helper.c 440.9 KB
Newer Older
P
Peter Maydell 已提交
1
#include "qemu/osdep.h"
2
#include "target/arm/idau.h"
3
#include "trace.h"
B
bellard 已提交
4
#include "cpu.h"
5
#include "internals.h"
6
#include "exec/gdbstub.h"
7
#include "exec/helper-proto.h"
8
#include "qemu/host-utils.h"
9
#include "sysemu/arch_init.h"
10
#include "sysemu/sysemu.h"
11
#include "qemu/bitops.h"
12
#include "qemu/crc32c.h"
13
#include "exec/exec-all.h"
P
Paolo Bonzini 已提交
14
#include "exec/cpu_ldst.h"
15
#include "arm_ldst.h"
16
#include <zlib.h> /* For crc32 */
17
#include "exec/semihost.h"
18
#include "sysemu/kvm.h"
19
#include "fpu/softfloat.h"
P
Peter Maydell 已提交
20

21 22
#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */

23
#ifndef CONFIG_USER_ONLY
24 25 26 27 28 29
/* Cacheability and shareability attributes for a memory access */
typedef struct ARMCacheAttrs {
    unsigned int attrs:8; /* as in the MAIR register encoding */
    unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
} ARMCacheAttrs;

30
static bool get_phys_addr(CPUARMState *env, target_ulong address,
31
                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
32
                          hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
33
                          target_ulong *page_size,
34
                          ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
35

36
static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
37
                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
38
                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
39
                               target_ulong *page_size_ptr,
40
                               ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
41

42 43 44 45 46 47 48 49 50 51
/* Security attributes for an address, as returned by v8m_security_lookup. */
typedef struct V8M_SAttributes {
    bool ns;
    bool nsc;
    uint8_t sregion;
    bool srvalid;
    uint8_t iregion;
    bool irvalid;
} V8M_SAttributes;

52 53 54
static void v8m_security_lookup(CPUARMState *env, uint32_t address,
                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
                                V8M_SAttributes *sattrs);
55 56
#endif

57
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
58 59 60 61 62 63
{
    int nregs;

    /* VFP data registers are always little-endian.  */
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
64
        stq_le_p(buf, *aa32_vfp_dreg(env, reg));
P
pbrook 已提交
65 66 67 68 69 70
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        /* Aliases for Q regs.  */
        nregs += 16;
        if (reg < nregs) {
71 72 73
            uint64_t *q = aa32_vfp_qreg(env, reg - 32);
            stq_le_p(buf, q[0]);
            stq_le_p(buf + 8, q[1]);
P
pbrook 已提交
74 75 76 77 78 79 80 81 82 83 84
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
    }
    return 0;
}

85
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
86 87 88 89 90
{
    int nregs;

    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
91
        *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
P
pbrook 已提交
92 93 94 95 96
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        nregs += 16;
        if (reg < nregs) {
97 98 99
            uint64_t *q = aa32_vfp_qreg(env, reg - 32);
            q[0] = ldq_le_p(buf);
            q[1] = ldq_le_p(buf + 8);
P
pbrook 已提交
100 101 102 103 104 105
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
106
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
P
pbrook 已提交
107 108 109 110
    }
    return 0;
}

111 112 113 114 115
static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
116 117 118 119 120 121
        {
            uint64_t *q = aa64_vfp_qreg(env, reg);
            stq_le_p(buf, q[0]);
            stq_le_p(buf + 8, q[1]);
            return 16;
        }
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    case 32:
        /* FPSR */
        stl_p(buf, vfp_get_fpsr(env));
        return 4;
    case 33:
        /* FPCR */
        stl_p(buf, vfp_get_fpcr(env));
        return 4;
    default:
        return 0;
    }
}

static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
140 141 142 143 144 145
        {
            uint64_t *q = aa64_vfp_qreg(env, reg);
            q[0] = ldq_le_p(buf);
            q[1] = ldq_le_p(buf + 8);
            return 16;
        }
146 147 148 149 150 151 152 153 154 155 156 157 158
    case 32:
        /* FPSR */
        vfp_set_fpsr(env, ldl_p(buf));
        return 4;
    case 33:
        /* FPCR */
        vfp_set_fpcr(env, ldl_p(buf));
        return 4;
    default:
        return 0;
    }
}

159
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
160
{
161
    assert(ri->fieldoffset);
162
    if (cpreg_field_is_64bit(ri)) {
163
        return CPREG_FIELD64(env, ri);
164
    } else {
165
        return CPREG_FIELD32(env, ri);
166
    }
167 168
}

169 170
static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
171
{
172
    assert(ri->fieldoffset);
173
    if (cpreg_field_is_64bit(ri)) {
174 175 176 177
        CPREG_FIELD64(env, ri) = value;
    } else {
        CPREG_FIELD32(env, ri) = value;
    }
178 179
}

F
Fabian Aggeler 已提交
180 181 182 183 184
static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return (char *)env + ri->fieldoffset;
}

185
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
186
{
187
    /* Raw read of a coprocessor register (as needed for migration, etc). */
188
    if (ri->type & ARM_CP_CONST) {
189
        return ri->resetvalue;
190
    } else if (ri->raw_readfn) {
191
        return ri->raw_readfn(env, ri);
192
    } else if (ri->readfn) {
193
        return ri->readfn(env, ri);
194
    } else {
195
        return raw_read(env, ri);
196 197 198
    }
}

199
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
200
                             uint64_t v)
201 202 203 204 205 206 207
{
    /* Raw write of a coprocessor register (as needed for migration, etc).
     * Note that constant registers are treated as write-ignored; the
     * caller should check for success by whether a readback gives the
     * value written.
     */
    if (ri->type & ARM_CP_CONST) {
208
        return;
209
    } else if (ri->raw_writefn) {
210
        ri->raw_writefn(env, ri, v);
211
    } else if (ri->writefn) {
212
        ri->writefn(env, ri, v);
213
    } else {
214
        raw_write(env, ri, v);
215 216 217
    }
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    const ARMCPRegInfo *ri;
    uint32_t key;

    key = cpu->dyn_xml.cpregs_keys[reg];
    ri = get_arm_cp_reginfo(cpu->cp_regs, key);
    if (ri) {
        if (cpreg_field_is_64bit(ri)) {
            return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
        } else {
            return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
        }
    }
    return 0;
}

static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
{
    return 0;
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
{
   /* Return true if the regdef would cause an assertion if you called
    * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
    * program bug for it not to have the NO_RAW flag).
    * NB that returning false here doesn't necessarily mean that calling
    * read/write_raw_cp_reg() is safe, because we can't distinguish "has
    * read/write access functions which are safe for raw use" from "has
    * read/write access functions which have side effects but has forgotten
    * to provide raw access functions".
    * The tests here line up with the conditions in read/write_raw_cp_reg()
    * and assertions in raw_read()/raw_write().
    */
    if ((ri->type & ARM_CP_CONST) ||
        ri->fieldoffset ||
        ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
        return false;
    }
    return true;
}

