sdhci.c 57.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * SD Association Host Standard Specification v2.0 controller emulation
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 * Mitsyanko Igor <i.mitsyanko@samsung.com>
 * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
 *
 * Based on MMC controller for Samsung S5PC1xx-based board emulation
 * by Alexey Merkulov and Vladimir Monakhov.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, see <http://www.gnu.org/licenses/>.
 */

P
Peter Maydell 已提交
25
#include "qemu/osdep.h"
26
#include "qemu/error-report.h"
27
#include "qapi/error.h"
28
#include "hw/hw.h"
29
#include "sysemu/block-backend.h"
30 31 32 33
#include "sysemu/blockdev.h"
#include "sysemu/dma.h"
#include "qemu/timer.h"
#include "qemu/bitops.h"
34
#include "hw/sd/sdhci.h"
35
#include "sdhci-internal.h"
36
#include "qemu/log.h"
37
#include "qemu/cutils.h"
38
#include "trace.h"
39

40 41 42
#define TYPE_SDHCI_BUS "sdhci-bus"
#define SDHCI_BUS(obj) OBJECT_CHECK(SDBus, (obj), TYPE_SDHCI_BUS)

43 44
#define MASKED_WRITE(reg, mask, val)  (reg = (reg & (mask)) | (val))

45 46
/* Default SD/MMC host controller features information, which will be
 * presented in CAPABILITIES register of generic SD host controller at reset.
47 48 49 50 51 52 53 54 55 56 57 58 59
 *
 * support:
 * - 3.3v and 1.8v voltages
 * - SDMA/ADMA1/ADMA2
 * - high-speed
 * max host controller R/W buffers size: 512B
 * max clock frequency for SDclock: 52 MHz
 * timeout clock frequency: 52 MHz
 *
 * does not support:
 * - 3.0v voltage
 * - 64-bit system bus
 * - suspend/resume
60
 */
61
#define SDHC_CAPAB_REG_DEFAULT 0x057834b4
62

63 64 65 66 67
static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
{
    return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH));
}

68 69 70 71
/* return true on error */
static bool sdhci_check_capab_freq_range(SDHCIState *s, const char *desc,
                                         uint8_t freq, Error **errp)
{
72 73 74
    if (s->sd_spec_version >= 3) {
        return false;
    }
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    switch (freq) {
    case 0:
    case 10 ... 63:
        break;
    default:
        error_setg(errp, "SD %s clock frequency can have value"
                   "in range 0-63 only", desc);
        return true;
    }
    return false;
}

static void sdhci_check_capareg(SDHCIState *s, Error **errp)
{
    uint64_t msk = s->capareg;
    uint32_t val;
    bool y;

    switch (s->sd_spec_version) {
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    case 3:
        val = FIELD_EX64(s->capareg, SDHC_CAPAB, ASYNC_INT);
        trace_sdhci_capareg("async interrupt", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, ASYNC_INT, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, SLOT_TYPE);
        if (val) {
            error_setg(errp, "slot-type not supported");
            return;
        }
        trace_sdhci_capareg("slot type", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, SLOT_TYPE, 0);

        if (val != 2) {
            val = FIELD_EX64(s->capareg, SDHC_CAPAB, EMBEDDED_8BIT);
            trace_sdhci_capareg("8-bit bus", val);
        }
        msk = FIELD_DP64(msk, SDHC_CAPAB, EMBEDDED_8BIT, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS_SPEED);
        trace_sdhci_capareg("bus speed mask", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, BUS_SPEED, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, DRIVER_STRENGTH);
        trace_sdhci_capareg("driver strength mask", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, DRIVER_STRENGTH, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, TIMER_RETUNING);
        trace_sdhci_capareg("timer re-tuning", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, TIMER_RETUNING, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDR50_TUNING);
        trace_sdhci_capareg("use SDR50 tuning", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, SDR50_TUNING, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, RETUNING_MODE);
        trace_sdhci_capareg("re-tuning mode", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, RETUNING_MODE, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, CLOCK_MULT);
        trace_sdhci_capareg("clock multiplier", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, CLOCK_MULT, 0);

    /* fallthrough */
138
    case 2: /* default version */
139 140 141 142 143 144 145 146 147 148 149
        val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA2);
        trace_sdhci_capareg("ADMA2", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA2, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA1);
        trace_sdhci_capareg("ADMA1", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA1, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT);
        trace_sdhci_capareg("64-bit system bus", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT, 0);
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

    /* fallthrough */
    case 1:
        y = FIELD_EX64(s->capareg, SDHC_CAPAB, TOUNIT);
        msk = FIELD_DP64(msk, SDHC_CAPAB, TOUNIT, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, TOCLKFREQ);
        trace_sdhci_capareg(y ? "timeout (MHz)" : "Timeout (KHz)", val);
        if (sdhci_check_capab_freq_range(s, "timeout", val, errp)) {
            return;
        }
        msk = FIELD_DP64(msk, SDHC_CAPAB, TOCLKFREQ, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, BASECLKFREQ);
        trace_sdhci_capareg(y ? "base (MHz)" : "Base (KHz)", val);
        if (sdhci_check_capab_freq_range(s, "base", val, errp)) {
            return;
        }
        msk = FIELD_DP64(msk, SDHC_CAPAB, BASECLKFREQ, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH);
        if (val >= 3) {
            error_setg(errp, "block size can be 512, 1024 or 2048 only");
            return;
        }
        trace_sdhci_capareg("max block length", sdhci_get_fifolen(s));
        msk = FIELD_DP64(msk, SDHC_CAPAB, MAXBLOCKLENGTH, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, HIGHSPEED);
        trace_sdhci_capareg("high speed", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, HIGHSPEED, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDMA);
        trace_sdhci_capareg("SDMA", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, SDMA, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, SUSPRESUME);
        trace_sdhci_capareg("suspend/resume", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, SUSPRESUME, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, V33);
        trace_sdhci_capareg("3.3v", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, V33, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, V30);
        trace_sdhci_capareg("3.0v", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, V30, 0);

        val = FIELD_EX64(s->capareg, SDHC_CAPAB, V18);
        trace_sdhci_capareg("1.8v", val);
        msk = FIELD_DP64(msk, SDHC_CAPAB, V18, 0);
        break;

    default:
        error_setg(errp, "Unsupported spec version: %u", s->sd_spec_version);
    }
    if (msk) {
        qemu_log_mask(LOG_UNIMP,
                      "SDHCI: unknown CAPAB mask: 0x%016" PRIx64 "\n", msk);
    }
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
static uint8_t sdhci_slotint(SDHCIState *s)
{
    return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
         ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
         ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
}

static inline void sdhci_update_irq(SDHCIState *s)
{
    qemu_set_irq(s->irq, sdhci_slotint(s));
}

static void sdhci_raise_insertion_irq(void *opaque)
{
    SDHCIState *s = (SDHCIState *)opaque;

    if (s->norintsts & SDHC_NIS_REMOVE) {
229 230
        timer_mod(s->insert_timer,
                       qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
231 232 233 234 235 236 237 238 239
    } else {
        s->prnsts = 0x1ff0000;
        if (s->norintstsen & SDHC_NISEN_INSERT) {
            s->norintsts |= SDHC_NIS_INSERT;
        }
        sdhci_update_irq(s);
    }
}

240
static void sdhci_set_inserted(DeviceState *dev, bool level)
241
{
242
    SDHCIState *s = (SDHCIState *)dev;
243

