sdhci.c 58.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * SD Association Host Standard Specification v2.0 controller emulation
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 * Mitsyanko Igor <i.mitsyanko@samsung.com>
 * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
 *
 * Based on MMC controller for Samsung S5PC1xx-based board emulation
 * by Alexey Merkulov and Vladimir Monakhov.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, see <http://www.gnu.org/licenses/>.
 */

P
Peter Maydell 已提交
25
#include "qemu/osdep.h"
26
#include "qemu/error-report.h"
27
#include "qapi/error.h"
28
#include "hw/hw.h"
29
#include "sysemu/block-backend.h"
30 31 32 33
#include "sysemu/blockdev.h"
#include "sysemu/dma.h"
#include "qemu/timer.h"
#include "qemu/bitops.h"
34
#include "hw/sd/sdhci.h"
35
#include "sdhci-internal.h"
36
#include "qemu/log.h"
37
#include "qemu/cutils.h"
38
#include "trace.h"
39

40 41 42
#define TYPE_SDHCI_BUS "sdhci-bus"
#define SDHCI_BUS(obj) OBJECT_CHECK(SDBus, (obj), TYPE_SDHCI_BUS)

43 44
#define MASKED_WRITE(reg, mask, val)  (reg = (reg & (mask)) | (val))

45 46
/* Default SD/MMC host controller features information, which will be
 * presented in CAPABILITIES register of generic SD host controller at reset.
47 48 49 50 51 52 53 54 55 56 57 58 59
 *
 * support:
 * - 3.3v and 1.8v voltages
 * - SDMA/ADMA1/ADMA2
 * - high-speed
 * max host controller R/W buffers size: 512B
 * max clock frequency for SDclock: 52 MHz
 * timeout clock frequency: 52 MHz
 *
 * does not support:
 * - 3.0v voltage
 * - 64-bit system bus
 * - suspend/resume
60
 */
61
#define SDHC_CAPAB_REG_DEFAULT 0x057834b4
62

63 64 65 66 67
static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
{
    return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH));
}

68 69 70 71
/* return true on error */
static bool sdhci_check_capab_freq_range(SDHCIState *s, const char *desc,
                                         uint8_t freq, Error **errp)
{
72 73 74
    if (s->sd_spec_version >= 3) {
        return false;
    }
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    switch (freq) {
    case 0:
    case 10 ... 63:
        break;
    default:
        error_setg(errp, "SD %s clock frequency can have value"
                   "in range 0-63 only", desc);
        return true;
    }
    return false;
}

static void sdhci_check_capareg(SDHCIState *s, Error **errp)
{
    uint64_t msk = s->capareg;
    uint32_t val;
    bool y;

    switch (s->sd_spec_version) {
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    case 3:
        val = FIELD_EX64(s->capareg, SDHC_CAPAB, ASYNC_INT);
        trace_sdhci_capareg("async interrupt", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, ASYNC_INT, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, SLOT_TYPE);
        if (val) {
            error_setg(errp, "slot-type not supported");
            return;
        }
        trace_sdhci_capareg("slot type", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, SLOT_TYPE, 0);

        if (val != 2) {
            val = FIELD_EX64(s->capareg, SDHC_CAPAB, EMBEDDED_8BIT);
            trace_sdhci_capareg("8-bit bus", val);
        }
        msk = FIELD_DP64(msk, SDHC_CAPAB, EMBEDDED_8BIT, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS_SPEED);
        trace_sdhci_capareg("bus speed mask", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, BUS_SPEED, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, DRIVER_STRENGTH);
        trace_sdhci_capareg("driver strength mask", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, DRIVER_STRENGTH, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, TIMER_RETUNING);
        trace_sdhci_capareg("timer re-tuning", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, TIMER_RETUNING, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDR50_TUNING);
        trace_sdhci_capareg("use SDR50 tuning", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, SDR50_TUNING, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, RETUNING_MODE);
        trace_sdhci_capareg("re-tuning mode", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, RETUNING_MODE, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, CLOCK_MULT);
        trace_sdhci_capareg("clock multiplier", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, CLOCK_MULT, 0);

    /* fallthrough */
138
    case 2: /* default version */
139 140 141 142 143 144 145 146 147 148 149
        val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA2);
        trace_sdhci_capareg("ADMA2", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA2, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA1);
        trace_sdhci_capareg("ADMA1", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA1, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT);
        trace_sdhci_capareg("64-bit system bus", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT, 0);
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

    /* fallthrough */
    case 1:
        y = FIELD_EX64(s->capareg, SDHC_CAPAB, TOUNIT);
        msk = FIELD_DP64(msk, SDHC_CAPAB, TOUNIT, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, TOCLKFREQ);
        trace_sdhci_capareg(y ? "timeout (MHz)" : "Timeout (KHz)", val);
        if (sdhci_check_capab_freq_range(s, "timeout", val, errp)) {
            return;
        }
        msk = FIELD_DP64(msk, SDHC_CAPAB, TOCLKFREQ, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, BASECLKFREQ);
        trace_sdhci_capareg(y ? "base (MHz)" : "Base (KHz)", val);
        if (sdhci_check_capab_freq_range(s, "base", val, errp)) {
            return;
        }
        msk = FIELD_DP64(msk, SDHC_CAPAB, BASECLKFREQ, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH);
        if (val >= 3) {
            error_setg(errp, "block size can be 512, 1024 or 2048 only");
            return;
        }
        trace_sdhci_capareg("max block length", sdhci_get_fifolen(s));
        msk = FIELD_DP64(msk, SDHC_CAPAB, MAXBLOCKLENGTH, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, HIGHSPEED);
        trace_sdhci_capareg("high speed", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, HIGHSPEED, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDMA);
        trace_sdhci_capareg("SDMA", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, SDMA, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, SUSPRESUME);
        trace_sdhci_capareg("suspend/resume", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, SUSPRESUME, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, V33);
        trace_sdhci_capareg("3.3v", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, V33, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, V30);
        trace_sdhci_capareg("3.0v", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, V30, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, V18);
        trace_sdhci_capareg("1.8v", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, V18, 0);
        break;

    default:
        error_setg(errp, "Unsupported spec version: %u", s->sd_spec_version);
    }
    if (msk) {
        qemu_log_mask(LOG_UNIMP,
                      "SDHCI: unknown CAPAB mask: 0x%016" PRIx64 "\n", msk);
    }
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
static uint8_t sdhci_slotint(SDHCIState *s)
{
    return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
         ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
         ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
}

static inline void sdhci_update_irq(SDHCIState *s)
{
    qemu_set_irq(s->irq, sdhci_slotint(s));
}

static void sdhci_raise_insertion_irq(void *opaque)
{
    SDHCIState *s = (SDHCIState *)opaque;

    if (s->norintsts & SDHC_NIS_REMOVE) {
229 230
        timer_mod(s->insert_timer,
                       qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
231 232 233 234 235 236 237 238 239
    } else {
        s->prnsts = 0x1ff0000;
        if (s->norintstsen & SDHC_NISEN_INSERT) {
            s->norintsts |= SDHC_NIS_INSERT;
        }
        sdhci_update_irq(s);
    }
}

240
static void sdhci_set_inserted(DeviceState *dev, bool level)
241
{
242
    SDHCIState *s = (SDHCIState *)dev;
243

