sdhci.c 55.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * SD Association Host Standard Specification v2.0 controller emulation
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 * Mitsyanko Igor <i.mitsyanko@samsung.com>
 * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
 *
 * Based on MMC controller for Samsung S5PC1xx-based board emulation
 * by Alexey Merkulov and Vladimir Monakhov.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, see <http://www.gnu.org/licenses/>.
 */

P
Peter Maydell 已提交
25
#include "qemu/osdep.h"
26
#include "qemu/error-report.h"
27
#include "qapi/error.h"
28
#include "hw/hw.h"
29
#include "sysemu/block-backend.h"
30 31 32 33
#include "sysemu/blockdev.h"
#include "sysemu/dma.h"
#include "qemu/timer.h"
#include "qemu/bitops.h"
34
#include "hw/sd/sdhci.h"
35
#include "sdhci-internal.h"
36
#include "qemu/log.h"
37
#include "qemu/cutils.h"
38
#include "trace.h"
39

40 41 42
#define TYPE_SDHCI_BUS "sdhci-bus"
#define SDHCI_BUS(obj) OBJECT_CHECK(SDBus, (obj), TYPE_SDHCI_BUS)

43 44
#define MASKED_WRITE(reg, mask, val)  (reg = (reg & (mask)) | (val))

45 46
/* Default SD/MMC host controller features information, which will be
 * presented in CAPABILITIES register of generic SD host controller at reset.
47 48 49 50 51 52 53 54 55 56 57 58 59
 *
 * support:
 * - 3.3v and 1.8v voltages
 * - SDMA/ADMA1/ADMA2
 * - high-speed
 * max host controller R/W buffers size: 512B
 * max clock frequency for SDclock: 52 MHz
 * timeout clock frequency: 52 MHz
 *
 * does not support:
 * - 3.0v voltage
 * - 64-bit system bus
 * - suspend/resume
60
 */
61
#define SDHC_CAPAB_REG_DEFAULT 0x057834b4
62

63 64 65 66 67
static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
{
    return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH));
}

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/* return true on error */
static bool sdhci_check_capab_freq_range(SDHCIState *s, const char *desc,
                                         uint8_t freq, Error **errp)
{
    switch (freq) {
    case 0:
    case 10 ... 63:
        break;
    default:
        error_setg(errp, "SD %s clock frequency can have value"
                   "in range 0-63 only", desc);
        return true;
    }
    return false;
}

static void sdhci_check_capareg(SDHCIState *s, Error **errp)
{
    uint64_t msk = s->capareg;
    uint32_t val;
    bool y;

    switch (s->sd_spec_version) {
    case 2: /* default version */

    /* fallthrough */
    case 1:
        y = FIELD_EX64(s->capareg, SDHC_CAPAB, TOUNIT);
        msk = FIELD_DP64(msk, SDHC_CAPAB, TOUNIT, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, TOCLKFREQ);
        trace_sdhci_capareg(y ? "timeout (MHz)" : "Timeout (KHz)", val);
        if (sdhci_check_capab_freq_range(s, "timeout", val, errp)) {
            return;
        }
        msk = FIELD_DP64(msk, SDHC_CAPAB, TOCLKFREQ, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, BASECLKFREQ);
        trace_sdhci_capareg(y ? "base (MHz)" : "Base (KHz)", val);
        if (sdhci_check_capab_freq_range(s, "base", val, errp)) {
            return;
        }
        msk = FIELD_DP64(msk, SDHC_CAPAB, BASECLKFREQ, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH);
        if (val >= 3) {
            error_setg(errp, "block size can be 512, 1024 or 2048 only");
            return;
        }
        trace_sdhci_capareg("max block length", sdhci_get_fifolen(s));
        msk = FIELD_DP64(msk, SDHC_CAPAB, MAXBLOCKLENGTH, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, HIGHSPEED);
        trace_sdhci_capareg("high speed", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, HIGHSPEED, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDMA);
        trace_sdhci_capareg("SDMA", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, SDMA, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, SUSPRESUME);
        trace_sdhci_capareg("suspend/resume", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, SUSPRESUME, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, V33);
        trace_sdhci_capareg("3.3v", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, V33, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, V30);
        trace_sdhci_capareg("3.0v", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, V30, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, V18);
        trace_sdhci_capareg("1.8v", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, V18, 0);
        break;

    default:
        error_setg(errp, "Unsupported spec version: %u", s->sd_spec_version);
    }
    if (msk) {
        qemu_log_mask(LOG_UNIMP,
                      "SDHCI: unknown CAPAB mask: 0x%016" PRIx64 "\n", msk);
    }
}

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
static uint8_t sdhci_slotint(SDHCIState *s)
{
    return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
         ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
         ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
}

static inline void sdhci_update_irq(SDHCIState *s)
{
    qemu_set_irq(s->irq, sdhci_slotint(s));
}

static void sdhci_raise_insertion_irq(void *opaque)
{
    SDHCIState *s = (SDHCIState *)opaque;

    if (s->norintsts & SDHC_NIS_REMOVE) {
171 172
        timer_mod(s->insert_timer,
                       qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
173 174 175 176 177 178 179 180 181
    } else {
        s->prnsts = 0x1ff0000;
        if (s->norintstsen & SDHC_NISEN_INSERT) {
            s->norintsts |= SDHC_NIS_INSERT;
        }
        sdhci_update_irq(s);
    }
}

182
static void sdhci_set_inserted(DeviceState *dev, bool level)
183
{
184
    SDHCIState *s = (SDHCIState *)dev;
185

186
    trace_sdhci_set_inserted(level ? "insert" : "eject");
187 188
    if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
        /* Give target some time to notice card ejection */
189 190
        timer_mod(s->insert_timer,
                       qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    } else {
        if (level) {
            s->prnsts = 0x1ff0000;
            if (s->norintstsen & SDHC_NISEN_INSERT) {
                s->norintsts |= SDHC_NIS_INSERT;
            }
        } else {
            s->prnsts = 0x1fa0000;
            s->pwrcon &= ~SDHC_POWER_ON;
            s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
            if (s->norintstsen & SDHC_NISEN_REMOVE) {
                s->norintsts |= SDHC_NIS_REMOVE;
            }
        }
        sdhci_update_irq(s);
    }
}

209
static void sdhci_set_readonly(DeviceState *dev, bool level)
210
{
211
    SDHCIState *s = (SDHCIState *)dev;
212 213 214 215 216 217 218 219 220 221 222

    if (level) {
        s->prnsts &= ~SDHC_WRITE_PROTECT;
    } else {
        /* Write enabled */
        s->prnsts |= SDHC_WRITE_PROTECT;
    }
}

static void sdhci_reset(SDHCIState *s)
{
223 224
    DeviceState *dev = DEVICE(s);

225 226
    timer_del(s->insert_timer);
    timer_del(s->transfer_timer);
227 228

    /* Set all registers to 0. Capabilities/Version registers are not cleared
229 230 231 232
     * and assumed to always preserve their value, given to them during
     * initialization */
    memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);

233 234 235
    /* Reset other state based on current card insertion/readonly status */
    sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
    sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
236