244
    trace_sdhci_set_inserted(level ? "insert" : "eject");
245 246
    if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
        /* Give target some time to notice card ejection */
247 248
        timer_mod(s->insert_timer,
                       qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    } else {
        if (level) {
            s->prnsts = 0x1ff0000;
            if (s->norintstsen & SDHC_NISEN_INSERT) {
                s->norintsts |= SDHC_NIS_INSERT;
            }
        } else {
            s->prnsts = 0x1fa0000;
            s->pwrcon &= ~SDHC_POWER_ON;
            s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
            if (s->norintstsen & SDHC_NISEN_REMOVE) {
                s->norintsts |= SDHC_NIS_REMOVE;
            }
        }
        sdhci_update_irq(s);
    }
}

267
static void sdhci_set_readonly(DeviceState *dev, bool level)
268
{
269
    SDHCIState *s = (SDHCIState *)dev;
270 271 272 273 274 275 276 277 278 279 280

    if (level) {
        s->prnsts &= ~SDHC_WRITE_PROTECT;
    } else {
        /* Write enabled */
        s->prnsts |= SDHC_WRITE_PROTECT;
    }
}

static void sdhci_reset(SDHCIState *s)
{
281 282
    DeviceState *dev = DEVICE(s);

283 284
    timer_del(s->insert_timer);
    timer_del(s->transfer_timer);
285 286

    /* Set all registers to 0. Capabilities/Version registers are not cleared
287 288 289 290
     * and assumed to always preserve their value, given to them during
     * initialization */
    memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);

291 292 293
    /* Reset other state based on current card insertion/readonly status */
    sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
    sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
294

295 296
    s->data_count = 0;
    s->stopped_state = sdhc_not_stopped;
297
    s->pending_insert_state = false;
298 299
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static void sdhci_poweron_reset(DeviceState *dev)
{
    /* QOM (ie power-on) reset. This is identical to reset
     * commanded via device register apart from handling of the
     * 'pending insert on powerup' quirk.
     */
    SDHCIState *s = (SDHCIState *)dev;

    sdhci_reset(s);

    if (s->pending_insert_quirk) {
        s->pending_insert_state = true;
    }
}

315
static void sdhci_data_transfer(void *opaque);
316 317 318 319 320 321 322 323 324 325 326

static void sdhci_send_command(SDHCIState *s)
{
    SDRequest request;
    uint8_t response[16];
    int rlen;

    s->errintsts = 0;
    s->acmd12errsts = 0;
    request.cmd = s->cmdreg >> 8;
    request.arg = s->argument;
327 328

    trace_sdhci_send_command(request.cmd, request.arg);
329
    rlen = sdbus_do_command(&s->sdbus, &request, response);
330 331 332 333 334 335

    if (s->cmdreg & SDHC_CMD_RESPONSE) {
        if (rlen == 4) {
            s->rspreg[0] = (response[0] << 24) | (response[1] << 16) |
                           (response[2] << 8)  |  response[3];
            s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
336
            trace_sdhci_response4(s->rspreg[0]);
337 338 339 340 341 342 343 344 345
        } else if (rlen == 16) {
            s->rspreg[0] = (response[11] << 24) | (response[12] << 16) |
                           (response[13] << 8) |  response[14];
            s->rspreg[1] = (response[7] << 24) | (response[8] << 16) |
                           (response[9] << 8)  |  response[10];
            s->rspreg[2] = (response[3] << 24) | (response[4] << 16) |
                           (response[5] << 8)  |  response[6];
            s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
                            response[2];
346 347
            trace_sdhci_response16(s->rspreg[3], s->rspreg[2],
                                   s->rspreg[1], s->rspreg[0]);
348
        } else {
349
            trace_sdhci_error("timeout waiting for command response");
350 351 352 353 354 355
            if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
                s->errintsts |= SDHC_EIS_CMDTIMEOUT;
                s->norintsts |= SDHC_NIS_ERR;
            }
        }

356 357
        if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
            (s->norintstsen & SDHC_NISEN_TRSCMP) &&
358 359 360 361 362 363 364 365 366 367 368 369
            (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
            s->norintsts |= SDHC_NIS_TRSCMP;
        }
    }

    if (s->norintstsen & SDHC_NISEN_CMDCMP) {
        s->norintsts |= SDHC_NIS_CMDCMP;
    }

    sdhci_update_irq(s);

    if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
370
        s->data_count = 0;
371
        sdhci_data_transfer(s);
372 373 374 375 376 377 378 379 380 381 382 383
    }
}

static void sdhci_end_transfer(SDHCIState *s)
{
    /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
    if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
        SDRequest request;
        uint8_t response[16];

        request.cmd = 0x0C;
        request.arg = 0;
384
        trace_sdhci_end_transfer(request.cmd, request.arg);
385
        sdbus_do_command(&s->sdbus, &request, response);
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
        /* Auto CMD12 response goes to the upper Response register */
        s->rspreg[3] = (response[0] << 24) | (response[1] << 16) |
                (response[2] << 8) | response[3];
    }

    s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
            SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
            SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);

    if (s->norintstsen & SDHC_NISEN_TRSCMP) {
        s->norintsts |= SDHC_NIS_TRSCMP;
    }

    sdhci_update_irq(s);
}

/*
 * Programmed i/o data transfer
 */
405
#define BLOCK_SIZE_MASK (4 * K_BYTE - 1)
406 407 408 409 410 411 412 413 414 415 416

/* Fill host controller's read buffer with BLKSIZE bytes of data from card */
static void sdhci_read_block_from_card(SDHCIState *s)
{
    int index = 0;

    if ((s->trnmod & SDHC_TRNS_MULTI) &&
            (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
        return;
    }

417
    for (index = 0; index < (s->blksize & BLOCK_SIZE_MASK); index++) {
418
        s->fifo_buffer[index] = sdbus_read_data(&s->sdbus);
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
    }

    /* New data now available for READ through Buffer Port Register */
    s->prnsts |= SDHC_DATA_AVAILABLE;
    if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
        s->norintsts |= SDHC_NIS_RBUFRDY;
    }

    /* Clear DAT line active status if that was the last block */
    if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
            ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
        s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
    }

    /* If stop at block gap request was set and it's not the last block of
     * data - generate Block Event interrupt */
    if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
            s->blkcnt != 1)    {
        s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
        if (s->norintstsen & SDHC_EISEN_BLKGAP) {
            s->norintsts |= SDHC_EIS_BLKGAP;
        }
    }

    sdhci_update_irq(s);
}

/* Read @size byte of data from host controller @s BUFFER DATA PORT register */
static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
{
    uint32_t value = 0;
    int i;

    /* first check that a valid data exists in host controller input buffer */
    if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
454
        trace_sdhci_error("read from empty buffer");
455 456 457 458 459 460 461
        return 0;
    }

    for (i = 0; i < size; i++) {
        value |= s->fifo_buffer[s->data_count] << i * 8;
        s->data_count++;
        /* check if we've read all valid data (blksize bytes) from buffer */
462
        if ((s->data_count) >= (s->blksize & BLOCK_SIZE_MASK)) {
463
            trace_sdhci_read_dataport(s->data_count);
464 465 466 467 468 469 470 471 472 473 474 475 476
            s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
            s->data_count = 0;  /* next buff read must start at position [0] */

            if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                s->blkcnt--;
            }

