sdhci.c 59.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * SD Association Host Standard Specification v2.0 controller emulation
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 * Mitsyanko Igor <i.mitsyanko@samsung.com>
 * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
 *
 * Based on MMC controller for Samsung S5PC1xx-based board emulation
 * by Alexey Merkulov and Vladimir Monakhov.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, see <http://www.gnu.org/licenses/>.
 */

P
Peter Maydell 已提交
25
#include "qemu/osdep.h"
26
#include "qemu/error-report.h"
27
#include "qapi/error.h"
28
#include "hw/hw.h"
29
#include "sysemu/block-backend.h"
30 31 32 33
#include "sysemu/blockdev.h"
#include "sysemu/dma.h"
#include "qemu/timer.h"
#include "qemu/bitops.h"
34
#include "hw/sd/sdhci.h"
35
#include "sdhci-internal.h"
36
#include "qemu/log.h"
37
#include "qemu/cutils.h"
38
#include "trace.h"
39

40 41 42
#define TYPE_SDHCI_BUS "sdhci-bus"
#define SDHCI_BUS(obj) OBJECT_CHECK(SDBus, (obj), TYPE_SDHCI_BUS)

43 44
#define MASKED_WRITE(reg, mask, val)  (reg = (reg & (mask)) | (val))

45 46
/* Default SD/MMC host controller features information, which will be
 * presented in CAPABILITIES register of generic SD host controller at reset.
47 48 49 50 51 52 53 54 55 56 57 58 59
 *
 * support:
 * - 3.3v and 1.8v voltages
 * - SDMA/ADMA1/ADMA2
 * - high-speed
 * max host controller R/W buffers size: 512B
 * max clock frequency for SDclock: 52 MHz
 * timeout clock frequency: 52 MHz
 *
 * does not support:
 * - 3.0v voltage
 * - 64-bit system bus
 * - suspend/resume
60
 */
61
#define SDHC_CAPAB_REG_DEFAULT 0x057834b4
62

63 64 65 66 67
static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
{
    return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH));
}

68 69 70 71
/* return true on error */
static bool sdhci_check_capab_freq_range(SDHCIState *s, const char *desc,
                                         uint8_t freq, Error **errp)
{
72 73 74
    if (s->sd_spec_version >= 3) {
        return false;
    }
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    switch (freq) {
    case 0:
    case 10 ... 63:
        break;
    default:
        error_setg(errp, "SD %s clock frequency can have value"
                   "in range 0-63 only", desc);
        return true;
    }
    return false;
}

static void sdhci_check_capareg(SDHCIState *s, Error **errp)
{
    uint64_t msk = s->capareg;
    uint32_t val;
    bool y;

    switch (s->sd_spec_version) {
94 95 96 97 98 99 100 101 102 103 104 105 106 107
    case 4:
        val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT_V4);
        trace_sdhci_capareg("64-bit system bus (v4)", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT_V4, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, UHS_II);
        trace_sdhci_capareg("UHS-II", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, UHS_II, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA3);
        trace_sdhci_capareg("ADMA3", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA3, 0);

    /* fallthrough */
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    case 3:
        val = FIELD_EX64(s->capareg, SDHC_CAPAB, ASYNC_INT);
        trace_sdhci_capareg("async interrupt", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, ASYNC_INT, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, SLOT_TYPE);
        if (val) {
            error_setg(errp, "slot-type not supported");
            return;
        }
        trace_sdhci_capareg("slot type", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, SLOT_TYPE, 0);

        if (val != 2) {
            val = FIELD_EX64(s->capareg, SDHC_CAPAB, EMBEDDED_8BIT);
            trace_sdhci_capareg("8-bit bus", val);
        }
        msk = FIELD_DP64(msk, SDHC_CAPAB, EMBEDDED_8BIT, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS_SPEED);
        trace_sdhci_capareg("bus speed mask", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, BUS_SPEED, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, DRIVER_STRENGTH);
        trace_sdhci_capareg("driver strength mask", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, DRIVER_STRENGTH, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, TIMER_RETUNING);
        trace_sdhci_capareg("timer re-tuning", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, TIMER_RETUNING, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDR50_TUNING);
        trace_sdhci_capareg("use SDR50 tuning", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, SDR50_TUNING, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, RETUNING_MODE);
        trace_sdhci_capareg("re-tuning mode", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, RETUNING_MODE, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, CLOCK_MULT);
        trace_sdhci_capareg("clock multiplier", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, CLOCK_MULT, 0);

    /* fallthrough */
152
    case 2: /* default version */
153 154 155 156 157 158 159 160 161
        val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA2);
        trace_sdhci_capareg("ADMA2", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA2, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA1);
        trace_sdhci_capareg("ADMA1", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA1, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT);
162
        trace_sdhci_capareg("64-bit system bus (v3)", val);
163
        msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT, 0);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

    /* fallthrough */
    case 1:
        y = FIELD_EX64(s->capareg, SDHC_CAPAB, TOUNIT);
        msk = FIELD_DP64(msk, SDHC_CAPAB, TOUNIT, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, TOCLKFREQ);
        trace_sdhci_capareg(y ? "timeout (MHz)" : "Timeout (KHz)", val);
        if (sdhci_check_capab_freq_range(s, "timeout", val, errp)) {
            return;
        }
        msk = FIELD_DP64(msk, SDHC_CAPAB, TOCLKFREQ, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, BASECLKFREQ);
        trace_sdhci_capareg(y ? "base (MHz)" : "Base (KHz)", val);
        if (sdhci_check_capab_freq_range(s, "base", val, errp)) {
            return;
        }
        msk = FIELD_DP64(msk, SDHC_CAPAB, BASECLKFREQ, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH);
        if (val >= 3) {
            error_setg(errp, "block size can be 512, 1024 or 2048 only");
            return;
        }
        trace_sdhci_capareg("max block length", sdhci_get_fifolen(s));
        msk = FIELD_DP64(msk, SDHC_CAPAB, MAXBLOCKLENGTH, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, HIGHSPEED);
        trace_sdhci_capareg("high speed", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, HIGHSPEED, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDMA);
        trace_sdhci_capareg("SDMA", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, SDMA, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, SUSPRESUME);
        trace_sdhci_capareg("suspend/resume", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, SUSPRESUME, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, V33);
        trace_sdhci_capareg("3.3v", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, V33, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, V30);
        trace_sdhci_capareg("3.0v", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, V30, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, V18);
        trace_sdhci_capareg("1.8v", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, V18, 0);
        break;

    default:
        error_setg(errp, "Unsupported spec version: %u", s->sd_spec_version);
    }
    if (msk) {
        qemu_log_mask(LOG_UNIMP,
                      "SDHCI: unknown CAPAB mask: 0x%016" PRIx64 "\n", msk);
    }
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
static uint8_t sdhci_slotint(SDHCIState *s)
{
    return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
         ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
         ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
}

static inline void sdhci_update_irq(SDHCIState *s)
{
    qemu_set_irq(s->irq, sdhci_slotint(s));
}

static void sdhci_raise_insertion_irq(void *opaque)
{
    SDHCIState *s = (SDHCIState *)opaque;

    if (s->norintsts & SDHC_NIS_REMOVE) {
243 244
        timer_mod(s->insert_timer,
                       qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
245 246 247 248 249 250 251 252 253
    } else {
        s->prnsts = 0x1ff0000;
        if (s->norintstsen & SDHC_NISEN_INSERT) {
            s->norintsts |= SDHC_NIS_INSERT;
        }
        sdhci_update_irq(s);
    }
}

254
static void sdhci_set_inserted(DeviceState *dev, bool level)
255
{
256
    SDHCIState *s = (SDHCIState *)dev;
257

