sdhci.c 52.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * SD Association Host Standard Specification v2.0 controller emulation
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 * Mitsyanko Igor <i.mitsyanko@samsung.com>
 * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
 *
 * Based on MMC controller for Samsung S5PC1xx-based board emulation
 * by Alexey Merkulov and Vladimir Monakhov.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, see <http://www.gnu.org/licenses/>.
 */

P
Peter Maydell 已提交
25
#include "qemu/osdep.h"
26
#include "qapi/error.h"
27
#include "hw/hw.h"
28
#include "sysemu/block-backend.h"
29 30 31 32
#include "sysemu/blockdev.h"
#include "sysemu/dma.h"
#include "qemu/timer.h"
#include "qemu/bitops.h"
33
#include "hw/sd/sdhci.h"
34
#include "sdhci-internal.h"
35
#include "qemu/log.h"
36
#include "trace.h"
37

38 39 40
#define TYPE_SDHCI_BUS "sdhci-bus"
#define SDHCI_BUS(obj) OBJECT_CHECK(SDBus, (obj), TYPE_SDHCI_BUS)

41 42
#define MASKED_WRITE(reg, mask, val)  (reg = (reg & (mask)) | (val))

43 44
/* Default SD/MMC host controller features information, which will be
 * presented in CAPABILITIES register of generic SD host controller at reset.
45 46 47 48 49 50 51 52 53 54 55 56 57
 *
 * support:
 * - 3.3v and 1.8v voltages
 * - SDMA/ADMA1/ADMA2
 * - high-speed
 * max host controller R/W buffers size: 512B
 * max clock frequency for SDclock: 52 MHz
 * timeout clock frequency: 52 MHz
 *
 * does not support:
 * - 3.0v voltage
 * - 64-bit system bus
 * - suspend/resume
58
 */
59
#define SDHC_CAPAB_REG_DEFAULT 0x057834b4
60

61 62 63 64 65
static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
{
    return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH));
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static uint8_t sdhci_slotint(SDHCIState *s)
{
    return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
         ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
         ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
}

static inline void sdhci_update_irq(SDHCIState *s)
{
    qemu_set_irq(s->irq, sdhci_slotint(s));
}

static void sdhci_raise_insertion_irq(void *opaque)
{
    SDHCIState *s = (SDHCIState *)opaque;

    if (s->norintsts & SDHC_NIS_REMOVE) {
83 84
        timer_mod(s->insert_timer,
                       qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
85 86 87 88 89 90 91 92 93
    } else {
        s->prnsts = 0x1ff0000;
        if (s->norintstsen & SDHC_NISEN_INSERT) {
            s->norintsts |= SDHC_NIS_INSERT;
        }
        sdhci_update_irq(s);
    }
}

94
static void sdhci_set_inserted(DeviceState *dev, bool level)
95
{
96
    SDHCIState *s = (SDHCIState *)dev;
97

98
    trace_sdhci_set_inserted(level ? "insert" : "eject");
99 100
    if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
        /* Give target some time to notice card ejection */
101 102
        timer_mod(s->insert_timer,
                       qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    } else {
        if (level) {
            s->prnsts = 0x1ff0000;
            if (s->norintstsen & SDHC_NISEN_INSERT) {
                s->norintsts |= SDHC_NIS_INSERT;
            }
        } else {
            s->prnsts = 0x1fa0000;
            s->pwrcon &= ~SDHC_POWER_ON;
            s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
            if (s->norintstsen & SDHC_NISEN_REMOVE) {
                s->norintsts |= SDHC_NIS_REMOVE;
            }
        }
        sdhci_update_irq(s);
    }
}

121
static void sdhci_set_readonly(DeviceState *dev, bool level)
122
{
123
    SDHCIState *s = (SDHCIState *)dev;
124 125 126 127 128 129 130 131 132 133 134

    if (level) {
        s->prnsts &= ~SDHC_WRITE_PROTECT;
    } else {
        /* Write enabled */
        s->prnsts |= SDHC_WRITE_PROTECT;
    }
}

static void sdhci_reset(SDHCIState *s)
{
135 136
    DeviceState *dev = DEVICE(s);

137 138
    timer_del(s->insert_timer);
    timer_del(s->transfer_timer);
139 140

    /* Set all registers to 0. Capabilities/Version registers are not cleared
141 142 143 144
     * and assumed to always preserve their value, given to them during
     * initialization */
    memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);

145 146 147
    /* Reset other state based on current card insertion/readonly status */
    sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
    sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
148

149 150
    s->data_count = 0;
    s->stopped_state = sdhc_not_stopped;
151
    s->pending_insert_state = false;
152 153
}

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
static void sdhci_poweron_reset(DeviceState *dev)
{
    /* QOM (ie power-on) reset. This is identical to reset
     * commanded via device register apart from handling of the
     * 'pending insert on powerup' quirk.
     */
    SDHCIState *s = (SDHCIState *)dev;

    sdhci_reset(s);

    if (s->pending_insert_quirk) {
        s->pending_insert_state = true;
    }
}

169
static void sdhci_data_transfer(void *opaque);
170 171 172 173 174 175 176 177 178 179 180

static void sdhci_send_command(SDHCIState *s)
{
    SDRequest request;
    uint8_t response[16];
    int rlen;

    s->errintsts = 0;
    s->acmd12errsts = 0;
    request.cmd = s->cmdreg >> 8;
    request.arg = s->argument;
181 182

    trace_sdhci_send_command(request.cmd, request.arg);
183
    rlen = sdbus_do_command(&s->sdbus, &request, response);
184 185 186 187 188 189

    if (s->cmdreg & SDHC_CMD_RESPONSE) {
        if (rlen == 4) {
            s->rspreg[0] = (response[0] << 24) | (response[1] << 16) |
                           (response[2] << 8)  |  response[3];
            s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
190
            trace_sdhci_response4(s->rspreg[0]);
191 192 193 194 195 196 197 198 199
        } else if (rlen == 16) {
            s->rspreg[0] = (response[11] << 24) | (response[12] << 16) |
                           (response[13] << 8) |  response[14];
            s->rspreg[1] = (response[7] << 24) | (response[8] << 16) |
                           (response[9] << 8)  |  response[10];
            s->rspreg[2] = (response[3] << 24) | (response[4] << 16) |
                           (response[5] << 8)  |  response[6];
            s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
                            response[2];
200 201
            trace_sdhci_response16(s->rspreg[3], s->rspreg[2],
                                   s->rspreg[1], s->rspreg[0]);
202
        } else {
203
            trace_sdhci_error("timeout waiting for command response");
204 205 206 207 208 209
            if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
                s->errintsts |= SDHC_EIS_CMDTIMEOUT;
                s->norintsts |= SDHC_NIS_ERR;
            }
        }