237 238
    s->data_count = 0;
    s->stopped_state = sdhc_not_stopped;
239
    s->pending_insert_state = false;
240 241
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
static void sdhci_poweron_reset(DeviceState *dev)
{
    /* QOM (ie power-on) reset. This is identical to reset
     * commanded via device register apart from handling of the
     * 'pending insert on powerup' quirk.
     */
    SDHCIState *s = (SDHCIState *)dev;

    sdhci_reset(s);

    if (s->pending_insert_quirk) {
        s->pending_insert_state = true;
    }
}

257
static void sdhci_data_transfer(void *opaque);
258 259 260 261 262 263 264 265 266 267 268

static void sdhci_send_command(SDHCIState *s)
{
    SDRequest request;
    uint8_t response[16];
    int rlen;

    s->errintsts = 0;
    s->acmd12errsts = 0;
    request.cmd = s->cmdreg >> 8;
    request.arg = s->argument;
269 270

    trace_sdhci_send_command(request.cmd, request.arg);
271
    rlen = sdbus_do_command(&s->sdbus, &request, response);
272 273 274 275 276 277

    if (s->cmdreg & SDHC_CMD_RESPONSE) {
        if (rlen == 4) {
            s->rspreg[0] = (response[0] << 24) | (response[1] << 16) |
                           (response[2] << 8)  |  response[3];
            s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
278
            trace_sdhci_response4(s->rspreg[0]);
279 280 281 282 283 284 285 286 287
        } else if (rlen == 16) {
            s->rspreg[0] = (response[11] << 24) | (response[12] << 16) |
                           (response[13] << 8) |  response[14];
            s->rspreg[1] = (response[7] << 24) | (response[8] << 16) |
                           (response[9] << 8)  |  response[10];
            s->rspreg[2] = (response[3] << 24) | (response[4] << 16) |
                           (response[5] << 8)  |  response[6];
            s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
                            response[2];
288 289
            trace_sdhci_response16(s->rspreg[3], s->rspreg[2],
                                   s->rspreg[1], s->rspreg[0]);
290
        } else {
291
            trace_sdhci_error("timeout waiting for command response");
292 293 294 295 296 297
            if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
                s->errintsts |= SDHC_EIS_CMDTIMEOUT;
                s->norintsts |= SDHC_NIS_ERR;
            }
        }

298 299
        if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
            (s->norintstsen & SDHC_NISEN_TRSCMP) &&
300 301 302 303 304 305 306 307 308 309 310 311
            (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
            s->norintsts |= SDHC_NIS_TRSCMP;
        }
    }

    if (s->norintstsen & SDHC_NISEN_CMDCMP) {
        s->norintsts |= SDHC_NIS_CMDCMP;
    }

    sdhci_update_irq(s);

    if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
312
        s->data_count = 0;
313
        sdhci_data_transfer(s);
314 315 316 317 318 319 320 321 322 323 324 325
    }
}

static void sdhci_end_transfer(SDHCIState *s)
{
    /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
    if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
        SDRequest request;
        uint8_t response[16];

        request.cmd = 0x0C;
        request.arg = 0;
326
        trace_sdhci_end_transfer(request.cmd, request.arg);
327
        sdbus_do_command(&s->sdbus, &request, response);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
        /* Auto CMD12 response goes to the upper Response register */
        s->rspreg[3] = (response[0] << 24) | (response[1] << 16) |
                (response[2] << 8) | response[3];
    }

    s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
            SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
            SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);

    if (s->norintstsen & SDHC_NISEN_TRSCMP) {
        s->norintsts |= SDHC_NIS_TRSCMP;
    }

    sdhci_update_irq(s);
}

/*
 * Programmed i/o data transfer
 */
347
#define BLOCK_SIZE_MASK (4 * K_BYTE - 1)
348 349 350 351 352 353 354 355 356 357 358

/* Fill host controller's read buffer with BLKSIZE bytes of data from card */
static void sdhci_read_block_from_card(SDHCIState *s)
{
    int index = 0;

    if ((s->trnmod & SDHC_TRNS_MULTI) &&
            (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
        return;
    }

359
    for (index = 0; index < (s->blksize & BLOCK_SIZE_MASK); index++) {
360
        s->fifo_buffer[index] = sdbus_read_data(&s->sdbus);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    }

    /* New data now available for READ through Buffer Port Register */
    s->prnsts |= SDHC_DATA_AVAILABLE;
    if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
        s->norintsts |= SDHC_NIS_RBUFRDY;
    }

    /* Clear DAT line active status if that was the last block */
    if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
            ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
        s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
    }

    /* If stop at block gap request was set and it's not the last block of
     * data - generate Block Event interrupt */
    if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
            s->blkcnt != 1)    {
        s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
        if (s->norintstsen & SDHC_EISEN_BLKGAP) {
            s->norintsts |= SDHC_EIS_BLKGAP;
        }
    }

    sdhci_update_irq(s);
}

/* Read @size byte of data from host controller @s BUFFER DATA PORT register */
static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
{
    uint32_t value = 0;
    int i;

    /* first check that a valid data exists in host controller input buffer */
    if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
396
        trace_sdhci_error("read from empty buffer");
397 398 399 400 401 402 403
        return 0;
    }

    for (i = 0; i < size; i++) {
        value |= s->fifo_buffer[s->data_count] << i * 8;
        s->data_count++;
        /* check if we've read all valid data (blksize bytes) from buffer */
404
        if ((s->data_count) >= (s->blksize & BLOCK_SIZE_MASK)) {
405
            trace_sdhci_read_dataport(s->data_count);
406 407 408 409 410 411 412 413 414 415 416 417 418
            s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
            s->data_count = 0;  /* next buff read must start at position [0] */

            if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                s->blkcnt--;
            }

            /* if that was the last block of data */
            if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
                ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
                 /* stop at gap request */
                (s->stopped_state == sdhc_gap_read &&
                 !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
419
                sdhci_end_transfer(s);
420
            } else { /* if there are more data, read next block from card */
421
                sdhci_read_block_from_card(s);
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
            }
            break;
        }
    }

    return value;
}

/* Write data from host controller FIFO to card */
static void sdhci_write_block_to_card(SDHCIState *s)
{
    int index = 0;

    if (s->prnsts & SDHC_SPACE_AVAILABLE) {
        if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
            s->norintsts |= SDHC_NIS_WBUFRDY;
        }
        sdhci_update_irq(s);
        return;
    }

    if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
        if (s->blkcnt == 0) {
            return;
        } else {
            s->blkcnt--;
        }
    }

451
    for (index = 0; index < (s->blksize & BLOCK_SIZE_MASK); index++) {
452
        sdbus_write_data(&s->sdbus, s->fifo_buffer[index]);
453 454 455 456 457 458 459 460 461
    }

    /* Next data can be written through BUFFER DATORT register */
    s->prnsts |= SDHC_SPACE_AVAILABLE;

    /* Finish transfer if that was the last block of data */
    if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
            ((s->trnmod & SDHC_TRNS_MULTI) &&
            (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
462
        sdhci_end_transfer(s);
463 464
    } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
        s->norintsts |= SDHC_NIS_WBUFRDY;
465 466 467 468 469 470 471 472 473
    }