258
    trace_sdhci_set_inserted(level ? "insert" : "eject");
259 260
    if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
        /* Give target some time to notice card ejection */
261 262
        timer_mod(s->insert_timer,
                       qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    } else {
        if (level) {
            s->prnsts = 0x1ff0000;
            if (s->norintstsen & SDHC_NISEN_INSERT) {
                s->norintsts |= SDHC_NIS_INSERT;
            }
        } else {
            s->prnsts = 0x1fa0000;
            s->pwrcon &= ~SDHC_POWER_ON;
            s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
            if (s->norintstsen & SDHC_NISEN_REMOVE) {
                s->norintsts |= SDHC_NIS_REMOVE;
            }
        }
        sdhci_update_irq(s);
    }
}

281
static void sdhci_set_readonly(DeviceState *dev, bool level)
282
{
283
    SDHCIState *s = (SDHCIState *)dev;
284 285 286 287 288 289 290 291 292 293 294

    if (level) {
        s->prnsts &= ~SDHC_WRITE_PROTECT;
    } else {
        /* Write enabled */
        s->prnsts |= SDHC_WRITE_PROTECT;
    }
}

static void sdhci_reset(SDHCIState *s)
{
295 296
    DeviceState *dev = DEVICE(s);

297 298
    timer_del(s->insert_timer);
    timer_del(s->transfer_timer);
299 300

    /* Set all registers to 0. Capabilities/Version registers are not cleared
301 302 303 304
     * and assumed to always preserve their value, given to them during
     * initialization */
    memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);

305 306 307
    /* Reset other state based on current card insertion/readonly status */
    sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
    sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
308

309 310
    s->data_count = 0;
    s->stopped_state = sdhc_not_stopped;
311
    s->pending_insert_state = false;
312 313
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
static void sdhci_poweron_reset(DeviceState *dev)
{
    /* QOM (ie power-on) reset. This is identical to reset
     * commanded via device register apart from handling of the
     * 'pending insert on powerup' quirk.
     */
    SDHCIState *s = (SDHCIState *)dev;

    sdhci_reset(s);

    if (s->pending_insert_quirk) {
        s->pending_insert_state = true;
    }
}

329
static void sdhci_data_transfer(void *opaque);
330 331 332 333 334 335 336 337 338 339 340

static void sdhci_send_command(SDHCIState *s)
{
    SDRequest request;
    uint8_t response[16];
    int rlen;

    s->errintsts = 0;
    s->acmd12errsts = 0;
    request.cmd = s->cmdreg >> 8;
    request.arg = s->argument;
341 342

    trace_sdhci_send_command(request.cmd, request.arg);
343
    rlen = sdbus_do_command(&s->sdbus, &request, response);
344 345 346 347 348 349

    if (s->cmdreg & SDHC_CMD_RESPONSE) {
        if (rlen == 4) {
            s->rspreg[0] = (response[0] << 24) | (response[1] << 16) |
                           (response[2] << 8)  |  response[3];
            s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
350
            trace_sdhci_response4(s->rspreg[0]);
351 352 353 354 355 356 357 358 359
        } else if (rlen == 16) {
            s->rspreg[0] = (response[11] << 24) | (response[12] << 16) |
                           (response[13] << 8) |  response[14];
            s->rspreg[1] = (response[7] << 24) | (response[8] << 16) |
                           (response[9] << 8)  |  response[10];
            s->rspreg[2] = (response[3] << 24) | (response[4] << 16) |
                           (response[5] << 8)  |  response[6];
            s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
                            response[2];
360 361
            trace_sdhci_response16(s->rspreg[3], s->rspreg[2],
                                   s->rspreg[1], s->rspreg[0]);
362
        } else {
363
            trace_sdhci_error("timeout waiting for command response");
364 365 366 367 368 369
            if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
                s->errintsts |= SDHC_EIS_CMDTIMEOUT;
                s->norintsts |= SDHC_NIS_ERR;
            }
        }

370 371
        if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
            (s->norintstsen & SDHC_NISEN_TRSCMP) &&
372 373 374 375 376 377 378 379 380 381 382 383
            (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
            s->norintsts |= SDHC_NIS_TRSCMP;
        }
    }

    if (s->norintstsen & SDHC_NISEN_CMDCMP) {
        s->norintsts |= SDHC_NIS_CMDCMP;
    }

    sdhci_update_irq(s);

    if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
384
        s->data_count = 0;
385
        sdhci_data_transfer(s);
386 387 388 389 390 391 392 393 394 395 396 397
    }
}

static void sdhci_end_transfer(SDHCIState *s)
{
    /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
    if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
        SDRequest request;
        uint8_t response[16];

        request.cmd = 0x0C;
        request.arg = 0;
398
        trace_sdhci_end_transfer(request.cmd, request.arg);
399
        sdbus_do_command(&s->sdbus, &request, response);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
        /* Auto CMD12 response goes to the upper Response register */
        s->rspreg[3] = (response[0] << 24) | (response[1] << 16) |
                (response[2] << 8) | response[3];
    }

    s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
            SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
            SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);

    if (s->norintstsen & SDHC_NISEN_TRSCMP) {
        s->norintsts |= SDHC_NIS_TRSCMP;
    }

    sdhci_update_irq(s);
}

/*
 * Programmed i/o data transfer
 */
419
#define BLOCK_SIZE_MASK (4 * K_BYTE - 1)
420 421 422 423 424

/* Fill host controller's read buffer with BLKSIZE bytes of data from card */
static void sdhci_read_block_from_card(SDHCIState *s)
{
    int index = 0;
425 426
    uint8_t data;
    const uint16_t blk_size = s->blksize & BLOCK_SIZE_MASK;
427 428 429 430 431 432

    if ((s->trnmod & SDHC_TRNS_MULTI) &&
            (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
        return;
    }

433 434 435
    for (index = 0; index < blk_size; index++) {
        data = sdbus_read_data(&s->sdbus);
        if (!FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
436
            /* Device is not in tuning */
437 438 439 440 441
            s->fifo_buffer[index] = data;
        }
    }

    if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
442
        /* Device is in tuning */
443 444 445 446 447
        s->hostctl2 &= ~R_SDHC_HOSTCTL2_EXECUTE_TUNING_MASK;
        s->hostctl2 |= R_SDHC_HOSTCTL2_SAMPLING_CLKSEL_MASK;
        s->prnsts &= ~(SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ |
                       SDHC_DATA_INHIBIT);
        goto read_done;
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
    }

    /* New data now available for READ through Buffer Port Register */
    s->prnsts |= SDHC_DATA_AVAILABLE;
    if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
        s->norintsts |= SDHC_NIS_RBUFRDY;
    }

    /* Clear DAT line active status if that was the last block */
    if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
            ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
        s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
    }

    /* If stop at block gap request was set and it's not the last block of
     * data - generate Block Event interrupt */
    if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
            s->blkcnt != 1)    {
        s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
        if (s->norintstsen & SDHC_EISEN_BLKGAP) {
            s->norintsts |= SDHC_EIS_BLKGAP;
        }
    }

472
read_done:
473 474 475 476 477 478 479 480 481 482 483
    sdhci_update_irq(s);
}

/* Read @size byte of data from host controller @s BUFFER DATA PORT register */
static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
{
    uint32_t value = 0;
    int i;