210 211
        if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
            (s->norintstsen & SDHC_NISEN_TRSCMP) &&
212 213 214 215 216 217 218 219 220 221 222 223
            (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
            s->norintsts |= SDHC_NIS_TRSCMP;
        }
    }

    if (s->norintstsen & SDHC_NISEN_CMDCMP) {
        s->norintsts |= SDHC_NIS_CMDCMP;
    }

    sdhci_update_irq(s);

    if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
224
        s->data_count = 0;
225
        sdhci_data_transfer(s);
226 227 228 229 230 231 232 233 234 235 236 237
    }
}

static void sdhci_end_transfer(SDHCIState *s)
{
    /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
    if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
        SDRequest request;
        uint8_t response[16];

        request.cmd = 0x0C;
        request.arg = 0;
238
        trace_sdhci_end_transfer(request.cmd, request.arg);
239
        sdbus_do_command(&s->sdbus, &request, response);
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        /* Auto CMD12 response goes to the upper Response register */
        s->rspreg[3] = (response[0] << 24) | (response[1] << 16) |
                (response[2] << 8) | response[3];
    }

    s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
            SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
            SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);

    if (s->norintstsen & SDHC_NISEN_TRSCMP) {
        s->norintsts |= SDHC_NIS_TRSCMP;
    }

    sdhci_update_irq(s);
}

/*
 * Programmed i/o data transfer
 */

/* Fill host controller's read buffer with BLKSIZE bytes of data from card */
static void sdhci_read_block_from_card(SDHCIState *s)
{
    int index = 0;

    if ((s->trnmod & SDHC_TRNS_MULTI) &&
            (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
        return;
    }

    for (index = 0; index < (s->blksize & 0x0fff); index++) {
271
        s->fifo_buffer[index] = sdbus_read_data(&s->sdbus);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    }

    /* New data now available for READ through Buffer Port Register */
    s->prnsts |= SDHC_DATA_AVAILABLE;
    if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
        s->norintsts |= SDHC_NIS_RBUFRDY;
    }

    /* Clear DAT line active status if that was the last block */
    if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
            ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
        s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
    }

    /* If stop at block gap request was set and it's not the last block of
     * data - generate Block Event interrupt */
    if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
            s->blkcnt != 1)    {
        s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
        if (s->norintstsen & SDHC_EISEN_BLKGAP) {
            s->norintsts |= SDHC_EIS_BLKGAP;
        }
    }

    sdhci_update_irq(s);
}

/* Read @size byte of data from host controller @s BUFFER DATA PORT register */
static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
{
    uint32_t value = 0;
    int i;

    /* first check that a valid data exists in host controller input buffer */
    if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
307
        trace_sdhci_error("read from empty buffer");
308 309 310 311 312 313 314 315
        return 0;
    }

    for (i = 0; i < size; i++) {
        value |= s->fifo_buffer[s->data_count] << i * 8;
        s->data_count++;
        /* check if we've read all valid data (blksize bytes) from buffer */
        if ((s->data_count) >= (s->blksize & 0x0fff)) {
316
            trace_sdhci_read_dataport(s->data_count);
317 318 319 320 321 322 323 324 325 326 327 328 329
            s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
            s->data_count = 0;  /* next buff read must start at position [0] */

            if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                s->blkcnt--;
            }

            /* if that was the last block of data */
            if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
                ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
                 /* stop at gap request */
                (s->stopped_state == sdhc_gap_read &&
                 !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
330
                sdhci_end_transfer(s);
331
            } else { /* if there are more data, read next block from card */
332
                sdhci_read_block_from_card(s);
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
            }
            break;
        }
    }

    return value;
}

/* Write data from host controller FIFO to card */
static void sdhci_write_block_to_card(SDHCIState *s)
{
    int index = 0;

    if (s->prnsts & SDHC_SPACE_AVAILABLE) {
        if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
            s->norintsts |= SDHC_NIS_WBUFRDY;
        }
        sdhci_update_irq(s);
        return;
    }

    if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
        if (s->blkcnt == 0) {
            return;
        } else {
            s->blkcnt--;
        }
    }

    for (index = 0; index < (s->blksize & 0x0fff); index++) {
363
        sdbus_write_data(&s->sdbus, s->fifo_buffer[index]);
364 365 366 367 368 369 370 371 372
    }

    /* Next data can be written through BUFFER DATORT register */
    s->prnsts |= SDHC_SPACE_AVAILABLE;

    /* Finish transfer if that was the last block of data */
    if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
            ((s->trnmod & SDHC_TRNS_MULTI) &&
            (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
373
        sdhci_end_transfer(s);
374 375
    } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
        s->norintsts |= SDHC_NIS_WBUFRDY;
376 377 378 379 380 381 382 383 384
    }

    /* Generate Block Gap Event if requested and if not the last block */
    if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
            s->blkcnt > 0) {
        s->prnsts &= ~SDHC_DOING_WRITE;
        if (s->norintstsen & SDHC_EISEN_BLKGAP) {
            s->norintsts |= SDHC_EIS_BLKGAP;
        }
385
        sdhci_end_transfer(s);
386 387 388 389 390 391 392 393 394 395 396 397 398
    }

    sdhci_update_irq(s);
}

/* Write @size bytes of @value data to host controller @s Buffer Data Port
 * register */
static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
{
    unsigned i;

    /* Check that there is free space left in a buffer */
    if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
399
        trace_sdhci_error("Can't write to data buffer: buffer full");
400 401 402 403 404 405 406 407
        return;
    }

    for (i = 0; i < size; i++) {
        s->fifo_buffer[s->data_count] = value & 0xFF;
        s->data_count++;
        value >>= 8;
        if (s->data_count >= (s->blksize & 0x0fff)) {
408
            trace_sdhci_write_dataport(s->data_count);
409 410 411
            s->data_count = 0;
            s->prnsts &= ~SDHC_SPACE_AVAILABLE;
            if (s->prnsts & SDHC_DOING_WRITE) {
412
                sdhci_write_block_to_card(s);
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
            }
        }
    }
}

/*
 * Single DMA data transfer
 */

/* Multi block SDMA transfer */
static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
{
    bool page_aligned = false;
    unsigned int n, begin;
    const uint16_t block_size = s->blksize & 0x0fff;
    uint32_t boundary_chk = 1 << (((s->blksize & 0xf000) >> 12) + 12);
    uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);

431 432 433 434 435
    if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) {
        qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n");
        return;
    }