262 263 264 265 266 267 268 269 270
bool write_cpustate_to_list(ARMCPU *cpu)
{
    /* Write the coprocessor state from cpu->env to the (index,value) list. */
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        const ARMCPRegInfo *ri;
271

272
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
273 274 275 276
        if (!ri) {
            ok = false;
            continue;
        }
277
        if (ri->type & ARM_CP_NO_RAW) {
278 279
            continue;
        }
280
        cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
281 282 283 284 285 286 287 288 289 290 291 292 293 294
    }
    return ok;
}

bool write_list_to_cpustate(ARMCPU *cpu)
{
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        uint64_t v = cpu->cpreg_values[i];
        const ARMCPRegInfo *ri;

295
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
296 297 298 299
        if (!ri) {
            ok = false;
            continue;
        }
300
        if (ri->type & ARM_CP_NO_RAW) {
301 302 303 304 305 306
            continue;
        }
        /* Write value and confirm it reads back as written
         * (to catch read-only registers and partially read-only
         * registers where the incoming migration value doesn't match)
         */
307 308
        write_raw_cp_reg(&cpu->env, ri, v);
        if (read_raw_cp_reg(&cpu->env, ri) != v) {
309 310 311 312 313 314 315 316 317 318 319 320 321
            ok = false;
        }
    }
    return ok;
}

static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
322
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
323

324
    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
325 326 327 328 329 330 331 332 333 334 335 336 337
        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
        /* The value array need not be initialized at this point */
        cpu->cpreg_array_len++;
    }
}

static void count_cpreg(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
338
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
339

340
    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
341 342 343 344 345 346
        cpu->cpreg_array_len++;
    }
}

static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
{
347 348
    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
349

350 351 352 353 354 355 356
    if (aidx > bidx) {
        return 1;
    }
    if (aidx < bidx) {
        return -1;
    }
    return 0;
357 358 359 360 361 362 363
}

void init_cpreg_list(ARMCPU *cpu)
{
    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
     * Note that we require cpreg_tuples[] to be sorted by key ID.
     */
364
    GList *keys;
365 366
    int arraylen;

367
    keys = g_hash_table_get_keys(cpu->cp_regs);
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    keys = g_list_sort(keys, cpreg_key_compare);

    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, count_cpreg, cpu);

    arraylen = cpu->cpreg_array_len;
    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, add_cpreg_to_list, cpu);

    assert(cpu->cpreg_array_len == arraylen);

    g_list_free(keys);
}

E
Edgar E. Iglesias 已提交
389 390 391 392 393 394 395 396
/*
 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
 *
 * access_el3_aa32ns: Used to check AArch32 register views.
 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
 */
static CPAccessResult access_el3_aa32ns(CPUARMState *env,
397 398
                                        const ARMCPRegInfo *ri,
                                        bool isread)
E
Edgar E. Iglesias 已提交
399 400 401 402 403 404 405 406 407 408 409
{
    bool secure = arm_is_secure_below_el3(env);

    assert(!arm_el_is_aa64(env, 3));
    if (secure) {
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
410 411
                                                const ARMCPRegInfo *ri,
                                                bool isread)
E
Edgar E. Iglesias 已提交
412 413
{
    if (!arm_el_is_aa64(env, 3)) {
414
        return access_el3_aa32ns(env, ri, isread);
E
Edgar E. Iglesias 已提交
415 416 417 418
    }
    return CP_ACCESS_OK;
}

419 420 421 422 423 424
/* Some secure-only AArch32 registers trap to EL3 if used from
 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
 * We assume that the .access field is set to PL1_RW.
 */
static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
425 426
                                            const ARMCPRegInfo *ri,
                                            bool isread)
427 428 429 430 431 432 433 434 435 436 437
{
    if (arm_current_el(env) == 3) {
        return CP_ACCESS_OK;
    }
    if (arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL3;
    }
    /* This will be EL1 NS and EL2 NS, which just UNDEF */
    return CP_ACCESS_TRAP_UNCATEGORIZED;
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
/* Check for traps to "powerdown debug" registers, which are controlled
 * by MDCR.TDOSA
 */
static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
/* Check for traps to "debug ROM" registers, which are controlled
 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
 */
static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
/* Check for traps to general debug registers, which are controlled
 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
 */
static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
/* Check for traps to performance monitor registers, which are controlled
 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
 */
static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
                                 bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

510
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
511
{
512 513
    ARMCPU *cpu = arm_env_get_cpu(env);

514
    raw_write(env, ri, value);
515
    tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
516 517
}

518
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
519
{
520 521
    ARMCPU *cpu = arm_env_get_cpu(env);

522
    if (raw_read(env, ri) != value) {
523 524 525
        /* Unlike real hardware the qemu TLB uses virtual addresses,
         * not modified virtual addresses, so this causes a TLB flush.
         */
526
        tlb_flush(CPU(cpu));
527
        raw_write(env, ri, value);
528 529
    }
}
530 531 532

static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
533
{
534 535
    ARMCPU *cpu = arm_env_get_cpu(env);

536
    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
537
        && !extended_addresses_enabled(env)) {
538 539 540 541
        /* For VMSA (when not using the LPAE long descriptor page table
         * format) this register includes the ASID, so do a TLB flush.
         * For PMSA it is purely a process ID and no action is needed.
         */
542
        tlb_flush(CPU(cpu));
543
    }
544
    raw_write(env, ri, value);
545 546
}