    /* first check that a valid data exists in host controller input buffer */
    if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
484
        trace_sdhci_error("read from empty buffer");
485 486 487 488 489 490 491
        return 0;
    }

    for (i = 0; i < size; i++) {
        value |= s->fifo_buffer[s->data_count] << i * 8;
        s->data_count++;
        /* check if we've read all valid data (blksize bytes) from buffer */
492
        if ((s->data_count) >= (s->blksize & BLOCK_SIZE_MASK)) {
493
            trace_sdhci_read_dataport(s->data_count);
494 495 496 497 498 499 500 501 502 503 504 505 506
            s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
            s->data_count = 0;  /* next buff read must start at position [0] */

            if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                s->blkcnt--;
            }

            /* if that was the last block of data */
            if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
                ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
                 /* stop at gap request */
                (s->stopped_state == sdhc_gap_read &&
                 !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
507
                sdhci_end_transfer(s);
508
            } else { /* if there are more data, read next block from card */
509
                sdhci_read_block_from_card(s);
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
            }
            break;
        }
    }

    return value;
}

/* Write data from host controller FIFO to card */
static void sdhci_write_block_to_card(SDHCIState *s)
{
    int index = 0;

    if (s->prnsts & SDHC_SPACE_AVAILABLE) {
        if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
            s->norintsts |= SDHC_NIS_WBUFRDY;
        }
        sdhci_update_irq(s);
        return;
    }

    if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
        if (s->blkcnt == 0) {
            return;
        } else {
            s->blkcnt--;
        }
    }

539
    for (index = 0; index < (s->blksize & BLOCK_SIZE_MASK); index++) {
540
        sdbus_write_data(&s->sdbus, s->fifo_buffer[index]);
541 542 543 544 545 546 547 548 549
    }

    /* Next data can be written through BUFFER DATORT register */
    s->prnsts |= SDHC_SPACE_AVAILABLE;

    /* Finish transfer if that was the last block of data */
    if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
            ((s->trnmod & SDHC_TRNS_MULTI) &&
            (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
550
        sdhci_end_transfer(s);
551 552
    } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
        s->norintsts |= SDHC_NIS_WBUFRDY;
553 554 555 556 557 558 559 560 561
    }

    /* Generate Block Gap Event if requested and if not the last block */
    if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
            s->blkcnt > 0) {
        s->prnsts &= ~SDHC_DOING_WRITE;
        if (s->norintstsen & SDHC_EISEN_BLKGAP) {
            s->norintsts |= SDHC_EIS_BLKGAP;
        }
562
        sdhci_end_transfer(s);
563 564 565 566 567 568 569 570 571 572 573 574 575
    }

    sdhci_update_irq(s);
}

/* Write @size bytes of @value data to host controller @s Buffer Data Port
 * register */
static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
{
    unsigned i;

    /* Check that there is free space left in a buffer */
    if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
576
        trace_sdhci_error("Can't write to data buffer: buffer full");
577 578 579 580 581 582 583
        return;
    }

    for (i = 0; i < size; i++) {
        s->fifo_buffer[s->data_count] = value & 0xFF;
        s->data_count++;
        value >>= 8;
584
        if (s->data_count >= (s->blksize & BLOCK_SIZE_MASK)) {
585
            trace_sdhci_write_dataport(s->data_count);
586 587 588
            s->data_count = 0;
            s->prnsts &= ~SDHC_SPACE_AVAILABLE;
            if (s->prnsts & SDHC_DOING_WRITE) {
589
                sdhci_write_block_to_card(s);
590 591 592 593 594 595 596 597 598 599 600 601 602 603
            }
        }
    }
}

/*
 * Single DMA data transfer
 */

/* Multi block SDMA transfer */
static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
{
    bool page_aligned = false;
    unsigned int n, begin;
604 605
    const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
    uint32_t boundary_chk = 1 << (((s->blksize & ~BLOCK_SIZE_MASK) >> 12) + 12);
606 607
    uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);

608 609 610 611 612
    if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) {
        qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n");
        return;
    }

613 614 615 616 617 618 619 620 621 622 623 624 625
    /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
     * possible stop at page boundary if initial address is not page aligned,
     * allow them to work properly */
    if ((s->sdmasysad % boundary_chk) == 0) {
        page_aligned = true;
    }

    if (s->trnmod & SDHC_TRNS_READ) {
        s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
                SDHC_DAT_LINE_ACTIVE;
        while (s->blkcnt) {
            if (s->data_count == 0) {
                for (n = 0; n < block_size; n++) {
626
                    s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
627 628 629 630 631 632 633 634 635 636 637 638 639
                }
            }
            begin = s->data_count;
            if (((boundary_count + begin) < block_size) && page_aligned) {
                s->data_count = boundary_count + begin;
                boundary_count = 0;
             } else {
                s->data_count = block_size;
                boundary_count -= block_size - begin;
                if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                    s->blkcnt--;
                }
            }
640
            dma_memory_write(s->dma_as, s->sdmasysad,
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
                             &s->fifo_buffer[begin], s->data_count - begin);
            s->sdmasysad += s->data_count - begin;
            if (s->data_count == block_size) {
                s->data_count = 0;
            }
            if (page_aligned && boundary_count == 0) {
                break;
            }
        }
    } else {
        s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
                SDHC_DAT_LINE_ACTIVE;
        while (s->blkcnt) {
            begin = s->data_count;
            if (((boundary_count + begin) < block_size) && page_aligned) {
                s->data_count = boundary_count + begin;
                boundary_count = 0;
             } else {
                s->data_count = block_size;
                boundary_count -= block_size - begin;
            }
662
            dma_memory_read(s->dma_as, s->sdmasysad,
663
                            &s->fifo_buffer[begin], s->data_count - begin);
664 665 666
            s->sdmasysad += s->data_count - begin;
            if (s->data_count == block_size) {
                for (n = 0; n < block_size; n++) {
667
                    sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
668 669 670 671 672 673 674 675 676 677 678 679 680
                }
                s->data_count = 0;
                if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                    s->blkcnt--;
                }
            }
            if (page_aligned && boundary_count == 0) {
                break;
            }
        }
    }

    if (s->blkcnt == 0) {
681
        sdhci_end_transfer(s);
682 683 684 685 686 687 688 689 690 691 692 693
    } else {
        if (s->norintstsen & SDHC_NISEN_DMA) {
            s->norintsts |= SDHC_NIS_DMA;
        }
        sdhci_update_irq(s);
    }
}

/* single block SDMA transfer */
static void sdhci_sdma_transfer_single_block(SDHCIState *s)
{
    int n;
694
    uint32_t datacnt = s->blksize & BLOCK_SIZE_MASK;
695 696 697

    if (s->trnmod & SDHC_TRNS_READ) {
        for (n = 0; n < datacnt; n++) {
698
            s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
699
        }
700
        dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
701
    } else {
702
        dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
703
        for (n = 0; n < datacnt; n++) {
704
            sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
705 706
        }
    }
707
    s->blkcnt--;
708

