kvm.c 56.8 KB
Newer Older
A
aurel32 已提交
1 2 3 4
/*
 * PowerPC implementation of KVM hooks
 *
 * Copyright IBM Corp. 2007
S
Scott Wood 已提交
5
 * Copyright (C) 2011 Freescale Semiconductor, Inc.
A
aurel32 已提交
6 7 8 9 10 11 12 13 14 15 16
 *
 * Authors:
 *  Jerone Young <jyoung5@us.ibm.com>
 *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 *  Hollis Blanchard <hollisb@us.ibm.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

17
#include <dirent.h>
A
aurel32 已提交
18 19 20
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
21
#include <sys/vfs.h>
A
aurel32 已提交
22 23 24 25

#include <linux/kvm.h>

#include "qemu-common.h"
26
#include "qemu/timer.h"
27 28
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
A
aurel32 已提交
29 30
#include "kvm_ppc.h"
#include "cpu.h"
31 32
#include "sysemu/cpus.h"
#include "sysemu/device_tree.h"
33
#include "mmu-hash64.h"
A
aurel32 已提交
34

35
#include "hw/sysbus.h"
P
Paolo Bonzini 已提交
36 37
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
38
#include "hw/ppc/ppc.h"
B
Bharat Bhushan 已提交
39
#include "sysemu/watchdog.h"
40
#include "trace.h"
41

A
aurel32 已提交
42 43 44
//#define DEBUG_KVM

#ifdef DEBUG_KVM
45
#define DPRINTF(fmt, ...) \
A
aurel32 已提交
46 47
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
48
#define DPRINTF(fmt, ...) \
A
aurel32 已提交
49 50 51
    do { } while (0)
#endif

52 53
#define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"

54 55 56 57
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
    KVM_CAP_LAST_INFO
};

58 59
static int cap_interrupt_unset = false;
static int cap_interrupt_level = false;
S
Scott Wood 已提交
60 61
static int cap_segstate;
static int cap_booke_sregs;
62
static int cap_ppc_smt;
63
static int cap_ppc_rma;
64
static int cap_spapr_tce;
65
static int cap_spapr_multitce;
66
static int cap_spapr_vfio;
67
static int cap_hior;
68
static int cap_one_reg;
69
static int cap_epr;
B
Bharat Bhushan 已提交
70
static int cap_ppc_watchdog;
71
static int cap_papr;
72
static int cap_htab_fd;
73
static int cap_fixup_hcalls;
74

A
Alexander Graf 已提交
75 76 77 78
/* XXX We have a race condition where we actually have a level triggered
 *     interrupt, but the infrastructure can't expose that yet, so the guest
 *     takes but ignores it, goes to sleep and never gets notified that there's
 *     still an interrupt pending.
A
Alexander Graf 已提交
79
 *
A
Alexander Graf 已提交
80 81 82
 *     As a quick workaround, let's just wake up again 20 ms after we injected
 *     an interrupt. That way we can assure that we're always reinjecting
 *     interrupts in case the guest swallowed them.
A
Alexander Graf 已提交
83 84 85
 */
static QEMUTimer *idle_timer;

86
static void kvm_kick_cpu(void *opaque)
A
Alexander Graf 已提交
87
{
88 89
    PowerPCCPU *cpu = opaque;

90
    qemu_cpu_kick(CPU(cpu));
A
Alexander Graf 已提交
91 92
}

93 94
static int kvm_ppc_register_host_cpu_type(void);

95
int kvm_arch_init(KVMState *s)
A
aurel32 已提交
96
{
97 98
    cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
    cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
S
Scott Wood 已提交
99 100
    cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
    cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
101
    cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT);
102
    cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA);
103
    cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
104
    cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
105
    cap_spapr_vfio = false;
106
    cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
107
    cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
108
    cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
B
Bharat Bhushan 已提交
109
    cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
110 111
    /* Note: we don't set cap_papr here, because this capability is
     * only activated after this by kvmppc_set_papr() */
112
    cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
113
    cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
114 115 116 117 118 119

    if (!cap_interrupt_level) {
        fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
                        "VM to stall at times!\n");
    }

120 121
    kvm_ppc_register_host_cpu_type();

A
aurel32 已提交
122 123 124
    return 0;
}

125
static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
A
aurel32 已提交
126
{
127 128
    CPUPPCState *cenv = &cpu->env;
    CPUState *cs = CPU(cpu);
A
Alexander Graf 已提交
129
    struct kvm_sregs sregs;
130 131 132
    int ret;

    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
A
Alexander Graf 已提交
133 134 135 136
        /* What we're really trying to say is "if we're on BookE, we use
           the native PVR for now". This is the only sane way to check
           it though, so we potentially confuse users that they can run
           BookE guests on BookS. Let's hope nobody dares enough :) */
137 138
        return 0;
    } else {
S
Scott Wood 已提交
139
        if (!cap_segstate) {
A
Alexander Graf 已提交
140 141
            fprintf(stderr, "kvm error: missing PVR setting capability\n");
            return -ENOSYS;
142 143 144
        }
    }

145
    ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
146 147 148
    if (ret) {
        return ret;
    }
A
Alexander Graf 已提交
149 150

    sregs.pvr = cenv->spr[SPR_PVR];
151
    return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
152 153
}

S
Scott Wood 已提交
154
/* Set up a shared TLB array with KVM */
155
static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
S
Scott Wood 已提交
156
{
157 158
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);
S
Scott Wood 已提交
159 160 161 162 163 164
    struct kvm_book3e_206_tlb_params params = {};
    struct kvm_config_tlb cfg = {};
    unsigned int entries = 0;
    int ret, i;

    if (!kvm_enabled() ||
165
        !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
S
Scott Wood 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
        return 0;
    }

    assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);

    for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
        params.tlb_sizes[i] = booke206_tlb_size(env, i);
        params.tlb_ways[i] = booke206_tlb_ways(env, i);
        entries += params.tlb_sizes[i];
    }

    assert(entries == env->nb_tlb);
    assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));

    env->tlb_dirty = true;

    cfg.array = (uintptr_t)env->tlb.tlbm;
    cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
    cfg.params = (uintptr_t)&params;
    cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;

C
Cornelia Huck 已提交
187
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
S
Scott Wood 已提交
188 189 190 191 192 193 194 195 196 197
    if (ret < 0) {
        fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
                __func__, strerror(-ret));
        return ret;
    }

    env->kvm_sw_tlb = true;
    return 0;
}

198 199

#if defined(TARGET_PPC64)
200
static void kvm_get_fallback_smmu_info(PowerPCCPU *cpu,
201 202
                                       struct kvm_ppc_smmu_info *info)
{
203 204 205
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    memset(info, 0, sizeof(*info));

