;
static int cap_booke_sregs;
62
static int cap_ppc_smt;
63
static int cap_ppc_rma;
64
static int cap_spapr_tce;
65
static int cap_spapr_multitce;
66
static int cap_hior;
67
static int cap_one_reg;
68
static int cap_epr;
B
Bharat Bhushan 已提交
69
static int cap_ppc_watchdog;
70
static int cap_papr;
71
static int cap_htab_fd;
72
static int cap_fixup_hcalls;
73

A
Alexander Graf 已提交
74 75 76 77
/* XXX We have a race condition where we actually have a level triggered
 *     interrupt, but the infrastructure can't expose that yet, so the guest
 *     takes but ignores it, goes to sleep and never gets notified that there's
 *     still an interrupt pending.
A
Alexander Graf 已提交
78
 *
A
Alexander Graf 已提交
79 80 81
 *     As a quick workaround, let's just wake up again 20 ms after we injected
 *     an interrupt. That way we can assure that we're always reinjecting
 *     interrupts in case the guest swallowed them.
A
Alexander Graf 已提交
82 83 84
 */
static QEMUTimer *idle_timer;

85
static void kvm_kick_cpu(void *opaque)
A
Alexander Graf 已提交
86
{
87 88
    PowerPCCPU *cpu = opaque;

89
    qemu_cpu_kick(CPU(cpu));
A
Alexander Graf 已提交
90 91
}

92 93
static int kvm_ppc_register_host_cpu_type(void);

94
int kvm_arch_init(KVMState *s)
A
aurel32 已提交
95
{
96 97
    cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
    cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
S
Scott Wood 已提交
98 99
    cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
    cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
100
    cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT);
101
    cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA);
102
    cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
103
    cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
104
    cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
105
    cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
106
    cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
B
Bharat Bhushan 已提交
107
    cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
108 109
    /* Note: we don't set cap_papr here, because this capability is
     * only activated after this by kvmppc_set_papr() */
110
    cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
111
    cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
112 113 114 115 116 117

    if (!cap_interrupt_level) {
        fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
                        "VM to stall at times!\n");
    }

118 119
    kvm_ppc_register_host_cpu_type();

A
aurel32 已提交
120 121 122
    return 0;
}

123
static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
A
aurel32 已提交
124
{
125 126
    CPUPPCState *cenv = &cpu->env;
    CPUState *cs = CPU(cpu);
A
Alexander Graf 已提交
127
    struct kvm_sregs sregs;
128 129 130
    int ret;

    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
A
Alexander Graf 已提交
131 132 133 134
        /* What we're really trying to say is "if we're on BookE, we use
           the native PVR for now". This is the only sane way to check
           it though, so we potentially confuse users that they can run
           BookE guests on BookS. Let's hope nobody dares enough :) */
135 136
        return 0;
    } else {
S
Scott Wood 已提交
137
        if (!cap_segstate) {
A
Alexander Graf 已提交
138 139
            fprintf(stderr, "kvm error: missing PVR setting capability\n");
            return -ENOSYS;
140 141 142
        }
    }

143
    ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
144 145 146
    if (ret) {
        return ret;
    }
A
Alexander Graf 已提交
147 148

    sregs.pvr = cenv->spr[SPR_PVR];
149
    return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
150 151
}

S
Scott Wood 已提交
152
/* Set up a shared TLB array with KVM */
153
static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
S
Scott Wood 已提交
154
{
155 156
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);
S
Scott Wood 已提交
157 158 159 160 161 162
    struct kvm_book3e_206_tlb_params params = {};
    struct kvm_config_tlb cfg = {};
    unsigned int entries = 0;
    int ret, i;

    if (!kvm_enabled() ||
163
        !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
S
Scott Wood 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
        return 0;
    }

    assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);

    for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
        params.tlb_sizes[i] = booke206_tlb_size(env, i);
        params.tlb_ways[i] = booke206_tlb_ways(env, i);
        entries += params.tlb_sizes[i];
    }

    assert(entries == env->nb_tlb);
    assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));

    env->tlb_dirty = true;

    cfg.array = (uintptr_t)env->tlb.tlbm;
    cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
    cfg.params = (uintptr_t)&params;
    cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;

C
Cornelia Huck 已提交
185
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
S
Scott Wood 已提交
186 187 188 189 190 191 192 193 194 195
    if (ret < 0) {
        fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
                __func__, strerror(-ret));
        return ret;
    }

    env->kvm_sw_tlb = true;
    return 0;
}

196 197

#if defined(TARGET_PPC64)
198
static void kvm_get_fallback_smmu_info(PowerPCCPU *cpu,
199 200
                                       struct kvm_ppc_smmu_info *info)
{
201 202 203
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    memset(info, 0, sizeof(*info));

    /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so
     * need to "guess" what the supported page sizes are.
     *
     * For that to work we make a few assumptions:
     *
     * - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR"
     *   KVM which only supports 4K and 16M pages, but supports them
     *   regardless of the backing store characteritics. We also don't
     *   support 1T segments.
     *
     *   This is safe as if HV KVM ever supports that capability or PR
     *   KVM grows supports for more page/segment sizes, those versions
     *   will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we
     *   will not hit this fallback
     *
     * - Else we are running HV KVM. This means we only support page
     *   sizes that fit in the backing store. Additionally we only
     *   advertize 64K pages if the processor is ARCH 2.06 and we assume
     *   P7 encodings for the SLB and hash table. Here too, we assume
     *   support for any newer processor will mean a kernel that
     *   implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit
     *   this fallback.
     */
229
    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        /* No flags */
        info->flags = 0;
        info->slb_size = 64;

        /* Standard 4k base page size segment */
        info->sps[0].page_shift = 12;
        info->sps[0].slb_enc = 0;
        info->sps[0].enc[0].page_shift = 12;
        info->sps[0].enc[0].pte_enc = 0;

        /* Standard 16M large page size segment */
        info->sps[1].page_shift = 24;
        info->sps[1].slb_enc = SLB_VSID_L;
        info->sps[1].enc[0].page_shift = 24;
        info->sps[1].enc[0].pte_enc = 0;
    } else {
        int i = 0;

        /* HV KVM has backing store size restrictions */
        info->flags = KVM_PPC_PAGE_SIZES_REAL;

        if (env->mmu_model & POWERPC_MMU_1TSEG) {
            info->flags |= KVM_PPC_1T_SEGMENTS;
        }

        if (env->mmu_model == POWERPC_MMU_2_06) {
            info->slb_size = 32;
        } else {
            info->slb_size = 64;
        }

        /* Standard 4k base page size segment */
        info->sps[i].page_shift = 12;
        info->sps[i].slb_enc = 0;
        info->sps[i].enc[0].page_shift = 12;
        info->sps[i].enc[0].pte_enc = 0;
        i++;