709
    sdhci_end_transfer(s);
710 711 712 713 714 715 716 717 718 719 720 721 722 723
}

typedef struct ADMADescr {
    hwaddr addr;
    uint16_t length;
    uint8_t attr;
    uint8_t incr;
} ADMADescr;

static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
{
    uint32_t adma1 = 0;
    uint64_t adma2 = 0;
    hwaddr entry_addr = (hwaddr)s->admasysaddr;
724
    switch (SDHC_DMA_TYPE(s->hostctl1)) {
725
    case SDHC_CTRL_ADMA2_32:
726
        dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma2,
727 728 729 730 731 732 733 734 735 736 737
                        sizeof(adma2));
        adma2 = le64_to_cpu(adma2);
        /* The spec does not specify endianness of descriptor table.
         * We currently assume that it is LE.
         */
        dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
        dscr->length = (uint16_t)extract64(adma2, 16, 16);
        dscr->attr = (uint8_t)extract64(adma2, 0, 7);
        dscr->incr = 8;
        break;
    case SDHC_CTRL_ADMA1_32:
738
        dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma1,
739 740 741 742 743 744 745 746 747 748 749 750
                        sizeof(adma1));
        adma1 = le32_to_cpu(adma1);
        dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
        dscr->attr = (uint8_t)extract32(adma1, 0, 7);
        dscr->incr = 4;
        if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
            dscr->length = (uint16_t)extract32(adma1, 12, 16);
        } else {
            dscr->length = 4096;
        }
        break;
    case SDHC_CTRL_ADMA2_64:
751
        dma_memory_read(s->dma_as, entry_addr,
752
                        (uint8_t *)(&dscr->attr), 1);
753
        dma_memory_read(s->dma_as, entry_addr + 2,
754 755
                        (uint8_t *)(&dscr->length), 2);
        dscr->length = le16_to_cpu(dscr->length);
756
        dma_memory_read(s->dma_as, entry_addr + 4,
757
                        (uint8_t *)(&dscr->addr), 8);
S
Sai Pavan Boddu 已提交
758 759
        dscr->addr = le64_to_cpu(dscr->addr);
        dscr->attr &= (uint8_t) ~0xC0;
760 761 762 763 764 765 766 767 768 769
        dscr->incr = 12;
        break;
    }
}

/* Advanced DMA data transfer */

static void sdhci_do_adma(SDHCIState *s)
{
    unsigned int n, begin, length;
770
    const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
771
    ADMADescr dscr = {};
772 773 774 775 776 777
    int i;

    for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
        s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;

        get_adma_description(s, &dscr);
778
        trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr);
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803

        if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
            /* Indicate that error occurred in ST_FDS state */
            s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
            s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;

            /* Generate ADMA error interrupt */
            if (s->errintstsen & SDHC_EISEN_ADMAERR) {
                s->errintsts |= SDHC_EIS_ADMAERR;
                s->norintsts |= SDHC_NIS_ERR;
            }

            sdhci_update_irq(s);
            return;
        }

        length = dscr.length ? dscr.length : 65536;

        switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
        case SDHC_ADMA_ATTR_ACT_TRAN:  /* data transfer */

            if (s->trnmod & SDHC_TRNS_READ) {
                while (length) {
                    if (s->data_count == 0) {
                        for (n = 0; n < block_size; n++) {
804
                            s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
805 806 807 808 809 810 811 812 813 814
                        }
                    }
                    begin = s->data_count;
                    if ((length + begin) < block_size) {
                        s->data_count = length + begin;
                        length = 0;
                     } else {
                        s->data_count = block_size;
                        length -= block_size - begin;
                    }
815
                    dma_memory_write(s->dma_as, dscr.addr,
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
                                     &s->fifo_buffer[begin],
                                     s->data_count - begin);
                    dscr.addr += s->data_count - begin;
                    if (s->data_count == block_size) {
                        s->data_count = 0;
                        if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                            s->blkcnt--;
                            if (s->blkcnt == 0) {
                                break;
                            }
                        }
                    }
                }
            } else {
                while (length) {
                    begin = s->data_count;
                    if ((length + begin) < block_size) {
                        s->data_count = length + begin;
                        length = 0;
                     } else {
                        s->data_count = block_size;
                        length -= block_size - begin;
                    }
839
                    dma_memory_read(s->dma_as, dscr.addr,
840 841
                                    &s->fifo_buffer[begin],
                                    s->data_count - begin);
842 843 844
                    dscr.addr += s->data_count - begin;
                    if (s->data_count == block_size) {
                        for (n = 0; n < block_size; n++) {
845
                            sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
                        }
                        s->data_count = 0;
                        if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                            s->blkcnt--;
                            if (s->blkcnt == 0) {
                                break;
                            }
                        }
                    }
                }
            }
            s->admasysaddr += dscr.incr;
            break;
        case SDHC_ADMA_ATTR_ACT_LINK:   /* link to next descriptor table */
            s->admasysaddr = dscr.addr;
861
            trace_sdhci_adma("link", s->admasysaddr);
862 863 864 865 866 867
            break;
        default:
            s->admasysaddr += dscr.incr;
            break;
        }

P
Peter Crosthwaite 已提交
868
        if (dscr.attr & SDHC_ADMA_ATTR_INT) {
869
            trace_sdhci_adma("interrupt", s->admasysaddr);
P
Peter Crosthwaite 已提交
870 871 872 873 874 875 876
            if (s->norintstsen & SDHC_NISEN_DMA) {
                s->norintsts |= SDHC_NIS_DMA;
            }

            sdhci_update_irq(s);
        }

877 878 879
        /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
        if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
                    (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
880
            trace_sdhci_adma_transfer_completed();
881 882 883
            if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
                (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
                s->blkcnt != 0)) {
884
                trace_sdhci_error("SD/MMC host ADMA length mismatch");
885 886 887
                s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
                        SDHC_ADMAERR_STATE_ST_TFR;
                if (s->errintstsen & SDHC_EISEN_ADMAERR) {
888
                    trace_sdhci_error("Set ADMA error flag");
889 890 891 892 893 894
                    s->errintsts |= SDHC_EIS_ADMAERR;
                    s->norintsts |= SDHC_NIS_ERR;
                }

                sdhci_update_irq(s);
            }
895
            sdhci_end_transfer(s);
896 897 898 899 900
            return;
        }

    }

P
Peter Maydell 已提交
901
    /* we have unfinished business - reschedule to continue ADMA */
902 903
    timer_mod(s->transfer_timer,
                   qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
904 905 906 907
}

/* Perform data transfer according to controller configuration */

908
static void sdhci_data_transfer(void *opaque)
909
{
910
    SDHCIState *s = (SDHCIState *)opaque;
911 912

    if (s->trnmod & SDHC_TRNS_DMA) {
913
        switch (SDHC_DMA_TYPE(s->hostctl1)) {
914 915
        case SDHC_CTRL_SDMA:
            if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
916
                sdhci_sdma_transfer_single_block(s);
917
            } else {
918
                sdhci_sdma_transfer_multi_blocks(s);
919 920 921 922
            }

            break;
        case SDHC_CTRL_ADMA1_32:
923
            if (!(s->capareg & R_SDHC_CAPAB_ADMA1_MASK)) {
924
                trace_sdhci_error("ADMA1 not supported");
925 926 927
                break;
            }

928
            sdhci_do_adma(s);
929 930
            break;
        case SDHC_CTRL_ADMA2_32:
931
            if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK)) {
932
                trace_sdhci_error("ADMA2 not supported");
933 934 935
                break;
            }

936
            sdhci_do_adma(s);
937 938
            break;
        case SDHC_CTRL_ADMA2_64:
939 940
            if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK) ||
                    !(s->capareg & R_SDHC_CAPAB_BUS64BIT_MASK)) {
941
                trace_sdhci_error("64 bit ADMA not supported");
942 943 944
                break;
            }

945
            sdhci_do_adma(s);
946 947
            break;
        default:
948
            trace_sdhci_error("Unsupported DMA type");
949 950 951
            break;
        }
    } else {
952
        if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
953 954
            s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
                    SDHC_DAT_LINE_ACTIVE;
955
            sdhci_read_block_from_card(s);
956 957 958
        } else {
            s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
                    SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
959
            sdhci_write_block_to_card(s);
960 961 962 963 964 965
        }
    }
}

static bool sdhci_can_issue_command(SDHCIState *s)
{
966
    if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
        (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
        ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
        ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
        !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
        return false;
    }

    return true;
}

/* The Buffer Data Port register must be accessed in sequential and
 * continuous manner */
static inline bool
sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
{
    if ((s->data_count & 0x3) != byte_num) {
983 984
        trace_sdhci_error("Non-sequential access to Buffer Data Port register"
                          "is prohibited\n");
985 986 987 988 989
        return false;
    }
    return true;
}