436 437 438 439 440 441 442 443 444 445 446 447 448
    /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
     * possible stop at page boundary if initial address is not page aligned,
     * allow them to work properly */
    if ((s->sdmasysad % boundary_chk) == 0) {
        page_aligned = true;
    }

    if (s->trnmod & SDHC_TRNS_READ) {
        s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
                SDHC_DAT_LINE_ACTIVE;
        while (s->blkcnt) {
            if (s->data_count == 0) {
                for (n = 0; n < block_size; n++) {
449
                    s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
450 451 452 453 454 455 456 457 458 459 460 461 462
                }
            }
            begin = s->data_count;
            if (((boundary_count + begin) < block_size) && page_aligned) {
                s->data_count = boundary_count + begin;
                boundary_count = 0;
             } else {
                s->data_count = block_size;
                boundary_count -= block_size - begin;
                if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                    s->blkcnt--;
                }
            }
463
            dma_memory_write(s->dma_as, s->sdmasysad,
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
                             &s->fifo_buffer[begin], s->data_count - begin);
            s->sdmasysad += s->data_count - begin;
            if (s->data_count == block_size) {
                s->data_count = 0;
            }
            if (page_aligned && boundary_count == 0) {
                break;
            }
        }
    } else {
        s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
                SDHC_DAT_LINE_ACTIVE;
        while (s->blkcnt) {
            begin = s->data_count;
            if (((boundary_count + begin) < block_size) && page_aligned) {
                s->data_count = boundary_count + begin;
                boundary_count = 0;
             } else {
                s->data_count = block_size;
                boundary_count -= block_size - begin;
            }
485
            dma_memory_read(s->dma_as, s->sdmasysad,
486
                            &s->fifo_buffer[begin], s->data_count - begin);
487 488 489
            s->sdmasysad += s->data_count - begin;
            if (s->data_count == block_size) {
                for (n = 0; n < block_size; n++) {
490
                    sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
491 492 493 494 495 496 497 498 499 500 501 502 503
                }
                s->data_count = 0;
                if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                    s->blkcnt--;
                }
            }
            if (page_aligned && boundary_count == 0) {
                break;
            }
        }
    }

    if (s->blkcnt == 0) {
504
        sdhci_end_transfer(s);
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    } else {
        if (s->norintstsen & SDHC_NISEN_DMA) {
            s->norintsts |= SDHC_NIS_DMA;
        }
        sdhci_update_irq(s);
    }
}

/* single block SDMA transfer */
static void sdhci_sdma_transfer_single_block(SDHCIState *s)
{
    int n;
    uint32_t datacnt = s->blksize & 0x0fff;

    if (s->trnmod & SDHC_TRNS_READ) {
        for (n = 0; n < datacnt; n++) {
521
            s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
522
        }
523
        dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
524
    } else {
525
        dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
526
        for (n = 0; n < datacnt; n++) {
527
            sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
528 529
        }
    }
530
    s->blkcnt--;
531

532
    sdhci_end_transfer(s);
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
}

typedef struct ADMADescr {
    hwaddr addr;
    uint16_t length;
    uint8_t attr;
    uint8_t incr;
} ADMADescr;

static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
{
    uint32_t adma1 = 0;
    uint64_t adma2 = 0;
    hwaddr entry_addr = (hwaddr)s->admasysaddr;
    switch (SDHC_DMA_TYPE(s->hostctl)) {
    case SDHC_CTRL_ADMA2_32:
549
        dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma2,
550 551 552 553 554 555 556 557 558 559 560
                        sizeof(adma2));
        adma2 = le64_to_cpu(adma2);
        /* The spec does not specify endianness of descriptor table.
         * We currently assume that it is LE.
         */
        dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
        dscr->length = (uint16_t)extract64(adma2, 16, 16);
        dscr->attr = (uint8_t)extract64(adma2, 0, 7);
        dscr->incr = 8;
        break;
    case SDHC_CTRL_ADMA1_32:
561
        dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma1,
562 563 564 565 566 567 568 569 570 571 572 573
                        sizeof(adma1));
        adma1 = le32_to_cpu(adma1);
        dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
        dscr->attr = (uint8_t)extract32(adma1, 0, 7);
        dscr->incr = 4;
        if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
            dscr->length = (uint16_t)extract32(adma1, 12, 16);
        } else {
            dscr->length = 4096;
        }
        break;
    case SDHC_CTRL_ADMA2_64:
574
        dma_memory_read(s->dma_as, entry_addr,
575
                        (uint8_t *)(&dscr->attr), 1);
576
        dma_memory_read(s->dma_as, entry_addr + 2,
577 578
                        (uint8_t *)(&dscr->length), 2);
        dscr->length = le16_to_cpu(dscr->length);
579
        dma_memory_read(s->dma_as, entry_addr + 4,
580 581 582 583 584 585 586 587 588 589 590 591 592 593
                        (uint8_t *)(&dscr->addr), 8);
        dscr->attr = le64_to_cpu(dscr->attr);
        dscr->attr &= 0xfffffff8;
        dscr->incr = 12;
        break;
    }
}

/* Advanced DMA data transfer */

static void sdhci_do_adma(SDHCIState *s)
{
    unsigned int n, begin, length;
    const uint16_t block_size = s->blksize & 0x0fff;
594
    ADMADescr dscr = {};
595 596 597 598 599 600
    int i;

    for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
        s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;

        get_adma_description(s, &dscr);
601
        trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr);
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

        if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
            /* Indicate that error occurred in ST_FDS state */
            s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
            s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;

            /* Generate ADMA error interrupt */
            if (s->errintstsen & SDHC_EISEN_ADMAERR) {
                s->errintsts |= SDHC_EIS_ADMAERR;
                s->norintsts |= SDHC_NIS_ERR;
            }

            sdhci_update_irq(s);
            return;
        }

        length = dscr.length ? dscr.length : 65536;

        switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
        case SDHC_ADMA_ATTR_ACT_TRAN:  /* data transfer */