547 548
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
549 550
{
    /* Invalidate all (TLBIALL) */
551 552
    ARMCPU *cpu = arm_env_get_cpu(env);

553
    tlb_flush(CPU(cpu));
554 555
}

556 557
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
558 559
{
    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
560 561 562
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
563 564
}

565 566
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
567 568
{
    /* Invalidate by ASID (TLBIASID) */
569 570
    ARMCPU *cpu = arm_env_get_cpu(env);

571
    tlb_flush(CPU(cpu));
572 573
}

574 575
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
576 577
{
    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
578 579 580
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
581 582
}

583 584 585 586
/* IS variants of TLB operations must affect all cores */
static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
587
    CPUState *cs = ENV_GET_CPU(env);
588

589
    tlb_flush_all_cpus_synced(cs);
590 591 592 593 594
}

static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
595
    CPUState *cs = ENV_GET_CPU(env);
596

597
    tlb_flush_all_cpus_synced(cs);
598 599 600 601 602
}

static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
603
    CPUState *cs = ENV_GET_CPU(env);
604

605
    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
606 607 608 609 610
}

static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
611
    CPUState *cs = ENV_GET_CPU(env);
612

613
    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
614 615
}

616 617 618 619 620
static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    CPUState *cs = ENV_GET_CPU(env);

621
    tlb_flush_by_mmuidx(cs,
622 623 624
                        ARMMMUIdxBit_S12NSE1 |
                        ARMMMUIdxBit_S12NSE0 |
                        ARMMMUIdxBit_S2NS);
625 626 627 628 629
}

static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
630
    CPUState *cs = ENV_GET_CPU(env);
631

632
    tlb_flush_by_mmuidx_all_cpus_synced(cs,
633 634 635
                                        ARMMMUIdxBit_S12NSE1 |
                                        ARMMMUIdxBit_S12NSE0 |
                                        ARMMMUIdxBit_S2NS);
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
}

static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* Invalidate by IPA. This has to invalidate any structures that
     * contain only stage 2 translation information, but does not need
     * to apply to structures that contain combined stage 1 and stage 2
     * translation information.
     * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
     */
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 40);

656
    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
657 658 659 660 661
}

static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
662
    CPUState *cs = ENV_GET_CPU(env);
663 664 665 666 667 668 669 670
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 40);

671
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
672
                                             ARMMMUIdxBit_S2NS);
673 674 675 676 677 678 679
}

static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    CPUState *cs = ENV_GET_CPU(env);

680
    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
681 682 683 684 685
}

static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
686
    CPUState *cs = ENV_GET_CPU(env);
687

688
    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
689 690 691 692 693 694 695 696
}

static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);

697
    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
698 699 700 701 702
}

static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
703
    CPUState *cs = ENV_GET_CPU(env);
704 705
    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);

706
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
707
                                             ARMMMUIdxBit_S1E2);
708 709
}

710
static const ARMCPRegInfo cp_reginfo[] = {
711 712 713 714 715
    /* Define the secure and non-secure FCSE identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated. There is also no
     * v8 EL1 version of the register so the non-secure instance stands alone.
     */
716
    { .name = "FCSEIDR",
717 718 719 720
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
721
    { .name = "FCSEIDR_S",
722 723 724
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
725
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
726 727 728 729 730 731 732
    /* Define the secure and non-secure context identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated.  In the
     * non-secure case, the 32-bit register will have reset and migration
     * disabled during registration as it is handled by the 64-bit instance.
     */
    { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
733
      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
734 735 736
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
737
    { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
738 739 740
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
741
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
742 743 744 745 746 747 748 749
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v8_cp_reginfo[] = {
    /* NB: Some of these registers exist in v8 but with more precise
     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
     */
    /* MMU Domain access control / MPU write buffer control */
F
Fabian Aggeler 已提交
750 751 752 753 754 755
    { .name = "DACR",
      .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
756 757
    /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
     * For v6 and v5, these mappings are overly broad.
758
     */
759 760 761 762 763 764 765
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
766
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
767 768 769 770
    /* Cache maintenance ops; some of this space may be overridden later. */
    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
771 772 773
    REGINFO_SENTINEL
};

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
    /* Not all pre-v6 cores implemented this WFI, so this is slightly
     * over-broad.
     */
    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_WFI },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v7_cp_reginfo[] = {
    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
     * is UNPREDICTABLE; we choose to NOP as most implementations do).
     */
    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_WFI },
789 790 791 792 793 794 795 796 797 798
    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
     * OMAPCP will override this space.
     */
    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
      .resetvalue = 0 },
    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
      .resetvalue = 0 },
799 800
    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
801
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
802
      .resetvalue = 0 },
803 804 805 806 807 808 809
    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
     * implementing it as RAZ means the "debug architecture version" bits
     * will read as a reserved value, which should cause Linux to not try
     * to use the debug hardware.
     */
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
810 811 812 813 814
    /* MMU TLB control. Note that the wildcarding means we cover not just
     * the unified TLB ops but also the dside/iside/inner-shareable variants.
     */
    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
815
      .type = ARM_CP_NO_RAW },
816 817
    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
818
      .type = ARM_CP_NO_RAW },
819 820
    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
821
      .type = ARM_CP_NO_RAW },
822 823
    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
824
      .type = ARM_CP_NO_RAW },
825 826 827 828
    { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
      .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
      .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
829 830 831
    REGINFO_SENTINEL
};

832 833
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
834
{
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
    uint32_t mask = 0;

    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
         */
        if (arm_feature(env, ARM_FEATURE_VFP)) {
            /* VFP coprocessor: cp10 & cp11 [23:20] */
            mask |= (1 << 31) | (1 << 30) | (0xf << 20);

            if (!arm_feature(env, ARM_FEATURE_NEON)) {
                /* ASEDIS [31] bit is RAO/WI */
                value |= (1 << 31);
            }

            /* VFPv3 and upwards with NEON implement 32 double precision
             * registers (D0-D31).
             */
            if (!arm_feature(env, ARM_FEATURE_NEON) ||
                    !arm_feature(env, ARM_FEATURE_VFP3)) {
                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
                value |= (1 << 30);
            }
        }
        value &= mask;
862
    }
863
    env->cp15.cpacr_el1 = value;
864 865
}