    /* Generate Block Gap Event if requested and if not the last block */
    if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
            s->blkcnt > 0) {
        s->prnsts &= ~SDHC_DOING_WRITE;
        if (s->norintstsen & SDHC_EISEN_BLKGAP) {
            s->norintsts |= SDHC_EIS_BLKGAP;
        }
474
        sdhci_end_transfer(s);
475 476 477 478 479 480 481 482 483 484 485 486 487
    }

    sdhci_update_irq(s);
}

/* Write @size bytes of @value data to host controller @s Buffer Data Port
 * register */
static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
{
    unsigned i;

    /* Check that there is free space left in a buffer */
    if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
488
        trace_sdhci_error("Can't write to data buffer: buffer full");
489 490 491 492 493 494 495
        return;
    }

    for (i = 0; i < size; i++) {
        s->fifo_buffer[s->data_count] = value & 0xFF;
        s->data_count++;
        value >>= 8;
496
        if (s->data_count >= (s->blksize & BLOCK_SIZE_MASK)) {
497
            trace_sdhci_write_dataport(s->data_count);
498 499 500
            s->data_count = 0;
            s->prnsts &= ~SDHC_SPACE_AVAILABLE;
            if (s->prnsts & SDHC_DOING_WRITE) {
501
                sdhci_write_block_to_card(s);
502 503 504 505 506 507 508 509 510 511 512 513 514 515
            }
        }
    }
}

/*
 * Single DMA data transfer
 */

/* Multi block SDMA transfer */
static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
{
    bool page_aligned = false;
    unsigned int n, begin;
516 517
    const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
    uint32_t boundary_chk = 1 << (((s->blksize & ~BLOCK_SIZE_MASK) >> 12) + 12);
518 519
    uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);

520 521 522 523 524
    if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) {
        qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n");
        return;
    }

525 526 527 528 529 530 531 532 533 534 535 536 537
    /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
     * possible stop at page boundary if initial address is not page aligned,
     * allow them to work properly */
    if ((s->sdmasysad % boundary_chk) == 0) {
        page_aligned = true;
    }

    if (s->trnmod & SDHC_TRNS_READ) {
        s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
                SDHC_DAT_LINE_ACTIVE;
        while (s->blkcnt) {
            if (s->data_count == 0) {
                for (n = 0; n < block_size; n++) {
538
                    s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
539 540 541 542 543 544 545 546 547 548 549 550 551
                }
            }
            begin = s->data_count;
            if (((boundary_count + begin) < block_size) && page_aligned) {
                s->data_count = boundary_count + begin;
                boundary_count = 0;
             } else {
                s->data_count = block_size;
                boundary_count -= block_size - begin;
                if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                    s->blkcnt--;
                }
            }
552
            dma_memory_write(s->dma_as, s->sdmasysad,
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
                             &s->fifo_buffer[begin], s->data_count - begin);
            s->sdmasysad += s->data_count - begin;
            if (s->data_count == block_size) {
                s->data_count = 0;
            }
            if (page_aligned && boundary_count == 0) {
                break;
            }
        }
    } else {
        s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
                SDHC_DAT_LINE_ACTIVE;
        while (s->blkcnt) {
            begin = s->data_count;
            if (((boundary_count + begin) < block_size) && page_aligned) {
                s->data_count = boundary_count + begin;
                boundary_count = 0;
             } else {
                s->data_count = block_size;
                boundary_count -= block_size - begin;
            }
574
            dma_memory_read(s->dma_as, s->sdmasysad,
575
                            &s->fifo_buffer[begin], s->data_count - begin);
576 577 578
            s->sdmasysad += s->data_count - begin;
            if (s->data_count == block_size) {
                for (n = 0; n < block_size; n++) {
579
                    sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
580 581 582 583 584 585 586 587 588 589 590 591 592
                }
                s->data_count = 0;
                if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                    s->blkcnt--;
                }
            }
            if (page_aligned && boundary_count == 0) {
                break;
            }
        }
    }

    if (s->blkcnt == 0) {
593
        sdhci_end_transfer(s);
594 595 596 597 598 599 600 601 602 603 604 605
    } else {
        if (s->norintstsen & SDHC_NISEN_DMA) {
            s->norintsts |= SDHC_NIS_DMA;
        }
        sdhci_update_irq(s);
    }
}

/* single block SDMA transfer */
static void sdhci_sdma_transfer_single_block(SDHCIState *s)
{
    int n;
606
    uint32_t datacnt = s->blksize & BLOCK_SIZE_MASK;
607 608 609

    if (s->trnmod & SDHC_TRNS_READ) {
        for (n = 0; n < datacnt; n++) {
610
            s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
611
        }
612
        dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
613
    } else {
614
        dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
615
        for (n = 0; n < datacnt; n++) {
616
            sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
617 618
        }
    }
619
    s->blkcnt--;
620

621
    sdhci_end_transfer(s);
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
}

typedef struct ADMADescr {
    hwaddr addr;
    uint16_t length;
    uint8_t attr;
    uint8_t incr;
} ADMADescr;

static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
{
    uint32_t adma1 = 0;
    uint64_t adma2 = 0;
    hwaddr entry_addr = (hwaddr)s->admasysaddr;
    switch (SDHC_DMA_TYPE(s->hostctl)) {
    case SDHC_CTRL_ADMA2_32:
638
        dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma2,
639 640 641 642 643 644 645 646 647 648 649
                        sizeof(adma2));
        adma2 = le64_to_cpu(adma2);
        /* The spec does not specify endianness of descriptor table.
         * We currently assume that it is LE.
         */
        dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
        dscr->length = (uint16_t)extract64(adma2, 16, 16);
        dscr->attr = (uint8_t)extract64(adma2, 0, 7);
        dscr->incr = 8;
        break;
    case SDHC_CTRL_ADMA1_32:
650
        dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma1,
651 652 653 654 655 656 657 658 659 660 661 662
                        sizeof(adma1));
        adma1 = le32_to_cpu(adma1);
        dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
        dscr->attr = (uint8_t)extract32(adma1, 0, 7);
        dscr->incr = 4;
        if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
            dscr->length = (uint16_t)extract32(adma1, 12, 16);
        } else {
            dscr->length = 4096;
        }
        break;
    case SDHC_CTRL_ADMA2_64:
663
        dma_memory_read(s->dma_as, entry_addr,
664
                        (uint8_t *)(&dscr->attr), 1);
665
        dma_memory_read(s->dma_as, entry_addr + 2,
666 667
                        (uint8_t *)(&dscr->length), 2);
        dscr->length = le16_to_cpu(dscr->length);
668
        dma_memory_read(s->dma_as, entry_addr + 4,
669 670 671 672 673 674 675 676 677 678 679 680 681
                        (uint8_t *)(&dscr->addr), 8);
        dscr->attr = le64_to_cpu(dscr->attr);
        dscr->attr &= 0xfffffff8;
        dscr->incr = 12;
        break;
    }
}