    /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so
     * need to "guess" what the supported page sizes are.
     *
     * For that to work we make a few assumptions:
     *
     * - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR"
     *   KVM which only supports 4K and 16M pages, but supports them
     *   regardless of the backing store characteritics. We also don't
     *   support 1T segments.
     *
     *   This is safe as if HV KVM ever supports that capability or PR
     *   KVM grows supports for more page/segment sizes, those versions
     *   will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we
     *   will not hit this fallback
     *
     * - Else we are running HV KVM. This means we only support page
     *   sizes that fit in the backing store. Additionally we only
     *   advertize 64K pages if the processor is ARCH 2.06 and we assume
     *   P7 encodings for the SLB and hash table. Here too, we assume
     *   support for any newer processor will mean a kernel that
     *   implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit
     *   this fallback.
     */
231
    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        /* No flags */
        info->flags = 0;
        info->slb_size = 64;

        /* Standard 4k base page size segment */
        info->sps[0].page_shift = 12;
        info->sps[0].slb_enc = 0;
        info->sps[0].enc[0].page_shift = 12;
        info->sps[0].enc[0].pte_enc = 0;

        /* Standard 16M large page size segment */
        info->sps[1].page_shift = 24;
        info->sps[1].slb_enc = SLB_VSID_L;
        info->sps[1].enc[0].page_shift = 24;
        info->sps[1].enc[0].pte_enc = 0;
    } else {
        int i = 0;

        /* HV KVM has backing store size restrictions */
        info->flags = KVM_PPC_PAGE_SIZES_REAL;

        if (env->mmu_model & POWERPC_MMU_1TSEG) {
            info->flags |= KVM_PPC_1T_SEGMENTS;
        }

        if (env->mmu_model == POWERPC_MMU_2_06) {
            info->slb_size = 32;
        } else {
            info->slb_size = 64;
        }

        /* Standard 4k base page size segment */
        info->sps[i].page_shift = 12;
        info->sps[i].slb_enc = 0;
        info->sps[i].enc[0].page_shift = 12;
        info->sps[i].enc[0].pte_enc = 0;
        i++;

        /* 64K on MMU 2.06 */
        if (env->mmu_model == POWERPC_MMU_2_06) {
            info->sps[i].page_shift = 16;
            info->sps[i].slb_enc = 0x110;
            info->sps[i].enc[0].page_shift = 16;
            info->sps[i].enc[0].pte_enc = 1;
            i++;
        }

        /* Standard 16M large page size segment */
        info->sps[i].page_shift = 24;
        info->sps[i].slb_enc = SLB_VSID_L;
        info->sps[i].enc[0].page_shift = 24;
        info->sps[i].enc[0].pte_enc = 0;
    }
}

287
static void kvm_get_smmu_info(PowerPCCPU *cpu, struct kvm_ppc_smmu_info *info)
288
{
289
    CPUState *cs = CPU(cpu);
290 291
    int ret;

292 293
    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
        ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_SMMU_INFO, info);
294 295 296 297 298
        if (ret == 0) {
            return;
        }
    }

299
    kvm_get_fallback_smmu_info(cpu, info);
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
}

static long getrampagesize(void)
{
    struct statfs fs;
    int ret;

    if (!mem_path) {
        /* guest RAM is backed by normal anonymous pages */
        return getpagesize();
    }

    do {
        ret = statfs(mem_path, &fs);
    } while (ret != 0 && errno == EINTR);

    if (ret != 0) {
        fprintf(stderr, "Couldn't statfs() memory path: %s\n",
                strerror(errno));
        exit(1);
    }

#define HUGETLBFS_MAGIC       0x958458f6

    if (fs.f_type != HUGETLBFS_MAGIC) {
        /* Explicit mempath, but it's ordinary pages */
        return getpagesize();
    }

    /* It's hugepage, return the huge page size */
    return fs.f_bsize;
}

static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift)
{
    if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) {
        return true;
    }

    return (1ul << shift) <= rampgsize;
}

342
static void kvm_fixup_page_sizes(PowerPCCPU *cpu)
343 344 345
{
    static struct kvm_ppc_smmu_info smmu_info;
    static bool has_smmu_info;
346
    CPUPPCState *env = &cpu->env;
347 348 349 350 351 352 353 354 355 356
    long rampagesize;
    int iq, ik, jq, jk;

    /* We only handle page sizes for 64-bit server guests for now */
    if (!(env->mmu_model & POWERPC_MMU_64)) {
        return;
    }

    /* Collect MMU info from kernel if not already */
    if (!has_smmu_info) {
357
        kvm_get_smmu_info(cpu, &smmu_info);
358 359 360 361 362 363 364 365
        has_smmu_info = true;
    }

    rampagesize = getrampagesize();

    /* Convert to QEMU form */
    memset(&env->sps, 0, sizeof(env->sps));

366 367 368 369
    /*
     * XXX This loop should be an entry wide AND of the capabilities that
     *     the selected CPU has with the capabilities that KVM supports.
     */
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) {
        struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq];
        struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik];

        if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
                                 ksps->page_shift)) {
            continue;
        }
        qsps->page_shift = ksps->page_shift;
        qsps->slb_enc = ksps->slb_enc;
        for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) {
            if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
                                     ksps->enc[jk].page_shift)) {
                continue;
            }
            qsps->enc[jq].page_shift = ksps->enc[jk].page_shift;
            qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc;
            if (++jq >= PPC_PAGE_SIZES_MAX_SZ) {
                break;
            }
        }
        if (++iq >= PPC_PAGE_SIZES_MAX_SZ) {
            break;
        }
    }
    env->slb_nr = smmu_info.slb_size;
396
    if (!(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
397 398 399 400 401
        env->mmu_model &= ~POWERPC_MMU_1TSEG;
    }
}
#else /* defined (TARGET_PPC64) */

402
static inline void kvm_fixup_page_sizes(PowerPCCPU *cpu)
403 404 405 406 407
{
}

#endif /* !defined (TARGET_PPC64) */

408 409
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
410
    return ppc_get_vcpu_dt_id(POWERPC_CPU(cpu));
411 412
}

A
Andreas Färber 已提交
413
int kvm_arch_init_vcpu(CPUState *cs)
414
{
A
Andreas Färber 已提交
415 416
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *cenv = &cpu->env;
417 418
    int ret;

419
    /* Gather server mmu info from KVM and update the CPU state */
420
    kvm_fixup_page_sizes(cpu);
421 422

    /* Synchronize sregs with kvm */
423
    ret = kvm_arch_sync_sregs(cpu);
424 425 426
    if (ret) {
        return ret;
    }
A
Alexander Graf 已提交
427

428
    idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu);
A
Alexander Graf 已提交
429

S
Scott Wood 已提交
430 431 432
    /* Some targets support access to KVM's guest TLB. */
    switch (cenv->mmu_model) {
    case POWERPC_MMU_BOOKE206:
433
        ret = kvm_booke206_tlb_init(cpu);
S
Scott Wood 已提交
434 435 436 437 438
        break;
    default:
        break;
    }

A
Alexander Graf 已提交
439
    return ret;
A
aurel32 已提交
440 441
}

442
static void kvm_sw_tlb_put(PowerPCCPU *cpu)
S
Scott Wood 已提交
443
{
444 445
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);
S
Scott Wood 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459
    struct kvm_dirty_tlb dirty_tlb;
    unsigned char *bitmap;
    int ret;

    if (!env->kvm_sw_tlb) {
        return;
    }

    bitmap = g_malloc((env->nb_tlb + 7) / 8);
    memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);

    dirty_tlb.bitmap = (uintptr_t)bitmap;
    dirty_tlb.num_dirty = env->nb_tlb;