244
    trace_sdhci_set_inserted(level ? "insert" : "eject");
245 246
    if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
        /* Give target some time to notice card ejection */
247 248
        timer_mod(s->insert_timer,
                       qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    } else {
        if (level) {
            s->prnsts = 0x1ff0000;
            if (s->norintstsen & SDHC_NISEN_INSERT) {
                s->norintsts |= SDHC_NIS_INSERT;
            }
        } else {
            s->prnsts = 0x1fa0000;
            s->pwrcon &= ~SDHC_POWER_ON;
            s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
            if (s->norintstsen & SDHC_NISEN_REMOVE) {
                s->norintsts |= SDHC_NIS_REMOVE;
            }
        }
        sdhci_update_irq(s);
    }
}

267
static void sdhci_set_readonly(DeviceState *dev, bool level)
268
{
269
    SDHCIState *s = (SDHCIState *)dev;
270 271 272 273 274 275 276 277 278 279 280

    if (level) {
        s->prnsts &= ~SDHC_WRITE_PROTECT;
    } else {
        /* Write enabled */
        s->prnsts |= SDHC_WRITE_PROTECT;
    }
}

static void sdhci_reset(SDHCIState *s)
{
281 282
    DeviceState *dev = DEVICE(s);

283 284
    timer_del(s->insert_timer);
    timer_del(s->transfer_timer);
285 286

    /* Set all registers to 0. Capabilities/Version registers are not cleared
287 288 289 290
     * and assumed to always preserve their value, given to them during
     * initialization */
    memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);

291 292 293
    /* Reset other state based on current card insertion/readonly status */
    sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
    sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
294

295 296
    s->data_count = 0;
    s->stopped_state = sdhc_not_stopped;
297
    s->pending_insert_state = false;
298 299
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static void sdhci_poweron_reset(DeviceState *dev)
{
    /* QOM (ie power-on) reset. This is identical to reset
     * commanded via device register apart from handling of the
     * 'pending insert on powerup' quirk.
     */
    SDHCIState *s = (SDHCIState *)dev;

    sdhci_reset(s);

    if (s->pending_insert_quirk) {
        s->pending_insert_state = true;
    }
}

315
static void sdhci_data_transfer(void *opaque);
316 317 318 319 320 321 322 323 324 325 326

static void sdhci_send_command(SDHCIState *s)
{
    SDRequest request;
    uint8_t response[16];
    int rlen;

    s->errintsts = 0;
    s->acmd12errsts = 0;
    request.cmd = s->cmdreg >> 8;
    request.arg = s->argument;
327 328

    trace_sdhci_send_command(request.cmd, request.arg);
329
    rlen = sdbus_do_command(&s->sdbus, &request, response);
330 331 332 333 334 335

    if (s->cmdreg & SDHC_CMD_RESPONSE) {
        if (rlen == 4) {
            s->rspreg[0] = (response[0] << 24) | (response[1] << 16) |
                           (response[2] << 8)  |  response[3];
            s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
336
            trace_sdhci_response4(s->rspreg[0]);
337 338 339 340 341 342 343 344 345
        } else if (rlen == 16) {
            s->rspreg[0] = (response[11] << 24) | (response[12] << 16) |
                           (response[13] << 8) |  response[14];
            s->rspreg[1] = (response[7] << 24) | (response[8] << 16) |
                           (response[9] << 8)  |  response[10];
            s->rspreg[2] = (response[3] << 24) | (response[4] << 16) |
                           (response[5] << 8)  |  response[6];
            s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
                            response[2];
346 347
            trace_sdhci_response16(s->rspreg[3], s->rspreg[2],
                                   s->rspreg[1], s->rspreg[0]);
348
        } else {
349
            trace_sdhci_error("timeout waiting for command response");
350 351 352 353 354 355
            if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
                s->errintsts |= SDHC_EIS_CMDTIMEOUT;
                s->norintsts |= SDHC_NIS_ERR;
            }
        }

356 357
        if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
            (s->norintstsen & SDHC_NISEN_TRSCMP) &&
358 359 360 361 362 363 364 365 366 367 368 369
            (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
            s->norintsts |= SDHC_NIS_TRSCMP;
        }
    }

    if (s->norintstsen & SDHC_NISEN_CMDCMP) {
        s->norintsts |= SDHC_NIS_CMDCMP;
    }

    sdhci_update_irq(s);

    if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
370
        s->data_count = 0;
371
        sdhci_data_transfer(s);
372 373 374 375 376 377 378 379 380 381 382 383
    }
}

static void sdhci_end_transfer(SDHCIState *s)
{
    /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
    if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
        SDRequest request;
        uint8_t response[16];

        request.cmd = 0x0C;
        request.arg = 0;
384
        trace_sdhci_end_transfer(request.cmd, request.arg);
385
        sdbus_do_command(&s->sdbus, &request, response);
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
        /* Auto CMD12 response goes to the upper Response register */
        s->rspreg[3] = (response[0] << 24) | (response[1] << 16) |
                (response[2] << 8) | response[3];
    }

    s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
            SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
            SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);

    if (s->norintstsen & SDHC_NISEN_TRSCMP) {
        s->norintsts |= SDHC_NIS_TRSCMP;
    }

    sdhci_update_irq(s);
}

/*
 * Programmed i/o data transfer
 */
405
#define BLOCK_SIZE_MASK (4 * K_BYTE - 1)
406 407 408 409 410

/* Fill host controller's read buffer with BLKSIZE bytes of data from card */
static void sdhci_read_block_from_card(SDHCIState *s)
{
    int index = 0;
411 412
    uint8_t data;
    const uint16_t blk_size = s->blksize & BLOCK_SIZE_MASK;
413 414 415 416 417 418

    if ((s->trnmod & SDHC_TRNS_MULTI) &&
            (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
        return;
    }

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
    for (index = 0; index < blk_size; index++) {
        data = sdbus_read_data(&s->sdbus);
        if (!FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
            /* Device is not in tunning */
            s->fifo_buffer[index] = data;
        }
    }

    if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
        /* Device is in tunning */
        s->hostctl2 &= ~R_SDHC_HOSTCTL2_EXECUTE_TUNING_MASK;
        s->hostctl2 |= R_SDHC_HOSTCTL2_SAMPLING_CLKSEL_MASK;
        s->prnsts &= ~(SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ |
                       SDHC_DATA_INHIBIT);
        goto read_done;
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    }

    /* New data now available for READ through Buffer Port Register */
    s->prnsts |= SDHC_DATA_AVAILABLE;
    if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
        s->norintsts |= SDHC_NIS_RBUFRDY;
    }

    /* Clear DAT line active status if that was the last block */
    if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
            ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
        s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
    }

    /* If stop at block gap request was set and it's not the last block of
     * data - generate Block Event interrupt */
    if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
            s->blkcnt != 1)    {
        s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
        if (s->norintstsen & SDHC_EISEN_BLKGAP) {
            s->norintsts |= SDHC_EIS_BLKGAP;
        }
    }

458
read_done:
459 460 461 462 463 464 465 466 467 468 469
    sdhci_update_irq(s);
}

/* Read @size byte of data from host controller @s BUFFER DATA PORT register */
static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
{
    uint32_t value = 0;
    int i;

    /* first check that a valid data exists in host controller input buffer */
    if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
470
        trace_sdhci_error("read from empty buffer");
471 472 473 474 475 476 477
        return 0;
    }

    for (i = 0; i < size; i++) {
        value |= s->fifo_buffer[s->data_count] << i * 8;
        s->data_count++;
        /* check if we've read all valid data (blksize bytes) from buffer */
478
        if ((s->data_count) >= (s->blksize & BLOCK_SIZE_MASK)) {
479
            trace_sdhci_read_dataport(s->data_count);
480 481 482 483 484 485 486 487 488 489 490 491 492
            s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
            s->data_count = 0;  /* next buff read must start at position [0] */

            if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                s->blkcnt--;
            }