866 867
static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
{
    if (arm_feature(env, ARM_FEATURE_V8)) {
        /* Check if CPACR accesses are to be trapped to EL2 */
        if (arm_current_el(env) == 1 &&
            (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
            return CP_ACCESS_TRAP_EL2;
        /* Check if CPACR accesses are to be trapped to EL3 */
        } else if (arm_current_el(env) < 3 &&
                   (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
            return CP_ACCESS_TRAP_EL3;
        }
    }

    return CP_ACCESS_OK;
}

884 885
static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
886 887 888 889 890 891 892 893 894
{
    /* Check if CPTR accesses are set to trap to EL3 */
    if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
        return CP_ACCESS_TRAP_EL3;
    }

    return CP_ACCESS_OK;
}

895 896 897 898 899
static const ARMCPRegInfo v6_cp_reginfo[] = {
    /* prefetch by MVA in v6, NOP in v7 */
    { .name = "MVA_prefetch",
      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
900 901 902 903
    /* We need to break the TB after ISB to execute self-modifying code
     * correctly and also to take any pending interrupts immediately.
     * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
     */
904
    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
905
      .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
906
    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
907
      .access = PL0_W, .type = ARM_CP_NOP },
908
    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
909
      .access = PL0_W, .type = ARM_CP_NOP },
910
    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
911
      .access = PL1_RW,
F
Fabian Aggeler 已提交
912 913
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
                             offsetof(CPUARMState, cp15.ifar_ns) },
914 915 916 917 918 919
      .resetvalue = 0, },
    /* Watchpoint Fault Address Register : should actually only be present
     * for 1136, 1176, 11MPCore.
     */
    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
920
    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
921
      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
922
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
923
      .resetvalue = 0, .writefn = cpacr_write },
924 925 926
    REGINFO_SENTINEL
};

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
/* Definitions for the PMU registers */
#define PMCRN_MASK  0xf800
#define PMCRN_SHIFT 11
#define PMCRD   0x8
#define PMCRC   0x4
#define PMCRE   0x1

static inline uint32_t pmu_num_counters(CPUARMState *env)
{
  return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
}

/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
static inline uint64_t pmu_counter_mask(CPUARMState *env)
{
  return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
}

945 946
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
947
{
S
Stefan Weil 已提交
948
    /* Performance monitor registers user accessibility is controlled
949 950
     * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
     * trapping to EL2 or EL3 for other accesses.
951
     */
952 953
    int el = arm_current_el(env);

954
    if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
955
        return CP_ACCESS_TRAP;
956
    }
957 958 959 960 961 962 963 964
    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
        return CP_ACCESS_TRAP_EL3;
    }

965
    return CP_ACCESS_OK;
966 967
}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
                                           const ARMCPRegInfo *ri,
                                           bool isread)
{
    /* ER: event counter read trap control */
    if (arm_feature(env, ARM_FEATURE_V8)
        && arm_current_el(env) == 0
        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
        && isread) {
        return CP_ACCESS_OK;
    }

    return pmreg_access(env, ri, isread);
}

static CPAccessResult pmreg_access_swinc(CPUARMState *env,
                                         const ARMCPRegInfo *ri,
                                         bool isread)
{
    /* SW: software increment write trap control */
    if (arm_feature(env, ARM_FEATURE_V8)
        && arm_current_el(env) == 0
        && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
        && !isread) {
        return CP_ACCESS_OK;
    }

    return pmreg_access(env, ri, isread);
}

998
#ifndef CONFIG_USER_ONLY
999

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
static CPAccessResult pmreg_access_selr(CPUARMState *env,
                                        const ARMCPRegInfo *ri,
                                        bool isread)
{
    /* ER: event counter read trap control */
    if (arm_feature(env, ARM_FEATURE_V8)
        && arm_current_el(env) == 0
        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
        return CP_ACCESS_OK;
    }

    return pmreg_access(env, ri, isread);
}

static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
                                         const ARMCPRegInfo *ri,
                                         bool isread)
{
    /* CR: cycle counter read trap control */
    if (arm_feature(env, ARM_FEATURE_V8)
        && arm_current_el(env) == 0
        && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
        && isread) {
        return CP_ACCESS_OK;
    }

    return pmreg_access(env, ri, isread);
}

1029 1030 1031 1032
static inline bool arm_ccnt_enabled(CPUARMState *env)
{
    /* This does not support checking PMCCFILTR_EL0 register */

1033
    if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) {
1034 1035 1036 1037 1038 1039
        return false;
    }

    return true;
}

1040 1041 1042 1043
void pmccntr_sync(CPUARMState *env)
{
    uint64_t temp_ticks;

1044 1045
    temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                          ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        temp_ticks /= 64;
    }

    if (arm_ccnt_enabled(env)) {
        env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
    }
}

1057 1058
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
1059
{
1060
    pmccntr_sync(env);
1061 1062 1063 1064 1065 1066

    if (value & PMCRC) {
        /* The counter has been reset */
        env->cp15.c15_ccnt = 0;
    }

1067 1068 1069
    /* only the DP, X, D and E bits are writable */
    env->cp15.c9_pmcr &= ~0x39;
    env->cp15.c9_pmcr |= (value & 0x39);
1070

1071
    pmccntr_sync(env);
1072 1073 1074 1075
}

static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
1076
    uint64_t total_ticks;
1077

1078
    if (!arm_ccnt_enabled(env)) {
1079 1080 1081 1082
        /* Counter is disabled, do not change value */
        return env->cp15.c15_ccnt;
    }

1083 1084
    total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1085 1086 1087 1088 1089 1090 1091 1092

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    return total_ticks - env->cp15.c15_ccnt;
}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
     * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
     * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
     * accessed.
     */
    env->cp15.c9_pmselr = value & 0x1f;
}

1104 1105 1106
static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
1107
    uint64_t total_ticks;
1108

1109
    if (!arm_ccnt_enabled(env)) {
1110 1111 1112 1113 1114
        /* Counter is disabled, set the absolute value */
        env->cp15.c15_ccnt = value;
        return;
    }

1115 1116
    total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1117 1118 1119 1120 1121 1122

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    env->cp15.c15_ccnt = total_ticks - value;
1123
}
1124 1125 1126 1127 1128 1129 1130 1131 1132

static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    uint64_t cur_val = pmccntr_read(env, NULL);