460
    ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
S
Scott Wood 已提交
461 462 463 464 465 466 467 468
    if (ret) {
        fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
                __func__, strerror(-ret));
    }

    g_free(bitmap);
}

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    union {
        uint32_t u32;
        uint64_t u64;
    } val;
    struct kvm_one_reg reg = {
        .id = id,
        .addr = (uintptr_t) &val,
    };
    int ret;

    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret != 0) {
485
        trace_kvm_failed_spr_get(spr, strerror(errno));
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    } else {
        switch (id & KVM_REG_SIZE_MASK) {
        case KVM_REG_SIZE_U32:
            env->spr[spr] = val.u32;
            break;

        case KVM_REG_SIZE_U64:
            env->spr[spr] = val.u64;
            break;

        default:
            /* Don't handle this size yet */
            abort();
        }
    }
}

static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    union {
        uint32_t u32;
        uint64_t u64;
    } val;
    struct kvm_one_reg reg = {
        .id = id,
        .addr = (uintptr_t) &val,
    };
    int ret;

    switch (id & KVM_REG_SIZE_MASK) {
    case KVM_REG_SIZE_U32:
        val.u32 = env->spr[spr];
        break;

    case KVM_REG_SIZE_U64:
        val.u64 = env->spr[spr];
        break;

    default:
        /* Don't handle this size yet */
        abort();
    }

    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret != 0) {
533
        trace_kvm_failed_spr_set(spr, strerror(errno));
534 535 536
    }
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
static int kvm_put_fp(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int i;
    int ret;

    if (env->insns_flags & PPC_FLOAT) {
        uint64_t fpscr = env->fpscr;
        bool vsx = !!(env->insns_flags2 & PPC2_VSX);

        reg.id = KVM_REG_PPC_FPSCR;
        reg.addr = (uintptr_t)&fpscr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
553
            DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno));
554 555 556 557 558 559 560 561 562 563 564 565 566
            return ret;
        }

        for (i = 0; i < 32; i++) {
            uint64_t vsr[2];

            vsr[0] = float64_val(env->fpr[i]);
            vsr[1] = env->vsr[i];
            reg.addr = (uintptr_t) &vsr;
            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);

            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
            if (ret < 0) {
567
                DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR",
568 569 570 571 572 573 574 575 576 577 578
                        i, strerror(errno));
                return ret;
            }
        }
    }

    if (env->insns_flags & PPC_ALTIVEC) {
        reg.id = KVM_REG_PPC_VSCR;
        reg.addr = (uintptr_t)&env->vscr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
579
            DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno));
580 581 582 583 584 585 586 587
            return ret;
        }

        for (i = 0; i < 32; i++) {
            reg.id = KVM_REG_PPC_VR(i);
            reg.addr = (uintptr_t)&env->avr[i];
            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
            if (ret < 0) {
588
                DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno));
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
                return ret;
            }
        }
    }

    return 0;
}

static int kvm_get_fp(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int i;
    int ret;

    if (env->insns_flags & PPC_FLOAT) {
        uint64_t fpscr;
        bool vsx = !!(env->insns_flags2 & PPC2_VSX);

        reg.id = KVM_REG_PPC_FPSCR;
        reg.addr = (uintptr_t)&fpscr;
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret < 0) {
613
            DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno));
614 615 616 617 618 619 620 621 622 623 624 625 626
            return ret;
        } else {
            env->fpscr = fpscr;
        }

        for (i = 0; i < 32; i++) {
            uint64_t vsr[2];

            reg.addr = (uintptr_t) &vsr;
            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);

            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
            if (ret < 0) {
627
                DPRINTF("Unable to get %s%d from KVM: %s\n",
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
                        vsx ? "VSR" : "FPR", i, strerror(errno));
                return ret;
            } else {
                env->fpr[i] = vsr[0];
                if (vsx) {
                    env->vsr[i] = vsr[1];
                }
            }
        }
    }

    if (env->insns_flags & PPC_ALTIVEC) {
        reg.id = KVM_REG_PPC_VSCR;
        reg.addr = (uintptr_t)&env->vscr;
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret < 0) {
644
            DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno));
645 646 647 648 649 650 651 652
            return ret;
        }

        for (i = 0; i < 32; i++) {
            reg.id = KVM_REG_PPC_VR(i);
            reg.addr = (uintptr_t)&env->avr[i];
            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
            if (ret < 0) {
653
                DPRINTF("Unable to get VR%d from KVM: %s\n",
654 655 656 657 658 659 660 661 662
                        i, strerror(errno));
                return ret;
            }
        }
    }

    return 0;
}

663 664 665 666 667 668 669 670 671 672 673 674
#if defined(TARGET_PPC64)
static int kvm_get_vpa(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int ret;

    reg.id = KVM_REG_PPC_VPA_ADDR;
    reg.addr = (uintptr_t)&env->vpa_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
675
        DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno));
676 677 678 679 680 681 682 683 684
        return ret;
    }

    assert((uintptr_t)&env->slb_shadow_size
           == ((uintptr_t)&env->slb_shadow_addr + 8));
    reg.id = KVM_REG_PPC_VPA_SLB;
    reg.addr = (uintptr_t)&env->slb_shadow_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
685
        DPRINTF("Unable to get SLB shadow state from KVM: %s\n",
686 687 688 689 690 691 692 693 694
                strerror(errno));
        return ret;
    }

    assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
    reg.id = KVM_REG_PPC_VPA_DTL;
    reg.addr = (uintptr_t)&env->dtl_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
695
        DPRINTF("Unable to get dispatch trace log state from KVM: %s\n",
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
                strerror(errno));
        return ret;
    }

    return 0;
}

static int kvm_put_vpa(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int ret;

    /* SLB shadow or DTL can't be registered unless a master VPA is
     * registered.  That means when restoring state, if a VPA *is*
     * registered, we need to set that up first.  If not, we need to
     * deregister the others before deregistering the master VPA */
    assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr));

    if (env->vpa_addr) {
        reg.id = KVM_REG_PPC_VPA_ADDR;
        reg.addr = (uintptr_t)&env->vpa_addr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
721
            DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
722 723 724 725 726 727 728 729 730 731
            return ret;
        }
    }

    assert((uintptr_t)&env->slb_shadow_size
           == ((uintptr_t)&env->slb_shadow_addr + 8));
    reg.id = KVM_REG_PPC_VPA_SLB;
    reg.addr = (uintptr_t)&env->slb_shadow_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret < 0) {
732
        DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno));
733 734 735 736 737 738 739 740
        return ret;
    }

    assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
    reg.id = KVM_REG_PPC_VPA_DTL;
    reg.addr = (uintptr_t)&env->dtl_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret < 0) {
741
        DPRINTF("Unable to set dispatch trace log state to KVM: %s\n",
742 743 744 745 746 747 748 749 750
                strerror(errno));
        return ret;
    }

    if (!env->vpa_addr) {
        reg.id = KVM_REG_PPC_VPA_ADDR;
        reg.addr = (uintptr_t)&env->vpa_addr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
751
            DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
752 753 754 755 756 757 758 759
            return ret;
        }
    }

    return 0;
}
#endif /* TARGET_PPC64 */

A
Andreas Färber 已提交
760
int kvm_arch_put_registers(CPUState *cs, int level)
A
aurel32 已提交
761
{
A
Andreas Färber 已提交
762 763
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
A
aurel32 已提交
764 765 766 767
    struct kvm_regs regs;
    int ret;
    int i;