        /* 64K on MMU 2.06 */
        if (env->mmu_model == POWERPC_MMU_2_06) {
            info->sps[i].page_shift = 16;
            info->sps[i].slb_enc = 0x110;
            info->sps[i].enc[0].page_shift = 16;
            info->sps[i].enc[0].pte_enc = 1;
            i++;
        }

        /* Standard 16M large page size segment */
        info->sps[i].page_shift = 24;
        info->sps[i].slb_enc = SLB_VSID_L;
        info->sps[i].enc[0].page_shift = 24;
        info->sps[i].enc[0].pte_enc = 0;
    }
}

285
static void kvm_get_smmu_info(PowerPCCPU *cpu, struct kvm_ppc_smmu_info *info)
286
{
287
    CPUState *cs = CPU(cpu);
288 289
    int ret;

290 291
    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
        ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_SMMU_INFO, info);
292 293 294 295 296
        if (ret == 0) {
            return;
        }
    }

297
    kvm_get_fallback_smmu_info(cpu, info);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
}

static long getrampagesize(void)
{
    struct statfs fs;
    int ret;

    if (!mem_path) {
        /* guest RAM is backed by normal anonymous pages */
        return getpagesize();
    }

    do {
        ret = statfs(mem_path, &fs);
    } while (ret != 0 && errno == EINTR);

    if (ret != 0) {
        fprintf(stderr, "Couldn't statfs() memory path: %s\n",
                strerror(errno));
        exit(1);
    }

#define HUGETLBFS_MAGIC       0x958458f6

    if (fs.f_type != HUGETLBFS_MAGIC) {
        /* Explicit mempath, but it's ordinary pages */
        return getpagesize();
    }

    /* It's hugepage, return the huge page size */
    return fs.f_bsize;
}

static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift)
{
    if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) {
        return true;
    }

    return (1ul << shift) <= rampgsize;
}

340
static void kvm_fixup_page_sizes(PowerPCCPU *cpu)
341 342 343
{
    static struct kvm_ppc_smmu_info smmu_info;
    static bool has_smmu_info;
344
    CPUPPCState *env = &cpu->env;
345 346 347 348 349 350 351 352 353 354
    long rampagesize;
    int iq, ik, jq, jk;

    /* We only handle page sizes for 64-bit server guests for now */
    if (!(env->mmu_model & POWERPC_MMU_64)) {
        return;
    }

    /* Collect MMU info from kernel if not already */
    if (!has_smmu_info) {
355
        kvm_get_smmu_info(cpu, &smmu_info);
356 357 358 359 360 361 362 363
        has_smmu_info = true;
    }

    rampagesize = getrampagesize();

    /* Convert to QEMU form */
    memset(&env->sps, 0, sizeof(env->sps));

364 365 366 367
    /*
     * XXX This loop should be an entry wide AND of the capabilities that
     *     the selected CPU has with the capabilities that KVM supports.
     */
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
    for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) {
        struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq];
        struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik];

        if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
                                 ksps->page_shift)) {
            continue;
        }
        qsps->page_shift = ksps->page_shift;
        qsps->slb_enc = ksps->slb_enc;
        for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) {
            if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
                                     ksps->enc[jk].page_shift)) {
                continue;
            }
            qsps->enc[jq].page_shift = ksps->enc[jk].page_shift;
            qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc;
            if (++jq >= PPC_PAGE_SIZES_MAX_SZ) {
                break;
            }
        }
        if (++iq >= PPC_PAGE_SIZES_MAX_SZ) {
            break;
        }
    }
    env->slb_nr = smmu_info.slb_size;
394
    if (!(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
395 396 397 398 399
        env->mmu_model &= ~POWERPC_MMU_1TSEG;
    }
}
#else /* defined (TARGET_PPC64) */

400
static inline void kvm_fixup_page_sizes(PowerPCCPU *cpu)
401 402 403 404 405
{
}

#endif /* !defined (TARGET_PPC64) */

406 407
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
408
    return ppc_get_vcpu_dt_id(POWERPC_CPU(cpu));
409 410
}

A
Andreas Färber 已提交
411
int kvm_arch_init_vcpu(CPUState *cs)
412
{
A
Andreas Färber 已提交
413 414
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *cenv = &cpu->env;
415 416
    int ret;

417
    /* Gather server mmu info from KVM and update the CPU state */
418
    kvm_fixup_page_sizes(cpu);
419 420

    /* Synchronize sregs with kvm */
421
    ret = kvm_arch_sync_sregs(cpu);
422 423 424
    if (ret) {
        return ret;
    }
A
Alexander Graf 已提交
425

426
    idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu);
A
Alexander Graf 已提交
427

S
Scott Wood 已提交
428 429 430
    /* Some targets support access to KVM's guest TLB. */
    switch (cenv->mmu_model) {
    case POWERPC_MMU_BOOKE206:
431
        ret = kvm_booke206_tlb_init(cpu);
S
Scott Wood 已提交
432 433 434 435 436
        break;
    default:
        break;
    }

A
Alexander Graf 已提交
437
    return ret;
A
aurel32 已提交
438 439
}

440
static void kvm_sw_tlb_put(PowerPCCPU *cpu)
S
Scott Wood 已提交
441
{
442 443
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);
S
Scott Wood 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457
    struct kvm_dirty_tlb dirty_tlb;
    unsigned char *bitmap;
    int ret;

    if (!env->kvm_sw_tlb) {
        return;
    }

    bitmap = g_malloc((env->nb_tlb + 7) / 8);
    memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);

    dirty_tlb.bitmap = (uintptr_t)bitmap;
    dirty_tlb.num_dirty = env->nb_tlb;

458
    ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
S
Scott Wood 已提交
459 460 461 462 463 464 465 466
    if (ret) {
        fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
                __func__, strerror(-ret));
    }

    g_free(bitmap);
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    union {
        uint32_t u32;
        uint64_t u64;
    } val;
    struct kvm_one_reg reg = {
        .id = id,
        .addr = (uintptr_t) &val,
    };
    int ret;

    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret != 0) {
483
        trace_kvm_failed_spr_get(spr, strerror(errno));
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    } else {
        switch (id & KVM_REG_SIZE_MASK) {
        case KVM_REG_SIZE_U32:
            env->spr[spr] = val.u32;
            break;

        case KVM_REG_SIZE_U64:
            env->spr[spr] = val.u64;
            break;

        default:
            /* Don't handle this size yet */
            abort();
        }
    }
}

static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    union {
        uint32_t u32;
        uint64_t u64;
    } val;
    struct kvm_one_reg reg = {
        .id = id,
        .addr = (uintptr_t) &val,
    };
    int ret;

    switch (id & KVM_REG_SIZE_MASK) {
    case KVM_REG_SIZE_U32:
        val.u32 = env->spr[spr];
        break;

    case KVM_REG_SIZE_U64:
        val.u64 = env->spr[spr];
        break;

    default:
        /* Don't handle this size yet */
        abort();
    }

    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret != 0) {
531
        trace_kvm_failed_spr_set(spr, strerror(errno));
532 533 534
    }
}