/* Advanced DMA data transfer */

static void sdhci_do_adma(SDHCIState *s)
{
    unsigned int n, begin, length;
682
    const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
683
    ADMADescr dscr = {};
684 685 686 687 688 689
    int i;

    for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
        s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;

        get_adma_description(s, &dscr);
690
        trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr);
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

        if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
            /* Indicate that error occurred in ST_FDS state */
            s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
            s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;

            /* Generate ADMA error interrupt */
            if (s->errintstsen & SDHC_EISEN_ADMAERR) {
                s->errintsts |= SDHC_EIS_ADMAERR;
                s->norintsts |= SDHC_NIS_ERR;
            }

            sdhci_update_irq(s);
            return;
        }

        length = dscr.length ? dscr.length : 65536;

        switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
        case SDHC_ADMA_ATTR_ACT_TRAN:  /* data transfer */

            if (s->trnmod & SDHC_TRNS_READ) {
                while (length) {
                    if (s->data_count == 0) {
                        for (n = 0; n < block_size; n++) {
716
                            s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
717 718 719 720 721 722 723 724 725 726
                        }
                    }
                    begin = s->data_count;
                    if ((length + begin) < block_size) {
                        s->data_count = length + begin;
                        length = 0;
                     } else {
                        s->data_count = block_size;
                        length -= block_size - begin;
                    }
727
                    dma_memory_write(s->dma_as, dscr.addr,
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
                                     &s->fifo_buffer[begin],
                                     s->data_count - begin);
                    dscr.addr += s->data_count - begin;
                    if (s->data_count == block_size) {
                        s->data_count = 0;
                        if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                            s->blkcnt--;
                            if (s->blkcnt == 0) {
                                break;
                            }
                        }
                    }
                }
            } else {
                while (length) {
                    begin = s->data_count;
                    if ((length + begin) < block_size) {
                        s->data_count = length + begin;
                        length = 0;
                     } else {
                        s->data_count = block_size;
                        length -= block_size - begin;
                    }
751
                    dma_memory_read(s->dma_as, dscr.addr,
752 753
                                    &s->fifo_buffer[begin],
                                    s->data_count - begin);
754 755 756
                    dscr.addr += s->data_count - begin;
                    if (s->data_count == block_size) {
                        for (n = 0; n < block_size; n++) {
757
                            sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
                        }
                        s->data_count = 0;
                        if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                            s->blkcnt--;
                            if (s->blkcnt == 0) {
                                break;
                            }
                        }
                    }
                }
            }
            s->admasysaddr += dscr.incr;
            break;
        case SDHC_ADMA_ATTR_ACT_LINK:   /* link to next descriptor table */
            s->admasysaddr = dscr.addr;
773
            trace_sdhci_adma("link", s->admasysaddr);
774 775 776 777 778 779
            break;
        default:
            s->admasysaddr += dscr.incr;
            break;
        }

P
Peter Crosthwaite 已提交
780
        if (dscr.attr & SDHC_ADMA_ATTR_INT) {
781
            trace_sdhci_adma("interrupt", s->admasysaddr);
P
Peter Crosthwaite 已提交
782 783 784 785 786 787 788
            if (s->norintstsen & SDHC_NISEN_DMA) {
                s->norintsts |= SDHC_NIS_DMA;
            }

            sdhci_update_irq(s);
        }

789 790 791
        /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
        if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
                    (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
792
            trace_sdhci_adma_transfer_completed();
793 794 795
            if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
                (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
                s->blkcnt != 0)) {
796
                trace_sdhci_error("SD/MMC host ADMA length mismatch");
797 798 799
                s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
                        SDHC_ADMAERR_STATE_ST_TFR;
                if (s->errintstsen & SDHC_EISEN_ADMAERR) {
800
                    trace_sdhci_error("Set ADMA error flag");
801 802 803 804 805 806
                    s->errintsts |= SDHC_EIS_ADMAERR;
                    s->norintsts |= SDHC_NIS_ERR;
                }

                sdhci_update_irq(s);
            }
807
            sdhci_end_transfer(s);
808 809 810 811 812
            return;
        }

    }

P
Peter Maydell 已提交
813
    /* we have unfinished business - reschedule to continue ADMA */
814 815
    timer_mod(s->transfer_timer,
                   qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
816 817 818 819
}

/* Perform data transfer according to controller configuration */

820
static void sdhci_data_transfer(void *opaque)
821
{
822
    SDHCIState *s = (SDHCIState *)opaque;
823 824 825 826 827

    if (s->trnmod & SDHC_TRNS_DMA) {
        switch (SDHC_DMA_TYPE(s->hostctl)) {
        case SDHC_CTRL_SDMA:
            if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
828
                sdhci_sdma_transfer_single_block(s);
829
            } else {
830
                sdhci_sdma_transfer_multi_blocks(s);
831 832 833 834 835
            }

            break;
        case SDHC_CTRL_ADMA1_32:
            if (!(s->capareg & SDHC_CAN_DO_ADMA1)) {
836
                trace_sdhci_error("ADMA1 not supported");
837 838 839
                break;
            }

840
            sdhci_do_adma(s);
841 842 843
            break;
        case SDHC_CTRL_ADMA2_32:
            if (!(s->capareg & SDHC_CAN_DO_ADMA2)) {
844
                trace_sdhci_error("ADMA2 not supported");
845 846 847
                break;
            }

848
            sdhci_do_adma(s);
849 850 851 852
            break;
        case SDHC_CTRL_ADMA2_64:
            if (!(s->capareg & SDHC_CAN_DO_ADMA2) ||
                    !(s->capareg & SDHC_64_BIT_BUS_SUPPORT)) {
853
                trace_sdhci_error("64 bit ADMA not supported");
854 855 856
                break;
            }

857
            sdhci_do_adma(s);
858 859
            break;
        default:
860
            trace_sdhci_error("Unsupported DMA type");
861 862 863
            break;
        }
    } else {
864
        if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
865 866
            s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
                    SDHC_DAT_LINE_ACTIVE;
867
            sdhci_read_block_from_card(s);
868 869 870
        } else {
            s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
                    SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
871
            sdhci_write_block_to_card(s);
872 873 874 875 876 877
        }
    }
}

static bool sdhci_can_issue_command(SDHCIState *s)
{
878
    if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
        (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
        ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
        ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
        !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
        return false;
    }

    return true;
}

/* The Buffer Data Port register must be accessed in sequential and
 * continuous manner */
static inline bool
sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
{
    if ((s->data_count & 0x3) != byte_num) {
895 896
        trace_sdhci_error("Non-sequential access to Buffer Data Port register"
                          "is prohibited\n");
897 898 899 900 901
        return false;
    }
    return true;
}