768 769
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
    if (ret < 0) {
A
aurel32 已提交
770
        return ret;
771
    }
A
aurel32 已提交
772 773 774

    regs.ctr = env->ctr;
    regs.lr  = env->lr;
775
    regs.xer = cpu_read_xer(env);
A
aurel32 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
    regs.msr = env->msr;
    regs.pc = env->nip;

    regs.srr0 = env->spr[SPR_SRR0];
    regs.srr1 = env->spr[SPR_SRR1];

    regs.sprg0 = env->spr[SPR_SPRG0];
    regs.sprg1 = env->spr[SPR_SPRG1];
    regs.sprg2 = env->spr[SPR_SPRG2];
    regs.sprg3 = env->spr[SPR_SPRG3];
    regs.sprg4 = env->spr[SPR_SPRG4];
    regs.sprg5 = env->spr[SPR_SPRG5];
    regs.sprg6 = env->spr[SPR_SPRG6];
    regs.sprg7 = env->spr[SPR_SPRG7];

S
Scott Wood 已提交
791 792
    regs.pid = env->spr[SPR_BOOKE_PID];

A
aurel32 已提交
793 794 795
    for (i = 0;i < 32; i++)
        regs.gpr[i] = env->gpr[i];

796 797 798 799 800
    regs.cr = 0;
    for (i = 0; i < 8; i++) {
        regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
    }

801
    ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
A
aurel32 已提交
802 803 804
    if (ret < 0)
        return ret;

805 806
    kvm_put_fp(cs);

S
Scott Wood 已提交
807
    if (env->tlb_dirty) {
808
        kvm_sw_tlb_put(cpu);
S
Scott Wood 已提交
809 810 811
        env->tlb_dirty = false;
    }

812 813 814 815 816 817 818 819 820
    if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
        struct kvm_sregs sregs;

        sregs.pvr = env->spr[SPR_PVR];

        sregs.u.s.sdr1 = env->spr[SPR_SDR1];

        /* Sync SLB */
#ifdef TARGET_PPC64
821
        for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
822
            sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
823 824 825
            if (env->slb[i].esid & SLB_ESID_V) {
                sregs.u.s.ppc64.slb[i].slbe |= i;
            }
826 827 828 829 830 831 832 833 834 835 836
            sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
        }
#endif

        /* Sync SRs */
        for (i = 0; i < 16; i++) {
            sregs.u.s.ppc32.sr[i] = env->sr[i];
        }

        /* Sync BATs */
        for (i = 0; i < 8; i++) {
A
Alexander Graf 已提交
837 838 839 840 841
            /* Beware. We have to swap upper and lower bits here */
            sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
                | env->DBAT[1][i];
            sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
                | env->IBAT[1][i];
842 843
        }

844
        ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
845 846 847 848 849 850
        if (ret) {
            return ret;
        }
    }

    if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
851 852
        kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
    }
853

854 855 856 857 858 859 860 861 862 863 864 865 866
    if (cap_one_reg) {
        int i;

        /* We deliberately ignore errors here, for kernels which have
         * the ONE_REG calls, but don't support the specific
         * registers, there's a reasonable chance things will still
         * work, at least until we try to migrate. */
        for (i = 0; i < 1024; i++) {
            uint64_t id = env->spr_cb[i].one_reg_id;

            if (id != 0) {
                kvm_put_one_spr(cs, id, i);
            }
867
        }
868 869

#ifdef TARGET_PPC64
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
        if (msr_ts) {
            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
                kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
            }
            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
                kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
            }
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
        }

889 890
        if (cap_papr) {
            if (kvm_put_vpa(cs) < 0) {
891
                DPRINTF("Warning: Unable to set VPA information to KVM\n");
892 893
            }
        }
894 895

        kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
896
#endif /* TARGET_PPC64 */
897 898
    }

A
aurel32 已提交
899 900 901
    return ret;
}

A
Andreas Färber 已提交
902
int kvm_arch_get_registers(CPUState *cs)
A
aurel32 已提交
903
{
A
Andreas Färber 已提交
904 905
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
A
aurel32 已提交
906
    struct kvm_regs regs;
907
    struct kvm_sregs sregs;
S
Scott Wood 已提交
908
    uint32_t cr;
A
Alexander Graf 已提交
909
    int i, ret;
A
aurel32 已提交
910

911
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
A
aurel32 已提交
912 913 914
    if (ret < 0)
        return ret;

S
Scott Wood 已提交
915 916 917 918 919
    cr = regs.cr;
    for (i = 7; i >= 0; i--) {
        env->crf[i] = cr & 15;
        cr >>= 4;
    }
920

A
aurel32 已提交
921 922
    env->ctr = regs.ctr;
    env->lr = regs.lr;
923
    cpu_write_xer(env, regs.xer);
A
aurel32 已提交
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
    env->msr = regs.msr;
    env->nip = regs.pc;

    env->spr[SPR_SRR0] = regs.srr0;
    env->spr[SPR_SRR1] = regs.srr1;

    env->spr[SPR_SPRG0] = regs.sprg0;
    env->spr[SPR_SPRG1] = regs.sprg1;
    env->spr[SPR_SPRG2] = regs.sprg2;
    env->spr[SPR_SPRG3] = regs.sprg3;
    env->spr[SPR_SPRG4] = regs.sprg4;
    env->spr[SPR_SPRG5] = regs.sprg5;
    env->spr[SPR_SPRG6] = regs.sprg6;
    env->spr[SPR_SPRG7] = regs.sprg7;

S
Scott Wood 已提交
939 940
    env->spr[SPR_BOOKE_PID] = regs.pid;

A
aurel32 已提交
941 942 943
    for (i = 0;i < 32; i++)
        env->gpr[i] = regs.gpr[i];

944 945
    kvm_get_fp(cs);