            if (s->trnmod & SDHC_TRNS_READ) {
                while (length) {
                    if (s->data_count == 0) {
                        for (n = 0; n < block_size; n++) {
627
                            s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
628 629 630 631 632 633 634 635 636 637
                        }
                    }
                    begin = s->data_count;
                    if ((length + begin) < block_size) {
                        s->data_count = length + begin;
                        length = 0;
                     } else {
                        s->data_count = block_size;
                        length -= block_size - begin;
                    }
638
                    dma_memory_write(s->dma_as, dscr.addr,
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
                                     &s->fifo_buffer[begin],
                                     s->data_count - begin);
                    dscr.addr += s->data_count - begin;
                    if (s->data_count == block_size) {
                        s->data_count = 0;
                        if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                            s->blkcnt--;
                            if (s->blkcnt == 0) {
                                break;
                            }
                        }
                    }
                }
            } else {
                while (length) {
                    begin = s->data_count;
                    if ((length + begin) < block_size) {
                        s->data_count = length + begin;
                        length = 0;
                     } else {
                        s->data_count = block_size;
                        length -= block_size - begin;
                    }
662
                    dma_memory_read(s->dma_as, dscr.addr,
663 664
                                    &s->fifo_buffer[begin],
                                    s->data_count - begin);
665 666 667
                    dscr.addr += s->data_count - begin;
                    if (s->data_count == block_size) {
                        for (n = 0; n < block_size; n++) {
668
                            sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
                        }
                        s->data_count = 0;
                        if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                            s->blkcnt--;
                            if (s->blkcnt == 0) {
                                break;
                            }
                        }
                    }
                }
            }
            s->admasysaddr += dscr.incr;
            break;
        case SDHC_ADMA_ATTR_ACT_LINK:   /* link to next descriptor table */
            s->admasysaddr = dscr.addr;
684
            trace_sdhci_adma("link", s->admasysaddr);
685 686 687 688 689 690
            break;
        default:
            s->admasysaddr += dscr.incr;
            break;
        }

P
Peter Crosthwaite 已提交
691
        if (dscr.attr & SDHC_ADMA_ATTR_INT) {
692
            trace_sdhci_adma("interrupt", s->admasysaddr);
P
Peter Crosthwaite 已提交
693 694 695 696 697 698 699
            if (s->norintstsen & SDHC_NISEN_DMA) {
                s->norintsts |= SDHC_NIS_DMA;
            }

            sdhci_update_irq(s);
        }

700 701 702
        /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
        if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
                    (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
703
            trace_sdhci_adma_transfer_completed();
704 705 706
            if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
                (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
                s->blkcnt != 0)) {
707
                trace_sdhci_error("SD/MMC host ADMA length mismatch");
708 709 710
                s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
                        SDHC_ADMAERR_STATE_ST_TFR;
                if (s->errintstsen & SDHC_EISEN_ADMAERR) {
711
                    trace_sdhci_error("Set ADMA error flag");
712 713 714 715 716 717
                    s->errintsts |= SDHC_EIS_ADMAERR;
                    s->norintsts |= SDHC_NIS_ERR;
                }

                sdhci_update_irq(s);
            }
718
            sdhci_end_transfer(s);
719 720 721 722 723
            return;
        }

    }

P
Peter Maydell 已提交
724
    /* we have unfinished business - reschedule to continue ADMA */
725 726
    timer_mod(s->transfer_timer,
                   qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
727 728 729 730
}

/* Perform data transfer according to controller configuration */

731
static void sdhci_data_transfer(void *opaque)
732
{
733
    SDHCIState *s = (SDHCIState *)opaque;
734 735 736 737 738

    if (s->trnmod & SDHC_TRNS_DMA) {
        switch (SDHC_DMA_TYPE(s->hostctl)) {
        case SDHC_CTRL_SDMA:
            if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
739
                sdhci_sdma_transfer_single_block(s);
740
            } else {
741
                sdhci_sdma_transfer_multi_blocks(s);
742 743 744 745 746
            }

            break;
        case SDHC_CTRL_ADMA1_32:
            if (!(s->capareg & SDHC_CAN_DO_ADMA1)) {
747
                trace_sdhci_error("ADMA1 not supported");
748 749 750
                break;
            }

751
            sdhci_do_adma(s);
752 753 754
            break;
        case SDHC_CTRL_ADMA2_32:
            if (!(s->capareg & SDHC_CAN_DO_ADMA2)) {
755
                trace_sdhci_error("ADMA2 not supported");
756 757 758
                break;
            }

759
            sdhci_do_adma(s);
760 761 762 763
            break;
        case SDHC_CTRL_ADMA2_64:
            if (!(s->capareg & SDHC_CAN_DO_ADMA2) ||
                    !(s->capareg & SDHC_64_BIT_BUS_SUPPORT)) {
764
                trace_sdhci_error("64 bit ADMA not supported");
765 766 767
                break;
            }

768
            sdhci_do_adma(s);
769 770
            break;
        default:
771
            trace_sdhci_error("Unsupported DMA type");
772 773 774
            break;
        }
    } else {
775
        if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
776 777
            s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
                    SDHC_DAT_LINE_ACTIVE;
778
            sdhci_read_block_from_card(s);
779 780 781
        } else {
            s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
                    SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
782
            sdhci_write_block_to_card(s);
783 784 785 786 787 788
        }
    }
}

static bool sdhci_can_issue_command(SDHCIState *s)
{
789
    if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
        (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
        ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
        ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
        !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
        return false;
    }

    return true;
}

/* The Buffer Data Port register must be accessed in sequential and
 * continuous manner */
static inline bool
sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
{
    if ((s->data_count & 0x3) != byte_num) {
806 807
        trace_sdhci_error("Non-sequential access to Buffer Data Port register"
                          "is prohibited\n");
808 809 810 811 812
        return false;
    }
    return true;
}

813
static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
814
{
815
    SDHCIState *s = (SDHCIState *)opaque;
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
    uint32_t ret = 0;

    switch (offset & ~0x3) {
    case SDHC_SYSAD:
        ret = s->sdmasysad;
        break;
    case SDHC_BLKSIZE:
        ret = s->blksize | (s->blkcnt << 16);
        break;
    case SDHC_ARGUMENT:
        ret = s->argument;
        break;
    case SDHC_TRNMOD:
        ret = s->trnmod | (s->cmdreg << 16);
        break;
    case SDHC_RSPREG0 ... SDHC_RSPREG3:
        ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
        break;
    case  SDHC_BDATA:
        if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
836
            ret = sdhci_read_dataport(s, size);
837
            trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
            return ret;
        }
        break;
    case SDHC_PRNSTS:
        ret = s->prnsts;
        break;
    case SDHC_HOSTCTL:
        ret = s->hostctl | (s->pwrcon << 8) | (s->blkgap << 16) |
              (s->wakcon << 24);
        break;
    case SDHC_CLKCON:
        ret = s->clkcon | (s->timeoutcon << 16);
        break;
    case SDHC_NORINTSTS:
        ret = s->norintsts | (s->errintsts << 16);
        break;
    case SDHC_NORINTSTSEN:
        ret = s->norintstsen | (s->errintstsen << 16);
        break;
    case SDHC_NORINTSIGEN:
        ret = s->norintsigen | (s->errintsigen << 16);
        break;
    case SDHC_ACMD12ERRSTS:
        ret = s->acmd12errsts;
        break;
863
    case SDHC_CAPAB:
864 865 866 867
        ret = (uint32_t)s->capareg;
        break;
    case SDHC_CAPAB + 4:
        ret = (uint32_t)(s->capareg >> 32);
868 869
        break;
    case SDHC_MAXCURR:
870 871 872 873
        ret = (uint32_t)s->maxcurr;
        break;
    case SDHC_MAXCURR + 4:
        ret = (uint32_t)(s->maxcurr >> 32);
874 875 876 877 878 879 880 881 882 883 884
        break;
    case SDHC_ADMAERR:
        ret =  s->admaerr;
        break;
    case SDHC_ADMASYSADDR:
        ret = (uint32_t)s->admasysaddr;
        break;
    case SDHC_ADMASYSADDR + 4:
        ret = (uint32_t)(s->admasysaddr >> 32);
        break;
    case SDHC_SLOT_INT_STATUS:
885
        ret = (s->version << 16) | sdhci_slotint(s);
886 887
        break;
    default:
888 889
        qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
                      "not implemented\n", size, offset);
890 891 892 893 894
        break;
    }