            /* if that was the last block of data */
            if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
                ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
                 /* stop at gap request */
                (s->stopped_state == sdhc_gap_read &&
                 !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
477
                sdhci_end_transfer(s);
478
            } else { /* if there are more data, read next block from card */
479
                sdhci_read_block_from_card(s);
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
            }
            break;
        }
    }

    return value;
}

/* Write data from host controller FIFO to card */
static void sdhci_write_block_to_card(SDHCIState *s)
{
    int index = 0;

    if (s->prnsts & SDHC_SPACE_AVAILABLE) {
        if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
            s->norintsts |= SDHC_NIS_WBUFRDY;
        }
        sdhci_update_irq(s);
        return;
    }

    if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
        if (s->blkcnt == 0) {
            return;
        } else {
            s->blkcnt--;
        }
    }

509
    for (index = 0; index < (s->blksize & BLOCK_SIZE_MASK); index++) {
510
        sdbus_write_data(&s->sdbus, s->fifo_buffer[index]);
511 512 513 514 515 516 517 518 519
    }

    /* Next data can be written through BUFFER DATORT register */
    s->prnsts |= SDHC_SPACE_AVAILABLE;

    /* Finish transfer if that was the last block of data */
    if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
            ((s->trnmod & SDHC_TRNS_MULTI) &&
            (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
520
        sdhci_end_transfer(s);
521 522
    } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
        s->norintsts |= SDHC_NIS_WBUFRDY;
523 524 525 526 527 528 529 530 531
    }

    /* Generate Block Gap Event if requested and if not the last block */
    if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
            s->blkcnt > 0) {
        s->prnsts &= ~SDHC_DOING_WRITE;
        if (s->norintstsen & SDHC_EISEN_BLKGAP) {
            s->norintsts |= SDHC_EIS_BLKGAP;
        }
532
        sdhci_end_transfer(s);
533 534 535 536 537 538 539 540 541 542 543 544 545
    }

    sdhci_update_irq(s);
}

/* Write @size bytes of @value data to host controller @s Buffer Data Port
 * register */
static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
{
    unsigned i;

    /* Check that there is free space left in a buffer */
    if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
546
        trace_sdhci_error("Can't write to data buffer: buffer full");
547 548 549 550 551 552 553
        return;
    }

    for (i = 0; i < size; i++) {
        s->fifo_buffer[s->data_count] = value & 0xFF;
        s->data_count++;
        value >>= 8;
554
        if (s->data_count >= (s->blksize & BLOCK_SIZE_MASK)) {
555
            trace_sdhci_write_dataport(s->data_count);
556 557 558
            s->data_count = 0;
            s->prnsts &= ~SDHC_SPACE_AVAILABLE;
            if (s->prnsts & SDHC_DOING_WRITE) {
559
                sdhci_write_block_to_card(s);
560 561 562 563 564 565 566 567 568 569 570 571 572 573
            }
        }
    }
}

/*
 * Single DMA data transfer
 */

/* Multi block SDMA transfer */
static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
{
    bool page_aligned = false;
    unsigned int n, begin;
574 575
    const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
    uint32_t boundary_chk = 1 << (((s->blksize & ~BLOCK_SIZE_MASK) >> 12) + 12);
576 577
    uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);

578 579 580 581 582
    if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) {
        qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n");
        return;
    }

583 584 585 586 587 588 589 590 591 592 593 594 595
    /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
     * possible stop at page boundary if initial address is not page aligned,
     * allow them to work properly */
    if ((s->sdmasysad % boundary_chk) == 0) {
        page_aligned = true;
    }

    if (s->trnmod & SDHC_TRNS_READ) {
        s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
                SDHC_DAT_LINE_ACTIVE;
        while (s->blkcnt) {
            if (s->data_count == 0) {
                for (n = 0; n < block_size; n++) {
596
                    s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
597 598 599 600 601 602 603 604 605 606 607 608 609
                }
            }
            begin = s->data_count;
            if (((boundary_count + begin) < block_size) && page_aligned) {
                s->data_count = boundary_count + begin;
                boundary_count = 0;
             } else {
                s->data_count = block_size;
                boundary_count -= block_size - begin;
                if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                    s->blkcnt--;
                }
            }
610
            dma_memory_write(s->dma_as, s->sdmasysad,
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
                             &s->fifo_buffer[begin], s->data_count - begin);
            s->sdmasysad += s->data_count - begin;
            if (s->data_count == block_size) {
                s->data_count = 0;
            }
            if (page_aligned && boundary_count == 0) {
                break;
            }
        }
    } else {
        s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
                SDHC_DAT_LINE_ACTIVE;
        while (s->blkcnt) {
            begin = s->data_count;
            if (((boundary_count + begin) < block_size) && page_aligned) {
                s->data_count = boundary_count + begin;
                boundary_count = 0;
             } else {
                s->data_count = block_size;
                boundary_count -= block_size - begin;
            }
632
            dma_memory_read(s->dma_as, s->sdmasysad,
633
                            &s->fifo_buffer[begin], s->data_count - begin);
634 635 636
            s->sdmasysad += s->data_count - begin;
            if (s->data_count == block_size) {
                for (n = 0; n < block_size; n++) {
637
                    sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
638 639 640 641 642 643 644 645 646 647 648 649 650
                }
                s->data_count = 0;
                if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                    s->blkcnt--;
                }
            }
            if (page_aligned && boundary_count == 0) {
                break;
            }
        }
    }

    if (s->blkcnt == 0) {
651
        sdhci_end_transfer(s);
652 653 654 655 656 657 658 659 660 661 662 663
    } else {
        if (s->norintstsen & SDHC_NISEN_DMA) {
            s->norintsts |= SDHC_NIS_DMA;
        }
        sdhci_update_irq(s);
    }
}

/* single block SDMA transfer */
static void sdhci_sdma_transfer_single_block(SDHCIState *s)
{
    int n;
664
    uint32_t datacnt = s->blksize & BLOCK_SIZE_MASK;
665 666 667

    if (s->trnmod & SDHC_TRNS_READ) {
        for (n = 0; n < datacnt; n++) {
668
            s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
669
        }
670
        dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
671
    } else {
672
        dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
673
        for (n = 0; n < datacnt; n++) {
674
            sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
675 676
        }
    }
677
    s->blkcnt--;
678

679
    sdhci_end_transfer(s);
680 681 682 683 684 685 686 687 688 689 690 691 692 693
}

typedef struct ADMADescr {
    hwaddr addr;
    uint16_t length;
    uint8_t attr;
    uint8_t incr;
} ADMADescr;

static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
{
    uint32_t adma1 = 0;
    uint64_t adma2 = 0;
    hwaddr entry_addr = (hwaddr)s->admasysaddr;
694
    switch (SDHC_DMA_TYPE(s->hostctl1)) {
695
    case SDHC_CTRL_ADMA2_32:
696
        dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma2,
697 698 699 700 701 702 703 704 705 706 707
                        sizeof(adma2));
        adma2 = le64_to_cpu(adma2);
        /* The spec does not specify endianness of descriptor table.
         * We currently assume that it is LE.
         */
        dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
        dscr->length = (uint16_t)extract64(adma2, 16, 16);
        dscr->attr = (uint8_t)extract64(adma2, 0, 7);
        dscr->incr = 8;
        break;
    case SDHC_CTRL_ADMA1_32:
708
        dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma1,
709 710 711 712 713 714 715 716 717 718 719 720
                        sizeof(adma1));
        adma1 = le32_to_cpu(adma1);
        dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
        dscr->attr = (uint8_t)extract32(adma1, 0, 7);
        dscr->incr = 4;
        if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
            dscr->length = (uint16_t)extract32(adma1, 12, 16);
        } else {
            dscr->length = 4096;
        }
        break;
    case SDHC_CTRL_ADMA2_64:
721
        dma_memory_read(s->dma_as, entry_addr,
722
                        (uint8_t *)(&dscr->attr), 1);
723
        dma_memory_read(s->dma_as, entry_addr + 2,
724 725
                        (uint8_t *)(&dscr->length), 2);
        dscr->length = le16_to_cpu(dscr->length);
726
        dma_memory_read(s->dma_as, entry_addr + 4,
727
                        (uint8_t *)(&dscr->addr), 8);
S
Sai Pavan Boddu 已提交
728 729
        dscr->addr = le64_to_cpu(dscr->addr);
        dscr->attr &= (uint8_t) ~0xC0;
730 731 732 733 734 735 736 737 738 739
        dscr->incr = 12;
        break;
    }
}