S
Scott Wood 已提交
946
    if (cap_booke_sregs) {
947
        ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
S
Scott Wood 已提交
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
        if (ret < 0) {
            return ret;
        }

        if (sregs.u.e.features & KVM_SREGS_E_BASE) {
            env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
            env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
            env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
            env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
            env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
            env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
            env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
            env->spr[SPR_DECR] = sregs.u.e.dec;
            env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
            env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
            env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
        }

        if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
            env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
            env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
            env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
            env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
            env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
        }

        if (sregs.u.e.features & KVM_SREGS_E_64) {
            env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
        }

        if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
            env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
        }

        if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
            env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
            env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
            env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
            env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
            env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
            env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
            env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
            env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
            env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
            env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
            env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
            env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
            env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
            env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
            env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
            env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];

            if (sregs.u.e.features & KVM_SREGS_E_SPE) {
                env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
                env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
                env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
            }

            if (sregs.u.e.features & KVM_SREGS_E_PM) {
                env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
            }

            if (sregs.u.e.features & KVM_SREGS_E_PC) {
                env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
                env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
            }
        }

        if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
            env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
            env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
            env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
            env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
            env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
            env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
            env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
            env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
            env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
            env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
        }

        if (sregs.u.e.features & KVM_SREGS_EXP) {
            env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
        }

        if (sregs.u.e.features & KVM_SREGS_E_PD) {
            env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
            env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
        }

        if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
            env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
            env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
            env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;

            if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
                env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
                env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
            }
        }
A
Alexander Graf 已提交
1048
    }
S
Scott Wood 已提交
1049 1050

    if (cap_segstate) {
1051
        ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
S
Scott Wood 已提交
1052 1053 1054 1055
        if (ret < 0) {
            return ret;
        }

1056 1057 1058
        if (!env->external_htab) {
            ppc_store_sdr1(env, sregs.u.s.sdr1);
        }
1059 1060

        /* Sync SLB */
A
Alexander Graf 已提交
1061
#ifdef TARGET_PPC64
1062 1063 1064 1065 1066 1067 1068
        /*
         * The packed SLB array we get from KVM_GET_SREGS only contains
         * information about valid entries. So we flush our internal
         * copy to get rid of stale ones, then put all valid SLB entries
         * back in.
         */
        memset(env->slb, 0, sizeof(env->slb));
1069
        for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1070 1071 1072 1073 1074 1075 1076 1077
            target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
            target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
            /*
             * Only restore valid entries
             */
            if (rb & SLB_ESID_V) {
                ppc_store_slb(env, rb, rs);
            }
1078
        }
A
Alexander Graf 已提交
1079
#endif
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

        /* Sync SRs */
        for (i = 0; i < 16; i++) {
            env->sr[i] = sregs.u.s.ppc32.sr[i];
        }

        /* Sync BATs */
        for (i = 0; i < 8; i++) {
            env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
            env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
            env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
            env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
        }
A
Alexander Graf 已提交
1093
    }
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
    if (cap_hior) {
        kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
    }

    if (cap_one_reg) {
        int i;

        /* We deliberately ignore errors here, for kernels which have
         * the ONE_REG calls, but don't support the specific
         * registers, there's a reasonable chance things will still
         * work, at least until we try to migrate. */
        for (i = 0; i < 1024; i++) {
            uint64_t id = env->spr_cb[i].one_reg_id;

            if (id != 0) {
                kvm_get_one_spr(cs, id, i);
            }
        }
1113 1114

#ifdef TARGET_PPC64
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
        if (msr_ts) {
            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
                kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
            }
            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
                kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
            }
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
        }

1134 1135
        if (cap_papr) {
            if (kvm_get_vpa(cs) < 0) {
1136
                DPRINTF("Warning: Unable to get VPA information from KVM\n");
1137 1138
            }
        }
1139 1140

        kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1141
#endif
1142 1143
    }

A
aurel32 已提交
1144 1145 1146
    return 0;
}

1147
int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
{
    unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;

    if (irq != PPC_INTERRUPT_EXT) {
        return 0;
    }

    if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
        return 0;
    }

1159
    kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1160 1161 1162 1163

    return 0;
}

A
Alexander Graf 已提交
1164 1165 1166 1167 1168 1169 1170 1171
#if defined(TARGET_PPCEMB)
#define PPC_INPUT_INT PPC40x_INPUT_INT
#elif defined(TARGET_PPC64)
#define PPC_INPUT_INT PPC970_INPUT_INT
#else
#define PPC_INPUT_INT PPC6xx_INPUT_INT
#endif

A
Andreas Färber 已提交
1172
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
A
aurel32 已提交
1173
{
A
Andreas Färber 已提交
1174 1175
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
A
aurel32 已提交
1176 1177 1178
    int r;
    unsigned irq;

S
Stefan Weil 已提交
1179
    /* PowerPC QEMU tracks the various core input pins (interrupt, critical
A
aurel32 已提交
1180
     * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
1181 1182
    if (!cap_interrupt_level &&
        run->ready_for_interrupt_injection &&
1183
        (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
A
Alexander Graf 已提交
1184
        (env->irq_input_state & (1<<PPC_INPUT_INT)))
A
aurel32 已提交
1185 1186 1187 1188 1189
    {
        /* For now KVM disregards the 'irq' argument. However, in the
         * future KVM could cache it in-kernel to avoid a heavyweight exit
         * when reading the UIC.
         */
1190
        irq = KVM_INTERRUPT_SET;
A
aurel32 已提交
1191

1192
        DPRINTF("injected interrupt %d\n", irq);
1193
        r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq);
1194 1195 1196
        if (r < 0) {
            printf("cpu %d fail inject %x\n", cs->cpu_index, irq);
        }
A
Alexander Graf 已提交
1197 1198

        /* Always wake up soon in case the interrupt was level based */
1199
        timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
A
Alexander Graf 已提交
1200
                       (get_ticks_per_sec() / 50));
A
aurel32 已提交
1201 1202 1203 1204 1205 1206 1207
    }

    /* We don't know if there are more interrupts pending after this. However,
     * the guest will return to userspace in the course of handling this one
     * anyways, so we will get a chance to deliver the rest. */
}

A
Andreas Färber 已提交
1208
void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
A
aurel32 已提交
1209 1210 1211
{
}

A
Andreas Färber 已提交
1212
int kvm_arch_process_async_events(CPUState *cs)
M
Marcelo Tosatti 已提交
1213
{
1214
    return cs->halted;
M
Marcelo Tosatti 已提交
1215 1216
}

1217
static int kvmppc_handle_halt(PowerPCCPU *cpu)
A
aurel32 已提交
1218
{
1219 1220 1221 1222 1223
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;

    if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
        cs->halted = 1;
1224
        cs->exception_index = EXCP_HLT;
A
aurel32 已提交
1225 1226
    }

1227
    return 0;
A
aurel32 已提交
1228 1229 1230
}

/* map dcr access to existing qemu dcr emulation */
1231
static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
A
aurel32 已提交
1232 1233 1234 1235
{
    if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
        fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);

1236
    return 0;
A
aurel32 已提交
1237 1238
}

1239
static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
A
aurel32 已提交
1240 1241 1242 1243
{
    if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
        fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);