990
static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
991
{
992
    SDHCIState *s = (SDHCIState *)opaque;
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
    uint32_t ret = 0;

    switch (offset & ~0x3) {
    case SDHC_SYSAD:
        ret = s->sdmasysad;
        break;
    case SDHC_BLKSIZE:
        ret = s->blksize | (s->blkcnt << 16);
        break;
    case SDHC_ARGUMENT:
        ret = s->argument;
        break;
    case SDHC_TRNMOD:
        ret = s->trnmod | (s->cmdreg << 16);
        break;
    case SDHC_RSPREG0 ... SDHC_RSPREG3:
        ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
        break;
    case  SDHC_BDATA:
        if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1013
            ret = sdhci_read_dataport(s, size);
1014
            trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1015 1016 1017 1018 1019
            return ret;
        }
        break;
    case SDHC_PRNSTS:
        ret = s->prnsts;
1020 1021 1022 1023
        ret = FIELD_DP32(ret, SDHC_PRNSTS, DAT_LVL,
                         sdbus_get_dat_lines(&s->sdbus));
        ret = FIELD_DP32(ret, SDHC_PRNSTS, CMD_LVL,
                         sdbus_get_cmd_line(&s->sdbus));
1024 1025
        break;
    case SDHC_HOSTCTL:
1026
        ret = s->hostctl1 | (s->pwrcon << 8) | (s->blkgap << 16) |
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
              (s->wakcon << 24);
        break;
    case SDHC_CLKCON:
        ret = s->clkcon | (s->timeoutcon << 16);
        break;
    case SDHC_NORINTSTS:
        ret = s->norintsts | (s->errintsts << 16);
        break;
    case SDHC_NORINTSTSEN:
        ret = s->norintstsen | (s->errintstsen << 16);
        break;
    case SDHC_NORINTSIGEN:
        ret = s->norintsigen | (s->errintsigen << 16);
        break;
    case SDHC_ACMD12ERRSTS:
1042
        ret = s->acmd12errsts | (s->hostctl2 << 16);
1043
        break;
1044
    case SDHC_CAPAB:
1045 1046 1047 1048
        ret = (uint32_t)s->capareg;
        break;
    case SDHC_CAPAB + 4:
        ret = (uint32_t)(s->capareg >> 32);
1049 1050
        break;
    case SDHC_MAXCURR:
1051 1052 1053 1054
        ret = (uint32_t)s->maxcurr;
        break;
    case SDHC_MAXCURR + 4:
        ret = (uint32_t)(s->maxcurr >> 32);
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
        break;
    case SDHC_ADMAERR:
        ret =  s->admaerr;
        break;
    case SDHC_ADMASYSADDR:
        ret = (uint32_t)s->admasysaddr;
        break;
    case SDHC_ADMASYSADDR + 4:
        ret = (uint32_t)(s->admasysaddr >> 32);
        break;
    case SDHC_SLOT_INT_STATUS:
1066
        ret = (s->version << 16) | sdhci_slotint(s);
1067 1068
        break;
    default:
1069 1070
        qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
                      "not implemented\n", size, offset);
1071 1072 1073 1074 1075
        break;
    }

    ret >>= (offset & 0x3) * 8;
    ret &= (1ULL << (size * 8)) - 1;
1076
    trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    return ret;
}

static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
{
    if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
        return;
    }
    s->blkgap = value & SDHC_STOP_AT_GAP_REQ;

    if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
            (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
        if (s->stopped_state == sdhc_gap_read) {
            s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
1091
            sdhci_read_block_from_card(s);
1092 1093
        } else {
            s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
1094
            sdhci_write_block_to_card(s);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
        }
        s->stopped_state = sdhc_not_stopped;
    } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
        if (s->prnsts & SDHC_DOING_READ) {
            s->stopped_state = sdhc_gap_read;
        } else if (s->prnsts & SDHC_DOING_WRITE) {
            s->stopped_state = sdhc_gap_write;
        }
    }
}

static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
{
    switch (value) {
    case SDHC_RESET_ALL:
1110
        sdhci_reset(s);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        break;
    case SDHC_RESET_CMD:
        s->prnsts &= ~SDHC_CMD_INHIBIT;
        s->norintsts &= ~SDHC_NIS_CMDCMP;
        break;
    case SDHC_RESET_DATA:
        s->data_count = 0;
        s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
                SDHC_DOING_READ | SDHC_DOING_WRITE |
                SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
        s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
        s->stopped_state = sdhc_not_stopped;
        s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
                SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
        break;
    }
}

static void
1130
sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1131
{
1132
    SDHCIState *s = (SDHCIState *)opaque;
1133 1134
    unsigned shift =  8 * (offset & 0x3);
    uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
1135
    uint32_t value = val;
1136 1137 1138 1139 1140 1141 1142 1143
    value <<= shift;

    switch (offset & ~0x3) {
    case SDHC_SYSAD:
        s->sdmasysad = (s->sdmasysad & mask) | value;
        MASKED_WRITE(s->sdmasysad, mask, value);
        /* Writing to last byte of sdmasysad might trigger transfer */
        if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
1144
                s->blksize && SDHC_DMA_TYPE(s->hostctl1) == SDHC_CTRL_SDMA) {
1145 1146 1147 1148 1149
            if (s->trnmod & SDHC_TRNS_MULTI) {
                sdhci_sdma_transfer_multi_blocks(s);
            } else {
                sdhci_sdma_transfer_single_block(s);
            }
1150 1151 1152 1153 1154 1155 1156
        }
        break;
    case SDHC_BLKSIZE:
        if (!TRANSFERRING_DATA(s->prnsts)) {
            MASKED_WRITE(s->blksize, mask, value);
            MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
        }
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

        /* Limit block size to the maximum buffer size */
        if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
            qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than " \
                          "the maximum buffer 0x%x", __func__, s->blksize,
                          s->buf_maxsz);

            s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
        }

1167 1168 1169 1170 1171 1172 1173
        break;
    case SDHC_ARGUMENT:
        MASKED_WRITE(s->argument, mask, value);
        break;
    case SDHC_TRNMOD:
        /* DMA can be enabled only if it is supported as indicated by
         * capabilities register */
1174
        if (!(s->capareg & R_SDHC_CAPAB_SDMA_MASK)) {
1175 1176
            value &= ~SDHC_TRNS_DMA;
        }
1177
        MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK);
1178 1179 1180
        MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);

        /* Writing to the upper byte of CMDREG triggers SD command generation */
1181
        if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1182 1183 1184
            break;
        }