            /* if that was the last block of data */
            if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
                ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
                 /* stop at gap request */
                (s->stopped_state == sdhc_gap_read &&
                 !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
493
                sdhci_end_transfer(s);
494
            } else { /* if there are more data, read next block from card */
495
                sdhci_read_block_from_card(s);
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
            }
            break;
        }
    }

    return value;
}

/* Write data from host controller FIFO to card */
static void sdhci_write_block_to_card(SDHCIState *s)
{
    int index = 0;

    if (s->prnsts & SDHC_SPACE_AVAILABLE) {
        if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
            s->norintsts |= SDHC_NIS_WBUFRDY;
        }
        sdhci_update_irq(s);
        return;
    }

    if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
        if (s->blkcnt == 0) {
            return;
        } else {
            s->blkcnt--;
        }
    }

525
    for (index = 0; index < (s->blksize & BLOCK_SIZE_MASK); index++) {
526
        sdbus_write_data(&s->sdbus, s->fifo_buffer[index]);
527 528 529 530 531 532 533 534 535
    }

    /* Next data can be written through BUFFER DATORT register */
    s->prnsts |= SDHC_SPACE_AVAILABLE;

    /* Finish transfer if that was the last block of data */
    if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
            ((s->trnmod & SDHC_TRNS_MULTI) &&
            (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
536
        sdhci_end_transfer(s);
537 538
    } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
        s->norintsts |= SDHC_NIS_WBUFRDY;
539 540 541 542 543 544 545 546 547
    }

    /* Generate Block Gap Event if requested and if not the last block */
    if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
            s->blkcnt > 0) {
        s->prnsts &= ~SDHC_DOING_WRITE;
        if (s->norintstsen & SDHC_EISEN_BLKGAP) {
            s->norintsts |= SDHC_EIS_BLKGAP;
        }
548
        sdhci_end_transfer(s);
549 550 551 552 553 554 555 556 557 558 559 560 561
    }

    sdhci_update_irq(s);
}

/* Write @size bytes of @value data to host controller @s Buffer Data Port
 * register */
static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
{
    unsigned i;

    /* Check that there is free space left in a buffer */
    if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
562
        trace_sdhci_error("Can't write to data buffer: buffer full");
563 564 565 566 567 568 569
        return;
    }

    for (i = 0; i < size; i++) {
        s->fifo_buffer[s->data_count] = value & 0xFF;
        s->data_count++;
        value >>= 8;
570
        if (s->data_count >= (s->blksize & BLOCK_SIZE_MASK)) {
571
            trace_sdhci_write_dataport(s->data_count);
572 573 574
            s->data_count = 0;
            s->prnsts &= ~SDHC_SPACE_AVAILABLE;
            if (s->prnsts & SDHC_DOING_WRITE) {
575
                sdhci_write_block_to_card(s);
576 577 578 579 580 581 582 583 584 585 586 587 588 589
            }
        }
    }
}

/*
 * Single DMA data transfer
 */

/* Multi block SDMA transfer */
static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
{
    bool page_aligned = false;
    unsigned int n, begin;
590 591
    const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
    uint32_t boundary_chk = 1 << (((s->blksize & ~BLOCK_SIZE_MASK) >> 12) + 12);
592 593
    uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);

594 595 596 597 598
    if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) {
        qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n");
        return;
    }

599 600 601 602 603 604 605 606 607 608 609 610 611
    /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
     * possible stop at page boundary if initial address is not page aligned,
     * allow them to work properly */
    if ((s->sdmasysad % boundary_chk) == 0) {
        page_aligned = true;
    }

    if (s->trnmod & SDHC_TRNS_READ) {
        s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
                SDHC_DAT_LINE_ACTIVE;
        while (s->blkcnt) {
            if (s->data_count == 0) {
                for (n = 0; n < block_size; n++) {
612
                    s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
613 614 615 616 617 618 619 620 621 622 623 624 625
                }
            }
            begin = s->data_count;
            if (((boundary_count + begin) < block_size) && page_aligned) {
                s->data_count = boundary_count + begin;
                boundary_count = 0;
             } else {
                s->data_count = block_size;
                boundary_count -= block_size - begin;
                if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                    s->blkcnt--;
                }
            }
626
            dma_memory_write(s->dma_as, s->sdmasysad,
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
                             &s->fifo_buffer[begin], s->data_count - begin);
            s->sdmasysad += s->data_count - begin;
            if (s->data_count == block_size) {
                s->data_count = 0;
            }
            if (page_aligned && boundary_count == 0) {
                break;
            }
        }
    } else {
        s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
                SDHC_DAT_LINE_ACTIVE;
        while (s->blkcnt) {
            begin = s->data_count;
            if (((boundary_count + begin) < block_size) && page_aligned) {
                s->data_count = boundary_count + begin;
                boundary_count = 0;
             } else {
                s->data_count = block_size;
                boundary_count -= block_size - begin;
            }
648
            dma_memory_read(s->dma_as, s->sdmasysad,
649
                            &s->fifo_buffer[begin], s->data_count - begin);
650 651 652
            s->sdmasysad += s->data_count - begin;
            if (s->data_count == block_size) {
                for (n = 0; n < block_size; n++) {
653
                    sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
654 655 656 657 658 659 660 661 662 663 664 665 666
                }
                s->data_count = 0;
                if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                    s->blkcnt--;
                }
            }
            if (page_aligned && boundary_count == 0) {
                break;
            }
        }
    }

    if (s->blkcnt == 0) {
667
        sdhci_end_transfer(s);
668 669 670 671 672 673 674 675 676 677 678 679
    } else {
        if (s->norintstsen & SDHC_NISEN_DMA) {
            s->norintsts |= SDHC_NIS_DMA;
        }
        sdhci_update_irq(s);
    }
}

/* single block SDMA transfer */
static void sdhci_sdma_transfer_single_block(SDHCIState *s)
{
    int n;
680
    uint32_t datacnt = s->blksize & BLOCK_SIZE_MASK;
681 682 683

    if (s->trnmod & SDHC_TRNS_READ) {
        for (n = 0; n < datacnt; n++) {
684
            s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
685
        }
686
        dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
687
    } else {
688
        dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
689
        for (n = 0; n < datacnt; n++) {
690
            sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
691 692
        }
    }
693
    s->blkcnt--;
694