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
static int kvm_put_fp(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int i;
    int ret;

    if (env->insns_flags & PPC_FLOAT) {
        uint64_t fpscr = env->fpscr;
        bool vsx = !!(env->insns_flags2 & PPC2_VSX);

        reg.id = KVM_REG_PPC_FPSCR;
        reg.addr = (uintptr_t)&fpscr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
551
            DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno));
552 553 554 555 556 557 558 559 560 561 562 563 564
            return ret;
        }

        for (i = 0; i < 32; i++) {
            uint64_t vsr[2];

            vsr[0] = float64_val(env->fpr[i]);
            vsr[1] = env->vsr[i];
            reg.addr = (uintptr_t) &vsr;
            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);

            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
            if (ret < 0) {
565
                DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR",
566 567 568 569 570 571 572 573 574 575 576
                        i, strerror(errno));
                return ret;
            }
        }
    }

    if (env->insns_flags & PPC_ALTIVEC) {
        reg.id = KVM_REG_PPC_VSCR;
        reg.addr = (uintptr_t)&env->vscr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
577
            DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno));
578 579 580 581 582 583 584 585
            return ret;
        }

        for (i = 0; i < 32; i++) {
            reg.id = KVM_REG_PPC_VR(i);
            reg.addr = (uintptr_t)&env->avr[i];
            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
            if (ret < 0) {
586
                DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno));
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
                return ret;
            }
        }
    }

    return 0;
}

static int kvm_get_fp(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int i;
    int ret;

    if (env->insns_flags & PPC_FLOAT) {
        uint64_t fpscr;
        bool vsx = !!(env->insns_flags2 & PPC2_VSX);

        reg.id = KVM_REG_PPC_FPSCR;
        reg.addr = (uintptr_t)&fpscr;
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret < 0) {
611
            DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno));
612 613 614 615 616 617 618 619 620 621 622 623 624
            return ret;
        } else {
            env->fpscr = fpscr;
        }

        for (i = 0; i < 32; i++) {
            uint64_t vsr[2];

            reg.addr = (uintptr_t) &vsr;
            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);

            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
            if (ret < 0) {
625
                DPRINTF("Unable to get %s%d from KVM: %s\n",
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
                        vsx ? "VSR" : "FPR", i, strerror(errno));
                return ret;
            } else {
                env->fpr[i] = vsr[0];
                if (vsx) {
                    env->vsr[i] = vsr[1];
                }
            }
        }
    }

    if (env->insns_flags & PPC_ALTIVEC) {
        reg.id = KVM_REG_PPC_VSCR;
        reg.addr = (uintptr_t)&env->vscr;
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret < 0) {
642
            DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno));
643 644 645 646 647 648 649 650
            return ret;
        }

        for (i = 0; i < 32; i++) {
            reg.id = KVM_REG_PPC_VR(i);
            reg.addr = (uintptr_t)&env->avr[i];
            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
            if (ret < 0) {
651
                DPRINTF("Unable to get VR%d from KVM: %s\n",
652 653 654 655 656 657 658 659 660
                        i, strerror(errno));
                return ret;
            }
        }
    }

    return 0;
}

661 662 663 664 665 666 667 668 669 670 671 672
#if defined(TARGET_PPC64)
static int kvm_get_vpa(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int ret;

    reg.id = KVM_REG_PPC_VPA_ADDR;
    reg.addr = (uintptr_t)&env->vpa_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
673
        DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno));
674 675 676 677 678 679 680 681 682
        return ret;
    }

    assert((uintptr_t)&env->slb_shadow_size
           == ((uintptr_t)&env->slb_shadow_addr + 8));
    reg.id = KVM_REG_PPC_VPA_SLB;
    reg.addr = (uintptr_t)&env->slb_shadow_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
683
        DPRINTF("Unable to get SLB shadow state from KVM: %s\n",
684 685 686 687 688 689 690 691 692
                strerror(errno));
        return ret;
    }

    assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
    reg.id = KVM_REG_PPC_VPA_DTL;
    reg.addr = (uintptr_t)&env->dtl_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
693
        DPRINTF("Unable to get dispatch trace log state from KVM: %s\n",
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
                strerror(errno));
        return ret;
    }

    return 0;
}

static int kvm_put_vpa(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int ret;

    /* SLB shadow or DTL can't be registered unless a master VPA is
     * registered.  That means when restoring state, if a VPA *is*
     * registered, we need to set that up first.  If not, we need to
     * deregister the others before deregistering the master VPA */
    assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr));

    if (env->vpa_addr) {
        reg.id = KVM_REG_PPC_VPA_ADDR;
        reg.addr = (uintptr_t)&env->vpa_addr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
719
            DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
720 721 722 723 724 725 726 727 728 729
            return ret;
        }
    }

    assert((uintptr_t)&env->slb_shadow_size
           == ((uintptr_t)&env->slb_shadow_addr + 8));
    reg.id = KVM_REG_PPC_VPA_SLB;
    reg.addr = (uintptr_t)&env->slb_shadow_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret < 0) {
730
        DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno));
731 732 733 734 735 736 737 738
        return ret;
    }

    assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
    reg.id = KVM_REG_PPC_VPA_DTL;
    reg.addr = (uintptr_t)&env->dtl_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret < 0) {
739
        DPRINTF("Unable to set dispatch trace log state to KVM: %s\n",
740 741 742 743 744 745 746 747 748
                strerror(errno));
        return ret;
    }

    if (!env->vpa_addr) {
        reg.id = KVM_REG_PPC_VPA_ADDR;
        reg.addr = (uintptr_t)&env->vpa_addr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
749
            DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
750 751 752 753 754 755 756 757
            return ret;
        }
    }

    return 0;
}
#endif /* TARGET_PPC64 */

A
Andreas Färber 已提交
758
int kvm_arch_put_registers(CPUState *cs, int level)
A
aurel32 已提交
759
{
A
Andreas Färber 已提交
760 761
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
A
aurel32 已提交
762 763 764 765
    struct kvm_regs regs;
    int ret;
    int i;