    ret >>= (offset & 0x3) * 8;
    ret &= (1ULL << (size * 8)) - 1;
895
    trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
896 897 898 899 900 901 902 903 904 905 906 907 908 909
    return ret;
}

static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
{
    if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
        return;
    }
    s->blkgap = value & SDHC_STOP_AT_GAP_REQ;

    if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
            (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
        if (s->stopped_state == sdhc_gap_read) {
            s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
910
            sdhci_read_block_from_card(s);
911 912
        } else {
            s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
913
            sdhci_write_block_to_card(s);
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
        }
        s->stopped_state = sdhc_not_stopped;
    } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
        if (s->prnsts & SDHC_DOING_READ) {
            s->stopped_state = sdhc_gap_read;
        } else if (s->prnsts & SDHC_DOING_WRITE) {
            s->stopped_state = sdhc_gap_write;
        }
    }
}

static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
{
    switch (value) {
    case SDHC_RESET_ALL:
929
        sdhci_reset(s);
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
        break;
    case SDHC_RESET_CMD:
        s->prnsts &= ~SDHC_CMD_INHIBIT;
        s->norintsts &= ~SDHC_NIS_CMDCMP;
        break;
    case SDHC_RESET_DATA:
        s->data_count = 0;
        s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
                SDHC_DOING_READ | SDHC_DOING_WRITE |
                SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
        s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
        s->stopped_state = sdhc_not_stopped;
        s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
                SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
        break;
    }
}

static void
949
sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
950
{
951
    SDHCIState *s = (SDHCIState *)opaque;
952 953
    unsigned shift =  8 * (offset & 0x3);
    uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
954
    uint32_t value = val;
955 956 957 958 959 960 961 962 963
    value <<= shift;

    switch (offset & ~0x3) {
    case SDHC_SYSAD:
        s->sdmasysad = (s->sdmasysad & mask) | value;
        MASKED_WRITE(s->sdmasysad, mask, value);
        /* Writing to last byte of sdmasysad might trigger transfer */
        if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
                s->blksize && SDHC_DMA_TYPE(s->hostctl) == SDHC_CTRL_SDMA) {
964 965 966 967 968
            if (s->trnmod & SDHC_TRNS_MULTI) {
                sdhci_sdma_transfer_multi_blocks(s);
            } else {
                sdhci_sdma_transfer_single_block(s);
            }
969 970 971 972 973 974 975
        }
        break;
    case SDHC_BLKSIZE:
        if (!TRANSFERRING_DATA(s->prnsts)) {
            MASKED_WRITE(s->blksize, mask, value);
            MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
        }
976 977 978 979 980 981 982 983 984 985

        /* Limit block size to the maximum buffer size */
        if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
            qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than " \
                          "the maximum buffer 0x%x", __func__, s->blksize,
                          s->buf_maxsz);

            s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
        }

986 987 988 989 990 991 992 993 994 995
        break;
    case SDHC_ARGUMENT:
        MASKED_WRITE(s->argument, mask, value);
        break;
    case SDHC_TRNMOD:
        /* DMA can be enabled only if it is supported as indicated by
         * capabilities register */
        if (!(s->capareg & SDHC_CAN_DO_DMA)) {
            value &= ~SDHC_TRNS_DMA;
        }
996
        MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK);
997 998 999
        MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);

        /* Writing to the upper byte of CMDREG triggers SD command generation */
1000
        if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1001 1002 1003
            break;
        }

1004
        sdhci_send_command(s);
1005 1006 1007
        break;
    case  SDHC_BDATA:
        if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1008
            sdhci_write_dataport(s, value >> shift, size);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
        }
        break;
    case SDHC_HOSTCTL:
        if (!(mask & 0xFF0000)) {
            sdhci_blkgap_write(s, value >> 16);
        }
        MASKED_WRITE(s->hostctl, mask, value);
        MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
        MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
        if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
                !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
            s->pwrcon &= ~SDHC_POWER_ON;
        }
        break;
    case SDHC_CLKCON:
        if (!(mask & 0xFF000000)) {
            sdhci_reset_write(s, value >> 24);
        }
        MASKED_WRITE(s->clkcon, mask, value);
        MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
        if (s->clkcon & SDHC_CLOCK_INT_EN) {
            s->clkcon |= SDHC_CLOCK_INT_STABLE;
        } else {
            s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
        }
        break;
    case SDHC_NORINTSTS:
        if (s->norintstsen & SDHC_NISEN_CARDINT) {
            value &= ~SDHC_NIS_CARDINT;
        }
        s->norintsts &= mask | ~value;
        s->errintsts &= (mask >> 16) | ~(value >> 16);
        if (s->errintsts) {
            s->norintsts |= SDHC_NIS_ERR;
        } else {
            s->norintsts &= ~SDHC_NIS_ERR;
        }
        sdhci_update_irq(s);
        break;
    case SDHC_NORINTSTSEN:
        MASKED_WRITE(s->norintstsen, mask, value);
        MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
        s->norintsts &= s->norintstsen;
        s->errintsts &= s->errintstsen;
        if (s->errintsts) {
            s->norintsts |= SDHC_NIS_ERR;
        } else {
            s->norintsts &= ~SDHC_NIS_ERR;
        }
1058 1059 1060 1061 1062 1063 1064
        /* Quirk for Raspberry Pi: pending card insert interrupt
         * appears when first enabled after power on */
        if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
            assert(s->pending_insert_quirk);
            s->norintsts |= SDHC_NIS_INSERT;
            s->pending_insert_state = false;
        }
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
        sdhci_update_irq(s);
        break;
    case SDHC_NORINTSIGEN:
        MASKED_WRITE(s->norintsigen, mask, value);
        MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
        sdhci_update_irq(s);
        break;
    case SDHC_ADMAERR:
        MASKED_WRITE(s->admaerr, mask, value);
        break;
    case SDHC_ADMASYSADDR:
        s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
                (uint64_t)mask)) | (uint64_t)value;
        break;
    case SDHC_ADMASYSADDR + 4:
        s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
                ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
        break;
    case SDHC_FEAER:
        s->acmd12errsts |= value;
        s->errintsts |= (value >> 16) & s->errintstsen;
        if (s->acmd12errsts) {
            s->errintsts |= SDHC_EIS_CMD12ERR;
        }
        if (s->errintsts) {
            s->norintsts |= SDHC_NIS_ERR;
        }
        sdhci_update_irq(s);
        break;
1094 1095 1096
    case SDHC_ACMD12ERRSTS:
        MASKED_WRITE(s->acmd12errsts, mask, value);
        break;
1097 1098 1099 1100 1101 1102 1103 1104 1105

    case SDHC_CAPAB:
    case SDHC_CAPAB + 4:
    case SDHC_MAXCURR:
    case SDHC_MAXCURR + 4:
        qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx
                      " <- 0x%08x read-only\n", size, offset, value >> shift);
        break;