695
    sdhci_end_transfer(s);
696 697 698 699 700 701 702 703 704 705 706 707 708 709
}

typedef struct ADMADescr {
    hwaddr addr;
    uint16_t length;
    uint8_t attr;
    uint8_t incr;
} ADMADescr;

static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
{
    uint32_t adma1 = 0;
    uint64_t adma2 = 0;
    hwaddr entry_addr = (hwaddr)s->admasysaddr;
710
    switch (SDHC_DMA_TYPE(s->hostctl1)) {
711
    case SDHC_CTRL_ADMA2_32:
712
        dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma2,
713 714 715 716 717 718 719 720 721 722 723
                        sizeof(adma2));
        adma2 = le64_to_cpu(adma2);
        /* The spec does not specify endianness of descriptor table.
         * We currently assume that it is LE.
         */
        dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
        dscr->length = (uint16_t)extract64(adma2, 16, 16);
        dscr->attr = (uint8_t)extract64(adma2, 0, 7);
        dscr->incr = 8;
        break;
    case SDHC_CTRL_ADMA1_32:
724
        dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma1,
725 726 727 728 729 730 731 732 733 734 735 736
                        sizeof(adma1));
        adma1 = le32_to_cpu(adma1);
        dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
        dscr->attr = (uint8_t)extract32(adma1, 0, 7);
        dscr->incr = 4;
        if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
            dscr->length = (uint16_t)extract32(adma1, 12, 16);
        } else {
            dscr->length = 4096;
        }
        break;
    case SDHC_CTRL_ADMA2_64:
737
        dma_memory_read(s->dma_as, entry_addr,
738
                        (uint8_t *)(&dscr->attr), 1);
739
        dma_memory_read(s->dma_as, entry_addr + 2,
740 741
                        (uint8_t *)(&dscr->length), 2);
        dscr->length = le16_to_cpu(dscr->length);
742
        dma_memory_read(s->dma_as, entry_addr + 4,
743
                        (uint8_t *)(&dscr->addr), 8);
S
Sai Pavan Boddu 已提交
744 745
        dscr->addr = le64_to_cpu(dscr->addr);
        dscr->attr &= (uint8_t) ~0xC0;
746 747 748 749 750 751 752 753 754 755
        dscr->incr = 12;
        break;
    }
}

/* Advanced DMA data transfer */

static void sdhci_do_adma(SDHCIState *s)
{
    unsigned int n, begin, length;
756
    const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
757
    ADMADescr dscr = {};
758 759 760 761 762 763
    int i;

    for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
        s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;

        get_adma_description(s, &dscr);
764
        trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr);
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789

        if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
            /* Indicate that error occurred in ST_FDS state */
            s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
            s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;

            /* Generate ADMA error interrupt */
            if (s->errintstsen & SDHC_EISEN_ADMAERR) {
                s->errintsts |= SDHC_EIS_ADMAERR;
                s->norintsts |= SDHC_NIS_ERR;
            }

            sdhci_update_irq(s);
            return;
        }

        length = dscr.length ? dscr.length : 65536;

        switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
        case SDHC_ADMA_ATTR_ACT_TRAN:  /* data transfer */

            if (s->trnmod & SDHC_TRNS_READ) {
                while (length) {
                    if (s->data_count == 0) {
                        for (n = 0; n < block_size; n++) {
790
                            s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
791 792 793 794 795 796 797 798 799 800
                        }
                    }
                    begin = s->data_count;
                    if ((length + begin) < block_size) {
                        s->data_count = length + begin;
                        length = 0;
                     } else {
                        s->data_count = block_size;
                        length -= block_size - begin;
                    }
801
                    dma_memory_write(s->dma_as, dscr.addr,
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
                                     &s->fifo_buffer[begin],
                                     s->data_count - begin);
                    dscr.addr += s->data_count - begin;
                    if (s->data_count == block_size) {
                        s->data_count = 0;
                        if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                            s->blkcnt--;
                            if (s->blkcnt == 0) {
                                break;
                            }
                        }
                    }
                }
            } else {
                while (length) {
                    begin = s->data_count;
                    if ((length + begin) < block_size) {
                        s->data_count = length + begin;
                        length = 0;
                     } else {
                        s->data_count = block_size;
                        length -= block_size - begin;
                    }
825
                    dma_memory_read(s->dma_as, dscr.addr,
826 827
                                    &s->fifo_buffer[begin],
                                    s->data_count - begin);
828 829 830
                    dscr.addr += s->data_count - begin;
                    if (s->data_count == block_size) {
                        for (n = 0; n < block_size; n++) {
831
                            sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
                        }
                        s->data_count = 0;
                        if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                            s->blkcnt--;
                            if (s->blkcnt == 0) {
                                break;
                            }
                        }
                    }
                }
            }
            s->admasysaddr += dscr.incr;
            break;
        case SDHC_ADMA_ATTR_ACT_LINK:   /* link to next descriptor table */
            s->admasysaddr = dscr.addr;
847
            trace_sdhci_adma("link", s->admasysaddr);
848 849 850 851 852 853
            break;
        default:
            s->admasysaddr += dscr.incr;
            break;
        }

P
Peter Crosthwaite 已提交
854
        if (dscr.attr & SDHC_ADMA_ATTR_INT) {
855
            trace_sdhci_adma("interrupt", s->admasysaddr);
P
Peter Crosthwaite 已提交
856 857 858 859 860 861 862
            if (s->norintstsen & SDHC_NISEN_DMA) {
                s->norintsts |= SDHC_NIS_DMA;
            }

            sdhci_update_irq(s);
        }

863 864 865
        /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
        if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
                    (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
866
            trace_sdhci_adma_transfer_completed();
867 868 869
            if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
                (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
                s->blkcnt != 0)) {
870
                trace_sdhci_error("SD/MMC host ADMA length mismatch");
871 872 873
                s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
                        SDHC_ADMAERR_STATE_ST_TFR;
                if (s->errintstsen & SDHC_EISEN_ADMAERR) {
874
                    trace_sdhci_error("Set ADMA error flag");
875 876 877 878 879 880
                    s->errintsts |= SDHC_EIS_ADMAERR;
                    s->norintsts |= SDHC_NIS_ERR;
                }

                sdhci_update_irq(s);
            }
881
            sdhci_end_transfer(s);
882 883 884 885 886
            return;
        }

    }

P
Peter Maydell 已提交
887
    /* we have unfinished business - reschedule to continue ADMA */
888 889
    timer_mod(s->transfer_timer,
                   qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
890 891 892 893
}

/* Perform data transfer according to controller configuration */

894
static void sdhci_data_transfer(void *opaque)
895
{
896
    SDHCIState *s = (SDHCIState *)opaque;
897 898

    if (s->trnmod & SDHC_TRNS_DMA) {
899
        switch (SDHC_DMA_TYPE(s->hostctl1)) {
900 901
        case SDHC_CTRL_SDMA:
            if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
902
                sdhci_sdma_transfer_single_block(s);
903
            } else {
904
                sdhci_sdma_transfer_multi_blocks(s);
905 906 907 908
            }

            break;
        case SDHC_CTRL_ADMA1_32:
909
            if (!(s->capareg & R_SDHC_CAPAB_ADMA1_MASK)) {
910
                trace_sdhci_error("ADMA1 not supported");
911 912 913
                break;
            }

914
            sdhci_do_adma(s);
915 916
            break;
        case SDHC_CTRL_ADMA2_32:
917
            if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK)) {
918
                trace_sdhci_error("ADMA2 not supported");
919 920 921
                break;
            }

922
            sdhci_do_adma(s);
923 924
            break;
        case SDHC_CTRL_ADMA2_64:
925 926
            if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK) ||
                    !(s->capareg & R_SDHC_CAPAB_BUS64BIT_MASK)) {
927
                trace_sdhci_error("64 bit ADMA not supported");
928 929 930
                break;
            }

931
            sdhci_do_adma(s);
932 933
            break;
        default:
934
            trace_sdhci_error("Unsupported DMA type");
935 936 937
            break;
        }
    } else {
938
        if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
939 940
            s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
                    SDHC_DAT_LINE_ACTIVE;
941
            sdhci_read_block_from_card(s);
942 943 944
        } else {
            s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
                    SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
945
            sdhci_write_block_to_card(s);
946 947 948 949 950 951
        }
    }
}

static bool sdhci_can_issue_command(SDHCIState *s)
{
952
    if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
        (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
        ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
        ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
        !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
        return false;
    }

    return true;
}

/* The Buffer Data Port register must be accessed in sequential and
 * continuous manner */
static inline bool
sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
{
    if ((s->data_count & 0x3) != byte_num) {
969 970
        trace_sdhci_error("Non-sequential access to Buffer Data Port register"
                          "is prohibited\n");
971 972 973 974 975
        return false;
    }
    return true;
}