/* Advanced DMA data transfer */

static void sdhci_do_adma(SDHCIState *s)
{
    unsigned int n, begin, length;
740
    const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
741
    ADMADescr dscr = {};
742 743 744 745 746 747
    int i;

    for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
        s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;

        get_adma_description(s, &dscr);
748
        trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr);
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773

        if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
            /* Indicate that error occurred in ST_FDS state */
            s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
            s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;

            /* Generate ADMA error interrupt */
            if (s->errintstsen & SDHC_EISEN_ADMAERR) {
                s->errintsts |= SDHC_EIS_ADMAERR;
                s->norintsts |= SDHC_NIS_ERR;
            }

            sdhci_update_irq(s);
            return;
        }

        length = dscr.length ? dscr.length : 65536;

        switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
        case SDHC_ADMA_ATTR_ACT_TRAN:  /* data transfer */

            if (s->trnmod & SDHC_TRNS_READ) {
                while (length) {
                    if (s->data_count == 0) {
                        for (n = 0; n < block_size; n++) {
774
                            s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
775 776 777 778 779 780 781 782 783 784
                        }
                    }
                    begin = s->data_count;
                    if ((length + begin) < block_size) {
                        s->data_count = length + begin;
                        length = 0;
                     } else {
                        s->data_count = block_size;
                        length -= block_size - begin;
                    }
785
                    dma_memory_write(s->dma_as, dscr.addr,
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
                                     &s->fifo_buffer[begin],
                                     s->data_count - begin);
                    dscr.addr += s->data_count - begin;
                    if (s->data_count == block_size) {
                        s->data_count = 0;
                        if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                            s->blkcnt--;
                            if (s->blkcnt == 0) {
                                break;
                            }
                        }
                    }
                }
            } else {
                while (length) {
                    begin = s->data_count;
                    if ((length + begin) < block_size) {
                        s->data_count = length + begin;
                        length = 0;
                     } else {
                        s->data_count = block_size;
                        length -= block_size - begin;
                    }
809
                    dma_memory_read(s->dma_as, dscr.addr,
810 811
                                    &s->fifo_buffer[begin],
                                    s->data_count - begin);
812 813 814
                    dscr.addr += s->data_count - begin;
                    if (s->data_count == block_size) {
                        for (n = 0; n < block_size; n++) {
815
                            sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
                        }
                        s->data_count = 0;
                        if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
                            s->blkcnt--;
                            if (s->blkcnt == 0) {
                                break;
                            }
                        }
                    }
                }
            }
            s->admasysaddr += dscr.incr;
            break;
        case SDHC_ADMA_ATTR_ACT_LINK:   /* link to next descriptor table */
            s->admasysaddr = dscr.addr;
831
            trace_sdhci_adma("link", s->admasysaddr);
832 833 834 835 836 837
            break;
        default:
            s->admasysaddr += dscr.incr;
            break;
        }

P
Peter Crosthwaite 已提交
838
        if (dscr.attr & SDHC_ADMA_ATTR_INT) {
839
            trace_sdhci_adma("interrupt", s->admasysaddr);
P
Peter Crosthwaite 已提交
840 841 842 843 844 845 846
            if (s->norintstsen & SDHC_NISEN_DMA) {
                s->norintsts |= SDHC_NIS_DMA;
            }

            sdhci_update_irq(s);
        }

847 848 849
        /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
        if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
                    (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
850
            trace_sdhci_adma_transfer_completed();
851 852 853
            if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
                (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
                s->blkcnt != 0)) {
854
                trace_sdhci_error("SD/MMC host ADMA length mismatch");
855 856 857
                s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
                        SDHC_ADMAERR_STATE_ST_TFR;
                if (s->errintstsen & SDHC_EISEN_ADMAERR) {
858
                    trace_sdhci_error("Set ADMA error flag");
859 860 861 862 863 864
                    s->errintsts |= SDHC_EIS_ADMAERR;
                    s->norintsts |= SDHC_NIS_ERR;
                }

                sdhci_update_irq(s);
            }
865
            sdhci_end_transfer(s);
866 867 868 869 870
            return;
        }

    }

P
Peter Maydell 已提交
871
    /* we have unfinished business - reschedule to continue ADMA */
872 873
    timer_mod(s->transfer_timer,
                   qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
874 875 876 877
}

/* Perform data transfer according to controller configuration */

878
static void sdhci_data_transfer(void *opaque)
879
{
880
    SDHCIState *s = (SDHCIState *)opaque;
881 882

    if (s->trnmod & SDHC_TRNS_DMA) {
883
        switch (SDHC_DMA_TYPE(s->hostctl1)) {
884 885
        case SDHC_CTRL_SDMA:
            if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
886
                sdhci_sdma_transfer_single_block(s);
887
            } else {
888
                sdhci_sdma_transfer_multi_blocks(s);
889 890 891 892
            }

            break;
        case SDHC_CTRL_ADMA1_32:
893
            if (!(s->capareg & R_SDHC_CAPAB_ADMA1_MASK)) {
894
                trace_sdhci_error("ADMA1 not supported");
895 896 897
                break;
            }

898
            sdhci_do_adma(s);
899 900
            break;
        case SDHC_CTRL_ADMA2_32:
901
            if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK)) {
902
                trace_sdhci_error("ADMA2 not supported");
903 904 905
                break;
            }

906
            sdhci_do_adma(s);
907 908
            break;
        case SDHC_CTRL_ADMA2_64:
909 910
            if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK) ||
                    !(s->capareg & R_SDHC_CAPAB_BUS64BIT_MASK)) {
911
                trace_sdhci_error("64 bit ADMA not supported");
912 913 914
                break;
            }

915
            sdhci_do_adma(s);
916 917
            break;
        default:
918
            trace_sdhci_error("Unsupported DMA type");
919 920 921
            break;
        }
    } else {
922
        if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
923 924
            s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
                    SDHC_DAT_LINE_ACTIVE;
925
            sdhci_read_block_from_card(s);
926 927 928
        } else {
            s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
                    SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
929
            sdhci_write_block_to_card(s);
930 931 932 933 934 935
        }
    }
}

static bool sdhci_can_issue_command(SDHCIState *s)
{
936
    if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
        (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
        ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
        ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
        !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
        return false;
    }

    return true;
}

/* The Buffer Data Port register must be accessed in sequential and
 * continuous manner */
static inline bool
sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
{
    if ((s->data_count & 0x3) != byte_num) {
953 954
        trace_sdhci_error("Non-sequential access to Buffer Data Port register"
                          "is prohibited\n");
955 956 957 958 959
        return false;
    }
    return true;
}