1106
    default:
1107 1108
        qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x "
                      "not implemented\n", size, offset, value >> shift);
1109 1110
        break;
    }
1111 1112
    trace_sdhci_access("wr", size << 3, offset, "<-",
                       value >> shift, value >> shift);
1113 1114 1115
}

static const MemoryRegionOps sdhci_mmio_ops = {
1116 1117
    .read = sdhci_read,
    .write = sdhci_write,
1118 1119 1120 1121 1122 1123 1124 1125
    .valid = {
        .min_access_size = 1,
        .max_access_size = 4,
        .unaligned = false
    },
    .endianness = DEVICE_LITTLE_ENDIAN,
};

1126 1127 1128 1129 1130 1131 1132 1133 1134
static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp)
{
    if (s->sd_spec_version != 2) {
        error_setg(errp, "Only Spec v2 is supported");
        return;
    }
    s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1);
}

1135 1136 1137
/* --- qdev common --- */

#define DEFINE_SDHCI_COMMON_PROPERTIES(_state) \
1138 1139 1140 1141
    DEFINE_PROP_UINT8("sd-spec-version", _state, sd_spec_version, 2), \
    \
    /* Capabilities registers provide information on supported
     * features of this specific host controller implementation */ \
1142 1143
    DEFINE_PROP_UINT64("capareg", _state, capareg, SDHC_CAPAB_REG_DEFAULT), \
    DEFINE_PROP_UINT64("maxcurr", _state, maxcurr, 0)
1144

1145
static void sdhci_initfn(SDHCIState *s)
1146
{
1147 1148
    qbus_create_inplace(&s->sdbus, sizeof(s->sdbus),
                        TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
1149

1150
    s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1151
    s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1152 1153

    s->io_ops = &sdhci_mmio_ops;
1154 1155
}

1156
static void sdhci_uninitfn(SDHCIState *s)
1157
{
1158 1159 1160 1161
    timer_del(s->insert_timer);
    timer_free(s->insert_timer);
    timer_del(s->transfer_timer);
    timer_free(s->transfer_timer);
1162

1163 1164
    g_free(s->fifo_buffer);
    s->fifo_buffer = NULL;
1165 1166
}

1167 1168
static void sdhci_common_realize(SDHCIState *s, Error **errp)
{
1169 1170 1171 1172 1173 1174 1175
    Error *local_err = NULL;

    sdhci_init_readonly_registers(s, &local_err);
    if (local_err) {
        error_propagate(errp, local_err);
        return;
    }
1176 1177 1178 1179 1180 1181 1182
    s->buf_maxsz = sdhci_get_fifolen(s);
    s->fifo_buffer = g_malloc0(s->buf_maxsz);

    memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
                          SDHC_REGISTERS_MAP_SIZE);
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
static void sdhci_common_unrealize(SDHCIState *s, Error **errp)
{
    /* This function is expected to be called only once for each class:
     * - SysBus:    via DeviceClass->unrealize(),
     * - PCI:       via PCIDeviceClass->exit().
     * However to avoid double-free and/or use-after-free we still nullify
     * this variable (better safe than sorry!). */
    g_free(s->fifo_buffer);
    s->fifo_buffer = NULL;
}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
static bool sdhci_pending_insert_vmstate_needed(void *opaque)
{
    SDHCIState *s = opaque;

    return s->pending_insert_state;
}

static const VMStateDescription sdhci_pending_insert_vmstate = {
    .name = "sdhci/pending-insert",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = sdhci_pending_insert_vmstate_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(pending_insert_state, SDHCIState),
        VMSTATE_END_OF_LIST()
    },
};

1212 1213 1214 1215
const VMStateDescription sdhci_vmstate = {
    .name = "sdhci",
    .version_id = 1,
    .minimum_version_id = 1,
1216
    .fields = (VMStateField[]) {
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
        VMSTATE_UINT32(sdmasysad, SDHCIState),
        VMSTATE_UINT16(blksize, SDHCIState),
        VMSTATE_UINT16(blkcnt, SDHCIState),
        VMSTATE_UINT32(argument, SDHCIState),
        VMSTATE_UINT16(trnmod, SDHCIState),
        VMSTATE_UINT16(cmdreg, SDHCIState),
        VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
        VMSTATE_UINT32(prnsts, SDHCIState),
        VMSTATE_UINT8(hostctl, SDHCIState),
        VMSTATE_UINT8(pwrcon, SDHCIState),
        VMSTATE_UINT8(blkgap, SDHCIState),
        VMSTATE_UINT8(wakcon, SDHCIState),
        VMSTATE_UINT16(clkcon, SDHCIState),
        VMSTATE_UINT8(timeoutcon, SDHCIState),
        VMSTATE_UINT8(admaerr, SDHCIState),
        VMSTATE_UINT16(norintsts, SDHCIState),
        VMSTATE_UINT16(errintsts, SDHCIState),
        VMSTATE_UINT16(norintstsen, SDHCIState),
        VMSTATE_UINT16(errintstsen, SDHCIState),
        VMSTATE_UINT16(norintsigen, SDHCIState),
        VMSTATE_UINT16(errintsigen, SDHCIState),
        VMSTATE_UINT16(acmd12errsts, SDHCIState),
        VMSTATE_UINT16(data_count, SDHCIState),
        VMSTATE_UINT64(admasysaddr, SDHCIState),
        VMSTATE_UINT8(stopped_state, SDHCIState),
1242
        VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
1243 1244
        VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
        VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1245
        VMSTATE_END_OF_LIST()
1246 1247 1248 1249 1250
    },
    .subsections = (const VMStateDescription*[]) {
        &sdhci_pending_insert_vmstate,
        NULL
    },
1251 1252
};