902
static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
903
{
904
    SDHCIState *s = (SDHCIState *)opaque;
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
    uint32_t ret = 0;

    switch (offset & ~0x3) {
    case SDHC_SYSAD:
        ret = s->sdmasysad;
        break;
    case SDHC_BLKSIZE:
        ret = s->blksize | (s->blkcnt << 16);
        break;
    case SDHC_ARGUMENT:
        ret = s->argument;
        break;
    case SDHC_TRNMOD:
        ret = s->trnmod | (s->cmdreg << 16);
        break;
    case SDHC_RSPREG0 ... SDHC_RSPREG3:
        ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
        break;
    case  SDHC_BDATA:
        if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
925
            ret = sdhci_read_dataport(s, size);
926
            trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
            return ret;
        }
        break;
    case SDHC_PRNSTS:
        ret = s->prnsts;
        break;
    case SDHC_HOSTCTL:
        ret = s->hostctl | (s->pwrcon << 8) | (s->blkgap << 16) |
              (s->wakcon << 24);
        break;
    case SDHC_CLKCON:
        ret = s->clkcon | (s->timeoutcon << 16);
        break;
    case SDHC_NORINTSTS:
        ret = s->norintsts | (s->errintsts << 16);
        break;
    case SDHC_NORINTSTSEN:
        ret = s->norintstsen | (s->errintstsen << 16);
        break;
    case SDHC_NORINTSIGEN:
        ret = s->norintsigen | (s->errintsigen << 16);
        break;
    case SDHC_ACMD12ERRSTS:
        ret = s->acmd12errsts;
        break;
952
    case SDHC_CAPAB:
953 954 955 956
        ret = (uint32_t)s->capareg;
        break;
    case SDHC_CAPAB + 4:
        ret = (uint32_t)(s->capareg >> 32);
957 958
        break;
    case SDHC_MAXCURR:
959 960 961 962
        ret = (uint32_t)s->maxcurr;
        break;
    case SDHC_MAXCURR + 4:
        ret = (uint32_t)(s->maxcurr >> 32);
963 964 965 966 967 968 969 970 971 972 973
        break;
    case SDHC_ADMAERR:
        ret =  s->admaerr;
        break;
    case SDHC_ADMASYSADDR:
        ret = (uint32_t)s->admasysaddr;
        break;
    case SDHC_ADMASYSADDR + 4:
        ret = (uint32_t)(s->admasysaddr >> 32);
        break;
    case SDHC_SLOT_INT_STATUS:
974
        ret = (s->version << 16) | sdhci_slotint(s);
975 976
        break;
    default:
977 978
        qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
                      "not implemented\n", size, offset);
979 980 981 982 983
        break;
    }

    ret >>= (offset & 0x3) * 8;
    ret &= (1ULL << (size * 8)) - 1;
984
    trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
985 986 987 988 989 990 991 992 993 994 995 996 997 998
    return ret;
}

static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
{
    if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
        return;
    }
    s->blkgap = value & SDHC_STOP_AT_GAP_REQ;

    if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
            (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
        if (s->stopped_state == sdhc_gap_read) {
            s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
999
            sdhci_read_block_from_card(s);
1000 1001
        } else {
            s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
1002
            sdhci_write_block_to_card(s);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
        }
        s->stopped_state = sdhc_not_stopped;
    } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
        if (s->prnsts & SDHC_DOING_READ) {
            s->stopped_state = sdhc_gap_read;
        } else if (s->prnsts & SDHC_DOING_WRITE) {
            s->stopped_state = sdhc_gap_write;
        }
    }
}

static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
{
    switch (value) {
    case SDHC_RESET_ALL:
1018
        sdhci_reset(s);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
        break;
    case SDHC_RESET_CMD:
        s->prnsts &= ~SDHC_CMD_INHIBIT;
        s->norintsts &= ~SDHC_NIS_CMDCMP;
        break;
    case SDHC_RESET_DATA:
        s->data_count = 0;
        s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
                SDHC_DOING_READ | SDHC_DOING_WRITE |
                SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
        s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
        s->stopped_state = sdhc_not_stopped;
        s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
                SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
        break;
    }
}

static void
1038
sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1039
{
1040
    SDHCIState *s = (SDHCIState *)opaque;
1041 1042
    unsigned shift =  8 * (offset & 0x3);
    uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
1043
    uint32_t value = val;
1044 1045 1046 1047 1048 1049 1050 1051 1052
    value <<= shift;

    switch (offset & ~0x3) {
    case SDHC_SYSAD:
        s->sdmasysad = (s->sdmasysad & mask) | value;
        MASKED_WRITE(s->sdmasysad, mask, value);
        /* Writing to last byte of sdmasysad might trigger transfer */
        if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
                s->blksize && SDHC_DMA_TYPE(s->hostctl) == SDHC_CTRL_SDMA) {
1053 1054 1055 1056 1057
            if (s->trnmod & SDHC_TRNS_MULTI) {
                sdhci_sdma_transfer_multi_blocks(s);
            } else {
                sdhci_sdma_transfer_single_block(s);
            }
1058 1059 1060 1061 1062 1063 1064
        }
        break;
    case SDHC_BLKSIZE:
        if (!TRANSFERRING_DATA(s->prnsts)) {
            MASKED_WRITE(s->blksize, mask, value);
            MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
        }
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

        /* Limit block size to the maximum buffer size */
        if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
            qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than " \
                          "the maximum buffer 0x%x", __func__, s->blksize,
                          s->buf_maxsz);

            s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
        }

1075 1076 1077 1078 1079 1080 1081
        break;
    case SDHC_ARGUMENT:
        MASKED_WRITE(s->argument, mask, value);
        break;
    case SDHC_TRNMOD:
        /* DMA can be enabled only if it is supported as indicated by
         * capabilities register */
1082
        if (!(s->capareg & R_SDHC_CAPAB_SDMA_MASK)) {
1083 1084
            value &= ~SDHC_TRNS_DMA;
        }
1085
        MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK);
1086 1087 1088
        MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);

        /* Writing to the upper byte of CMDREG triggers SD command generation */
1089
        if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1090 1091 1092
            break;
        }