766 767
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
    if (ret < 0) {
A
aurel32 已提交
768
        return ret;
769
    }
A
aurel32 已提交
770 771 772

    regs.ctr = env->ctr;
    regs.lr  = env->lr;
773
    regs.xer = cpu_read_xer(env);
A
aurel32 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
    regs.msr = env->msr;
    regs.pc = env->nip;

    regs.srr0 = env->spr[SPR_SRR0];
    regs.srr1 = env->spr[SPR_SRR1];

    regs.sprg0 = env->spr[SPR_SPRG0];
    regs.sprg1 = env->spr[SPR_SPRG1];
    regs.sprg2 = env->spr[SPR_SPRG2];
    regs.sprg3 = env->spr[SPR_SPRG3];
    regs.sprg4 = env->spr[SPR_SPRG4];
    regs.sprg5 = env->spr[SPR_SPRG5];
    regs.sprg6 = env->spr[SPR_SPRG6];
    regs.sprg7 = env->spr[SPR_SPRG7];

S
Scott Wood 已提交
789 790
    regs.pid = env->spr[SPR_BOOKE_PID];

A
aurel32 已提交
791 792 793
    for (i = 0;i < 32; i++)
        regs.gpr[i] = env->gpr[i];

794 795 796 797 798
    regs.cr = 0;
    for (i = 0; i < 8; i++) {
        regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
    }

799
    ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
A
aurel32 已提交
800 801 802
    if (ret < 0)
        return ret;

803 804
    kvm_put_fp(cs);

S
Scott Wood 已提交
805
    if (env->tlb_dirty) {
806
        kvm_sw_tlb_put(cpu);
S
Scott Wood 已提交
807 808 809
        env->tlb_dirty = false;
    }

810 811 812 813 814 815 816 817 818
    if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
        struct kvm_sregs sregs;

        sregs.pvr = env->spr[SPR_PVR];

        sregs.u.s.sdr1 = env->spr[SPR_SDR1];

        /* Sync SLB */
#ifdef TARGET_PPC64
819
        for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
820
            sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
821 822 823
            if (env->slb[i].esid & SLB_ESID_V) {
                sregs.u.s.ppc64.slb[i].slbe |= i;
            }
824 825 826 827 828 829 830 831 832 833 834
            sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
        }
#endif

        /* Sync SRs */
        for (i = 0; i < 16; i++) {
            sregs.u.s.ppc32.sr[i] = env->sr[i];
        }

        /* Sync BATs */
        for (i = 0; i < 8; i++) {
A
Alexander Graf 已提交
835 836 837 838 839
            /* Beware. We have to swap upper and lower bits here */
            sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
                | env->DBAT[1][i];
            sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
                | env->IBAT[1][i];
840 841
        }

842
        ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
843 844 845 846 847 848
        if (ret) {
            return ret;
        }
    }

    if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
849 850
        kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
    }
851

852 853 854 855 856 857 858 859 860 861 862 863 864
    if (cap_one_reg) {
        int i;

        /* We deliberately ignore errors here, for kernels which have
         * the ONE_REG calls, but don't support the specific
         * registers, there's a reasonable chance things will still
         * work, at least until we try to migrate. */
        for (i = 0; i < 1024; i++) {
            uint64_t id = env->spr_cb[i].one_reg_id;

            if (id != 0) {
                kvm_put_one_spr(cs, id, i);
            }
865
        }
866 867

#ifdef TARGET_PPC64
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
        if (msr_ts) {
            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
                kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
            }
            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
                kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
            }
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
        }

887 888
        if (cap_papr) {
            if (kvm_put_vpa(cs) < 0) {
889
                DPRINTF("Warning: Unable to set VPA information to KVM\n");
890 891
            }
        }
892 893

        kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
894
#endif /* TARGET_PPC64 */
895 896
    }

A
aurel32 已提交
897 898 899
    return ret;
}

A
Andreas Färber 已提交
900
int kvm_arch_get_registers(CPUState *cs)
A
aurel32 已提交
901
{
A
Andreas Färber 已提交
902 903
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
A
aurel32 已提交
904
    struct kvm_regs regs;
905
    struct kvm_sregs sregs;
S
Scott Wood 已提交
906
    uint32_t cr;
A
Alexander Graf 已提交
907
    int i, ret;
A
aurel32 已提交
908

909
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
A
aurel32 已提交
910 911 912
    if (ret < 0)
        return ret;

S
Scott Wood 已提交
913 914 915 916 917
    cr = regs.cr;
    for (i = 7; i >= 0; i--) {
        env->crf[i] = cr & 15;
        cr >>= 4;
    }
918

A
aurel32 已提交
919 920
    env->ctr = regs.ctr;
    env->lr = regs.lr;
921
    cpu_write_xer(env, regs.xer);
A
aurel32 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
    env->msr = regs.msr;
    env->nip = regs.pc;

    env->spr[SPR_SRR0] = regs.srr0;
    env->spr[SPR_SRR1] = regs.srr1;

    env->spr[SPR_SPRG0] = regs.sprg0;
    env->spr[SPR_SPRG1] = regs.sprg1;
    env->spr[SPR_SPRG2] = regs.sprg2;
    env->spr[SPR_SPRG3] = regs.sprg3;
    env->spr[SPR_SPRG4] = regs.sprg4;
    env->spr[SPR_SPRG5] = regs.sprg5;
    env->spr[SPR_SPRG6] = regs.sprg6;
    env->spr[SPR_SPRG7] = regs.sprg7;

S
Scott Wood 已提交
937 938
    env->spr[SPR_BOOKE_PID] = regs.pid;

A
aurel32 已提交
939 940 941
    for (i = 0;i < 32; i++)
        env->gpr[i] = regs.gpr[i];

942 943
    kvm_get_fp(cs);

S
Scott Wood 已提交
944
    if (cap_booke_sregs) {
945
        ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
S
Scott Wood 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
        if (ret < 0) {
            return ret;
        }

        if (sregs.u.e.features & KVM_SREGS_E_BASE) {
            env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
            env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
            env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
            env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
            env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
            env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
            env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
            env->spr[SPR_DECR] = sregs.u.e.dec;
            env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
            env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
            env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
        }

        if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
            env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
            env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
            env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
            env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
            env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
        }

        if (sregs.u.e.features & KVM_SREGS_E_64) {
            env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
        }

        if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
            env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
        }

        if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
            env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
            env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
            env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
            env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
            env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
            env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
            env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
            env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
            env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
            env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
            env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
            env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
            env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
            env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
            env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
            env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];

            if (sregs.u.e.features & KVM_SREGS_E_SPE) {
                env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
                env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
                env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
            }

            if (sregs.u.e.features & KVM_SREGS_E_PM) {
                env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
            }

            if (sregs.u.e.features & KVM_SREGS_E_PC) {
                env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
                env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
            }
        }

        if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
            env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
            env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
            env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
            env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
            env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
            env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
            env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
            env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
            env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
            env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
        }

        if (sregs.u.e.features & KVM_SREGS_EXP) {
            env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
        }

        if (sregs.u.e.features & KVM_SREGS_E_PD) {
            env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
            env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
        }

        if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
            env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
            env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
            env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;

            if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
                env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
                env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
            }
        }
A
Alexander Graf 已提交
1046
    }
S
Scott Wood 已提交
1047 1048

    if (cap_segstate) {
1049
        ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
S
Scott Wood 已提交
1050 1051 1052 1053
        if (ret < 0) {
            return ret;
        }