    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
}

1133 1134 1135 1136 1137 1138
#else /* CONFIG_USER_ONLY */

void pmccntr_sync(CPUARMState *env)
{
}

1139
#endif
1140

1141 1142 1143 1144
static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    pmccntr_sync(env);
1145
    env->cp15.pmccfiltr_el0 = value & 0xfc000000;
1146 1147 1148
    pmccntr_sync(env);
}

1149
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1150 1151
                            uint64_t value)
{
1152
    value &= pmu_counter_mask(env);
1153 1154 1155
    env->cp15.c9_pmcnten |= value;
}

1156 1157
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1158
{
1159
    value &= pmu_counter_mask(env);
1160 1161 1162
    env->cp15.c9_pmcnten &= ~value;
}

1163 1164
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
1165 1166 1167 1168
{
    env->cp15.c9_pmovsr &= ~value;
}

1169 1170
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1171
{
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
    /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
     * PMSELR value is equal to or greater than the number of implemented
     * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
     */
    if (env->cp15.c9_pmselr == 0x1f) {
        pmccfiltr_write(env, ri, value);
    }
}

static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
     * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
     */
    if (env->cp15.c9_pmselr == 0x1f) {
        return env->cp15.pmccfiltr_el0;
    } else {
        return 0;
    }
1191 1192
}

1193
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1194 1195
                            uint64_t value)
{
1196 1197 1198 1199 1200
    if (arm_feature(env, ARM_FEATURE_V8)) {
        env->cp15.c9_pmuserenr = value & 0xf;
    } else {
        env->cp15.c9_pmuserenr = value & 1;
    }
1201 1202
}

1203 1204
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1205 1206
{
    /* We have no event counters so only the C bit can be changed */
1207
    value &= pmu_counter_mask(env);
1208 1209 1210
    env->cp15.c9_pminten |= value;
}

1211 1212
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1213
{
1214
    value &= pmu_counter_mask(env);
1215 1216 1217
    env->cp15.c9_pminten &= ~value;
}

1218 1219
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
N
Nathan Rossi 已提交
1220
{
1221 1222 1223 1224 1225 1226
    /* Note that even though the AArch64 view of this register has bits
     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
     * architectural requirements for bits which are RES0 only in some
     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
     */
1227
    raw_write(env, ri, value & ~0x1FULL);
N
Nathan Rossi 已提交
1228 1229
}

E
Edgar E. Iglesias 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    /* We only mask off bits that are RES0 both for AArch64 and AArch32.
     * For bits that vary between AArch32/64, code needs to check the
     * current execution mode before directly using the feature bit.
     */
    uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;

    if (!arm_feature(env, ARM_FEATURE_EL2)) {
        valid_mask &= ~SCR_HCE;

        /* On ARMv7, SMD (or SCD as it is called in v7) is only
         * supported if EL2 exists. The bit is UNK/SBZP when
         * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
         * when EL2 is unavailable.
G
Greg Bellows 已提交
1245
         * On ARMv8, this bit is always available.
E
Edgar E. Iglesias 已提交
1246
         */
G
Greg Bellows 已提交
1247 1248
        if (arm_feature(env, ARM_FEATURE_V7) &&
            !arm_feature(env, ARM_FEATURE_V8)) {
E
Edgar E. Iglesias 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257
            valid_mask &= ~SCR_SMD;
        }
    }

    /* Clear all-context RES0 bits.  */
    value &= valid_mask;
    raw_write(env, ri, value);
}

1258
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1259 1260
{
    ARMCPU *cpu = arm_env_get_cpu(env);
F
Fabian Aggeler 已提交
1261 1262 1263 1264 1265 1266 1267 1268

    /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
     * bank
     */
    uint32_t index = A32_BANKED_REG_GET(env, csselr,
                                        ri->secure & ARM_CP_SECSTATE_S);

    return cpu->ccsidr[index];
1269 1270
}

1271 1272
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
1273
{
1274
    raw_write(env, ri, value & 0xf);
1275 1276
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t ret = 0;

    if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
        ret |= CPSR_I;
    }
    if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
        ret |= CPSR_F;
    }
    /* External aborts are not possible in QEMU so A bit is always clear */
    return ret;
}