1253 1254 1255 1256 1257 1258 1259 1260 1261
static void sdhci_common_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
    dc->vmsd = &sdhci_vmstate;
    dc->reset = sdhci_poweron_reset;
}

1262 1263
/* --- qdev PCI --- */

1264
static Property sdhci_pci_properties[] = {
1265
    DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1266 1267 1268
    DEFINE_PROP_END_OF_LIST(),
};

1269
static void sdhci_pci_realize(PCIDevice *dev, Error **errp)
1270 1271
{
    SDHCIState *s = PCI_SDHCI(dev);
1272
    Error *local_err = NULL;
1273 1274 1275

    sdhci_initfn(s);
    sdhci_common_realize(s, errp);
1276 1277
    if (local_err) {
        error_propagate(errp, local_err);
1278 1279 1280
        return;
    }

1281 1282 1283
    dev->config[PCI_CLASS_PROG] = 0x01; /* Standard Host supported DMA */
    dev->config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin A */
    s->irq = pci_allocate_irq(dev);
1284 1285
    s->dma_as = pci_get_address_space(dev);
    pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->iomem);
1286 1287 1288 1289 1290
}

static void sdhci_pci_exit(PCIDevice *dev)
{
    SDHCIState *s = PCI_SDHCI(dev);
1291 1292

    sdhci_common_unrealize(s, &error_abort);
1293 1294 1295 1296 1297 1298 1299 1300
    sdhci_uninitfn(s);
}

static void sdhci_pci_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);

1301
    k->realize = sdhci_pci_realize;
1302 1303 1304 1305
    k->exit = sdhci_pci_exit;
    k->vendor_id = PCI_VENDOR_ID_REDHAT;
    k->device_id = PCI_DEVICE_ID_REDHAT_SDHCI;
    k->class_id = PCI_CLASS_SYSTEM_SDHCI;
1306
    dc->props = sdhci_pci_properties;
1307 1308

    sdhci_common_class_init(klass, data);
1309 1310 1311 1312 1313 1314 1315
}

static const TypeInfo sdhci_pci_info = {
    .name = TYPE_PCI_SDHCI,
    .parent = TYPE_PCI_DEVICE,
    .instance_size = sizeof(SDHCIState),
    .class_init = sdhci_pci_class_init,
1316 1317 1318 1319
    .interfaces = (InterfaceInfo[]) {
        { INTERFACE_CONVENTIONAL_PCI_DEVICE },
        { },
    },
1320 1321
};

1322 1323
/* --- qdev SysBus --- */

1324
static Property sdhci_sysbus_properties[] = {
1325
    DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1326 1327
    DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
                     false),
1328 1329
    DEFINE_PROP_LINK("dma", SDHCIState,
                     dma_mr, TYPE_MEMORY_REGION, MemoryRegion *),
1330 1331 1332
    DEFINE_PROP_END_OF_LIST(),
};

1333 1334 1335
static void sdhci_sysbus_init(Object *obj)
{
    SDHCIState *s = SYSBUS_SDHCI(obj);
1336

1337
    sdhci_initfn(s);
1338 1339 1340 1341 1342
}

static void sdhci_sysbus_finalize(Object *obj)
{
    SDHCIState *s = SYSBUS_SDHCI(obj);
1343 1344 1345 1346 1347

    if (s->dma_mr) {
        object_unparent(OBJECT(s->dma_mr));
    }

1348 1349 1350 1351
    sdhci_uninitfn(s);
}

static void sdhci_sysbus_realize(DeviceState *dev, Error ** errp)
1352
{
1353
    SDHCIState *s = SYSBUS_SDHCI(dev);
1354
    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1355
    Error *local_err = NULL;
1356

1357
    sdhci_common_realize(s, errp);
1358 1359
    if (local_err) {
        error_propagate(errp, local_err);
1360 1361 1362
        return;
    }

1363
    if (s->dma_mr) {
1364
        s->dma_as = &s->sysbus_dma_as;
1365 1366 1367 1368 1369
        address_space_init(s->dma_as, s->dma_mr, "sdhci-dma");
    } else {
        /* use system_memory() if property "dma" not set */
        s->dma_as = &address_space_memory;
    }
1370

1371
    sysbus_init_irq(sbd, &s->irq);
1372 1373 1374 1375

    memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci",
            SDHC_REGISTERS_MAP_SIZE);

1376 1377 1378
    sysbus_init_mmio(sbd, &s->iomem);
}

1379 1380 1381 1382 1383
static void sdhci_sysbus_unrealize(DeviceState *dev, Error **errp)
{
    SDHCIState *s = SYSBUS_SDHCI(dev);

    sdhci_common_unrealize(s, &error_abort);
1384 1385 1386 1387

     if (s->dma_mr) {
        address_space_destroy(s->dma_as);
    }
1388 1389
}

1390
static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1391 1392 1393
{
    DeviceClass *dc = DEVICE_CLASS(klass);

1394
    dc->props = sdhci_sysbus_properties;
1395
    dc->realize = sdhci_sysbus_realize;
1396
    dc->unrealize = sdhci_sysbus_unrealize;
1397 1398

    sdhci_common_class_init(klass, data);
1399 1400
}

1401 1402
static const TypeInfo sdhci_sysbus_info = {
    .name = TYPE_SYSBUS_SDHCI,
1403 1404
    .parent = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(SDHCIState),
1405 1406 1407
    .instance_init = sdhci_sysbus_init,
    .instance_finalize = sdhci_sysbus_finalize,
    .class_init = sdhci_sysbus_class_init,
1408 1409
};

1410 1411
/* --- qdev bus master --- */

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
static void sdhci_bus_class_init(ObjectClass *klass, void *data)
{
    SDBusClass *sbc = SD_BUS_CLASS(klass);

    sbc->set_inserted = sdhci_set_inserted;
    sbc->set_readonly = sdhci_set_readonly;
}

static const TypeInfo sdhci_bus_info = {
    .name = TYPE_SDHCI_BUS,
    .parent = TYPE_SD_BUS,
    .instance_size = sizeof(SDBus),
    .class_init = sdhci_bus_class_init,
};