1054 1055 1056
        if (!env->external_htab) {
            ppc_store_sdr1(env, sregs.u.s.sdr1);
        }
1057 1058

        /* Sync SLB */
A
Alexander Graf 已提交
1059
#ifdef TARGET_PPC64
1060 1061 1062 1063 1064 1065 1066
        /*
         * The packed SLB array we get from KVM_GET_SREGS only contains
         * information about valid entries. So we flush our internal
         * copy to get rid of stale ones, then put all valid SLB entries
         * back in.
         */
        memset(env->slb, 0, sizeof(env->slb));
1067
        for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1068 1069 1070 1071 1072 1073 1074 1075
            target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
            target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
            /*
             * Only restore valid entries
             */
            if (rb & SLB_ESID_V) {
                ppc_store_slb(env, rb, rs);
            }
1076
        }
A
Alexander Graf 已提交
1077
#endif
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

        /* Sync SRs */
        for (i = 0; i < 16; i++) {
            env->sr[i] = sregs.u.s.ppc32.sr[i];
        }

        /* Sync BATs */
        for (i = 0; i < 8; i++) {
            env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
            env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
            env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
            env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
        }
A
Alexander Graf 已提交
1091
    }
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
    if (cap_hior) {
        kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
    }

    if (cap_one_reg) {
        int i;

        /* We deliberately ignore errors here, for kernels which have
         * the ONE_REG calls, but don't support the specific
         * registers, there's a reasonable chance things will still
         * work, at least until we try to migrate. */
        for (i = 0; i < 1024; i++) {
            uint64_t id = env->spr_cb[i].one_reg_id;

            if (id != 0) {
                kvm_get_one_spr(cs, id, i);
            }
        }
1111 1112

#ifdef TARGET_PPC64
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
        if (msr_ts) {
            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
                kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
            }
            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
                kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
            }
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
        }

1132 1133
        if (cap_papr) {
            if (kvm_get_vpa(cs) < 0) {
1134
                DPRINTF("Warning: Unable to get VPA information from KVM\n");
1135 1136
            }
        }
1137 1138

        kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1139
#endif
1140 1141
    }

A
aurel32 已提交
1142 1143 1144
    return 0;
}

1145
int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
{
    unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;

    if (irq != PPC_INTERRUPT_EXT) {
        return 0;
    }

    if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
        return 0;
    }

1157
    kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1158 1159 1160 1161

    return 0;
}

A
Alexander Graf 已提交
1162 1163 1164 1165 1166 1167 1168 1169
#if defined(TARGET_PPCEMB)
#define PPC_INPUT_INT PPC40x_INPUT_INT
#elif defined(TARGET_PPC64)
#define PPC_INPUT_INT PPC970_INPUT_INT
#else
#define PPC_INPUT_INT PPC6xx_INPUT_INT
#endif

A
Andreas Färber 已提交
1170
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
A
aurel32 已提交
1171
{
A
Andreas Färber 已提交
1172 1173
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
A
aurel32 已提交
1174 1175 1176
    int r;
    unsigned irq;

S
Stefan Weil 已提交
1177
    /* PowerPC QEMU tracks the various core input pins (interrupt, critical
A
aurel32 已提交
1178
     * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
1179 1180
    if (!cap_interrupt_level &&
        run->ready_for_interrupt_injection &&
1181
        (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
A
Alexander Graf 已提交
1182
        (env->irq_input_state & (1<<PPC_INPUT_INT)))
A
aurel32 已提交
1183 1184 1185 1186 1187
    {
        /* For now KVM disregards the 'irq' argument. However, in the
         * future KVM could cache it in-kernel to avoid a heavyweight exit
         * when reading the UIC.
         */
1188
        irq = KVM_INTERRUPT_SET;
A
aurel32 已提交
1189

1190
        DPRINTF("injected interrupt %d\n", irq);
1191
        r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq);
1192 1193 1194
        if (r < 0) {
            printf("cpu %d fail inject %x\n", cs->cpu_index, irq);
        }
A
Alexander Graf 已提交
1195 1196

        /* Always wake up soon in case the interrupt was level based */
1197
        timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
A
Alexander Graf 已提交
1198
                       (get_ticks_per_sec() / 50));
A
aurel32 已提交
1199 1200 1201 1202 1203 1204 1205
    }

    /* We don't know if there are more interrupts pending after this. However,
     * the guest will return to userspace in the course of handling this one
     * anyways, so we will get a chance to deliver the rest. */
}

A
Andreas Färber 已提交
1206
void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
A
aurel32 已提交
1207 1208 1209
{
}

A
Andreas Färber 已提交
1210
int kvm_arch_process_async_events(CPUState *cs)
M
Marcelo Tosatti 已提交
1211
{
1212
    return cs->halted;
M
Marcelo Tosatti 已提交
1213 1214
}

1215
static int kvmppc_handle_halt(PowerPCCPU *cpu)
A
aurel32 已提交
1216
{
1217 1218 1219 1220 1221
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;

    if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
        cs->halted = 1;
1222
        cs->exception_index = EXCP_HLT;
A
aurel32 已提交
1223 1224
    }

1225
    return 0;
A
aurel32 已提交
1226 1227 1228
}

/* map dcr access to existing qemu dcr emulation */
1229
static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
A
aurel32 已提交
1230 1231 1232 1233
{
    if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
        fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);

1234
    return 0;
A
aurel32 已提交
1235 1236
}

1237
static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
A
aurel32 已提交
1238 1239 1240 1241
{
    if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
        fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);

1242
    return 0;
A
aurel32 已提交
1243 1244
}

A
Andreas Färber 已提交
1245
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
A
aurel32 已提交
1246
{
A
Andreas Färber 已提交
1247 1248
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
1249
    int ret;
A
aurel32 已提交
1250 1251 1252 1253

    switch (run->exit_reason) {
    case KVM_EXIT_DCR:
        if (run->dcr.is_write) {
1254
            DPRINTF("handle dcr write\n");
A
aurel32 已提交
1255 1256
            ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
        } else {
1257
            DPRINTF("handle dcr read\n");
A
aurel32 已提交
1258 1259 1260 1261
            ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
        }
        break;
    case KVM_EXIT_HLT:
1262
        DPRINTF("handle halt\n");
1263
        ret = kvmppc_handle_halt(cpu);
A
aurel32 已提交
1264
        break;
1265
#if defined(TARGET_PPC64)
1266
    case KVM_EXIT_PAPR_HCALL:
1267
        DPRINTF("handle PAPR hypercall\n");
A
Andreas Färber 已提交
1268
        run->papr_hcall.ret = spapr_hypercall(cpu,
1269
                                              run->papr_hcall.nr,
1270
                                              run->papr_hcall.args);
1271
        ret = 0;
1272 1273
        break;
#endif
1274
    case KVM_EXIT_EPR:
1275
        DPRINTF("handle epr\n");
1276
        run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1277 1278
        ret = 0;
        break;
B
Bharat Bhushan 已提交
1279
    case KVM_EXIT_WATCHDOG:
1280
        DPRINTF("handle watchdog expiry\n");
B
Bharat Bhushan 已提交
1281 1282 1283 1284
        watchdog_perform_action();
        ret = 0;
        break;