1185
        sdhci_send_command(s);
1186 1187 1188
        break;
    case  SDHC_BDATA:
        if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1189
            sdhci_write_dataport(s, value >> shift, size);
1190 1191 1192 1193 1194 1195
        }
        break;
    case SDHC_HOSTCTL:
        if (!(mask & 0xFF0000)) {
            sdhci_blkgap_write(s, value >> 16);
        }
1196
        MASKED_WRITE(s->hostctl1, mask, value);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
        MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
        MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
        if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
                !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
            s->pwrcon &= ~SDHC_POWER_ON;
        }
        break;
    case SDHC_CLKCON:
        if (!(mask & 0xFF000000)) {
            sdhci_reset_write(s, value >> 24);
        }
        MASKED_WRITE(s->clkcon, mask, value);
        MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
        if (s->clkcon & SDHC_CLOCK_INT_EN) {
            s->clkcon |= SDHC_CLOCK_INT_STABLE;
        } else {
            s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
        }
        break;
    case SDHC_NORINTSTS:
        if (s->norintstsen & SDHC_NISEN_CARDINT) {
            value &= ~SDHC_NIS_CARDINT;
        }
        s->norintsts &= mask | ~value;
        s->errintsts &= (mask >> 16) | ~(value >> 16);
        if (s->errintsts) {
            s->norintsts |= SDHC_NIS_ERR;
        } else {
            s->norintsts &= ~SDHC_NIS_ERR;
        }
        sdhci_update_irq(s);
        break;
    case SDHC_NORINTSTSEN:
        MASKED_WRITE(s->norintstsen, mask, value);
        MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
        s->norintsts &= s->norintstsen;
        s->errintsts &= s->errintstsen;
        if (s->errintsts) {
            s->norintsts |= SDHC_NIS_ERR;
        } else {
            s->norintsts &= ~SDHC_NIS_ERR;
        }
1239 1240 1241 1242 1243 1244 1245
        /* Quirk for Raspberry Pi: pending card insert interrupt
         * appears when first enabled after power on */
        if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
            assert(s->pending_insert_quirk);
            s->norintsts |= SDHC_NIS_INSERT;
            s->pending_insert_state = false;
        }
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
        sdhci_update_irq(s);
        break;
    case SDHC_NORINTSIGEN:
        MASKED_WRITE(s->norintsigen, mask, value);
        MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
        sdhci_update_irq(s);
        break;
    case SDHC_ADMAERR:
        MASKED_WRITE(s->admaerr, mask, value);
        break;
    case SDHC_ADMASYSADDR:
        s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
                (uint64_t)mask)) | (uint64_t)value;
        break;
    case SDHC_ADMASYSADDR + 4:
        s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
                ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
        break;
    case SDHC_FEAER:
        s->acmd12errsts |= value;
        s->errintsts |= (value >> 16) & s->errintstsen;
        if (s->acmd12errsts) {
            s->errintsts |= SDHC_EIS_CMD12ERR;
        }
        if (s->errintsts) {
            s->norintsts |= SDHC_NIS_ERR;
        }
        sdhci_update_irq(s);
        break;
1275
    case SDHC_ACMD12ERRSTS:
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
        MASKED_WRITE(s->acmd12errsts, mask, value & UINT16_MAX);
        if (s->uhs_mode >= UHS_I) {
            MASKED_WRITE(s->hostctl2, mask >> 16, value >> 16);

            if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, V18_ENA)) {
                sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_1_8V);
            } else {
                sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_3_3V);
            }
        }
1286
        break;
1287 1288 1289 1290 1291 1292 1293 1294 1295

    case SDHC_CAPAB:
    case SDHC_CAPAB + 4:
    case SDHC_MAXCURR:
    case SDHC_MAXCURR + 4:
        qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx
                      " <- 0x%08x read-only\n", size, offset, value >> shift);
        break;

1296
    default:
1297 1298
        qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x "
                      "not implemented\n", size, offset, value >> shift);
1299 1300
        break;
    }
1301 1302
    trace_sdhci_access("wr", size << 3, offset, "<-",
                       value >> shift, value >> shift);
1303 1304 1305
}

static const MemoryRegionOps sdhci_mmio_ops = {
1306 1307
    .read = sdhci_read,
    .write = sdhci_write,
1308 1309 1310 1311 1312 1313 1314 1315
    .valid = {
        .min_access_size = 1,
        .max_access_size = 4,
        .unaligned = false
    },
    .endianness = DEVICE_LITTLE_ENDIAN,
};

1316 1317
static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp)
{
1318 1319
    Error *local_err = NULL;

1320 1321 1322 1323 1324
    switch (s->sd_spec_version) {
    case 2 ... 3:
        break;
    default:
        error_setg(errp, "Only Spec v2/v3 are supported");
1325 1326 1327
        return;
    }
    s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1);
1328 1329 1330 1331 1332 1333

    sdhci_check_capareg(s, &local_err);
    if (local_err) {
        error_propagate(errp, local_err);
        return;
    }
1334 1335
}

1336 1337 1338
/* --- qdev common --- */

#define DEFINE_SDHCI_COMMON_PROPERTIES(_state) \
1339
    DEFINE_PROP_UINT8("sd-spec-version", _state, sd_spec_version, 2), \
1340
    DEFINE_PROP_UINT8("uhs", _state, uhs_mode, UHS_NOT_SUPPORTED), \
1341 1342 1343
    \
    /* Capabilities registers provide information on supported
     * features of this specific host controller implementation */ \
1344 1345
    DEFINE_PROP_UINT64("capareg", _state, capareg, SDHC_CAPAB_REG_DEFAULT), \
    DEFINE_PROP_UINT64("maxcurr", _state, maxcurr, 0)
1346

1347
static void sdhci_initfn(SDHCIState *s)
1348
{
1349 1350
    qbus_create_inplace(&s->sdbus, sizeof(s->sdbus),
                        TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
1351

1352
    s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1353
    s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1354 1355

    s->io_ops = &sdhci_mmio_ops;
1356 1357
}

1358
static void sdhci_uninitfn(SDHCIState *s)
1359
{
1360 1361 1362 1363
    timer_del(s->insert_timer);
    timer_free(s->insert_timer);
    timer_del(s->transfer_timer);
    timer_free(s->transfer_timer);
1364

1365 1366
    g_free(s->fifo_buffer);
    s->fifo_buffer = NULL;
1367 1368
}

1369 1370
static void sdhci_common_realize(SDHCIState *s, Error **errp)
{
1371 1372 1373 1374 1375 1376 1377
    Error *local_err = NULL;

    sdhci_init_readonly_registers(s, &local_err);
    if (local_err) {
        error_propagate(errp, local_err);
        return;
    }
1378 1379 1380 1381 1382 1383 1384
    s->buf_maxsz = sdhci_get_fifolen(s);
    s->fifo_buffer = g_malloc0(s->buf_maxsz);

    memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
                          SDHC_REGISTERS_MAP_SIZE);
}

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
static void sdhci_common_unrealize(SDHCIState *s, Error **errp)
{
    /* This function is expected to be called only once for each class:
     * - SysBus:    via DeviceClass->unrealize(),
     * - PCI:       via PCIDeviceClass->exit().
     * However to avoid double-free and/or use-after-free we still nullify
     * this variable (better safe than sorry!). */
    g_free(s->fifo_buffer);
    s->fifo_buffer = NULL;
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
static bool sdhci_pending_insert_vmstate_needed(void *opaque)
{
    SDHCIState *s = opaque;

    return s->pending_insert_state;
}

static const VMStateDescription sdhci_pending_insert_vmstate = {
    .name = "sdhci/pending-insert",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = sdhci_pending_insert_vmstate_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(pending_insert_state, SDHCIState),
        VMSTATE_END_OF_LIST()
    },
};