976
static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
977
{
978
    SDHCIState *s = (SDHCIState *)opaque;
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
    uint32_t ret = 0;

    switch (offset & ~0x3) {
    case SDHC_SYSAD:
        ret = s->sdmasysad;
        break;
    case SDHC_BLKSIZE:
        ret = s->blksize | (s->blkcnt << 16);
        break;
    case SDHC_ARGUMENT:
        ret = s->argument;
        break;
    case SDHC_TRNMOD:
        ret = s->trnmod | (s->cmdreg << 16);
        break;
    case SDHC_RSPREG0 ... SDHC_RSPREG3:
        ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
        break;
    case  SDHC_BDATA:
        if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
999
            ret = sdhci_read_dataport(s, size);
1000
            trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1001 1002 1003 1004 1005 1006 1007
            return ret;
        }
        break;
    case SDHC_PRNSTS:
        ret = s->prnsts;
        break;
    case SDHC_HOSTCTL:
1008
        ret = s->hostctl1 | (s->pwrcon << 8) | (s->blkgap << 16) |
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
              (s->wakcon << 24);
        break;
    case SDHC_CLKCON:
        ret = s->clkcon | (s->timeoutcon << 16);
        break;
    case SDHC_NORINTSTS:
        ret = s->norintsts | (s->errintsts << 16);
        break;
    case SDHC_NORINTSTSEN:
        ret = s->norintstsen | (s->errintstsen << 16);
        break;
    case SDHC_NORINTSIGEN:
        ret = s->norintsigen | (s->errintsigen << 16);
        break;
    case SDHC_ACMD12ERRSTS:
1024
        ret = s->acmd12errsts | (s->hostctl2 << 16);
1025
        break;
1026
    case SDHC_CAPAB:
1027 1028 1029 1030
        ret = (uint32_t)s->capareg;
        break;
    case SDHC_CAPAB + 4:
        ret = (uint32_t)(s->capareg >> 32);
1031 1032
        break;
    case SDHC_MAXCURR:
1033 1034 1035 1036
        ret = (uint32_t)s->maxcurr;
        break;
    case SDHC_MAXCURR + 4:
        ret = (uint32_t)(s->maxcurr >> 32);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
        break;
    case SDHC_ADMAERR:
        ret =  s->admaerr;
        break;
    case SDHC_ADMASYSADDR:
        ret = (uint32_t)s->admasysaddr;
        break;
    case SDHC_ADMASYSADDR + 4:
        ret = (uint32_t)(s->admasysaddr >> 32);
        break;
    case SDHC_SLOT_INT_STATUS:
1048
        ret = (s->version << 16) | sdhci_slotint(s);
1049 1050
        break;
    default:
1051 1052
        qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
                      "not implemented\n", size, offset);
1053 1054 1055 1056 1057
        break;
    }

    ret >>= (offset & 0x3) * 8;
    ret &= (1ULL << (size * 8)) - 1;
1058
    trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
    return ret;
}

static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
{
    if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
        return;
    }
    s->blkgap = value & SDHC_STOP_AT_GAP_REQ;

    if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
            (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
        if (s->stopped_state == sdhc_gap_read) {
            s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
1073
            sdhci_read_block_from_card(s);
1074 1075
        } else {
            s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
1076
            sdhci_write_block_to_card(s);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
        }
        s->stopped_state = sdhc_not_stopped;
    } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
        if (s->prnsts & SDHC_DOING_READ) {
            s->stopped_state = sdhc_gap_read;
        } else if (s->prnsts & SDHC_DOING_WRITE) {
            s->stopped_state = sdhc_gap_write;
        }
    }
}

static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
{
    switch (value) {
    case SDHC_RESET_ALL:
1092
        sdhci_reset(s);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
        break;
    case SDHC_RESET_CMD:
        s->prnsts &= ~SDHC_CMD_INHIBIT;
        s->norintsts &= ~SDHC_NIS_CMDCMP;
        break;
    case SDHC_RESET_DATA:
        s->data_count = 0;
        s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
                SDHC_DOING_READ | SDHC_DOING_WRITE |
                SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
        s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
        s->stopped_state = sdhc_not_stopped;
        s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
                SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
        break;
    }
}

static void
1112
sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1113
{
1114
    SDHCIState *s = (SDHCIState *)opaque;
1115 1116
    unsigned shift =  8 * (offset & 0x3);
    uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
1117
    uint32_t value = val;
1118 1119 1120 1121 1122 1123 1124 1125
    value <<= shift;

    switch (offset & ~0x3) {
    case SDHC_SYSAD:
        s->sdmasysad = (s->sdmasysad & mask) | value;
        MASKED_WRITE(s->sdmasysad, mask, value);
        /* Writing to last byte of sdmasysad might trigger transfer */
        if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
1126
                s->blksize && SDHC_DMA_TYPE(s->hostctl1) == SDHC_CTRL_SDMA) {
1127 1128 1129 1130 1131
            if (s->trnmod & SDHC_TRNS_MULTI) {
                sdhci_sdma_transfer_multi_blocks(s);
            } else {
                sdhci_sdma_transfer_single_block(s);
            }
1132 1133 1134 1135 1136 1137 1138
        }
        break;
    case SDHC_BLKSIZE:
        if (!TRANSFERRING_DATA(s->prnsts)) {
            MASKED_WRITE(s->blksize, mask, value);
            MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
        }
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

        /* Limit block size to the maximum buffer size */
        if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
            qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than " \
                          "the maximum buffer 0x%x", __func__, s->blksize,
                          s->buf_maxsz);

            s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
        }

1149 1150 1151 1152 1153 1154 1155
        break;
    case SDHC_ARGUMENT:
        MASKED_WRITE(s->argument, mask, value);
        break;
    case SDHC_TRNMOD:
        /* DMA can be enabled only if it is supported as indicated by
         * capabilities register */
1156
        if (!(s->capareg & R_SDHC_CAPAB_SDMA_MASK)) {
1157 1158
            value &= ~SDHC_TRNS_DMA;
        }
1159
        MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK);
1160 1161 1162
        MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);

        /* Writing to the upper byte of CMDREG triggers SD command generation */
1163
        if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1164 1165 1166
            break;
        }