J
Jan Kiszka 已提交
1285 1286 1287 1288
    default:
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
        ret = -1;
        break;
A
aurel32 已提交
1289 1290 1291 1292 1293
    }

    return ret;
}

B
Bharat Bhushan 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{
    CPUState *cs = CPU(cpu);
    uint32_t bits = tsr_bits;
    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_OR_TSR,
        .addr = (uintptr_t) &bits,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{

    CPUState *cs = CPU(cpu);
    uint32_t bits = tsr_bits;
    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_CLEAR_TSR,
        .addr = (uintptr_t) &bits,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_set_tcr(PowerPCCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;
    uint32_t tcr = env->spr[SPR_BOOKE_TCR];

    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_TCR,
        .addr = (uintptr_t) &tcr,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    int ret;

    if (!kvm_enabled()) {
        return -1;
    }

    if (!cap_ppc_watchdog) {
        printf("warning: KVM does not support watchdog");
        return -1;
    }

C
Cornelia Huck 已提交
1347
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
B
Bharat Bhushan 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356
    if (ret < 0) {
        fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
                __func__, strerror(-ret));
        return ret;
    }

    return ret;
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
static int read_cpuinfo(const char *field, char *value, int len)
{
    FILE *f;
    int ret = -1;
    int field_len = strlen(field);
    char line[512];

    f = fopen("/proc/cpuinfo", "r");
    if (!f) {
        return -1;
    }

    do {
        if(!fgets(line, sizeof(line), f)) {
            break;
        }
        if (!strncmp(line, field, field_len)) {
1374
            pstrcpy(value, len, line);
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
            ret = 0;
            break;
        }
    } while(*line);

    fclose(f);

    return ret;
}

uint32_t kvmppc_get_tbfreq(void)
{
    char line[512];
    char *ns;
    uint32_t retval = get_ticks_per_sec();

    if (read_cpuinfo("timebase", line, sizeof(line))) {
        return retval;
    }

    if (!(ns = strchr(line, ':'))) {
        return retval;
    }

    ns++;

    retval = atoi(ns);
    return retval;
}
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
/* Try to find a device tree node for a CPU with clock-frequency property */
static int kvmppc_find_cpu_dt(char *buf, int buf_len)
{
    struct dirent *dirp;
    DIR *dp;

    if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
        printf("Can't open directory " PROC_DEVTREE_CPU "\n");
        return -1;
    }

    buf[0] = '\0';
    while ((dirp = readdir(dp)) != NULL) {
        FILE *f;
        snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
                 dirp->d_name);
        f = fopen(buf, "r");
        if (f) {
            snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
            fclose(f);
            break;
        }
        buf[0] = '\0';
    }
    closedir(dp);
    if (buf[0] == '\0') {
        printf("Unknown host!\n");
        return -1;
    }

    return 0;
}

1438 1439 1440 1441 1442
/* Read a CPU node property from the host device tree that's a single
 * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
 * (can't find or open the property, or doesn't understand the
 * format) */
static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1443
{
1444 1445 1446 1447 1448
    char buf[PATH_MAX];
    union {
        uint32_t v32;
        uint64_t v64;
    } u;
1449 1450 1451 1452
    FILE *f;
    int len;

    if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1453
        return -1;
1454 1455
    }

1456 1457
    strncat(buf, "/", sizeof(buf) - strlen(buf));
    strncat(buf, propname, sizeof(buf) - strlen(buf));
1458 1459 1460 1461 1462 1463

    f = fopen(buf, "rb");
    if (!f) {
        return -1;
    }

1464
    len = fread(&u, 1, sizeof(u), f);
1465 1466
    fclose(f);
    switch (len) {
1467 1468 1469 1470 1471
    case 4:
        /* property is a 32-bit quantity */
        return be32_to_cpu(u.v32);
    case 8:
        return be64_to_cpu(u.v64);
1472 1473 1474 1475 1476
    }

    return 0;
}

1477 1478 1479 1480 1481
uint64_t kvmppc_get_clockfreq(void)
{
    return kvmppc_read_int_cpu_dt("clock-frequency");
}

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
uint32_t kvmppc_get_vmx(void)
{
    return kvmppc_read_int_cpu_dt("ibm,vmx");
}

uint32_t kvmppc_get_dfp(void)
{
    return kvmppc_read_int_cpu_dt("ibm,dfp");
}

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
 {
     PowerPCCPU *cpu = ppc_env_get_cpu(env);
     CPUState *cs = CPU(cpu);

    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
        !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
        return 0;
    }

    return 1;
}

int kvmppc_get_hasidle(CPUPPCState *env)
{
    struct kvm_ppc_pvinfo pvinfo;

    if (!kvmppc_get_pvinfo(env, &pvinfo) &&
        (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
        return 1;
    }

    return 0;
}

1517
int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1518 1519 1520 1521
{
    uint32_t *hc = (uint32_t*)buf;
    struct kvm_ppc_pvinfo pvinfo;

1522
    if (!kvmppc_get_pvinfo(env, &pvinfo)) {
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
        memcpy(buf, pvinfo.hcall, buf_len);
        return 0;
    }

    /*
     * Fallback to always fail hypercalls:
     *
     *     li r3, -1
     *     nop
     *     nop
     *     nop
     */

    hc[0] = 0x3860ffff;
    hc[1] = 0x60000000;
    hc[2] = 0x60000000;
    hc[3] = 0x60000000;

    return 0;
}

1544
void kvmppc_set_papr(PowerPCCPU *cpu)
1545
{
1546
    CPUState *cs = CPU(cpu);
1547 1548
    int ret;

C
Cornelia Huck 已提交
1549
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
1550
    if (ret) {
1551
        cpu_abort(cs, "This KVM version does not support PAPR\n");
1552
    }
1553 1554 1555 1556

    /* Update the capability flag so we sync the right information
     * with kvm */
    cap_papr = 1;
1557 1558
}

1559 1560 1561 1562 1563
int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t cpu_version)
{
    return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &cpu_version);
}

1564 1565 1566 1567 1568
void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
{
    CPUState *cs = CPU(cpu);
    int ret;