1244
    return 0;
A
aurel32 已提交
1245 1246
}

A
Andreas Färber 已提交
1247
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
A
aurel32 已提交
1248
{
A
Andreas Färber 已提交
1249 1250
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
1251
    int ret;
A
aurel32 已提交
1252 1253 1254 1255

    switch (run->exit_reason) {
    case KVM_EXIT_DCR:
        if (run->dcr.is_write) {
1256
            DPRINTF("handle dcr write\n");
A
aurel32 已提交
1257 1258
            ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
        } else {
1259
            DPRINTF("handle dcr read\n");
A
aurel32 已提交
1260 1261 1262 1263
            ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
        }
        break;
    case KVM_EXIT_HLT:
1264
        DPRINTF("handle halt\n");
1265
        ret = kvmppc_handle_halt(cpu);
A
aurel32 已提交
1266
        break;
1267
#if defined(TARGET_PPC64)
1268
    case KVM_EXIT_PAPR_HCALL:
1269
        DPRINTF("handle PAPR hypercall\n");
A
Andreas Färber 已提交
1270
        run->papr_hcall.ret = spapr_hypercall(cpu,
1271
                                              run->papr_hcall.nr,
1272
                                              run->papr_hcall.args);
1273
        ret = 0;
1274 1275
        break;
#endif
1276
    case KVM_EXIT_EPR:
1277
        DPRINTF("handle epr\n");
1278
        run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1279 1280
        ret = 0;
        break;
B
Bharat Bhushan 已提交
1281
    case KVM_EXIT_WATCHDOG:
1282
        DPRINTF("handle watchdog expiry\n");
B
Bharat Bhushan 已提交
1283 1284 1285 1286
        watchdog_perform_action();
        ret = 0;
        break;

J
Jan Kiszka 已提交
1287 1288 1289 1290
    default:
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
        ret = -1;
        break;
A
aurel32 已提交
1291 1292 1293 1294 1295
    }

    return ret;
}

B
Bharat Bhushan 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{
    CPUState *cs = CPU(cpu);
    uint32_t bits = tsr_bits;
    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_OR_TSR,
        .addr = (uintptr_t) &bits,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{

    CPUState *cs = CPU(cpu);
    uint32_t bits = tsr_bits;
    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_CLEAR_TSR,
        .addr = (uintptr_t) &bits,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_set_tcr(PowerPCCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;
    uint32_t tcr = env->spr[SPR_BOOKE_TCR];

    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_TCR,
        .addr = (uintptr_t) &tcr,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    int ret;

    if (!kvm_enabled()) {
        return -1;
    }

    if (!cap_ppc_watchdog) {
        printf("warning: KVM does not support watchdog");
        return -1;
    }

C
Cornelia Huck 已提交
1349
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
B
Bharat Bhushan 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358
    if (ret < 0) {
        fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
                __func__, strerror(-ret));
        return ret;
    }

    return ret;
}

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
static int read_cpuinfo(const char *field, char *value, int len)
{
    FILE *f;
    int ret = -1;
    int field_len = strlen(field);
    char line[512];

    f = fopen("/proc/cpuinfo", "r");
    if (!f) {
        return -1;
    }

    do {
        if(!fgets(line, sizeof(line), f)) {
            break;
        }
        if (!strncmp(line, field, field_len)) {
1376
            pstrcpy(value, len, line);
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
            ret = 0;
            break;
        }
    } while(*line);

    fclose(f);

    return ret;
}

uint32_t kvmppc_get_tbfreq(void)
{
    char line[512];
    char *ns;
    uint32_t retval = get_ticks_per_sec();

    if (read_cpuinfo("timebase", line, sizeof(line))) {
        return retval;
    }

    if (!(ns = strchr(line, ':'))) {
        return retval;
    }

    ns++;

    retval = atoi(ns);
    return retval;
}
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
/* Try to find a device tree node for a CPU with clock-frequency property */
static int kvmppc_find_cpu_dt(char *buf, int buf_len)
{
    struct dirent *dirp;
    DIR *dp;

    if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
        printf("Can't open directory " PROC_DEVTREE_CPU "\n");
        return -1;
    }

    buf[0] = '\0';
    while ((dirp = readdir(dp)) != NULL) {
        FILE *f;
        snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
                 dirp->d_name);
        f = fopen(buf, "r");
        if (f) {
            snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
            fclose(f);
            break;
        }
        buf[0] = '\0';
    }
    closedir(dp);
    if (buf[0] == '\0') {
        printf("Unknown host!\n");
        return -1;
    }

    return 0;
}

1440 1441 1442 1443 1444
/* Read a CPU node property from the host device tree that's a single
 * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
 * (can't find or open the property, or doesn't understand the
 * format) */
static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1445
{
1446 1447 1448 1449 1450
    char buf[PATH_MAX];
    union {
        uint32_t v32;
        uint64_t v64;
    } u;
1451 1452 1453 1454
    FILE *f;
    int len;

    if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1455
        return -1;
1456 1457
    }

1458 1459
    strncat(buf, "/", sizeof(buf) - strlen(buf));
    strncat(buf, propname, sizeof(buf) - strlen(buf));
1460 1461 1462 1463 1464 1465

    f = fopen(buf, "rb");
    if (!f) {
        return -1;
    }

1466
    len = fread(&u, 1, sizeof(u), f);
1467 1468
    fclose(f);
    switch (len) {
1469 1470 1471 1472 1473
    case 4:
        /* property is a 32-bit quantity */
        return be32_to_cpu(u.v32);
    case 8:
        return be64_to_cpu(u.v64);
1474 1475 1476 1477 1478
    }

    return 0;
}

1479 1480 1481 1482 1483
uint64_t kvmppc_get_clockfreq(void)
{
    return kvmppc_read_int_cpu_dt("clock-frequency");
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
uint32_t kvmppc_get_vmx(void)
{
    return kvmppc_read_int_cpu_dt("ibm,vmx");
}

uint32_t kvmppc_get_dfp(void)
{
    return kvmppc_read_int_cpu_dt("ibm,dfp");
}

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
 {
     PowerPCCPU *cpu = ppc_env_get_cpu(env);
     CPUState *cs = CPU(cpu);

    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
        !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
        return 0;
    }

    return 1;
}

int kvmppc_get_hasidle(CPUPPCState *env)
{
    struct kvm_ppc_pvinfo pvinfo;

    if (!kvmppc_get_pvinfo(env, &pvinfo) &&
        (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
        return 1;
    }

    return 0;
}

1519
int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1520 1521 1522 1523
{
    uint32_t *hc = (uint32_t*)buf;
    struct kvm_ppc_pvinfo pvinfo;

1524
    if (!kvmppc_get_pvinfo(env, &pvinfo)) {
1525 1526 1527 1528 1529
        memcpy(buf, pvinfo.hcall, buf_len);
        return 0;
    }

    /*
1530
     * Fallback to always fail hypercalls regardless of endianness:
1531
     *
1532
     *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
1533
     *     li r3, -1
1534 1535
     *     b .+8       (becomes nop in wrong endian)
     *     bswap32(li r3, -1)
1536 1537
     */

1538 1539 1540 1541
    hc[0] = cpu_to_be32(0x08000048);
    hc[1] = cpu_to_be32(0x3860ffff);
    hc[2] = cpu_to_be32(0x48000008);
    hc[3] = cpu_to_be32(bswap32(0x3860ffff));
1542 1543 1544 1545

    return 0;
}

1546
void kvmppc_set_papr(PowerPCCPU *cpu)
1547
{
1548
    CPUState *cs = CPU(cpu);
1549 1550
    int ret;

C
Cornelia Huck 已提交
1551
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
1552
    if (ret) {
1553
        cpu_abort(cs, "This KVM version does not support PAPR\n");
1554
    }
1555 1556 1557 1558