1414 1415 1416 1417
const VMStateDescription sdhci_vmstate = {
    .name = "sdhci",
    .version_id = 1,
    .minimum_version_id = 1,
1418
    .fields = (VMStateField[]) {
1419 1420 1421 1422 1423 1424 1425 1426
        VMSTATE_UINT32(sdmasysad, SDHCIState),
        VMSTATE_UINT16(blksize, SDHCIState),
        VMSTATE_UINT16(blkcnt, SDHCIState),
        VMSTATE_UINT32(argument, SDHCIState),
        VMSTATE_UINT16(trnmod, SDHCIState),
        VMSTATE_UINT16(cmdreg, SDHCIState),
        VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
        VMSTATE_UINT32(prnsts, SDHCIState),
1427
        VMSTATE_UINT8(hostctl1, SDHCIState),
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
        VMSTATE_UINT8(pwrcon, SDHCIState),
        VMSTATE_UINT8(blkgap, SDHCIState),
        VMSTATE_UINT8(wakcon, SDHCIState),
        VMSTATE_UINT16(clkcon, SDHCIState),
        VMSTATE_UINT8(timeoutcon, SDHCIState),
        VMSTATE_UINT8(admaerr, SDHCIState),
        VMSTATE_UINT16(norintsts, SDHCIState),
        VMSTATE_UINT16(errintsts, SDHCIState),
        VMSTATE_UINT16(norintstsen, SDHCIState),
        VMSTATE_UINT16(errintstsen, SDHCIState),
        VMSTATE_UINT16(norintsigen, SDHCIState),
        VMSTATE_UINT16(errintsigen, SDHCIState),
        VMSTATE_UINT16(acmd12errsts, SDHCIState),
        VMSTATE_UINT16(data_count, SDHCIState),
        VMSTATE_UINT64(admasysaddr, SDHCIState),
        VMSTATE_UINT8(stopped_state, SDHCIState),
1444
        VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
1445 1446
        VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
        VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1447
        VMSTATE_END_OF_LIST()
1448 1449 1450 1451 1452
    },
    .subsections = (const VMStateDescription*[]) {
        &sdhci_pending_insert_vmstate,
        NULL
    },
1453 1454
};

1455 1456 1457 1458 1459 1460 1461 1462 1463
static void sdhci_common_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
    dc->vmsd = &sdhci_vmstate;
    dc->reset = sdhci_poweron_reset;
}

1464 1465
/* --- qdev PCI --- */

1466
static Property sdhci_pci_properties[] = {
1467
    DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1468 1469 1470
    DEFINE_PROP_END_OF_LIST(),
};

1471
static void sdhci_pci_realize(PCIDevice *dev, Error **errp)
1472 1473
{
    SDHCIState *s = PCI_SDHCI(dev);
1474
    Error *local_err = NULL;
1475 1476 1477

    sdhci_initfn(s);
    sdhci_common_realize(s, errp);
1478 1479
    if (local_err) {
        error_propagate(errp, local_err);
1480 1481 1482
        return;
    }

1483 1484 1485
    dev->config[PCI_CLASS_PROG] = 0x01; /* Standard Host supported DMA */
    dev->config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin A */
    s->irq = pci_allocate_irq(dev);
1486 1487
    s->dma_as = pci_get_address_space(dev);
    pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->iomem);
1488 1489 1490 1491 1492
}

static void sdhci_pci_exit(PCIDevice *dev)
{
    SDHCIState *s = PCI_SDHCI(dev);
1493 1494

    sdhci_common_unrealize(s, &error_abort);
1495 1496 1497 1498 1499 1500 1501 1502
    sdhci_uninitfn(s);
}

static void sdhci_pci_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);

1503
    k->realize = sdhci_pci_realize;
1504 1505 1506 1507
    k->exit = sdhci_pci_exit;
    k->vendor_id = PCI_VENDOR_ID_REDHAT;
    k->device_id = PCI_DEVICE_ID_REDHAT_SDHCI;
    k->class_id = PCI_CLASS_SYSTEM_SDHCI;
1508
    dc->props = sdhci_pci_properties;
1509 1510

    sdhci_common_class_init(klass, data);
1511 1512 1513 1514 1515 1516 1517
}

static const TypeInfo sdhci_pci_info = {
    .name = TYPE_PCI_SDHCI,
    .parent = TYPE_PCI_DEVICE,
    .instance_size = sizeof(SDHCIState),
    .class_init = sdhci_pci_class_init,
1518 1519 1520 1521
    .interfaces = (InterfaceInfo[]) {
        { INTERFACE_CONVENTIONAL_PCI_DEVICE },
        { },
    },
1522 1523
};

1524 1525
/* --- qdev SysBus --- */

1526
static Property sdhci_sysbus_properties[] = {
1527
    DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1528 1529
    DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
                     false),
1530 1531
    DEFINE_PROP_LINK("dma", SDHCIState,
                     dma_mr, TYPE_MEMORY_REGION, MemoryRegion *),
1532 1533 1534
    DEFINE_PROP_END_OF_LIST(),
};

1535 1536 1537
static void sdhci_sysbus_init(Object *obj)
{
    SDHCIState *s = SYSBUS_SDHCI(obj);
1538

1539
    sdhci_initfn(s);
1540 1541 1542 1543 1544
}

static void sdhci_sysbus_finalize(Object *obj)
{
    SDHCIState *s = SYSBUS_SDHCI(obj);
1545 1546 1547 1548 1549

    if (s->dma_mr) {
        object_unparent(OBJECT(s->dma_mr));
    }

1550 1551 1552 1553
    sdhci_uninitfn(s);
}

static void sdhci_sysbus_realize(DeviceState *dev, Error ** errp)
1554
{
1555
    SDHCIState *s = SYSBUS_SDHCI(dev);
1556
    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1557
    Error *local_err = NULL;
1558

1559
    sdhci_common_realize(s, errp);
1560 1561
    if (local_err) {
        error_propagate(errp, local_err);
1562 1563 1564
        return;
    }

1565
    if (s->dma_mr) {
1566
        s->dma_as = &s->sysbus_dma_as;
1567 1568 1569 1570 1571
        address_space_init(s->dma_as, s->dma_mr, "sdhci-dma");
    } else {
        /* use system_memory() if property "dma" not set */
        s->dma_as = &address_space_memory;
    }
1572

1573
    sysbus_init_irq(sbd, &s->irq);
1574 1575 1576 1577

    memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci",
            SDHC_REGISTERS_MAP_SIZE);

1578 1579 1580
    sysbus_init_mmio(sbd, &s->iomem);
}

1581 1582 1583 1584 1585
static void sdhci_sysbus_unrealize(DeviceState *dev, Error **errp)
{
    SDHCIState *s = SYSBUS_SDHCI(dev);

    sdhci_common_unrealize(s, &error_abort);
1586 1587 1588 1589

     if (s->dma_mr) {
        address_space_destroy(s->dma_as);
    }
1590 1591
}

1592
static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1593 1594 1595
{
    DeviceClass *dc = DEVICE_CLASS(klass);

1596
    dc->props = sdhci_sysbus_properties;
1597
    dc->realize = sdhci_sysbus_realize;
1598
    dc->unrealize = sdhci_sysbus_unrealize;
1599 1600

    sdhci_common_class_init(klass, data);
1601 1602
}

1603 1604
static const TypeInfo sdhci_sysbus_info = {
    .name = TYPE_SYSBUS_SDHCI,
1605 1606
    .parent = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(SDHCIState),
1607 1608 1609
    .instance_init = sdhci_sysbus_init,
    .instance_finalize = sdhci_sysbus_finalize,
    .class_init = sdhci_sysbus_class_init,
1610 1611
};

1612 1613
/* --- qdev bus master --- */

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
static void sdhci_bus_class_init(ObjectClass *klass, void *data)
{
    SDBusClass *sbc = SD_BUS_CLASS(klass);

    sbc->set_inserted = sdhci_set_inserted;
    sbc->set_readonly = sdhci_set_readonly;
}

static const TypeInfo sdhci_bus_info = {
    .name = TYPE_SDHCI_BUS,
    .parent = TYPE_SD_BUS,
    .instance_size = sizeof(SDBus),
    .class_init = sdhci_bus_class_init,
};