C
Cornelia Huck 已提交
1569
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
1570
    if (ret && mpic_proxy) {
1571
        cpu_abort(cs, "This KVM version does not support EPR\n");
1572 1573 1574
    }
}

1575 1576 1577 1578 1579
int kvmppc_smt_threads(void)
{
    return cap_ppc_smt ? cap_ppc_smt : 1;
}

1580
#ifdef TARGET_PPC64
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
off_t kvmppc_alloc_rma(const char *name, MemoryRegion *sysmem)
{
    void *rma;
    off_t size;
    int fd;
    struct kvm_allocate_rma ret;
    MemoryRegion *rma_region;

    /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported
     * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but
     *                      not necessary on this hardware
     * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware
     *
     * FIXME: We should allow the user to force contiguous RMA
     * allocation in the cap_ppc_rma==1 case.
     */
    if (cap_ppc_rma < 2) {
        return 0;
    }

    fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret);
    if (fd < 0) {
        fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
                strerror(errno));
        return -1;
    }

    size = MIN(ret.rma_size, 256ul << 20);

    rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
    if (rma == MAP_FAILED) {
        fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno));
        return -1;
    };

    rma_region = g_new(MemoryRegion, 1);
1617
    memory_region_init_ram_ptr(rma_region, NULL, name, size, rma);
1618
    vmstate_register_ram_global(rma_region);
1619 1620 1621 1622 1623
    memory_region_add_subregion(sysmem, 0, rma_region);

    return size;
}

1624 1625
uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
{
1626 1627 1628 1629
    struct kvm_ppc_smmu_info info;
    long rampagesize, best_page_shift;
    int i;

1630 1631 1632
    if (cap_ppc_rma >= 2) {
        return current_size;
    }
1633 1634 1635

    /* Find the largest hardware supported page size that's less than
     * or equal to the (logical) backing page size of guest RAM */
1636
    kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
    rampagesize = getrampagesize();
    best_page_shift = 0;

    for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];

        if (!sps->page_shift) {
            continue;
        }

        if ((sps->page_shift > best_page_shift)
            && ((1UL << sps->page_shift) <= rampagesize)) {
            best_page_shift = sps->page_shift;
        }
    }

1653
    return MIN(current_size,
1654
               1ULL << (best_page_shift + hash_shift - 7));
1655 1656 1657
}
#endif

1658 1659 1660 1661 1662
bool kvmppc_spapr_use_multitce(void)
{
    return cap_spapr_multitce;
}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd)
{
    struct kvm_create_spapr_tce args = {
        .liobn = liobn,
        .window_size = window_size,
    };
    long len;
    int fd;
    void *table;

1673 1674 1675 1676
    /* Must set fd to -1 so we don't try to munmap when called for
     * destroying the table, which the upper layers -will- do
     */
    *pfd = -1;
1677 1678 1679 1680 1681 1682
    if (!cap_spapr_tce) {
        return NULL;
    }

    fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
    if (fd < 0) {
1683 1684
        fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
                liobn);
1685 1686 1687
        return NULL;
    }

1688
    len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(uint64_t);
1689 1690
    /* FIXME: round this up to page size */

1691
    table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
1692
    if (table == MAP_FAILED) {
1693 1694
        fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
                liobn);
1695 1696 1697 1698 1699 1700 1701 1702
        close(fd);
        return NULL;
    }

    *pfd = fd;
    return table;
}

1703
int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
1704 1705 1706 1707 1708 1709 1710
{
    long len;

    if (fd < 0) {
        return -1;
    }

1711
    len = nb_table * sizeof(uint64_t);
1712 1713
    if ((munmap(table, len) < 0) ||
        (close(fd) < 0)) {
1714 1715
        fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
                strerror(errno));
1716 1717 1718 1719 1720 1721
        /* Leak the table */
    }

    return 0;
}

1722 1723 1724 1725
int kvmppc_reset_htab(int shift_hint)
{
    uint32_t shift = shift_hint;

1726 1727 1728 1729 1730
    if (!kvm_enabled()) {
        /* Full emulation, tell caller to allocate htab itself */
        return 0;
    }
    if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
1731 1732
        int ret;
        ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
1733 1734 1735 1736 1737 1738 1739
        if (ret == -ENOTTY) {
            /* At least some versions of PR KVM advertise the
             * capability, but don't implement the ioctl().  Oops.
             * Return 0 so that we allocate the htab in qemu, as is
             * correct for PR. */
            return 0;
        } else if (ret < 0) {
1740 1741 1742 1743 1744
            return ret;
        }
        return shift;
    }

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
    /* We have a kernel that predates the htab reset calls.  For PR
     * KVM, we need to allocate the htab ourselves, for an HV KVM of
     * this era, it has allocated a 16MB fixed size hash table
     * already.  Kernels of this era have the GET_PVINFO capability
     * only on PR, so we use this hack to determine the right
     * answer */
    if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
        /* PR - tell caller to allocate htab */
        return 0;
    } else {
        /* HV - assume 16MB kernel allocated htab */
        return 24;
    }
1758 1759
}

1760 1761 1762 1763 1764 1765 1766 1767 1768
static inline uint32_t mfpvr(void)
{
    uint32_t pvr;

    asm ("mfpvr %0"
         : "=r"(pvr));
    return pvr;
}

1769 1770 1771 1772 1773 1774 1775 1776 1777
static void alter_insns(uint64_t *word, uint64_t flags, bool on)
{
    if (on) {
        *word |= flags;
    } else {
        *word &= ~flags;
    }
}

1778
static void kvmppc_host_cpu_initfn(Object *obj)
1779
{
1780 1781 1782 1783 1784 1785
    assert(kvm_enabled());
}

static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
{
    PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
1786 1787
    uint32_t vmx = kvmppc_get_vmx();
    uint32_t dfp = kvmppc_get_dfp();
1788 1789
    uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
    uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
1790

1791
    /* Now fix up the class with information we can query from the host */
1792
    pcc->pvr = mfpvr();
1793

1794 1795
    if (vmx != -1) {
        /* Only override when we know what the host supports */
1796 1797
        alter_insns(&pcc->insns_flags, PPC_ALTIVEC, vmx > 0);
        alter_insns(&pcc->insns_flags2, PPC2_VSX, vmx > 1);
1798 1799 1800
    }
    if (dfp != -1) {
        /* Only override when we know what the host supports */
1801
        alter_insns(&pcc->insns_flags2, PPC2_DFP, dfp);
1802
    }
1803 1804 1805 1806 1807 1808 1809 1810

    if (dcache_size != -1) {
        pcc->l1_dcache_size = dcache_size;
    }

    if (icache_size != -1) {
        pcc->l1_icache_size = icache_size;
    }
1811 1812
}

1813 1814 1815 1816 1817
bool kvmppc_has_cap_epr(void)
{
    return cap_epr;
}

1818 1819 1820 1821 1822
bool kvmppc_has_cap_htab_fd(void)
{
    return cap_htab_fd;
}