1093
        sdhci_send_command(s);
1094 1095 1096
        break;
    case  SDHC_BDATA:
        if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1097
            sdhci_write_dataport(s, value >> shift, size);
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
        }
        break;
    case SDHC_HOSTCTL:
        if (!(mask & 0xFF0000)) {
            sdhci_blkgap_write(s, value >> 16);
        }
        MASKED_WRITE(s->hostctl, mask, value);
        MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
        MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
        if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
                !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
            s->pwrcon &= ~SDHC_POWER_ON;
        }
        break;
    case SDHC_CLKCON:
        if (!(mask & 0xFF000000)) {
            sdhci_reset_write(s, value >> 24);
        }
        MASKED_WRITE(s->clkcon, mask, value);
        MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
        if (s->clkcon & SDHC_CLOCK_INT_EN) {
            s->clkcon |= SDHC_CLOCK_INT_STABLE;
        } else {
            s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
        }
        break;
    case SDHC_NORINTSTS:
        if (s->norintstsen & SDHC_NISEN_CARDINT) {
            value &= ~SDHC_NIS_CARDINT;
        }
        s->norintsts &= mask | ~value;
        s->errintsts &= (mask >> 16) | ~(value >> 16);
        if (s->errintsts) {
            s->norintsts |= SDHC_NIS_ERR;
        } else {
            s->norintsts &= ~SDHC_NIS_ERR;
        }
        sdhci_update_irq(s);
        break;
    case SDHC_NORINTSTSEN:
        MASKED_WRITE(s->norintstsen, mask, value);
        MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
        s->norintsts &= s->norintstsen;
        s->errintsts &= s->errintstsen;
        if (s->errintsts) {
            s->norintsts |= SDHC_NIS_ERR;
        } else {
            s->norintsts &= ~SDHC_NIS_ERR;
        }
1147 1148 1149 1150 1151 1152 1153
        /* Quirk for Raspberry Pi: pending card insert interrupt
         * appears when first enabled after power on */
        if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
            assert(s->pending_insert_quirk);
            s->norintsts |= SDHC_NIS_INSERT;
            s->pending_insert_state = false;
        }
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
        sdhci_update_irq(s);
        break;
    case SDHC_NORINTSIGEN:
        MASKED_WRITE(s->norintsigen, mask, value);
        MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
        sdhci_update_irq(s);
        break;
    case SDHC_ADMAERR:
        MASKED_WRITE(s->admaerr, mask, value);
        break;
    case SDHC_ADMASYSADDR:
        s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
                (uint64_t)mask)) | (uint64_t)value;
        break;
    case SDHC_ADMASYSADDR + 4:
        s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
                ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
        break;
    case SDHC_FEAER:
        s->acmd12errsts |= value;
        s->errintsts |= (value >> 16) & s->errintstsen;
        if (s->acmd12errsts) {
            s->errintsts |= SDHC_EIS_CMD12ERR;
        }
        if (s->errintsts) {
            s->norintsts |= SDHC_NIS_ERR;
        }
        sdhci_update_irq(s);
        break;
1183 1184 1185
    case SDHC_ACMD12ERRSTS:
        MASKED_WRITE(s->acmd12errsts, mask, value);
        break;
1186 1187 1188 1189 1190 1191 1192 1193 1194

    case SDHC_CAPAB:
    case SDHC_CAPAB + 4:
    case SDHC_MAXCURR:
    case SDHC_MAXCURR + 4:
        qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx
                      " <- 0x%08x read-only\n", size, offset, value >> shift);
        break;

1195
    default:
1196 1197
        qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x "
                      "not implemented\n", size, offset, value >> shift);
1198 1199
        break;
    }
1200 1201
    trace_sdhci_access("wr", size << 3, offset, "<-",
                       value >> shift, value >> shift);
1202 1203 1204
}

static const MemoryRegionOps sdhci_mmio_ops = {
1205 1206
    .read = sdhci_read,
    .write = sdhci_write,
1207 1208 1209 1210 1211 1212 1213 1214
    .valid = {
        .min_access_size = 1,
        .max_access_size = 4,
        .unaligned = false
    },
    .endianness = DEVICE_LITTLE_ENDIAN,
};

1215 1216
static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp)
{
1217 1218
    Error *local_err = NULL;

1219 1220 1221 1222 1223
    if (s->sd_spec_version != 2) {
        error_setg(errp, "Only Spec v2 is supported");
        return;
    }
    s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1);
1224 1225 1226 1227 1228 1229

    sdhci_check_capareg(s, &local_err);
    if (local_err) {
        error_propagate(errp, local_err);
        return;
    }
1230 1231
}

1232 1233 1234
/* --- qdev common --- */

#define DEFINE_SDHCI_COMMON_PROPERTIES(_state) \
1235 1236 1237 1238
    DEFINE_PROP_UINT8("sd-spec-version", _state, sd_spec_version, 2), \
    \
    /* Capabilities registers provide information on supported
     * features of this specific host controller implementation */ \
1239 1240
    DEFINE_PROP_UINT64("capareg", _state, capareg, SDHC_CAPAB_REG_DEFAULT), \
    DEFINE_PROP_UINT64("maxcurr", _state, maxcurr, 0)
1241

1242
static void sdhci_initfn(SDHCIState *s)
1243
{
1244 1245
    qbus_create_inplace(&s->sdbus, sizeof(s->sdbus),
                        TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
1246

1247
    s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1248
    s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1249 1250

    s->io_ops = &sdhci_mmio_ops;
1251 1252
}

1253
static void sdhci_uninitfn(SDHCIState *s)
1254
{
1255 1256 1257 1258
    timer_del(s->insert_timer);
    timer_free(s->insert_timer);
    timer_del(s->transfer_timer);
    timer_free(s->transfer_timer);
1259

1260 1261
    g_free(s->fifo_buffer);
    s->fifo_buffer = NULL;
1262 1263
}

1264 1265
static void sdhci_common_realize(SDHCIState *s, Error **errp)
{
1266 1267 1268 1269 1270 1271 1272
    Error *local_err = NULL;

    sdhci_init_readonly_registers(s, &local_err);
    if (local_err) {
        error_propagate(errp, local_err);
        return;
    }
1273 1274 1275 1276 1277 1278 1279
    s->buf_maxsz = sdhci_get_fifolen(s);
    s->fifo_buffer = g_malloc0(s->buf_maxsz);

    memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
                          SDHC_REGISTERS_MAP_SIZE);
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
static void sdhci_common_unrealize(SDHCIState *s, Error **errp)
{
    /* This function is expected to be called only once for each class:
     * - SysBus:    via DeviceClass->unrealize(),
     * - PCI:       via PCIDeviceClass->exit().
     * However to avoid double-free and/or use-after-free we still nullify
     * this variable (better safe than sorry!). */
    g_free(s->fifo_buffer);
    s->fifo_buffer = NULL;
}

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
static bool sdhci_pending_insert_vmstate_needed(void *opaque)
{
    SDHCIState *s = opaque;

    return s->pending_insert_state;
}

static const VMStateDescription sdhci_pending_insert_vmstate = {
    .name = "sdhci/pending-insert",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = sdhci_pending_insert_vmstate_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(pending_insert_state, SDHCIState),
        VMSTATE_END_OF_LIST()
    },
};

1309 1310 1311 1312
const VMStateDescription sdhci_vmstate = {
    .name = "sdhci",
    .version_id = 1,
    .minimum_version_id = 1,
1313
    .fields = (VMStateField[]) {
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
        VMSTATE_UINT32(sdmasysad, SDHCIState),
        VMSTATE_UINT16(blksize, SDHCIState),
        VMSTATE_UINT16(blkcnt, SDHCIState),
        VMSTATE_UINT32(argument, SDHCIState),
        VMSTATE_UINT16(trnmod, SDHCIState),
        VMSTATE_UINT16(cmdreg, SDHCIState),
        VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
        VMSTATE_UINT32(prnsts, SDHCIState),
        VMSTATE_UINT8(hostctl, SDHCIState),
        VMSTATE_UINT8(pwrcon, SDHCIState),
        VMSTATE_UINT8(blkgap, SDHCIState),
        VMSTATE_UINT8(wakcon, SDHCIState),
        VMSTATE_UINT16(clkcon, SDHCIState),
        VMSTATE_UINT8(timeoutcon, SDHCIState),
        VMSTATE_UINT8(admaerr, SDHCIState),
        VMSTATE_UINT16(norintsts, SDHCIState),
        VMSTATE_UINT16(errintsts, SDHCIState),
        VMSTATE_UINT16(norintstsen, SDHCIState),
        VMSTATE_UINT16(errintstsen, SDHCIState),
        VMSTATE_UINT16(norintsigen, SDHCIState),
        VMSTATE_UINT16(errintsigen, SDHCIState),
        VMSTATE_UINT16(acmd12errsts, SDHCIState),
        VMSTATE_UINT16(data_count, SDHCIState),
        VMSTATE_UINT64(admasysaddr, SDHCIState),
        VMSTATE_UINT8(stopped_state, SDHCIState),
1339
        VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
1340 1341
        VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
        VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1342
        VMSTATE_END_OF_LIST()
1343 1344 1345 1346 1347
    },
    .subsections = (const VMStateDescription*[]) {
        &sdhci_pending_insert_vmstate,
        NULL
    },
1348 1349
};