960
static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
961
{
962
    SDHCIState *s = (SDHCIState *)opaque;
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
    uint32_t ret = 0;

    switch (offset & ~0x3) {
    case SDHC_SYSAD:
        ret = s->sdmasysad;
        break;
    case SDHC_BLKSIZE:
        ret = s->blksize | (s->blkcnt << 16);
        break;
    case SDHC_ARGUMENT:
        ret = s->argument;
        break;
    case SDHC_TRNMOD:
        ret = s->trnmod | (s->cmdreg << 16);
        break;
    case SDHC_RSPREG0 ... SDHC_RSPREG3:
        ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
        break;
    case  SDHC_BDATA:
        if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
983
            ret = sdhci_read_dataport(s, size);
984
            trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
985 986 987 988 989 990 991
            return ret;
        }
        break;
    case SDHC_PRNSTS:
        ret = s->prnsts;
        break;
    case SDHC_HOSTCTL:
992
        ret = s->hostctl1 | (s->pwrcon << 8) | (s->blkgap << 16) |
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
              (s->wakcon << 24);
        break;
    case SDHC_CLKCON:
        ret = s->clkcon | (s->timeoutcon << 16);
        break;
    case SDHC_NORINTSTS:
        ret = s->norintsts | (s->errintsts << 16);
        break;
    case SDHC_NORINTSTSEN:
        ret = s->norintstsen | (s->errintstsen << 16);
        break;
    case SDHC_NORINTSIGEN:
        ret = s->norintsigen | (s->errintsigen << 16);
        break;
    case SDHC_ACMD12ERRSTS:
        ret = s->acmd12errsts;
        break;
1010
    case SDHC_CAPAB:
1011 1012 1013 1014
        ret = (uint32_t)s->capareg;
        break;
    case SDHC_CAPAB + 4:
        ret = (uint32_t)(s->capareg >> 32);
1015 1016
        break;
    case SDHC_MAXCURR:
1017 1018 1019 1020
        ret = (uint32_t)s->maxcurr;
        break;
    case SDHC_MAXCURR + 4:
        ret = (uint32_t)(s->maxcurr >> 32);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
        break;
    case SDHC_ADMAERR:
        ret =  s->admaerr;
        break;
    case SDHC_ADMASYSADDR:
        ret = (uint32_t)s->admasysaddr;
        break;
    case SDHC_ADMASYSADDR + 4:
        ret = (uint32_t)(s->admasysaddr >> 32);
        break;
    case SDHC_SLOT_INT_STATUS:
1032
        ret = (s->version << 16) | sdhci_slotint(s);
1033 1034
        break;
    default:
1035 1036
        qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
                      "not implemented\n", size, offset);
1037 1038 1039 1040 1041
        break;
    }

    ret >>= (offset & 0x3) * 8;
    ret &= (1ULL << (size * 8)) - 1;
1042
    trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
    return ret;
}

static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
{
    if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
        return;
    }
    s->blkgap = value & SDHC_STOP_AT_GAP_REQ;

    if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
            (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
        if (s->stopped_state == sdhc_gap_read) {
            s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
1057
            sdhci_read_block_from_card(s);
1058 1059
        } else {
            s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
1060
            sdhci_write_block_to_card(s);
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
        }
        s->stopped_state = sdhc_not_stopped;
    } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
        if (s->prnsts & SDHC_DOING_READ) {
            s->stopped_state = sdhc_gap_read;
        } else if (s->prnsts & SDHC_DOING_WRITE) {
            s->stopped_state = sdhc_gap_write;
        }
    }
}

static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
{
    switch (value) {
    case SDHC_RESET_ALL:
1076
        sdhci_reset(s);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
        break;
    case SDHC_RESET_CMD:
        s->prnsts &= ~SDHC_CMD_INHIBIT;
        s->norintsts &= ~SDHC_NIS_CMDCMP;
        break;
    case SDHC_RESET_DATA:
        s->data_count = 0;
        s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
                SDHC_DOING_READ | SDHC_DOING_WRITE |
                SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
        s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
        s->stopped_state = sdhc_not_stopped;
        s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
                SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
        break;
    }
}

static void
1096
sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1097
{
1098
    SDHCIState *s = (SDHCIState *)opaque;
1099 1100
    unsigned shift =  8 * (offset & 0x3);
    uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
1101
    uint32_t value = val;
1102 1103 1104 1105 1106 1107 1108 1109
    value <<= shift;

    switch (offset & ~0x3) {
    case SDHC_SYSAD:
        s->sdmasysad = (s->sdmasysad & mask) | value;
        MASKED_WRITE(s->sdmasysad, mask, value);
        /* Writing to last byte of sdmasysad might trigger transfer */
        if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
1110
                s->blksize && SDHC_DMA_TYPE(s->hostctl1) == SDHC_CTRL_SDMA) {
1111 1112 1113 1114 1115
            if (s->trnmod & SDHC_TRNS_MULTI) {
                sdhci_sdma_transfer_multi_blocks(s);
            } else {
                sdhci_sdma_transfer_single_block(s);
            }
1116 1117 1118 1119 1120 1121 1122
        }
        break;
    case SDHC_BLKSIZE:
        if (!TRANSFERRING_DATA(s->prnsts)) {
            MASKED_WRITE(s->blksize, mask, value);
            MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
        }
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

        /* Limit block size to the maximum buffer size */
        if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
            qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than " \
                          "the maximum buffer 0x%x", __func__, s->blksize,
                          s->buf_maxsz);

            s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
        }

1133 1134 1135 1136 1137 1138 1139
        break;
    case SDHC_ARGUMENT:
        MASKED_WRITE(s->argument, mask, value);
        break;
    case SDHC_TRNMOD:
        /* DMA can be enabled only if it is supported as indicated by
         * capabilities register */
1140
        if (!(s->capareg & R_SDHC_CAPAB_SDMA_MASK)) {
1141 1142
            value &= ~SDHC_TRNS_DMA;
        }
1143
        MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK);
1144 1145 1146
        MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);

        /* Writing to the upper byte of CMDREG triggers SD command generation */
1147
        if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1148 1149 1150
            break;
        }