1292
static const ARMCPRegInfo v7_cp_reginfo[] = {
1293 1294 1295
    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    /* Performance monitors are implementation defined in v7,
     * but with an ARM recommended set of registers, which we
     * follow (although we don't actually implement any counters)
     *
     * Performance registers fall into three categories:
     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
     */
    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1308
      .access = PL0_RW, .type = ARM_CP_ALIAS,
1309
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1310 1311 1312
      .writefn = pmcntenset_write,
      .accessfn = pmreg_access,
      .raw_writefn = raw_write },
1313 1314 1315 1316 1317
    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
      .access = PL0_RW, .accessfn = pmreg_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
      .writefn = pmcntenset_write, .raw_writefn = raw_write },
1318
    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1319 1320
      .access = PL0_RW,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1321 1322
      .accessfn = pmreg_access,
      .writefn = pmcntenclr_write,
1323
      .type = ARM_CP_ALIAS },
1324 1325 1326
    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
      .access = PL0_RW, .accessfn = pmreg_access,
1327
      .type = ARM_CP_ALIAS,
1328 1329
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
      .writefn = pmcntenclr_write },
1330
    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1331 1332
      .access = PL0_RW,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1333 1334 1335
      .accessfn = pmreg_access,
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
1336 1337 1338 1339 1340 1341 1342
    { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
1343
    /* Unimplemented so WI. */
1344
    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1345
      .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1346
#ifndef CONFIG_USER_ONLY
1347 1348 1349
    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
      .access = PL0_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1350
      .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1351 1352 1353
      .raw_writefn = raw_write},
    { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1354
      .access = PL0_RW, .accessfn = pmreg_access_selr,
1355 1356
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
      .writefn = pmselr_write, .raw_writefn = raw_write, },
1357
    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1358
      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1359
      .readfn = pmccntr_read, .writefn = pmccntr_write32,
1360
      .accessfn = pmreg_access_ccntr },
1361 1362
    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1363
      .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1364 1365
      .type = ARM_CP_IO,
      .readfn = pmccntr_read, .writefn = pmccntr_write, },
1366
#endif
1367 1368
    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1369
      .writefn = pmccfiltr_write,
1370 1371 1372 1373
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
      .resetvalue = 0, },
1374
    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1375 1376 1377 1378 1379 1380
      .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
    { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
      .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1381
    /* Unimplemented, RAZ/WI. */
1382
    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1383
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1384
      .accessfn = pmreg_access_xevcntr },
1385
    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1386
      .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1387
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
1388
      .resetvalue = 0,
1389
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
1390 1391
    { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1392
      .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1393 1394 1395
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
1396
    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1397
      .access = PL1_RW, .accessfn = access_tpm,
1398 1399
      .type = ARM_CP_ALIAS,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1400
      .resetvalue = 0,
1401
      .writefn = pmintenset_write, .raw_writefn = raw_write },
1402 1403 1404 1405 1406 1407 1408
    { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_tpm,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .writefn = pmintenset_write, .raw_writefn = raw_write,
      .resetvalue = 0x0 },
1409
    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1410
      .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1411
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1412
      .writefn = pmintenclr_write, },
1413 1414
    { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1415
      .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1416 1417
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .writefn = pmintenclr_write },
1418 1419
    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1420
      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1421 1422
    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
F
Fabian Aggeler 已提交
1423 1424 1425
      .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
                             offsetof(CPUARMState, cp15.csselr_ns) } },
1426 1427 1428
    /* Auxiliary ID register: this actually has an IMPDEF value but for now
     * just RAZ for all cores:
     */
1429 1430
    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1431
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1432 1433 1434 1435 1436 1437 1438 1439 1440
    /* Auxiliary fault status registers: these also are IMPDEF, and we
     * choose to RAZ/WI for all cores.
     */
    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1441 1442 1443 1444 1445
    /* MAIR can just read-as-written because we don't implement caches
     * and so don't need to care about memory attributes.
     */
    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
G
Greg Bellows 已提交
1446
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1447
      .resetvalue = 0 },
1448 1449 1450 1451
    { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
      .resetvalue = 0 },
1452 1453 1454
    /* For non-long-descriptor page tables these are PRRR and NMRR;
     * regardless they still act as reads-as-written for QEMU.
     */
1455
     /* MAIR0/1 are defined separately from their 64-bit counterpart which
G
Greg Bellows 已提交
1456 1457 1458
      * allows them to assign the correct fieldoffset based on the endianness
      * handled in the field definitions.
      */
1459
    { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1460
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
G
Greg Bellows 已提交
1461 1462
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
                             offsetof(CPUARMState, cp15.mair0_ns) },
1463
      .resetfn = arm_cp_reset_ignore },
1464
    { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1465
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
G
Greg Bellows 已提交
1466 1467
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
                             offsetof(CPUARMState, cp15.mair1_ns) },
1468
      .resetfn = arm_cp_reset_ignore },
1469 1470
    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1471
      .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1472 1473
    /* 32 bit ITLB invalidates */
    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1474
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1475
    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1476
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1477
    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1478
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1479 1480
    /* 32 bit DTLB invalidates */
    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1481
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1482
    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1483
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1484
    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1485
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1486 1487
    /* 32 bit TLB invalidates */
    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1488
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1489
    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1490
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1491
    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1492
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1493
    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1494
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1495 1496 1497 1498 1499 1500
    REGINFO_SENTINEL
};

static const ARMCPRegInfo v7mp_cp_reginfo[] = {
    /* 32 bit TLB invalidates, Inner Shareable */
    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1501
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1502
    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1503
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1504
    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1505
      .type = ARM_CP_NO_RAW, .access = PL1_W,
1506
      .writefn = tlbiasid_is_write },
1507
    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1508
      .type = ARM_CP_NO_RAW, .access = PL1_W,
1509
      .writefn = tlbimvaa_is_write },
1510 1511 1512
    REGINFO_SENTINEL
};

1513 1514
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
1515 1516 1517 1518 1519
{
    value &= 1;
    env->teecr = value;
}

1520 1521
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                    bool isread)
1522
{
1523
    if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1524
        return CP_ACCESS_TRAP;
1525
    }
1526
    return CP_ACCESS_OK;
1527 1528 1529 1530 1531 1532 1533 1534 1535
}

static const ARMCPRegInfo t2ee_cp_reginfo[] = {
    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
      .resetvalue = 0,
      .writefn = teecr_write },
    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1536
      .accessfn = teehbr_access, .resetvalue = 0 },
1537 1538 1539
    REGINFO_SENTINEL
};

1540
static const ARMCPRegInfo v6k_cp_reginfo[] = {
1541 1542 1543
    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
      .access = PL0_RW,
1544
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1545 1546
    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW,
1547 1548
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1549 1550 1551 1552
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
      .access = PL0_R|PL1_W,
1553 1554
      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
      .resetvalue = 0},
1555 1556
    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL0_R|PL1_W,
1557 1558
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
                             offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1559
      .resetfn = arm_cp_reset_ignore },
1560
    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1561
      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1562
      .access = PL1_RW,
1563 1564 1565 1566 1567 1568
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
    { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
      .access = PL1_RW,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
      .resetvalue = 0 },
1569 1570 1571
    REGINFO_SENTINEL
};

1572 1573
#ifndef CONFIG_USER_ONLY

1574 1575
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
1576
{
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
     * Writable only at the highest implemented exception level.
     */
    int el = arm_current_el(env);

    switch (el) {
    case 0:
        if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
            return CP_ACCESS_TRAP;
        }
        break;
    case 1:
        if (!isread && ri->state == ARM_CP_STATE_AA32 &&
            arm_is_secure_below_el3(env)) {
            /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
            return CP_ACCESS_TRAP_UNCATEGORIZED;
        }
        break;
    case 2:
    case 3:
        break;
1598
    }
1599 1600 1601 1602 1603

    if (!isread && el < arm_highest_el(env)) {
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }

1604 1605 1606
    return CP_ACCESS_OK;
}

1607 1608
static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
                                        bool isread)
1609
{
E
Edgar E. Iglesias 已提交
1610 1611 1612
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