    /* Update the capability flag so we sync the right information
     * with kvm */
    cap_papr = 1;
1559 1560
}

1561 1562 1563 1564 1565
int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t cpu_version)
{
    return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &cpu_version);
}

1566 1567 1568 1569 1570
void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
{
    CPUState *cs = CPU(cpu);
    int ret;

C
Cornelia Huck 已提交
1571
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
1572
    if (ret && mpic_proxy) {
1573
        cpu_abort(cs, "This KVM version does not support EPR\n");
1574 1575 1576
    }
}

1577 1578 1579 1580 1581
int kvmppc_smt_threads(void)
{
    return cap_ppc_smt ? cap_ppc_smt : 1;
}

1582
#ifdef TARGET_PPC64
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
off_t kvmppc_alloc_rma(const char *name, MemoryRegion *sysmem)
{
    void *rma;
    off_t size;
    int fd;
    struct kvm_allocate_rma ret;
    MemoryRegion *rma_region;

    /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported
     * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but
     *                      not necessary on this hardware
     * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware
     *
     * FIXME: We should allow the user to force contiguous RMA
     * allocation in the cap_ppc_rma==1 case.
     */
    if (cap_ppc_rma < 2) {
        return 0;
    }

    fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret);
    if (fd < 0) {
        fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
                strerror(errno));
        return -1;
    }

    size = MIN(ret.rma_size, 256ul << 20);

    rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
    if (rma == MAP_FAILED) {
        fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno));
        return -1;
    };

    rma_region = g_new(MemoryRegion, 1);
1619
    memory_region_init_ram_ptr(rma_region, NULL, name, size, rma);
1620
    vmstate_register_ram_global(rma_region);
1621 1622 1623 1624 1625
    memory_region_add_subregion(sysmem, 0, rma_region);

    return size;
}

1626 1627
uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
{
1628 1629 1630 1631
    struct kvm_ppc_smmu_info info;
    long rampagesize, best_page_shift;
    int i;

1632 1633 1634
    if (cap_ppc_rma >= 2) {
        return current_size;
    }
1635 1636 1637

    /* Find the largest hardware supported page size that's less than
     * or equal to the (logical) backing page size of guest RAM */
1638
    kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info);
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
    rampagesize = getrampagesize();
    best_page_shift = 0;

    for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];

        if (!sps->page_shift) {
            continue;
        }

        if ((sps->page_shift > best_page_shift)
            && ((1UL << sps->page_shift) <= rampagesize)) {
            best_page_shift = sps->page_shift;
        }
    }

1655
    return MIN(current_size,
1656
               1ULL << (best_page_shift + hash_shift - 7));
1657 1658 1659
}
#endif

1660 1661 1662 1663 1664
bool kvmppc_spapr_use_multitce(void)
{
    return cap_spapr_multitce;
}

1665 1666
void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd,
                              bool vfio_accel)
1667 1668 1669 1670 1671 1672 1673 1674 1675
{
    struct kvm_create_spapr_tce args = {
        .liobn = liobn,
        .window_size = window_size,
    };
    long len;
    int fd;
    void *table;

1676 1677 1678 1679
    /* Must set fd to -1 so we don't try to munmap when called for
     * destroying the table, which the upper layers -will- do
     */
    *pfd = -1;
1680
    if (!cap_spapr_tce || (vfio_accel && !cap_spapr_vfio)) {
1681 1682 1683 1684 1685
        return NULL;
    }

    fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
    if (fd < 0) {
1686 1687
        fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
                liobn);
1688 1689 1690
        return NULL;
    }

1691
    len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(uint64_t);
1692 1693
    /* FIXME: round this up to page size */

1694
    table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
1695
    if (table == MAP_FAILED) {
1696 1697
        fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
                liobn);
1698 1699 1700 1701 1702 1703 1704 1705
        close(fd);
        return NULL;
    }

    *pfd = fd;
    return table;
}

1706
int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
1707 1708 1709 1710 1711 1712 1713
{
    long len;

    if (fd < 0) {
        return -1;
    }

1714
    len = nb_table * sizeof(uint64_t);
1715 1716
    if ((munmap(table, len) < 0) ||
        (close(fd) < 0)) {
1717 1718
        fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
                strerror(errno));
1719 1720 1721 1722 1723 1724
        /* Leak the table */
    }

    return 0;
}

1725 1726 1727 1728
int kvmppc_reset_htab(int shift_hint)
{
    uint32_t shift = shift_hint;

1729 1730 1731 1732 1733
    if (!kvm_enabled()) {
        /* Full emulation, tell caller to allocate htab itself */
        return 0;
    }
    if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
1734 1735
        int ret;
        ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
1736 1737 1738 1739 1740 1741 1742
        if (ret == -ENOTTY) {
            /* At least some versions of PR KVM advertise the
             * capability, but don't implement the ioctl().  Oops.
             * Return 0 so that we allocate the htab in qemu, as is
             * correct for PR. */
            return 0;
        } else if (ret < 0) {
1743 1744 1745 1746 1747
            return ret;
        }
        return shift;
    }

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
    /* We have a kernel that predates the htab reset calls.  For PR
     * KVM, we need to allocate the htab ourselves, for an HV KVM of
     * this era, it has allocated a 16MB fixed size hash table
     * already.  Kernels of this era have the GET_PVINFO capability
     * only on PR, so we use this hack to determine the right
     * answer */
    if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
        /* PR - tell caller to allocate htab */
        return 0;
    } else {
        /* HV - assume 16MB kernel allocated htab */
        return 24;
    }
1761 1762
}

1763 1764 1765 1766 1767 1768 1769 1770 1771
static inline uint32_t mfpvr(void)
{
    uint32_t pvr;

    asm ("mfpvr %0"
         : "=r"(pvr));
    return pvr;
}

1772 1773 1774 1775 1776 1777 1778 1779 1780
static void alter_insns(uint64_t *word, uint64_t flags, bool on)
{
    if (on) {
        *word |= flags;
    } else {
        *word &= ~flags;
    }
}

1781
static void kvmppc_host_cpu_initfn(Object *obj)
1782
{
1783 1784 1785 1786 1787 1788
    assert(kvm_enabled());
}

static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
{
    PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
1789 1790
    uint32_t vmx = kvmppc_get_vmx();
    uint32_t dfp = kvmppc_get_dfp();
1791 1792
    uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
    uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
1793

1794
    /* Now fix up the class with information we can query from the host */
1795
    pcc->pvr = mfpvr();
1796

1797 1798
    if (vmx != -1) {
        /* Only override when we know what the host supports */
1799 1800
        alter_insns(&pcc->insns_flags, PPC_ALTIVEC, vmx > 0);
        alter_insns(&pcc->insns_flags2, PPC2_VSX, vmx > 1);
1801 1802 1803
    }
    if (dfp != -1) {
        /* Only override when we know what the host supports */
1804
        alter_insns(&pcc->insns_flags2, PPC2_DFP, dfp);
1805
    }
1806 1807 1808 1809 1810 1811 1812 1813

    if (dcache_size != -1) {
        pcc->l1_dcache_size = dcache_size;
    }

    if (icache_size != -1) {
        pcc->l1_icache_size = icache_size;
    }
1814 1815
}