1350 1351 1352 1353 1354 1355 1356 1357 1358
static void sdhci_common_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
    dc->vmsd = &sdhci_vmstate;
    dc->reset = sdhci_poweron_reset;
}

1359 1360
/* --- qdev PCI --- */

1361
static Property sdhci_pci_properties[] = {
1362
    DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1363 1364 1365
    DEFINE_PROP_END_OF_LIST(),
};

1366
static void sdhci_pci_realize(PCIDevice *dev, Error **errp)
1367 1368
{
    SDHCIState *s = PCI_SDHCI(dev);
1369
    Error *local_err = NULL;
1370 1371 1372

    sdhci_initfn(s);
    sdhci_common_realize(s, errp);
1373 1374
    if (local_err) {
        error_propagate(errp, local_err);
1375 1376 1377
        return;
    }

1378 1379 1380
    dev->config[PCI_CLASS_PROG] = 0x01; /* Standard Host supported DMA */
    dev->config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin A */
    s->irq = pci_allocate_irq(dev);
1381 1382
    s->dma_as = pci_get_address_space(dev);
    pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->iomem);
1383 1384 1385 1386 1387
}

static void sdhci_pci_exit(PCIDevice *dev)
{
    SDHCIState *s = PCI_SDHCI(dev);
1388 1389

    sdhci_common_unrealize(s, &error_abort);
1390 1391 1392 1393 1394 1395 1396 1397
    sdhci_uninitfn(s);
}

static void sdhci_pci_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);

1398
    k->realize = sdhci_pci_realize;
1399 1400 1401 1402
    k->exit = sdhci_pci_exit;
    k->vendor_id = PCI_VENDOR_ID_REDHAT;
    k->device_id = PCI_DEVICE_ID_REDHAT_SDHCI;
    k->class_id = PCI_CLASS_SYSTEM_SDHCI;
1403
    dc->props = sdhci_pci_properties;
1404 1405

    sdhci_common_class_init(klass, data);
1406 1407 1408 1409 1410 1411 1412
}

static const TypeInfo sdhci_pci_info = {
    .name = TYPE_PCI_SDHCI,
    .parent = TYPE_PCI_DEVICE,
    .instance_size = sizeof(SDHCIState),
    .class_init = sdhci_pci_class_init,
1413 1414 1415 1416
    .interfaces = (InterfaceInfo[]) {
        { INTERFACE_CONVENTIONAL_PCI_DEVICE },
        { },
    },
1417 1418
};

1419 1420
/* --- qdev SysBus --- */

1421
static Property sdhci_sysbus_properties[] = {
1422
    DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1423 1424
    DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
                     false),
1425 1426
    DEFINE_PROP_LINK("dma", SDHCIState,
                     dma_mr, TYPE_MEMORY_REGION, MemoryRegion *),
1427 1428 1429
    DEFINE_PROP_END_OF_LIST(),
};

1430 1431 1432
static void sdhci_sysbus_init(Object *obj)
{
    SDHCIState *s = SYSBUS_SDHCI(obj);
1433

1434
    sdhci_initfn(s);
1435 1436 1437 1438 1439
}

static void sdhci_sysbus_finalize(Object *obj)
{
    SDHCIState *s = SYSBUS_SDHCI(obj);
1440 1441 1442 1443 1444

    if (s->dma_mr) {
        object_unparent(OBJECT(s->dma_mr));
    }

1445 1446 1447 1448
    sdhci_uninitfn(s);
}

static void sdhci_sysbus_realize(DeviceState *dev, Error ** errp)
1449
{
1450
    SDHCIState *s = SYSBUS_SDHCI(dev);
1451
    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1452
    Error *local_err = NULL;
1453

1454
    sdhci_common_realize(s, errp);
1455 1456
    if (local_err) {
        error_propagate(errp, local_err);
1457 1458 1459
        return;
    }

1460
    if (s->dma_mr) {
1461
        s->dma_as = &s->sysbus_dma_as;
1462 1463 1464 1465 1466
        address_space_init(s->dma_as, s->dma_mr, "sdhci-dma");
    } else {
        /* use system_memory() if property "dma" not set */
        s->dma_as = &address_space_memory;
    }
1467

1468
    sysbus_init_irq(sbd, &s->irq);
1469 1470 1471 1472

    memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci",
            SDHC_REGISTERS_MAP_SIZE);

1473 1474 1475
    sysbus_init_mmio(sbd, &s->iomem);
}

1476 1477 1478 1479 1480
static void sdhci_sysbus_unrealize(DeviceState *dev, Error **errp)
{
    SDHCIState *s = SYSBUS_SDHCI(dev);

    sdhci_common_unrealize(s, &error_abort);
1481 1482 1483 1484

     if (s->dma_mr) {
        address_space_destroy(s->dma_as);
    }
1485 1486
}

1487
static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1488 1489 1490
{
    DeviceClass *dc = DEVICE_CLASS(klass);

1491
    dc->props = sdhci_sysbus_properties;
1492
    dc->realize = sdhci_sysbus_realize;
1493
    dc->unrealize = sdhci_sysbus_unrealize;
1494 1495

    sdhci_common_class_init(klass, data);
1496 1497
}

1498 1499
static const TypeInfo sdhci_sysbus_info = {
    .name = TYPE_SYSBUS_SDHCI,
1500 1501
    .parent = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(SDHCIState),
1502 1503 1504
    .instance_init = sdhci_sysbus_init,
    .instance_finalize = sdhci_sysbus_finalize,
    .class_init = sdhci_sysbus_class_init,
1505 1506
};

1507 1508
/* --- qdev bus master --- */

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
static void sdhci_bus_class_init(ObjectClass *klass, void *data)
{
    SDBusClass *sbc = SD_BUS_CLASS(klass);

    sbc->set_inserted = sdhci_set_inserted;
    sbc->set_readonly = sdhci_set_readonly;
}

static const TypeInfo sdhci_bus_info = {
    .name = TYPE_SDHCI_BUS,
    .parent = TYPE_SD_BUS,
    .instance_size = sizeof(SDBus),
    .class_init = sdhci_bus_class_init,
};