1613
    /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
E
Edgar E. Iglesias 已提交
1614
    if (cur_el == 0 &&
1615 1616 1617
        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
E
Edgar E. Iglesias 已提交
1618 1619 1620 1621 1622 1623

    if (arm_feature(env, ARM_FEATURE_EL2) &&
        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
        !extract32(env->cp15.cnthctl_el2, 0, 1)) {
        return CP_ACCESS_TRAP_EL2;
    }
1624 1625 1626
    return CP_ACCESS_OK;
}

1627 1628
static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
                                      bool isread)
1629
{
E
Edgar E. Iglesias 已提交
1630 1631 1632
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

1633 1634 1635
    /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
     * EL0[PV]TEN is zero.
     */
E
Edgar E. Iglesias 已提交
1636
    if (cur_el == 0 &&
1637 1638 1639
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
E
Edgar E. Iglesias 已提交
1640 1641 1642 1643 1644 1645

    if (arm_feature(env, ARM_FEATURE_EL2) &&
        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
        !extract32(env->cp15.cnthctl_el2, 1, 1)) {
        return CP_ACCESS_TRAP_EL2;
    }
1646 1647 1648 1649
    return CP_ACCESS_OK;
}

static CPAccessResult gt_pct_access(CPUARMState *env,
1650 1651
                                    const ARMCPRegInfo *ri,
                                    bool isread)
1652
{
1653
    return gt_counter_access(env, GTIMER_PHYS, isread);
1654 1655 1656
}

static CPAccessResult gt_vct_access(CPUARMState *env,
1657 1658
                                    const ARMCPRegInfo *ri,
                                    bool isread)
1659
{
1660
    return gt_counter_access(env, GTIMER_VIRT, isread);
1661 1662
}

1663 1664
static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
1665
{
1666
    return gt_timer_access(env, GTIMER_PHYS, isread);
1667 1668
}

1669 1670
static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
1671
{
1672
    return gt_timer_access(env, GTIMER_VIRT, isread);
1673 1674
}

1675
static CPAccessResult gt_stimer_access(CPUARMState *env,
1676 1677
                                       const ARMCPRegInfo *ri,
                                       bool isread)
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
{
    /* The AArch64 register view of the secure physical timer is
     * always accessible from EL3, and configurably accessible from
     * Secure EL1.
     */
    switch (arm_current_el(env)) {
    case 1:
        if (!arm_is_secure(env)) {
            return CP_ACCESS_TRAP;
        }
        if (!(env->cp15.scr_el3 & SCR_ST)) {
            return CP_ACCESS_TRAP_EL3;
        }
        return CP_ACCESS_OK;
    case 0:
    case 2:
        return CP_ACCESS_TRAP;
    case 3:
        return CP_ACCESS_OK;
    default:
        g_assert_not_reached();
    }
}

1702 1703
static uint64_t gt_get_countervalue(CPUARMState *env)
{
1704
    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
}

static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];

    if (gt->ctl & 1) {
        /* Timer enabled: calculate and set current ISTATUS, irq, and
         * reset timer to when ISTATUS next has to change
         */
E
Edgar E. Iglesias 已提交
1715 1716
        uint64_t offset = timeridx == GTIMER_VIRT ?
                                      cpu->env.cp15.cntvoff_el2 : 0;
1717 1718
        uint64_t count = gt_get_countervalue(&cpu->env);
        /* Note that this must be unsigned 64 bit arithmetic: */
E
Edgar E. Iglesias 已提交
1719
        int istatus = count - offset >= gt->cval;
1720
        uint64_t nexttick;
1721
        int irqstate;
1722 1723

        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1724 1725 1726 1727

        irqstate = (istatus && !(gt->ctl & 2));
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);

1728 1729 1730 1731 1732
        if (istatus) {
            /* Next transition is when count rolls back over to zero */
            nexttick = UINT64_MAX;
        } else {
            /* Next transition is when we hit cval */
E
Edgar E. Iglesias 已提交
1733
            nexttick = gt->cval + offset;
1734 1735 1736 1737 1738 1739 1740 1741 1742
        }
        /* Note that the desired next expiry time might be beyond the
         * signed-64-bit range of a QEMUTimer -- in this case we just
         * set the timer for as far in the future as possible. When the
         * timer expires we will reset the timer for any remaining period.
         */
        if (nexttick > INT64_MAX / GTIMER_SCALE) {
            nexttick = INT64_MAX / GTIMER_SCALE;
        }
1743
        timer_mod(cpu->gt_timer[timeridx], nexttick);
1744
        trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1745 1746 1747 1748
    } else {
        /* Timer disabled: ISTATUS and timer output always clear */
        gt->ctl &= ~4;
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1749
        timer_del(cpu->gt_timer[timeridx]);
1750
        trace_arm_gt_recalc_disabled(timeridx);
1751 1752 1753
    }
}

1754 1755
static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
                           int timeridx)
1756 1757 1758
{
    ARMCPU *cpu = arm_env_get_cpu(env);

1759
    timer_del(cpu->gt_timer[timeridx]);
1760 1761
}

1762
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1763
{
1764
    return gt_get_countervalue(env);
1765 1766
}

E
Edgar E. Iglesias 已提交
1767 1768 1769 1770 1771
static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
}

1772
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1773
                          int timeridx,
1774
                          uint64_t value)
1775
{
1776
    trace_arm_gt_cval_write(timeridx, value);
1777 1778 1779
    env->cp15.c14_timer[timeridx].cval = value;
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}
1780

1781 1782
static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
                             int timeridx)
1783
{
E
Edgar E. Iglesias 已提交
1784
    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1785

1786
    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
E
Edgar E. Iglesias 已提交
1787
                      (gt_get_countervalue(env) - offset));
1788 1789
}

1790
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1791
                          int timeridx,
1792
                          uint64_t value)
1793
{
E
Edgar E. Iglesias 已提交
1794
    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1795

1796
    trace_arm_gt_tval_write(timeridx, value);
E
Edgar E. Iglesias 已提交
1797
    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1798
                                         sextract64(value, 0, 32);
1799 1800 1801
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}

1802
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1803
                         int timeridx,
1804
                         uint64_t value)
1805 1806 1807 1808
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;