1151
        sdhci_send_command(s);
1152 1153 1154
        break;
    case  SDHC_BDATA:
        if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1155
            sdhci_write_dataport(s, value >> shift, size);
1156 1157 1158 1159 1160 1161
        }
        break;
    case SDHC_HOSTCTL:
        if (!(mask & 0xFF0000)) {
            sdhci_blkgap_write(s, value >> 16);
        }
1162
        MASKED_WRITE(s->hostctl1, mask, value);
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
        MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
        MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
        if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
                !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
            s->pwrcon &= ~SDHC_POWER_ON;
        }
        break;
    case SDHC_CLKCON:
        if (!(mask & 0xFF000000)) {
            sdhci_reset_write(s, value >> 24);
        }
        MASKED_WRITE(s->clkcon, mask, value);
        MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
        if (s->clkcon & SDHC_CLOCK_INT_EN) {
            s->clkcon |= SDHC_CLOCK_INT_STABLE;
        } else {
            s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
        }
        break;
    case SDHC_NORINTSTS:
        if (s->norintstsen & SDHC_NISEN_CARDINT) {
            value &= ~SDHC_NIS_CARDINT;
        }
        s->norintsts &= mask | ~value;
        s->errintsts &= (mask >> 16) | ~(value >> 16);
        if (s->errintsts) {
            s->norintsts |= SDHC_NIS_ERR;
        } else {
            s->norintsts &= ~SDHC_NIS_ERR;
        }
        sdhci_update_irq(s);
        break;
    case SDHC_NORINTSTSEN:
        MASKED_WRITE(s->norintstsen, mask, value);
        MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
        s->norintsts &= s->norintstsen;
        s->errintsts &= s->errintstsen;
        if (s->errintsts) {
            s->norintsts |= SDHC_NIS_ERR;
        } else {
            s->norintsts &= ~SDHC_NIS_ERR;
        }
1205 1206 1207 1208 1209 1210 1211
        /* Quirk for Raspberry Pi: pending card insert interrupt
         * appears when first enabled after power on */
        if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
            assert(s->pending_insert_quirk);
            s->norintsts |= SDHC_NIS_INSERT;
            s->pending_insert_state = false;
        }
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
        sdhci_update_irq(s);
        break;
    case SDHC_NORINTSIGEN:
        MASKED_WRITE(s->norintsigen, mask, value);
        MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
        sdhci_update_irq(s);
        break;
    case SDHC_ADMAERR:
        MASKED_WRITE(s->admaerr, mask, value);
        break;
    case SDHC_ADMASYSADDR:
        s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
                (uint64_t)mask)) | (uint64_t)value;
        break;
    case SDHC_ADMASYSADDR + 4:
        s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
                ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
        break;
    case SDHC_FEAER:
        s->acmd12errsts |= value;
        s->errintsts |= (value >> 16) & s->errintstsen;
        if (s->acmd12errsts) {
            s->errintsts |= SDHC_EIS_CMD12ERR;
        }
        if (s->errintsts) {
            s->norintsts |= SDHC_NIS_ERR;
        }
        sdhci_update_irq(s);
        break;
1241 1242 1243
    case SDHC_ACMD12ERRSTS:
        MASKED_WRITE(s->acmd12errsts, mask, value);
        break;
1244 1245 1246 1247 1248 1249 1250 1251 1252

    case SDHC_CAPAB:
    case SDHC_CAPAB + 4:
    case SDHC_MAXCURR:
    case SDHC_MAXCURR + 4:
        qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx
                      " <- 0x%08x read-only\n", size, offset, value >> shift);
        break;

1253
    default:
1254 1255
        qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x "
                      "not implemented\n", size, offset, value >> shift);
1256 1257
        break;
    }
1258 1259
    trace_sdhci_access("wr", size << 3, offset, "<-",
                       value >> shift, value >> shift);
1260 1261 1262
}

static const MemoryRegionOps sdhci_mmio_ops = {
1263 1264
    .read = sdhci_read,
    .write = sdhci_write,
1265 1266 1267 1268 1269 1270 1271 1272
    .valid = {
        .min_access_size = 1,
        .max_access_size = 4,
        .unaligned = false
    },
    .endianness = DEVICE_LITTLE_ENDIAN,
};

1273 1274
static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp)
{
1275 1276
    Error *local_err = NULL;

1277 1278 1279 1280 1281
    switch (s->sd_spec_version) {
    case 2 ... 3:
        break;
    default:
        error_setg(errp, "Only Spec v2/v3 are supported");
1282 1283 1284
        return;
    }
    s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1);
1285 1286 1287 1288 1289 1290

    sdhci_check_capareg(s, &local_err);
    if (local_err) {
        error_propagate(errp, local_err);
        return;
    }
1291 1292
}

1293 1294 1295
/* --- qdev common --- */

#define DEFINE_SDHCI_COMMON_PROPERTIES(_state) \
1296 1297 1298 1299
    DEFINE_PROP_UINT8("sd-spec-version", _state, sd_spec_version, 2), \
    \
    /* Capabilities registers provide information on supported
     * features of this specific host controller implementation */ \
1300 1301
    DEFINE_PROP_UINT64("capareg", _state, capareg, SDHC_CAPAB_REG_DEFAULT), \
    DEFINE_PROP_UINT64("maxcurr", _state, maxcurr, 0)
1302

1303
static void sdhci_initfn(SDHCIState *s)
1304
{
1305 1306
    qbus_create_inplace(&s->sdbus, sizeof(s->sdbus),
                        TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
1307

1308
    s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1309
    s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1310 1311

    s->io_ops = &sdhci_mmio_ops;
1312 1313
}

1314
static void sdhci_uninitfn(SDHCIState *s)
1315
{
1316 1317 1318 1319
    timer_del(s->insert_timer);
    timer_free(s->insert_timer);
    timer_del(s->transfer_timer);
    timer_free(s->transfer_timer);
1320

1321 1322
    g_free(s->fifo_buffer);
    s->fifo_buffer = NULL;
1323 1324
}

1325 1326
static void sdhci_common_realize(SDHCIState *s, Error **errp)
{
1327 1328 1329 1330 1331 1332 1333
    Error *local_err = NULL;

    sdhci_init_readonly_registers(s, &local_err);
    if (local_err) {
        error_propagate(errp, local_err);
        return;
    }
1334 1335 1336 1337 1338 1339 1340
    s->buf_maxsz = sdhci_get_fifolen(s);
    s->fifo_buffer = g_malloc0(s->buf_maxsz);

    memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
                          SDHC_REGISTERS_MAP_SIZE);
}

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
static void sdhci_common_unrealize(SDHCIState *s, Error **errp)
{
    /* This function is expected to be called only once for each class:
     * - SysBus:    via DeviceClass->unrealize(),
     * - PCI:       via PCIDeviceClass->exit().
     * However to avoid double-free and/or use-after-free we still nullify
     * this variable (better safe than sorry!). */
    g_free(s->fifo_buffer);
    s->fifo_buffer = NULL;
}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
static bool sdhci_pending_insert_vmstate_needed(void *opaque)
{
    SDHCIState *s = opaque;

    return s->pending_insert_state;
}

static const VMStateDescription sdhci_pending_insert_vmstate = {
    .name = "sdhci/pending-insert",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = sdhci_pending_insert_vmstate_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(pending_insert_state, SDHCIState),
        VMSTATE_END_OF_LIST()
    },
};

1370 1371 1372 1373
const VMStateDescription sdhci_vmstate = {
    .name = "sdhci",
    .version_id = 1,
    .minimum_version_id = 1,
1374
    .fields = (VMStateField[]) {
1375 1376 1377 1378 1379 1380 1381 1382
        VMSTATE_UINT32(sdmasysad, SDHCIState),
        VMSTATE_UINT16(blksize, SDHCIState),
        VMSTATE_UINT16(blkcnt, SDHCIState),
        VMSTATE_UINT32(argument, SDHCIState),
        VMSTATE_UINT16(trnmod, SDHCIState),
        VMSTATE_UINT16(cmdreg, SDHCIState),
        VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
        VMSTATE_UINT32(prnsts, SDHCIState),
1383
        VMSTATE_UINT8(hostctl1, SDHCIState),
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
        VMSTATE_UINT8(pwrcon, SDHCIState),
        VMSTATE_UINT8(blkgap, SDHCIState),
        VMSTATE_UINT8(wakcon, SDHCIState),
        VMSTATE_UINT16(clkcon, SDHCIState),
        VMSTATE_UINT8(timeoutcon, SDHCIState),
        VMSTATE_UINT8(admaerr, SDHCIState),
        VMSTATE_UINT16(norintsts, SDHCIState),
        VMSTATE_UINT16(errintsts, SDHCIState),
        VMSTATE_UINT16(norintstsen, SDHCIState),
        VMSTATE_UINT16(errintstsen, SDHCIState),
        VMSTATE_UINT16(norintsigen, SDHCIState),
        VMSTATE_UINT16(errintsigen, SDHCIState),
        VMSTATE_UINT16(acmd12errsts, SDHCIState),
        VMSTATE_UINT16(data_count, SDHCIState),
        VMSTATE_UINT64(admasysaddr, SDHCIState),
        VMSTATE_UINT8(stopped_state, SDHCIState),
1400
        VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
1401 1402
        VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
        VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1403
        VMSTATE_END_OF_LIST()
1404 1405 1406 1407 1408
    },
    .subsections = (const VMStateDescription*[]) {
        &sdhci_pending_insert_vmstate,
        NULL
    },
1409 1410
};