1167
        sdhci_send_command(s);
1168 1169 1170
        break;
    case  SDHC_BDATA:
        if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1171
            sdhci_write_dataport(s, value >> shift, size);
1172 1173 1174 1175 1176 1177
        }
        break;
    case SDHC_HOSTCTL:
        if (!(mask & 0xFF0000)) {
            sdhci_blkgap_write(s, value >> 16);
        }
1178
        MASKED_WRITE(s->hostctl1, mask, value);
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
        MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
        MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
        if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
                !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
            s->pwrcon &= ~SDHC_POWER_ON;
        }
        break;
    case SDHC_CLKCON:
        if (!(mask & 0xFF000000)) {
            sdhci_reset_write(s, value >> 24);
        }
        MASKED_WRITE(s->clkcon, mask, value);
        MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
        if (s->clkcon & SDHC_CLOCK_INT_EN) {
            s->clkcon |= SDHC_CLOCK_INT_STABLE;
        } else {
            s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
        }
        break;
    case SDHC_NORINTSTS:
        if (s->norintstsen & SDHC_NISEN_CARDINT) {
            value &= ~SDHC_NIS_CARDINT;
        }
        s->norintsts &= mask | ~value;
        s->errintsts &= (mask >> 16) | ~(value >> 16);
        if (s->errintsts) {
            s->norintsts |= SDHC_NIS_ERR;
        } else {
            s->norintsts &= ~SDHC_NIS_ERR;
        }
        sdhci_update_irq(s);
        break;
    case SDHC_NORINTSTSEN:
        MASKED_WRITE(s->norintstsen, mask, value);
        MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
        s->norintsts &= s->norintstsen;
        s->errintsts &= s->errintstsen;
        if (s->errintsts) {
            s->norintsts |= SDHC_NIS_ERR;
        } else {
            s->norintsts &= ~SDHC_NIS_ERR;
        }
1221 1222 1223 1224 1225 1226 1227
        /* Quirk for Raspberry Pi: pending card insert interrupt
         * appears when first enabled after power on */
        if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
            assert(s->pending_insert_quirk);
            s->norintsts |= SDHC_NIS_INSERT;
            s->pending_insert_state = false;
        }
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
        sdhci_update_irq(s);
        break;
    case SDHC_NORINTSIGEN:
        MASKED_WRITE(s->norintsigen, mask, value);
        MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
        sdhci_update_irq(s);
        break;
    case SDHC_ADMAERR:
        MASKED_WRITE(s->admaerr, mask, value);
        break;
    case SDHC_ADMASYSADDR:
        s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
                (uint64_t)mask)) | (uint64_t)value;
        break;
    case SDHC_ADMASYSADDR + 4:
        s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
                ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
        break;
    case SDHC_FEAER:
        s->acmd12errsts |= value;
        s->errintsts |= (value >> 16) & s->errintstsen;
        if (s->acmd12errsts) {
            s->errintsts |= SDHC_EIS_CMD12ERR;
        }
        if (s->errintsts) {
            s->norintsts |= SDHC_NIS_ERR;
        }
        sdhci_update_irq(s);
        break;
1257
    case SDHC_ACMD12ERRSTS:
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
        MASKED_WRITE(s->acmd12errsts, mask, value & UINT16_MAX);
        if (s->uhs_mode >= UHS_I) {
            MASKED_WRITE(s->hostctl2, mask >> 16, value >> 16);

            if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, V18_ENA)) {
                sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_1_8V);
            } else {
                sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_3_3V);
            }
        }
1268
        break;
1269 1270 1271 1272 1273 1274 1275 1276 1277

    case SDHC_CAPAB:
    case SDHC_CAPAB + 4:
    case SDHC_MAXCURR:
    case SDHC_MAXCURR + 4:
        qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx
                      " <- 0x%08x read-only\n", size, offset, value >> shift);
        break;

1278
    default:
1279 1280
        qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x "
                      "not implemented\n", size, offset, value >> shift);
1281 1282
        break;
    }
1283 1284
    trace_sdhci_access("wr", size << 3, offset, "<-",
                       value >> shift, value >> shift);
1285 1286 1287
}

static const MemoryRegionOps sdhci_mmio_ops = {
1288 1289
    .read = sdhci_read,
    .write = sdhci_write,
1290 1291 1292 1293 1294 1295 1296 1297
    .valid = {
        .min_access_size = 1,
        .max_access_size = 4,
        .unaligned = false
    },
    .endianness = DEVICE_LITTLE_ENDIAN,
};

1298 1299
static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp)
{
1300 1301
    Error *local_err = NULL;

1302 1303 1304 1305 1306
    switch (s->sd_spec_version) {
    case 2 ... 3:
        break;
    default:
        error_setg(errp, "Only Spec v2/v3 are supported");
1307 1308 1309
        return;
    }
    s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1);
1310 1311 1312 1313 1314 1315

    sdhci_check_capareg(s, &local_err);
    if (local_err) {
        error_propagate(errp, local_err);
        return;
    }
1316 1317
}

1318 1319 1320
/* --- qdev common --- */

#define DEFINE_SDHCI_COMMON_PROPERTIES(_state) \
1321
    DEFINE_PROP_UINT8("sd-spec-version", _state, sd_spec_version, 2), \
1322
    DEFINE_PROP_UINT8("uhs", _state, uhs_mode, UHS_NOT_SUPPORTED), \
1323 1324 1325
    \
    /* Capabilities registers provide information on supported
     * features of this specific host controller implementation */ \
1326 1327
    DEFINE_PROP_UINT64("capareg", _state, capareg, SDHC_CAPAB_REG_DEFAULT), \
    DEFINE_PROP_UINT64("maxcurr", _state, maxcurr, 0)
1328

1329
static void sdhci_initfn(SDHCIState *s)
1330
{
1331 1332
    qbus_create_inplace(&s->sdbus, sizeof(s->sdbus),
                        TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
1333

1334
    s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1335
    s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1336 1337

    s->io_ops = &sdhci_mmio_ops;
1338 1339
}

1340
static void sdhci_uninitfn(SDHCIState *s)
1341
{
1342 1343 1344 1345
    timer_del(s->insert_timer);
    timer_free(s->insert_timer);
    timer_del(s->transfer_timer);
    timer_free(s->transfer_timer);
1346

1347 1348
    g_free(s->fifo_buffer);
    s->fifo_buffer = NULL;
1349 1350
}

1351 1352
static void sdhci_common_realize(SDHCIState *s, Error **errp)
{
1353 1354 1355 1356 1357 1358 1359
    Error *local_err = NULL;

    sdhci_init_readonly_registers(s, &local_err);
    if (local_err) {
        error_propagate(errp, local_err);
        return;
    }
1360 1361 1362 1363 1364 1365 1366
    s->buf_maxsz = sdhci_get_fifolen(s);
    s->fifo_buffer = g_malloc0(s->buf_maxsz);

    memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
                          SDHC_REGISTERS_MAP_SIZE);
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
static void sdhci_common_unrealize(SDHCIState *s, Error **errp)
{
    /* This function is expected to be called only once for each class:
     * - SysBus:    via DeviceClass->unrealize(),
     * - PCI:       via PCIDeviceClass->exit().
     * However to avoid double-free and/or use-after-free we still nullify
     * this variable (better safe than sorry!). */
    g_free(s->fifo_buffer);
    s->fifo_buffer = NULL;
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
static bool sdhci_pending_insert_vmstate_needed(void *opaque)
{
    SDHCIState *s = opaque;

    return s->pending_insert_state;
}

static const VMStateDescription sdhci_pending_insert_vmstate = {
    .name = "sdhci/pending-insert",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = sdhci_pending_insert_vmstate_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(pending_insert_state, SDHCIState),
        VMSTATE_END_OF_LIST()
    },
};