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size)
{
    SDHCIState *s = SYSBUS_SDHCI(opaque);
    uint32_t ret;
    uint16_t hostctl;

    switch (offset) {
    default:
        return sdhci_read(opaque, offset, size);

    case SDHC_HOSTCTL:
        /*
         * For a detailed explanation on the following bit
         * manipulation code see comments in a similar part of
         * usdhc_write()
         */
        hostctl = SDHC_DMA_TYPE(s->hostctl) << (8 - 3);

        if (s->hostctl & SDHC_CTRL_8BITBUS) {
            hostctl |= ESDHC_CTRL_8BITBUS;
        }

        if (s->hostctl & SDHC_CTRL_4BITBUS) {
            hostctl |= ESDHC_CTRL_4BITBUS;
        }

        ret  = hostctl;
        ret |= (uint32_t)s->blkgap << 16;
        ret |= (uint32_t)s->wakcon << 24;

        break;

    case ESDHC_DLL_CTRL:
    case ESDHC_TUNE_CTRL_STATUS:
    case ESDHC_UNDOCUMENTED_REG27:
    case ESDHC_TUNING_CTRL:
    case ESDHC_VENDOR_SPEC:
    case ESDHC_MIX_CTRL:
    case ESDHC_WTMK_LVL:
        ret = 0;
        break;
    }

    return ret;
}

static void
usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
{
    SDHCIState *s = SYSBUS_SDHCI(opaque);
    uint8_t hostctl;
    uint32_t value = (uint32_t)val;

    switch (offset) {
    case ESDHC_DLL_CTRL:
    case ESDHC_TUNE_CTRL_STATUS:
    case ESDHC_UNDOCUMENTED_REG27:
    case ESDHC_TUNING_CTRL:
    case ESDHC_WTMK_LVL:
    case ESDHC_VENDOR_SPEC:
        break;

    case SDHC_HOSTCTL:
        /*
         * Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL)
         *
         *       7         6     5      4      3      2        1      0
         * |-----------+--------+--------+-----------+----------+---------|
         * | Card      | Card   | Endian | DATA3     | Data     | Led     |
         * | Detect    | Detect | Mode   | as Card   | Transfer | Control |
         * | Signal    | Test   |        | Detection | Width    |         |
         * | Selection | Level  |        | Pin       |          |         |
         * |-----------+--------+--------+-----------+----------+---------|
         *
         * and 0x29
         *
         *  15      10 9    8
         * |----------+------|
         * | Reserved | DMA  |
         * |          | Sel. |
         * |          |      |
         * |----------+------|
         *
         * and here's what SDCHI spec expects those offsets to be:
         *
         * 0x28 (Host Control Register)
         *
         *     7        6         5       4  3      2         1        0
         * |--------+--------+----------+------+--------+----------+---------|
         * | Card   | Card   | Extended | DMA  | High   | Data     | LED     |
         * | Detect | Detect | Data     | Sel. | Speed  | Transfer | Control |
         * | Signal | Test   | Transfer |      | Enable | Width    |         |
         * | Sel.   | Level  | Width    |      |        |          |         |
         * |--------+--------+----------+------+--------+----------+---------|
         *
         * and 0x29 (Power Control Register)
         *
         * |----------------------------------|
         * | Power Control Register           |
         * |                                  |
         * | Description omitted,             |
         * | since it has no analog in ESDHCI |
         * |                                  |
         * |----------------------------------|
         *
         * Since offsets 0x2A and 0x2B should be compatible between
         * both IP specs we only need to reconcile least 16-bit of the
         * word we've been given.
         */

        /*
         * First, save bits 7 6 and 0 since they are identical
         */
        hostctl = value & (SDHC_CTRL_LED |
                           SDHC_CTRL_CDTEST_INS |
                           SDHC_CTRL_CDTEST_EN);
        /*
         * Second, split "Data Transfer Width" from bits 2 and 1 in to
         * bits 5 and 1
         */
        if (value & ESDHC_CTRL_8BITBUS) {
            hostctl |= SDHC_CTRL_8BITBUS;
        }

        if (value & ESDHC_CTRL_4BITBUS) {
            hostctl |= ESDHC_CTRL_4BITBUS;
        }

        /*
         * Third, move DMA select from bits 9 and 8 to bits 4 and 3
         */
        hostctl |= SDHC_DMA_TYPE(value >> (8 - 3));

        /*
         * Now place the corrected value into low 16-bit of the value
         * we are going to give standard SDHCI write function
         *
         * NOTE: This transformation should be the inverse of what can
         * be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux
         * kernel
         */
        value &= ~UINT16_MAX;
        value |= hostctl;
        value |= (uint16_t)s->pwrcon << 8;

        sdhci_write(opaque, offset, value, size);
        break;

    case ESDHC_MIX_CTRL:
        /*
         * So, when SD/MMC stack in Linux tries to write to "Transfer
         * Mode Register", ESDHC i.MX quirk code will translate it
         * into a write to ESDHC_MIX_CTRL, so we do the opposite in
         * order to get where we started
         *
         * Note that Auto CMD23 Enable bit is located in a wrong place
         * on i.MX, but since it is not used by QEMU we do not care.
         *
         * We don't want to call sdhci_write(.., SDHC_TRNMOD, ...)
         * here becuase it will result in a call to
         * sdhci_send_command(s) which we don't want.
         *
         */
        s->trnmod = value & UINT16_MAX;
        break;
    case SDHC_TRNMOD:
        /*
         * Similar to above, but this time a write to "Command
         * Register" will be translated into a 4-byte write to
         * "Transfer Mode register" where lower 16-bit of value would
         * be set to zero. So what we do is fill those bits with
         * cached value from s->trnmod and let the SDHCI
         * infrastructure handle the rest
         */
        sdhci_write(opaque, offset, val | s->trnmod, size);
        break;
    case SDHC_BLKSIZE:
        /*
         * ESDHCI does not implement "Host SDMA Buffer Boundary", and
         * Linux driver will try to zero this field out which will
         * break the rest of SDHCI emulation.
         *
         * Linux defaults to maximum possible setting (512K boundary)
         * and it seems to be the only option that i.MX IP implements,
         * so we artificially set it to that value.
         */
        val |= 0x7 << 12;
        /* FALLTHROUGH */
    default:
        sdhci_write(opaque, offset, val, size);
        break;
    }
}


static const MemoryRegionOps usdhc_mmio_ops = {
    .read = usdhc_read,
    .write = usdhc_write,
    .valid = {
        .min_access_size = 1,
        .max_access_size = 4,
        .unaligned = false
    },
    .endianness = DEVICE_LITTLE_ENDIAN,
};

static void imx_usdhc_init(Object *obj)
{
    SDHCIState *s = SYSBUS_SDHCI(obj);

    s->io_ops = &usdhc_mmio_ops;
    s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ;
}

static const TypeInfo imx_usdhc_info = {
    .name = TYPE_IMX_USDHC,
    .parent = TYPE_SYSBUS_SDHCI,
    .instance_init = imx_usdhc_init,
};

1744 1745
static void sdhci_register_types(void)
{
1746
    type_register_static(&sdhci_pci_info);
1747
    type_register_static(&sdhci_sysbus_info);
1748
    type_register_static(&sdhci_bus_info);
1749
    type_register_static(&imx_usdhc_info);
1750 1751 1752
}

type_init(sdhci_register_types)