1411 1412 1413 1414 1415 1416 1417 1418 1419
static void sdhci_common_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
    dc->vmsd = &sdhci_vmstate;
    dc->reset = sdhci_poweron_reset;
}

1420 1421
/* --- qdev PCI --- */

1422
static Property sdhci_pci_properties[] = {
1423
    DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1424 1425 1426
    DEFINE_PROP_END_OF_LIST(),
};

1427
static void sdhci_pci_realize(PCIDevice *dev, Error **errp)
1428 1429
{
    SDHCIState *s = PCI_SDHCI(dev);
1430
    Error *local_err = NULL;
1431 1432 1433

    sdhci_initfn(s);
    sdhci_common_realize(s, errp);
1434 1435
    if (local_err) {
        error_propagate(errp, local_err);
1436 1437 1438
        return;
    }

1439 1440 1441
    dev->config[PCI_CLASS_PROG] = 0x01; /* Standard Host supported DMA */
    dev->config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin A */
    s->irq = pci_allocate_irq(dev);
1442 1443
    s->dma_as = pci_get_address_space(dev);
    pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->iomem);
1444 1445 1446 1447 1448
}

static void sdhci_pci_exit(PCIDevice *dev)
{
    SDHCIState *s = PCI_SDHCI(dev);
1449 1450

    sdhci_common_unrealize(s, &error_abort);
1451 1452 1453 1454 1455 1456 1457 1458
    sdhci_uninitfn(s);
}

static void sdhci_pci_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);

1459
    k->realize = sdhci_pci_realize;
1460 1461 1462 1463
    k->exit = sdhci_pci_exit;
    k->vendor_id = PCI_VENDOR_ID_REDHAT;
    k->device_id = PCI_DEVICE_ID_REDHAT_SDHCI;
    k->class_id = PCI_CLASS_SYSTEM_SDHCI;
1464
    dc->props = sdhci_pci_properties;
1465 1466

    sdhci_common_class_init(klass, data);
1467 1468 1469 1470 1471 1472 1473
}

static const TypeInfo sdhci_pci_info = {
    .name = TYPE_PCI_SDHCI,
    .parent = TYPE_PCI_DEVICE,
    .instance_size = sizeof(SDHCIState),
    .class_init = sdhci_pci_class_init,
1474 1475 1476 1477
    .interfaces = (InterfaceInfo[]) {
        { INTERFACE_CONVENTIONAL_PCI_DEVICE },
        { },
    },
1478 1479
};

1480 1481
/* --- qdev SysBus --- */

1482
static Property sdhci_sysbus_properties[] = {
1483
    DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1484 1485
    DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
                     false),
1486 1487
    DEFINE_PROP_LINK("dma", SDHCIState,
                     dma_mr, TYPE_MEMORY_REGION, MemoryRegion *),
1488 1489 1490
    DEFINE_PROP_END_OF_LIST(),
};

1491 1492 1493
static void sdhci_sysbus_init(Object *obj)
{
    SDHCIState *s = SYSBUS_SDHCI(obj);
1494

1495
    sdhci_initfn(s);
1496 1497 1498 1499 1500
}

static void sdhci_sysbus_finalize(Object *obj)
{
    SDHCIState *s = SYSBUS_SDHCI(obj);
1501 1502 1503 1504 1505

    if (s->dma_mr) {
        object_unparent(OBJECT(s->dma_mr));
    }

1506 1507 1508 1509
    sdhci_uninitfn(s);
}

static void sdhci_sysbus_realize(DeviceState *dev, Error ** errp)
1510
{
1511
    SDHCIState *s = SYSBUS_SDHCI(dev);
1512
    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1513
    Error *local_err = NULL;
1514

1515
    sdhci_common_realize(s, errp);
1516 1517
    if (local_err) {
        error_propagate(errp, local_err);
1518 1519 1520
        return;
    }

1521
    if (s->dma_mr) {
1522
        s->dma_as = &s->sysbus_dma_as;
1523 1524 1525 1526 1527
        address_space_init(s->dma_as, s->dma_mr, "sdhci-dma");
    } else {
        /* use system_memory() if property "dma" not set */
        s->dma_as = &address_space_memory;
    }
1528

1529
    sysbus_init_irq(sbd, &s->irq);
1530 1531 1532 1533

    memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci",
            SDHC_REGISTERS_MAP_SIZE);

1534 1535 1536
    sysbus_init_mmio(sbd, &s->iomem);
}

1537 1538 1539 1540 1541
static void sdhci_sysbus_unrealize(DeviceState *dev, Error **errp)
{
    SDHCIState *s = SYSBUS_SDHCI(dev);

    sdhci_common_unrealize(s, &error_abort);
1542 1543 1544 1545

     if (s->dma_mr) {
        address_space_destroy(s->dma_as);
    }
1546 1547
}

1548
static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1549 1550 1551
{
    DeviceClass *dc = DEVICE_CLASS(klass);

1552
    dc->props = sdhci_sysbus_properties;
1553
    dc->realize = sdhci_sysbus_realize;
1554
    dc->unrealize = sdhci_sysbus_unrealize;
1555 1556

    sdhci_common_class_init(klass, data);
1557 1558
}

1559 1560
static const TypeInfo sdhci_sysbus_info = {
    .name = TYPE_SYSBUS_SDHCI,
1561 1562
    .parent = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(SDHCIState),
1563 1564 1565
    .instance_init = sdhci_sysbus_init,
    .instance_finalize = sdhci_sysbus_finalize,
    .class_init = sdhci_sysbus_class_init,
1566 1567
};

1568 1569
/* --- qdev bus master --- */

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
static void sdhci_bus_class_init(ObjectClass *klass, void *data)
{
    SDBusClass *sbc = SD_BUS_CLASS(klass);

    sbc->set_inserted = sdhci_set_inserted;
    sbc->set_readonly = sdhci_set_readonly;
}

static const TypeInfo sdhci_bus_info = {
    .name = TYPE_SDHCI_BUS,
    .parent = TYPE_SD_BUS,
    .instance_size = sizeof(SDBus),
    .class_init = sdhci_bus_class_init,
};

1585 1586 1587 1588
static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size)
{
    SDHCIState *s = SYSBUS_SDHCI(opaque);
    uint32_t ret;
1589
    uint16_t hostctl1;
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600

    switch (offset) {
    default:
        return sdhci_read(opaque, offset, size);

    case SDHC_HOSTCTL:
        /*
         * For a detailed explanation on the following bit
         * manipulation code see comments in a similar part of
         * usdhc_write()
         */
1601
        hostctl1 = SDHC_DMA_TYPE(s->hostctl1) << (8 - 3);
1602