1396 1397 1398 1399
const VMStateDescription sdhci_vmstate = {
    .name = "sdhci",
    .version_id = 1,
    .minimum_version_id = 1,
1400
    .fields = (VMStateField[]) {
1401 1402 1403 1404 1405 1406 1407 1408
        VMSTATE_UINT32(sdmasysad, SDHCIState),
        VMSTATE_UINT16(blksize, SDHCIState),
        VMSTATE_UINT16(blkcnt, SDHCIState),
        VMSTATE_UINT32(argument, SDHCIState),
        VMSTATE_UINT16(trnmod, SDHCIState),
        VMSTATE_UINT16(cmdreg, SDHCIState),
        VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
        VMSTATE_UINT32(prnsts, SDHCIState),
1409
        VMSTATE_UINT8(hostctl1, SDHCIState),
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
        VMSTATE_UINT8(pwrcon, SDHCIState),
        VMSTATE_UINT8(blkgap, SDHCIState),
        VMSTATE_UINT8(wakcon, SDHCIState),
        VMSTATE_UINT16(clkcon, SDHCIState),
        VMSTATE_UINT8(timeoutcon, SDHCIState),
        VMSTATE_UINT8(admaerr, SDHCIState),
        VMSTATE_UINT16(norintsts, SDHCIState),
        VMSTATE_UINT16(errintsts, SDHCIState),
        VMSTATE_UINT16(norintstsen, SDHCIState),
        VMSTATE_UINT16(errintstsen, SDHCIState),
        VMSTATE_UINT16(norintsigen, SDHCIState),
        VMSTATE_UINT16(errintsigen, SDHCIState),
        VMSTATE_UINT16(acmd12errsts, SDHCIState),
        VMSTATE_UINT16(data_count, SDHCIState),
        VMSTATE_UINT64(admasysaddr, SDHCIState),
        VMSTATE_UINT8(stopped_state, SDHCIState),
1426
        VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
1427 1428
        VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
        VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1429
        VMSTATE_END_OF_LIST()
1430 1431 1432 1433 1434
    },
    .subsections = (const VMStateDescription*[]) {
        &sdhci_pending_insert_vmstate,
        NULL
    },
1435 1436
};

1437 1438 1439 1440 1441 1442 1443 1444 1445
static void sdhci_common_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
    dc->vmsd = &sdhci_vmstate;
    dc->reset = sdhci_poweron_reset;
}

1446 1447
/* --- qdev PCI --- */

1448
static Property sdhci_pci_properties[] = {
1449
    DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1450 1451 1452
    DEFINE_PROP_END_OF_LIST(),
};

1453
static void sdhci_pci_realize(PCIDevice *dev, Error **errp)
1454 1455
{
    SDHCIState *s = PCI_SDHCI(dev);
1456
    Error *local_err = NULL;
1457 1458 1459

    sdhci_initfn(s);
    sdhci_common_realize(s, errp);
1460 1461
    if (local_err) {
        error_propagate(errp, local_err);
1462 1463 1464
        return;
    }

1465 1466 1467
    dev->config[PCI_CLASS_PROG] = 0x01; /* Standard Host supported DMA */
    dev->config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin A */
    s->irq = pci_allocate_irq(dev);
1468 1469
    s->dma_as = pci_get_address_space(dev);
    pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->iomem);
1470 1471 1472 1473 1474
}

static void sdhci_pci_exit(PCIDevice *dev)
{
    SDHCIState *s = PCI_SDHCI(dev);
1475 1476

    sdhci_common_unrealize(s, &error_abort);
1477 1478 1479 1480 1481 1482 1483 1484
    sdhci_uninitfn(s);
}

static void sdhci_pci_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);

1485
    k->realize = sdhci_pci_realize;
1486 1487 1488 1489
    k->exit = sdhci_pci_exit;
    k->vendor_id = PCI_VENDOR_ID_REDHAT;
    k->device_id = PCI_DEVICE_ID_REDHAT_SDHCI;
    k->class_id = PCI_CLASS_SYSTEM_SDHCI;
1490
    dc->props = sdhci_pci_properties;
1491 1492

    sdhci_common_class_init(klass, data);
1493 1494 1495 1496 1497 1498 1499
}

static const TypeInfo sdhci_pci_info = {
    .name = TYPE_PCI_SDHCI,
    .parent = TYPE_PCI_DEVICE,
    .instance_size = sizeof(SDHCIState),
    .class_init = sdhci_pci_class_init,
1500 1501 1502 1503
    .interfaces = (InterfaceInfo[]) {
        { INTERFACE_CONVENTIONAL_PCI_DEVICE },
        { },
    },
1504 1505
};

1506 1507
/* --- qdev SysBus --- */

1508
static Property sdhci_sysbus_properties[] = {
1509
    DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1510 1511
    DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
                     false),
1512 1513
    DEFINE_PROP_LINK("dma", SDHCIState,
                     dma_mr, TYPE_MEMORY_REGION, MemoryRegion *),
1514 1515 1516
    DEFINE_PROP_END_OF_LIST(),
};

1517 1518 1519
static void sdhci_sysbus_init(Object *obj)
{
    SDHCIState *s = SYSBUS_SDHCI(obj);
1520

1521
    sdhci_initfn(s);
1522 1523 1524 1525 1526
}

static void sdhci_sysbus_finalize(Object *obj)
{
    SDHCIState *s = SYSBUS_SDHCI(obj);
1527 1528 1529 1530 1531

    if (s->dma_mr) {
        object_unparent(OBJECT(s->dma_mr));
    }

1532 1533 1534 1535
    sdhci_uninitfn(s);
}

static void sdhci_sysbus_realize(DeviceState *dev, Error ** errp)
1536
{
1537
    SDHCIState *s = SYSBUS_SDHCI(dev);
1538
    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1539
    Error *local_err = NULL;
1540

1541
    sdhci_common_realize(s, errp);
1542 1543
    if (local_err) {
        error_propagate(errp, local_err);
1544 1545 1546
        return;
    }

1547
    if (s->dma_mr) {
1548
        s->dma_as = &s->sysbus_dma_as;
1549 1550 1551 1552 1553
        address_space_init(s->dma_as, s->dma_mr, "sdhci-dma");
    } else {
        /* use system_memory() if property "dma" not set */
        s->dma_as = &address_space_memory;
    }
1554

1555
    sysbus_init_irq(sbd, &s->irq);
1556 1557 1558 1559

    memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci",
            SDHC_REGISTERS_MAP_SIZE);

1560 1561 1562
    sysbus_init_mmio(sbd, &s->iomem);
}

1563 1564 1565 1566 1567
static void sdhci_sysbus_unrealize(DeviceState *dev, Error **errp)
{
    SDHCIState *s = SYSBUS_SDHCI(dev);

    sdhci_common_unrealize(s, &error_abort);
1568 1569 1570 1571

     if (s->dma_mr) {
        address_space_destroy(s->dma_as);
    }
1572 1573
}

1574
static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1575 1576 1577
{
    DeviceClass *dc = DEVICE_CLASS(klass);

1578
    dc->props = sdhci_sysbus_properties;
1579
    dc->realize = sdhci_sysbus_realize;
1580
    dc->unrealize = sdhci_sysbus_unrealize;
1581 1582

    sdhci_common_class_init(klass, data);
1583 1584
}

1585 1586
static const TypeInfo sdhci_sysbus_info = {
    .name = TYPE_SYSBUS_SDHCI,
1587 1588
    .parent = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(SDHCIState),
1589 1590 1591
    .instance_init = sdhci_sysbus_init,
    .instance_finalize = sdhci_sysbus_finalize,
    .class_init = sdhci_sysbus_class_init,
1592 1593
};

1594 1595
/* --- qdev bus master --- */

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
static void sdhci_bus_class_init(ObjectClass *klass, void *data)
{
    SDBusClass *sbc = SD_BUS_CLASS(klass);

    sbc->set_inserted = sdhci_set_inserted;
    sbc->set_readonly = sdhci_set_readonly;
}

static const TypeInfo sdhci_bus_info = {
    .name = TYPE_SDHCI_BUS,
    .parent = TYPE_SD_BUS,
    .instance_size = sizeof(SDBus),
    .class_init = sdhci_bus_class_init,
};