1816 1817 1818 1819 1820
bool kvmppc_has_cap_epr(void)
{
    return cap_epr;
}

1821 1822 1823 1824 1825
bool kvmppc_has_cap_htab_fd(void)
{
    return cap_htab_fd;
}

1826 1827 1828 1829 1830
bool kvmppc_has_cap_fixup_hcalls(void)
{
    return cap_fixup_hcalls;
}

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
static PowerPCCPUClass *ppc_cpu_get_family_class(PowerPCCPUClass *pcc)
{
    ObjectClass *oc = OBJECT_CLASS(pcc);

    while (oc && !object_class_is_abstract(oc)) {
        oc = object_class_get_parent(oc);
    }
    assert(oc);

    return POWERPC_CPU_CLASS(oc);
}

1843 1844 1845 1846 1847 1848 1849 1850 1851
static int kvm_ppc_register_host_cpu_type(void)
{
    TypeInfo type_info = {
        .name = TYPE_HOST_POWERPC_CPU,
        .instance_init = kvmppc_host_cpu_initfn,
        .class_init = kvmppc_host_cpu_class_init,
    };
    uint32_t host_pvr = mfpvr();
    PowerPCCPUClass *pvr_pcc;
1852
    DeviceClass *dc;
1853 1854

    pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
1855 1856 1857
    if (pvr_pcc == NULL) {
        pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
    }
1858 1859 1860 1861 1862
    if (pvr_pcc == NULL) {
        return -1;
    }
    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
    type_register(&type_info);
1863 1864 1865 1866 1867 1868 1869 1870

    /* Register generic family CPU class for a family */
    pvr_pcc = ppc_cpu_get_family_class(pvr_pcc);
    dc = DEVICE_CLASS(pvr_pcc);
    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
    type_info.name = g_strdup_printf("%s-"TYPE_POWERPC_CPU, dc->desc);
    type_register(&type_info);

1871 1872 1873
    return 0;
}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
{
    struct kvm_rtas_token_args args = {
        .token = token,
    };

    if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
        return -ENOENT;
    }

    strncpy(args.name, function, sizeof(args.name));

    return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
}
1888

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
int kvmppc_get_htab_fd(bool write)
{
    struct kvm_get_htab_fd s = {
        .flags = write ? KVM_GET_HTAB_WRITE : 0,
        .start_index = 0,
    };

    if (!cap_htab_fd) {
        fprintf(stderr, "KVM version doesn't support saving the hash table\n");
        return -1;
    }

    return kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
}

int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
{
1906
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
    uint8_t buf[bufsize];
    ssize_t rc;

    do {
        rc = read(fd, buf, bufsize);
        if (rc < 0) {
            fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
                    strerror(errno));
            return rc;
        } else if (rc) {
            /* Kernel already retuns data in BE format for the file */
            qemu_put_buffer(f, buf, rc);
        }
    } while ((rc != 0)
             && ((max_ns < 0)
1922
                 || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955

    return (rc == 0) ? 1 : 0;
}

int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
                           uint16_t n_valid, uint16_t n_invalid)
{
    struct kvm_get_htab_header *buf;
    size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64;
    ssize_t rc;

    buf = alloca(chunksize);
    /* This is KVM on ppc, so this is all big-endian */
    buf->index = index;
    buf->n_valid = n_valid;
    buf->n_invalid = n_invalid;

    qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid);

    rc = write(fd, buf, chunksize);
    if (rc < 0) {
        fprintf(stderr, "Error writing KVM hash table: %s\n",
                strerror(errno));
        return rc;
    }
    if (rc != chunksize) {
        /* We should never get a short write on a single chunk */
        fprintf(stderr, "Short write, restoring KVM hash table\n");
        return -1;
    }
    return 0;
}

A
Andreas Färber 已提交
1956
bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1957 1958 1959
{
    return true;
}
1960

A
Andreas Färber 已提交
1961
int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
1962 1963 1964 1965 1966 1967 1968 1969
{
    return 1;
}

int kvm_arch_on_sigbus(int code, void *addr)
{
    return 1;
}
1970 1971 1972 1973

void kvm_arch_init_irq_routing(KVMState *s)
{
}
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
{
    return -EINVAL;
}

int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
{
    return -EINVAL;
}

int kvm_arch_insert_hw_breakpoint(target_ulong addr, target_ulong len, int type)
{
    return -EINVAL;
}

int kvm_arch_remove_hw_breakpoint(target_ulong addr, target_ulong len, int type)
{
    return -EINVAL;
}

void kvm_arch_remove_all_hw_breakpoints(void)
{
}

void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
{
}
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

struct kvm_get_htab_buf {
    struct kvm_get_htab_header header;
    /*
     * We require one extra byte for read
     */
    target_ulong hpte[(HPTES_PER_GROUP * 2) + 1];
};

uint64_t kvmppc_hash64_read_pteg(PowerPCCPU *cpu, target_ulong pte_index)
{
    int htab_fd;
    struct kvm_get_htab_fd ghf;
    struct kvm_get_htab_buf  *hpte_buf;

    ghf.flags = 0;
    ghf.start_index = pte_index;
    htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
    if (htab_fd < 0) {
        goto error_out;
    }

    hpte_buf = g_malloc0(sizeof(*hpte_buf));
    /*
     * Read the hpte group
     */
    if (read(htab_fd, hpte_buf, sizeof(*hpte_buf)) < 0) {
        goto out_close;
    }

    close(htab_fd);
    return (uint64_t)(uintptr_t) hpte_buf->hpte;

out_close:
    g_free(hpte_buf);
    close(htab_fd);
error_out:
    return 0;
}

void kvmppc_hash64_free_pteg(uint64_t token)
{
    struct kvm_get_htab_buf *htab_buf;

    htab_buf = container_of((void *)(uintptr_t) token, struct kvm_get_htab_buf,
                            hpte);
    g_free(htab_buf);
    return;
}
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

void kvmppc_hash64_write_pte(CPUPPCState *env, target_ulong pte_index,
                             target_ulong pte0, target_ulong pte1)
{
    int htab_fd;
    struct kvm_get_htab_fd ghf;
    struct kvm_get_htab_buf hpte_buf;

    ghf.flags = 0;
    ghf.start_index = 0;     /* Ignored */
    htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
    if (htab_fd < 0) {
        goto error_out;
    }

    hpte_buf.header.n_valid = 1;
    hpte_buf.header.n_invalid = 0;
    hpte_buf.header.index = pte_index;
    hpte_buf.hpte[0] = pte0;
    hpte_buf.hpte[1] = pte1;
    /*
     * Write the hpte entry.
     * CAUTION: write() has the warn_unused_result attribute. Hence we
     * need to check the return value, even though we do nothing.
     */
    if (write(htab_fd, &hpte_buf, sizeof(hpte_buf)) < 0) {
        goto out_close;
    }

out_close:
    close(htab_fd);
    return;

error_out:
    return;
}