1603 1604
        if (s->hostctl1 & SDHC_CTRL_8BITBUS) {
            hostctl1 |= ESDHC_CTRL_8BITBUS;
1605 1606
        }

1607 1608
        if (s->hostctl1 & SDHC_CTRL_4BITBUS) {
            hostctl1 |= ESDHC_CTRL_4BITBUS;
1609 1610
        }

1611
        ret  = hostctl1;
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
        ret |= (uint32_t)s->blkgap << 16;
        ret |= (uint32_t)s->wakcon << 24;

        break;

    case ESDHC_DLL_CTRL:
    case ESDHC_TUNE_CTRL_STATUS:
    case ESDHC_UNDOCUMENTED_REG27:
    case ESDHC_TUNING_CTRL:
    case ESDHC_VENDOR_SPEC:
    case ESDHC_MIX_CTRL:
    case ESDHC_WTMK_LVL:
        ret = 0;
        break;
    }

    return ret;
}

static void
usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
{
    SDHCIState *s = SYSBUS_SDHCI(opaque);
1635
    uint8_t hostctl1;
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
    uint32_t value = (uint32_t)val;

    switch (offset) {
    case ESDHC_DLL_CTRL:
    case ESDHC_TUNE_CTRL_STATUS:
    case ESDHC_UNDOCUMENTED_REG27:
    case ESDHC_TUNING_CTRL:
    case ESDHC_WTMK_LVL:
    case ESDHC_VENDOR_SPEC:
        break;

    case SDHC_HOSTCTL:
        /*
         * Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL)
         *
         *       7         6     5      4      3      2        1      0
         * |-----------+--------+--------+-----------+----------+---------|
         * | Card      | Card   | Endian | DATA3     | Data     | Led     |
         * | Detect    | Detect | Mode   | as Card   | Transfer | Control |
         * | Signal    | Test   |        | Detection | Width    |         |
         * | Selection | Level  |        | Pin       |          |         |
         * |-----------+--------+--------+-----------+----------+---------|
         *
         * and 0x29
         *
         *  15      10 9    8
         * |----------+------|
         * | Reserved | DMA  |
         * |          | Sel. |
         * |          |      |
         * |----------+------|
         *
         * and here's what SDCHI spec expects those offsets to be:
         *
         * 0x28 (Host Control Register)
         *
         *     7        6         5       4  3      2         1        0
         * |--------+--------+----------+------+--------+----------+---------|
         * | Card   | Card   | Extended | DMA  | High   | Data     | LED     |
         * | Detect | Detect | Data     | Sel. | Speed  | Transfer | Control |
         * | Signal | Test   | Transfer |      | Enable | Width    |         |
         * | Sel.   | Level  | Width    |      |        |          |         |
         * |--------+--------+----------+------+--------+----------+---------|
         *
         * and 0x29 (Power Control Register)
         *
         * |----------------------------------|
         * | Power Control Register           |
         * |                                  |
         * | Description omitted,             |
         * | since it has no analog in ESDHCI |
         * |                                  |
         * |----------------------------------|
         *
         * Since offsets 0x2A and 0x2B should be compatible between
         * both IP specs we only need to reconcile least 16-bit of the
         * word we've been given.
         */

        /*
         * First, save bits 7 6 and 0 since they are identical
         */
1698 1699 1700
        hostctl1 = value & (SDHC_CTRL_LED |
                            SDHC_CTRL_CDTEST_INS |
                            SDHC_CTRL_CDTEST_EN);
1701 1702 1703 1704 1705
        /*
         * Second, split "Data Transfer Width" from bits 2 and 1 in to
         * bits 5 and 1
         */
        if (value & ESDHC_CTRL_8BITBUS) {
1706
            hostctl1 |= SDHC_CTRL_8BITBUS;
1707 1708 1709
        }

        if (value & ESDHC_CTRL_4BITBUS) {
1710
            hostctl1 |= ESDHC_CTRL_4BITBUS;
1711 1712 1713 1714 1715
        }

        /*
         * Third, move DMA select from bits 9 and 8 to bits 4 and 3
         */
1716
        hostctl1 |= SDHC_DMA_TYPE(value >> (8 - 3));
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

        /*
         * Now place the corrected value into low 16-bit of the value
         * we are going to give standard SDHCI write function
         *
         * NOTE: This transformation should be the inverse of what can
         * be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux
         * kernel
         */
        value &= ~UINT16_MAX;
1727
        value |= hostctl1;
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
        value |= (uint16_t)s->pwrcon << 8;

        sdhci_write(opaque, offset, value, size);
        break;

    case ESDHC_MIX_CTRL:
        /*
         * So, when SD/MMC stack in Linux tries to write to "Transfer
         * Mode Register", ESDHC i.MX quirk code will translate it
         * into a write to ESDHC_MIX_CTRL, so we do the opposite in
         * order to get where we started
         *
         * Note that Auto CMD23 Enable bit is located in a wrong place
         * on i.MX, but since it is not used by QEMU we do not care.
         *
         * We don't want to call sdhci_write(.., SDHC_TRNMOD, ...)
         * here becuase it will result in a call to
         * sdhci_send_command(s) which we don't want.
         *
         */
        s->trnmod = value & UINT16_MAX;
        break;
    case SDHC_TRNMOD:
        /*
         * Similar to above, but this time a write to "Command
         * Register" will be translated into a 4-byte write to
         * "Transfer Mode register" where lower 16-bit of value would
         * be set to zero. So what we do is fill those bits with
         * cached value from s->trnmod and let the SDHCI
         * infrastructure handle the rest
         */
        sdhci_write(opaque, offset, val | s->trnmod, size);
        break;
    case SDHC_BLKSIZE:
        /*
         * ESDHCI does not implement "Host SDMA Buffer Boundary", and
         * Linux driver will try to zero this field out which will
         * break the rest of SDHCI emulation.
         *
         * Linux defaults to maximum possible setting (512K boundary)
         * and it seems to be the only option that i.MX IP implements,
         * so we artificially set it to that value.
         */
        val |= 0x7 << 12;
        /* FALLTHROUGH */
    default:
        sdhci_write(opaque, offset, val, size);
        break;
    }
}


static const MemoryRegionOps usdhc_mmio_ops = {
    .read = usdhc_read,
    .write = usdhc_write,
    .valid = {
        .min_access_size = 1,
        .max_access_size = 4,
        .unaligned = false
    },
    .endianness = DEVICE_LITTLE_ENDIAN,
};

static void imx_usdhc_init(Object *obj)
{
    SDHCIState *s = SYSBUS_SDHCI(obj);

    s->io_ops = &usdhc_mmio_ops;
    s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ;
}

static const TypeInfo imx_usdhc_info = {
    .name = TYPE_IMX_USDHC,
    .parent = TYPE_SYSBUS_SDHCI,
    .instance_init = imx_usdhc_init,
};

1805 1806
static void sdhci_register_types(void)
{
1807
    type_register_static(&sdhci_pci_info);
1808
    type_register_static(&sdhci_sysbus_info);
1809
    type_register_static(&sdhci_bus_info);
1810
    type_register_static(&imx_usdhc_info);
1811 1812 1813
}

type_init(sdhci_register_types)