1611 1612 1613 1614
static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size)
{
    SDHCIState *s = SYSBUS_SDHCI(opaque);
    uint32_t ret;
1615
    uint16_t hostctl1;
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

    switch (offset) {
    default:
        return sdhci_read(opaque, offset, size);

    case SDHC_HOSTCTL:
        /*
         * For a detailed explanation on the following bit
         * manipulation code see comments in a similar part of
         * usdhc_write()
         */
1627
        hostctl1 = SDHC_DMA_TYPE(s->hostctl1) << (8 - 3);
1628

1629 1630
        if (s->hostctl1 & SDHC_CTRL_8BITBUS) {
            hostctl1 |= ESDHC_CTRL_8BITBUS;
1631 1632
        }

1633 1634
        if (s->hostctl1 & SDHC_CTRL_4BITBUS) {
            hostctl1 |= ESDHC_CTRL_4BITBUS;
1635 1636
        }

1637
        ret  = hostctl1;
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
        ret |= (uint32_t)s->blkgap << 16;
        ret |= (uint32_t)s->wakcon << 24;

        break;

    case ESDHC_DLL_CTRL:
    case ESDHC_TUNE_CTRL_STATUS:
    case ESDHC_UNDOCUMENTED_REG27:
    case ESDHC_TUNING_CTRL:
    case ESDHC_VENDOR_SPEC:
    case ESDHC_MIX_CTRL:
    case ESDHC_WTMK_LVL:
        ret = 0;
        break;
    }

    return ret;
}

static void
usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
{
    SDHCIState *s = SYSBUS_SDHCI(opaque);
1661
    uint8_t hostctl1;
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
    uint32_t value = (uint32_t)val;

    switch (offset) {
    case ESDHC_DLL_CTRL:
    case ESDHC_TUNE_CTRL_STATUS:
    case ESDHC_UNDOCUMENTED_REG27:
    case ESDHC_TUNING_CTRL:
    case ESDHC_WTMK_LVL:
    case ESDHC_VENDOR_SPEC:
        break;

    case SDHC_HOSTCTL:
        /*
         * Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL)
         *
         *       7         6     5      4      3      2        1      0
         * |-----------+--------+--------+-----------+----------+---------|
         * | Card      | Card   | Endian | DATA3     | Data     | Led     |
         * | Detect    | Detect | Mode   | as Card   | Transfer | Control |
         * | Signal    | Test   |        | Detection | Width    |         |
         * | Selection | Level  |        | Pin       |          |         |
         * |-----------+--------+--------+-----------+----------+---------|
         *
         * and 0x29
         *
         *  15      10 9    8
         * |----------+------|
         * | Reserved | DMA  |
         * |          | Sel. |
         * |          |      |
         * |----------+------|
         *
         * and here's what SDCHI spec expects those offsets to be:
         *
         * 0x28 (Host Control Register)
         *
         *     7        6         5       4  3      2         1        0
         * |--------+--------+----------+------+--------+----------+---------|
         * | Card   | Card   | Extended | DMA  | High   | Data     | LED     |
         * | Detect | Detect | Data     | Sel. | Speed  | Transfer | Control |
         * | Signal | Test   | Transfer |      | Enable | Width    |         |
         * | Sel.   | Level  | Width    |      |        |          |         |
         * |--------+--------+----------+------+--------+----------+---------|
         *
         * and 0x29 (Power Control Register)
         *
         * |----------------------------------|
         * | Power Control Register           |
         * |                                  |
         * | Description omitted,             |
         * | since it has no analog in ESDHCI |
         * |                                  |
         * |----------------------------------|
         *
         * Since offsets 0x2A and 0x2B should be compatible between
         * both IP specs we only need to reconcile least 16-bit of the
         * word we've been given.
         */

        /*
         * First, save bits 7 6 and 0 since they are identical
         */
1724 1725 1726
        hostctl1 = value & (SDHC_CTRL_LED |
                            SDHC_CTRL_CDTEST_INS |
                            SDHC_CTRL_CDTEST_EN);
1727 1728 1729 1730 1731
        /*
         * Second, split "Data Transfer Width" from bits 2 and 1 in to
         * bits 5 and 1
         */
        if (value & ESDHC_CTRL_8BITBUS) {
1732
            hostctl1 |= SDHC_CTRL_8BITBUS;
1733 1734 1735
        }

        if (value & ESDHC_CTRL_4BITBUS) {
1736
            hostctl1 |= ESDHC_CTRL_4BITBUS;
1737 1738 1739 1740 1741
        }

        /*
         * Third, move DMA select from bits 9 and 8 to bits 4 and 3
         */
1742
        hostctl1 |= SDHC_DMA_TYPE(value >> (8 - 3));
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

        /*
         * Now place the corrected value into low 16-bit of the value
         * we are going to give standard SDHCI write function
         *
         * NOTE: This transformation should be the inverse of what can
         * be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux
         * kernel
         */
        value &= ~UINT16_MAX;
1753
        value |= hostctl1;
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
        value |= (uint16_t)s->pwrcon << 8;

        sdhci_write(opaque, offset, value, size);
        break;

    case ESDHC_MIX_CTRL:
        /*
         * So, when SD/MMC stack in Linux tries to write to "Transfer
         * Mode Register", ESDHC i.MX quirk code will translate it
         * into a write to ESDHC_MIX_CTRL, so we do the opposite in
         * order to get where we started
         *
         * Note that Auto CMD23 Enable bit is located in a wrong place
         * on i.MX, but since it is not used by QEMU we do not care.
         *
         * We don't want to call sdhci_write(.., SDHC_TRNMOD, ...)
         * here becuase it will result in a call to
         * sdhci_send_command(s) which we don't want.
         *
         */
        s->trnmod = value & UINT16_MAX;
        break;
    case SDHC_TRNMOD:
        /*
         * Similar to above, but this time a write to "Command
         * Register" will be translated into a 4-byte write to
         * "Transfer Mode register" where lower 16-bit of value would
         * be set to zero. So what we do is fill those bits with
         * cached value from s->trnmod and let the SDHCI
         * infrastructure handle the rest
         */
        sdhci_write(opaque, offset, val | s->trnmod, size);
        break;
    case SDHC_BLKSIZE:
        /*
         * ESDHCI does not implement "Host SDMA Buffer Boundary", and
         * Linux driver will try to zero this field out which will
         * break the rest of SDHCI emulation.
         *
         * Linux defaults to maximum possible setting (512K boundary)
         * and it seems to be the only option that i.MX IP implements,
         * so we artificially set it to that value.
         */
        val |= 0x7 << 12;
        /* FALLTHROUGH */
    default:
        sdhci_write(opaque, offset, val, size);
        break;
    }
}


static const MemoryRegionOps usdhc_mmio_ops = {
    .read = usdhc_read,
    .write = usdhc_write,
    .valid = {
        .min_access_size = 1,
        .max_access_size = 4,
        .unaligned = false
    },
    .endianness = DEVICE_LITTLE_ENDIAN,
};

static void imx_usdhc_init(Object *obj)
{
    SDHCIState *s = SYSBUS_SDHCI(obj);

    s->io_ops = &usdhc_mmio_ops;
    s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ;
}

static const TypeInfo imx_usdhc_info = {
    .name = TYPE_IMX_USDHC,
    .parent = TYPE_SYSBUS_SDHCI,
    .instance_init = imx_usdhc_init,
};

1831 1832
static void sdhci_register_types(void)
{
1833
    type_register_static(&sdhci_pci_info);
1834
    type_register_static(&sdhci_sysbus_info);
1835
    type_register_static(&sdhci_bus_info);
1836
    type_register_static(&imx_usdhc_info);
1837 1838 1839
}

type_init(sdhci_register_types)