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size)
{
    SDHCIState *s = SYSBUS_SDHCI(opaque);
    uint32_t ret;
    uint16_t hostctl;

    switch (offset) {
    default:
        return sdhci_read(opaque, offset, size);

    case SDHC_HOSTCTL:
        /*
         * For a detailed explanation on the following bit
         * manipulation code see comments in a similar part of
         * usdhc_write()
         */
        hostctl = SDHC_DMA_TYPE(s->hostctl) << (8 - 3);

        if (s->hostctl & SDHC_CTRL_8BITBUS) {
            hostctl |= ESDHC_CTRL_8BITBUS;
        }

        if (s->hostctl & SDHC_CTRL_4BITBUS) {
            hostctl |= ESDHC_CTRL_4BITBUS;
        }

        ret  = hostctl;
        ret |= (uint32_t)s->blkgap << 16;
        ret |= (uint32_t)s->wakcon << 24;

        break;

    case ESDHC_DLL_CTRL:
    case ESDHC_TUNE_CTRL_STATUS:
    case ESDHC_UNDOCUMENTED_REG27:
    case ESDHC_TUNING_CTRL:
    case ESDHC_VENDOR_SPEC:
    case ESDHC_MIX_CTRL:
    case ESDHC_WTMK_LVL:
        ret = 0;
        break;
    }

    return ret;
}

static void
usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
{
    SDHCIState *s = SYSBUS_SDHCI(opaque);
    uint8_t hostctl;
    uint32_t value = (uint32_t)val;

    switch (offset) {
    case ESDHC_DLL_CTRL:
    case ESDHC_TUNE_CTRL_STATUS:
    case ESDHC_UNDOCUMENTED_REG27:
    case ESDHC_TUNING_CTRL:
    case ESDHC_WTMK_LVL:
    case ESDHC_VENDOR_SPEC:
        break;

    case SDHC_HOSTCTL:
        /*
         * Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL)
         *
         *       7         6     5      4      3      2        1      0
         * |-----------+--------+--------+-----------+----------+---------|
         * | Card      | Card   | Endian | DATA3     | Data     | Led     |
         * | Detect    | Detect | Mode   | as Card   | Transfer | Control |
         * | Signal    | Test   |        | Detection | Width    |         |
         * | Selection | Level  |        | Pin       |          |         |
         * |-----------+--------+--------+-----------+----------+---------|
         *
         * and 0x29
         *
         *  15      10 9    8
         * |----------+------|
         * | Reserved | DMA  |
         * |          | Sel. |
         * |          |      |
         * |----------+------|
         *
         * and here's what SDCHI spec expects those offsets to be:
         *
         * 0x28 (Host Control Register)
         *
         *     7        6         5       4  3      2         1        0
         * |--------+--------+----------+------+--------+----------+---------|
         * | Card   | Card   | Extended | DMA  | High   | Data     | LED     |
         * | Detect | Detect | Data     | Sel. | Speed  | Transfer | Control |
         * | Signal | Test   | Transfer |      | Enable | Width    |         |
         * | Sel.   | Level  | Width    |      |        |          |         |
         * |--------+--------+----------+------+--------+----------+---------|
         *
         * and 0x29 (Power Control Register)
         *
         * |----------------------------------|
         * | Power Control Register           |
         * |                                  |
         * | Description omitted,             |
         * | since it has no analog in ESDHCI |
         * |                                  |
         * |----------------------------------|
         *
         * Since offsets 0x2A and 0x2B should be compatible between
         * both IP specs we only need to reconcile least 16-bit of the
         * word we've been given.
         */

        /*
         * First, save bits 7 6 and 0 since they are identical
         */
        hostctl = value & (SDHC_CTRL_LED |
                           SDHC_CTRL_CDTEST_INS |
                           SDHC_CTRL_CDTEST_EN);
        /*
         * Second, split "Data Transfer Width" from bits 2 and 1 in to
         * bits 5 and 1
         */
        if (value & ESDHC_CTRL_8BITBUS) {
            hostctl |= SDHC_CTRL_8BITBUS;
        }

        if (value & ESDHC_CTRL_4BITBUS) {
            hostctl |= ESDHC_CTRL_4BITBUS;
        }

        /*
         * Third, move DMA select from bits 9 and 8 to bits 4 and 3
         */
        hostctl |= SDHC_DMA_TYPE(value >> (8 - 3));

        /*
         * Now place the corrected value into low 16-bit of the value
         * we are going to give standard SDHCI write function
         *
         * NOTE: This transformation should be the inverse of what can
         * be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux
         * kernel
         */
        value &= ~UINT16_MAX;
        value |= hostctl;
        value |= (uint16_t)s->pwrcon << 8;

        sdhci_write(opaque, offset, value, size);
        break;

    case ESDHC_MIX_CTRL:
        /*
         * So, when SD/MMC stack in Linux tries to write to "Transfer
         * Mode Register", ESDHC i.MX quirk code will translate it
         * into a write to ESDHC_MIX_CTRL, so we do the opposite in
         * order to get where we started
         *
         * Note that Auto CMD23 Enable bit is located in a wrong place
         * on i.MX, but since it is not used by QEMU we do not care.
         *
         * We don't want to call sdhci_write(.., SDHC_TRNMOD, ...)
         * here becuase it will result in a call to
         * sdhci_send_command(s) which we don't want.
         *
         */
        s->trnmod = value & UINT16_MAX;
        break;
    case SDHC_TRNMOD:
        /*
         * Similar to above, but this time a write to "Command
         * Register" will be translated into a 4-byte write to
         * "Transfer Mode register" where lower 16-bit of value would
         * be set to zero. So what we do is fill those bits with
         * cached value from s->trnmod and let the SDHCI
         * infrastructure handle the rest
         */
        sdhci_write(opaque, offset, val | s->trnmod, size);
        break;
    case SDHC_BLKSIZE:
        /*
         * ESDHCI does not implement "Host SDMA Buffer Boundary", and
         * Linux driver will try to zero this field out which will
         * break the rest of SDHCI emulation.
         *
         * Linux defaults to maximum possible setting (512K boundary)
         * and it seems to be the only option that i.MX IP implements,
         * so we artificially set it to that value.
         */
        val |= 0x7 << 12;
        /* FALLTHROUGH */
    default:
        sdhci_write(opaque, offset, val, size);
        break;
    }
}


static const MemoryRegionOps usdhc_mmio_ops = {
    .read = usdhc_read,
    .write = usdhc_write,
    .valid = {
        .min_access_size = 1,
        .max_access_size = 4,
        .unaligned = false
    },
    .endianness = DEVICE_LITTLE_ENDIAN,
};

static void imx_usdhc_init(Object *obj)
{
    SDHCIState *s = SYSBUS_SDHCI(obj);

    s->io_ops = &usdhc_mmio_ops;
    s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ;
}

static const TypeInfo imx_usdhc_info = {
    .name = TYPE_IMX_USDHC,
    .parent = TYPE_SYSBUS_SDHCI,
    .instance_init = imx_usdhc_init,
};

1647 1648
static void sdhci_register_types(void)
{
1649
    type_register_static(&sdhci_pci_info);
1650
    type_register_static(&sdhci_sysbus_info);
1651
    type_register_static(&sdhci_bus_info);
1652
    type_register_static(&imx_usdhc_info);
1653 1654 1655
}

type_init(sdhci_register_types)