1629 1630 1631 1632
static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size)
{
    SDHCIState *s = SYSBUS_SDHCI(opaque);
    uint32_t ret;
1633
    uint16_t hostctl1;
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

    switch (offset) {
    default:
        return sdhci_read(opaque, offset, size);

    case SDHC_HOSTCTL:
        /*
         * For a detailed explanation on the following bit
         * manipulation code see comments in a similar part of
         * usdhc_write()
         */
1645
        hostctl1 = SDHC_DMA_TYPE(s->hostctl1) << (8 - 3);
1646

1647 1648
        if (s->hostctl1 & SDHC_CTRL_8BITBUS) {
            hostctl1 |= ESDHC_CTRL_8BITBUS;
1649 1650
        }

1651 1652
        if (s->hostctl1 & SDHC_CTRL_4BITBUS) {
            hostctl1 |= ESDHC_CTRL_4BITBUS;
1653 1654
        }

1655
        ret  = hostctl1;
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
        ret |= (uint32_t)s->blkgap << 16;
        ret |= (uint32_t)s->wakcon << 24;

        break;

    case ESDHC_DLL_CTRL:
    case ESDHC_TUNE_CTRL_STATUS:
    case ESDHC_UNDOCUMENTED_REG27:
    case ESDHC_TUNING_CTRL:
    case ESDHC_VENDOR_SPEC:
    case ESDHC_MIX_CTRL:
    case ESDHC_WTMK_LVL:
        ret = 0;
        break;
    }

    return ret;
}

static void
usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
{
    SDHCIState *s = SYSBUS_SDHCI(opaque);
1679
    uint8_t hostctl1;
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
    uint32_t value = (uint32_t)val;

    switch (offset) {
    case ESDHC_DLL_CTRL:
    case ESDHC_TUNE_CTRL_STATUS:
    case ESDHC_UNDOCUMENTED_REG27:
    case ESDHC_TUNING_CTRL:
    case ESDHC_WTMK_LVL:
    case ESDHC_VENDOR_SPEC:
        break;

    case SDHC_HOSTCTL:
        /*
         * Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL)
         *
         *       7         6     5      4      3      2        1      0
         * |-----------+--------+--------+-----------+----------+---------|
         * | Card      | Card   | Endian | DATA3     | Data     | Led     |
         * | Detect    | Detect | Mode   | as Card   | Transfer | Control |
         * | Signal    | Test   |        | Detection | Width    |         |
         * | Selection | Level  |        | Pin       |          |         |
         * |-----------+--------+--------+-----------+----------+---------|
         *
         * and 0x29
         *
         *  15      10 9    8
         * |----------+------|
         * | Reserved | DMA  |
         * |          | Sel. |
         * |          |      |
         * |----------+------|
         *
         * and here's what SDCHI spec expects those offsets to be:
         *
         * 0x28 (Host Control Register)
         *
         *     7        6         5       4  3      2         1        0
         * |--------+--------+----------+------+--------+----------+---------|
         * | Card   | Card   | Extended | DMA  | High   | Data     | LED     |
         * | Detect | Detect | Data     | Sel. | Speed  | Transfer | Control |
         * | Signal | Test   | Transfer |      | Enable | Width    |         |
         * | Sel.   | Level  | Width    |      |        |          |         |
         * |--------+--------+----------+------+--------+----------+---------|
         *
         * and 0x29 (Power Control Register)
         *
         * |----------------------------------|
         * | Power Control Register           |
         * |                                  |
         * | Description omitted,             |
         * | since it has no analog in ESDHCI |
         * |                                  |
         * |----------------------------------|
         *
         * Since offsets 0x2A and 0x2B should be compatible between
         * both IP specs we only need to reconcile least 16-bit of the
         * word we've been given.
         */

        /*
         * First, save bits 7 6 and 0 since they are identical
         */
1742 1743 1744
        hostctl1 = value & (SDHC_CTRL_LED |
                            SDHC_CTRL_CDTEST_INS |
                            SDHC_CTRL_CDTEST_EN);
1745 1746 1747 1748 1749
        /*
         * Second, split "Data Transfer Width" from bits 2 and 1 in to
         * bits 5 and 1
         */
        if (value & ESDHC_CTRL_8BITBUS) {
1750
            hostctl1 |= SDHC_CTRL_8BITBUS;
1751 1752 1753
        }

        if (value & ESDHC_CTRL_4BITBUS) {
1754
            hostctl1 |= ESDHC_CTRL_4BITBUS;
1755 1756 1757 1758 1759
        }

        /*
         * Third, move DMA select from bits 9 and 8 to bits 4 and 3
         */
1760
        hostctl1 |= SDHC_DMA_TYPE(value >> (8 - 3));
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

        /*
         * Now place the corrected value into low 16-bit of the value
         * we are going to give standard SDHCI write function
         *
         * NOTE: This transformation should be the inverse of what can
         * be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux
         * kernel
         */
        value &= ~UINT16_MAX;
1771
        value |= hostctl1;
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
        value |= (uint16_t)s->pwrcon << 8;

        sdhci_write(opaque, offset, value, size);
        break;

    case ESDHC_MIX_CTRL:
        /*
         * So, when SD/MMC stack in Linux tries to write to "Transfer
         * Mode Register", ESDHC i.MX quirk code will translate it
         * into a write to ESDHC_MIX_CTRL, so we do the opposite in
         * order to get where we started
         *
         * Note that Auto CMD23 Enable bit is located in a wrong place
         * on i.MX, but since it is not used by QEMU we do not care.
         *
         * We don't want to call sdhci_write(.., SDHC_TRNMOD, ...)
         * here becuase it will result in a call to
         * sdhci_send_command(s) which we don't want.
         *
         */
        s->trnmod = value & UINT16_MAX;
        break;
    case SDHC_TRNMOD:
        /*
         * Similar to above, but this time a write to "Command
         * Register" will be translated into a 4-byte write to
         * "Transfer Mode register" where lower 16-bit of value would
         * be set to zero. So what we do is fill those bits with
         * cached value from s->trnmod and let the SDHCI
         * infrastructure handle the rest
         */
        sdhci_write(opaque, offset, val | s->trnmod, size);
        break;
    case SDHC_BLKSIZE:
        /*
         * ESDHCI does not implement "Host SDMA Buffer Boundary", and
         * Linux driver will try to zero this field out which will
         * break the rest of SDHCI emulation.
         *
         * Linux defaults to maximum possible setting (512K boundary)
         * and it seems to be the only option that i.MX IP implements,
         * so we artificially set it to that value.
         */
        val |= 0x7 << 12;
        /* FALLTHROUGH */
    default:
        sdhci_write(opaque, offset, val, size);
        break;
    }
}


static const MemoryRegionOps usdhc_mmio_ops = {
    .read = usdhc_read,
    .write = usdhc_write,
    .valid = {
        .min_access_size = 1,
        .max_access_size = 4,
        .unaligned = false
    },
    .endianness = DEVICE_LITTLE_ENDIAN,
};

static void imx_usdhc_init(Object *obj)
{
    SDHCIState *s = SYSBUS_SDHCI(obj);

    s->io_ops = &usdhc_mmio_ops;
    s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ;
}

static const TypeInfo imx_usdhc_info = {
    .name = TYPE_IMX_USDHC,
    .parent = TYPE_SYSBUS_SDHCI,
    .instance_init = imx_usdhc_init,
};

1849 1850
static void sdhci_register_types(void)
{
1851
    type_register_static(&sdhci_pci_info);
1852
    type_register_static(&sdhci_sysbus_info);
1853
    type_register_static(&sdhci_bus_info);
1854
    type_register_static(&imx_usdhc_info);
1855 1856 1857
}

type_init(sdhci_register_types)