1823 1824 1825 1826 1827
bool kvmppc_has_cap_fixup_hcalls(void)
{
    return cap_fixup_hcalls;
}

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
static PowerPCCPUClass *ppc_cpu_get_family_class(PowerPCCPUClass *pcc)
{
    ObjectClass *oc = OBJECT_CLASS(pcc);

    while (oc && !object_class_is_abstract(oc)) {
        oc = object_class_get_parent(oc);
    }
    assert(oc);

    return POWERPC_CPU_CLASS(oc);
}

1840 1841 1842 1843 1844 1845 1846 1847 1848
static int kvm_ppc_register_host_cpu_type(void)
{
    TypeInfo type_info = {
        .name = TYPE_HOST_POWERPC_CPU,
        .instance_init = kvmppc_host_cpu_initfn,
        .class_init = kvmppc_host_cpu_class_init,
    };
    uint32_t host_pvr = mfpvr();
    PowerPCCPUClass *pvr_pcc;
1849
    DeviceClass *dc;
1850 1851

    pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
1852 1853 1854
    if (pvr_pcc == NULL) {
        pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
    }
1855 1856 1857 1858 1859
    if (pvr_pcc == NULL) {
        return -1;
    }
    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
    type_register(&type_info);
1860 1861 1862 1863 1864 1865 1866 1867

    /* Register generic family CPU class for a family */
    pvr_pcc = ppc_cpu_get_family_class(pvr_pcc);
    dc = DEVICE_CLASS(pvr_pcc);
    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
    type_info.name = g_strdup_printf("%s-"TYPE_POWERPC_CPU, dc->desc);
    type_register(&type_info);

1868 1869 1870
    return 0;
}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
{
    struct kvm_rtas_token_args args = {
        .token = token,
    };

    if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
        return -ENOENT;
    }

    strncpy(args.name, function, sizeof(args.name));

    return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
}
1885

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
int kvmppc_get_htab_fd(bool write)
{
    struct kvm_get_htab_fd s = {
        .flags = write ? KVM_GET_HTAB_WRITE : 0,
        .start_index = 0,
    };

    if (!cap_htab_fd) {
        fprintf(stderr, "KVM version doesn't support saving the hash table\n");
        return -1;
    }

    return kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
}

int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
{
1903
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
    uint8_t buf[bufsize];
    ssize_t rc;

    do {
        rc = read(fd, buf, bufsize);
        if (rc < 0) {
            fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
                    strerror(errno));
            return rc;
        } else if (rc) {
            /* Kernel already retuns data in BE format for the file */
            qemu_put_buffer(f, buf, rc);
        }
    } while ((rc != 0)
             && ((max_ns < 0)
1919
                 || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

    return (rc == 0) ? 1 : 0;
}

int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
                           uint16_t n_valid, uint16_t n_invalid)
{
    struct kvm_get_htab_header *buf;
    size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64;
    ssize_t rc;

    buf = alloca(chunksize);
    /* This is KVM on ppc, so this is all big-endian */
    buf->index = index;
    buf->n_valid = n_valid;
    buf->n_invalid = n_invalid;

    qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid);

    rc = write(fd, buf, chunksize);
    if (rc < 0) {
        fprintf(stderr, "Error writing KVM hash table: %s\n",
                strerror(errno));
        return rc;
    }
    if (rc != chunksize) {
        /* We should never get a short write on a single chunk */
        fprintf(stderr, "Short write, restoring KVM hash table\n");
        return -1;
    }
    return 0;
}

A
Andreas Färber 已提交
1953
bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1954 1955 1956
{
    return true;
}
1957

A
Andreas Färber 已提交
1958
int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
1959 1960 1961 1962 1963 1964 1965 1966
{
    return 1;
}

int kvm_arch_on_sigbus(int code, void *addr)
{
    return 1;
}
1967 1968 1969 1970

void kvm_arch_init_irq_routing(KVMState *s)
{
}
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
{
    return -EINVAL;
}

int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
{
    return -EINVAL;
}

int kvm_arch_insert_hw_breakpoint(target_ulong addr, target_ulong len, int type)
{
    return -EINVAL;
}

int kvm_arch_remove_hw_breakpoint(target_ulong addr, target_ulong len, int type)
{
    return -EINVAL;
}

void kvm_arch_remove_all_hw_breakpoints(void)
{
}

void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
{
}
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

struct kvm_get_htab_buf {
    struct kvm_get_htab_header header;
    /*
     * We require one extra byte for read
     */
    target_ulong hpte[(HPTES_PER_GROUP * 2) + 1];
};

uint64_t kvmppc_hash64_read_pteg(PowerPCCPU *cpu, target_ulong pte_index)
{
    int htab_fd;
    struct kvm_get_htab_fd ghf;
    struct kvm_get_htab_buf  *hpte_buf;

    ghf.flags = 0;
    ghf.start_index = pte_index;
    htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
    if (htab_fd < 0) {
        goto error_out;
    }

    hpte_buf = g_malloc0(sizeof(*hpte_buf));
    /*
     * Read the hpte group
     */
    if (read(htab_fd, hpte_buf, sizeof(*hpte_buf)) < 0) {
        goto out_close;
    }

    close(htab_fd);
    return (uint64_t)(uintptr_t) hpte_buf->hpte;

out_close:
    g_free(hpte_buf);
    close(htab_fd);
error_out:
    return 0;
}

void kvmppc_hash64_free_pteg(uint64_t token)
{
    struct kvm_get_htab_buf *htab_buf;

    htab_buf = container_of((void *)(uintptr_t) token, struct kvm_get_htab_buf,
                            hpte);
    g_free(htab_buf);
    return;
}
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

void kvmppc_hash64_write_pte(CPUPPCState *env, target_ulong pte_index,
                             target_ulong pte0, target_ulong pte1)
{
    int htab_fd;
    struct kvm_get_htab_fd ghf;
    struct kvm_get_htab_buf hpte_buf;

    ghf.flags = 0;
    ghf.start_index = 0;     /* Ignored */
    htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
    if (htab_fd < 0) {
        goto error_out;
    }

    hpte_buf.header.n_valid = 1;
    hpte_buf.header.n_invalid = 0;
    hpte_buf.header.index = pte_index;
    hpte_buf.hpte[0] = pte0;
    hpte_buf.hpte[1] = pte1;
    /*
     * Write the hpte entry.
     * CAUTION: write() has the warn_unused_result attribute. Hence we
     * need to check the return value, even though we do nothing.
     */
    if (write(htab_fd, &hpte_buf, sizeof(hpte_buf)) < 0) {
        goto out_close;
    }

out_close:
    close(htab_fd);
    return;

error_out:
    return;
}