1809
    trace_arm_gt_ctl_write(timeridx, value);
1810
    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1811 1812 1813
    if ((oldval ^ value) & 1) {
        /* Enable toggled */
        gt_recalc_timer(cpu, timeridx);
1814
    } else if ((oldval ^ value) & 2) {
1815 1816 1817
        /* IMASK toggled: don't need to recalculate,
         * just set the interrupt line based on ISTATUS
         */
1818 1819 1820 1821
        int irqstate = (oldval & 4) && !(value & 2);

        trace_arm_gt_imask_toggle(timeridx, irqstate);
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1822 1823 1824
    }
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_PHYS);
}

static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_PHYS, value);
}

static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_PHYS);
}

static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_PHYS, value);
}

static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_PHYS, value);
}

static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_VIRT);
}

static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_VIRT, value);
}

static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_VIRT);
}

static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_VIRT, value);
}

static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_VIRT, value);
}

E
Edgar E. Iglesias 已提交
1881 1882 1883 1884 1885
static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

1886
    trace_arm_gt_cntvoff_write(value);
E
Edgar E. Iglesias 已提交
1887 1888 1889 1890
    raw_write(env, ri, value);
    gt_recalc_timer(cpu, GTIMER_VIRT);
}

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_HYP);
}

static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_HYP, value);
}

static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_HYP);
}

static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_HYP, value);
}

static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_HYP, value);
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_SEC);
}

static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_SEC, value);
}

static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_SEC);
}

static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_SEC, value);
}

static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_SEC, value);
}

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
void arm_gt_ptimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_PHYS);
}

void arm_gt_vtimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_VIRT);
}

1961 1962 1963 1964 1965 1966 1967
void arm_gt_htimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_HYP);
}

1968 1969 1970 1971 1972 1973 1974
void arm_gt_stimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_SEC);
}

1975 1976 1977 1978 1979 1980
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    /* Note that CNTFRQ is purely reads-as-written for the benefit
     * of software; writing it doesn't actually change the timer frequency.
     * Our reset value matches the fixed frequency we implement the timer at.
     */
    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1981
      .type = ARM_CP_ALIAS,
1982 1983 1984 1985 1986 1987
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
    },
    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1988 1989 1990 1991
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
    },
    /* overall control: mostly access permissions */
1992 1993
    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1994 1995 1996 1997 1998 1999
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
      .resetvalue = 0,
    },
    /* per-timer control */
    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2000
      .secure = ARM_CP_SECSTATE_NS,
2001
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2002 2003 2004
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_PHYS].ctl),
2005
      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2006
    },
2007
    { .name = "CNTP_CTL_S",
2008 2009 2010 2011 2012 2013 2014 2015
      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
      .secure = ARM_CP_SECSTATE_S,
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_SEC].ctl),
      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
    },
2016 2017
    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2018
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2019
      .accessfn = gt_ptimer_access,
2020 2021
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetvalue = 0,
2022
      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2023 2024
    },
    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2025
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2026 2027 2028
      .accessfn = gt_vtimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_VIRT].ctl),
2029
      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2030 2031 2032
    },
    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2033
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2034
      .accessfn = gt_vtimer_access,
2035 2036
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetvalue = 0,
2037
      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2038 2039 2040
    },
    /* TimerValue views: a 32 bit downcounting view of the underlying state */
    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2041
      .secure = ARM_CP_SECSTATE_NS,
2042
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2043
      .accessfn = gt_ptimer_access,
2044
      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2045
    },
2046
    { .name = "CNTP_TVAL_S",
2047 2048 2049 2050 2051 2052
      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
      .secure = ARM_CP_SECSTATE_S,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
    },
2053 2054
    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2055
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2056 2057
      .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2058
    },
2059
    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2060
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2061
      .accessfn = gt_vtimer_access,
2062
      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2063
    },
2064 2065
    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2066
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2067 2068
      .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2069
    },
2070 2071
    /* The counter itself */
    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2072
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2073
      .accessfn = gt_pct_access,
2074 2075 2076 2077
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2078
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2079
      .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2080 2081
    },
    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2082
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2083
      .accessfn = gt_vct_access,
E
Edgar E. Iglesias 已提交
2084
      .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2085 2086 2087
    },
    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2088
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2089
      .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2090 2091 2092
    },
    /* Comparison value, indicating when the timer goes off */
    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2093
      .secure = ARM_CP_SECSTATE_NS,
2094
      .access = PL1_RW | PL0_R,
2095
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2096
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2097
      .accessfn = gt_ptimer_access,
2098
      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2099
    },
2100
    { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2101 2102 2103 2104 2105 2106 2107
      .secure = ARM_CP_SECSTATE_S,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
      .accessfn = gt_ptimer_access,
      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
    },
2108 2109 2110 2111 2112
    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2113
      .resetvalue = 0, .accessfn = gt_ptimer_access,
2114
      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2115 2116 2117
    },
    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
      .access = PL1_RW | PL0_R,
2118
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2119
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2120
      .accessfn = gt_vtimer_access,
2121
      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2122 2123 2124 2125 2126 2127 2128
    },
    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
2129
      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2130
    },
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
    /* Secure timer -- this is actually restricted to only EL3
     * and configurably Secure-EL1 via the accessfn.
     */
    { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .readfn = gt_sec_tval_read,
      .writefn = gt_sec_tval_write,
      .resetfn = gt_sec_timer_reset,
    },
    { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
      .type = ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
      .resetvalue = 0,
      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
      .type = ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
    },
2157 2158 2159 2160 2161
    REGINFO_SENTINEL
};

#else
/* In user-mode none of the generic timer registers are accessible,
2162
 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2163 2164
 * so instead just don't register any of them.
 */
2165 2166 2167 2168
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    REGINFO_SENTINEL
};

2169 2170
#endif

2171
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2172
{
2173
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
2174
        raw_write(env, ri, value);
2175
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
2176
        raw_write(env, ri, value & 0xfffff6ff);
2177
    } else {
2178
        raw_write(env, ri, value & 0xfffff1ff);
2179 2180 2181 2182 2183
    }
}

#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */
2184

2185 2186
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                 bool isread)
2187 2188
{
    if (ri->opc2 & 4) {
2189 2190 2191 2192
        /* The ATS12NSO* operations must trap to EL3 if executed in
         * Secure EL1 (which can only happen if EL3 is AArch64).
         * They are simply UNDEF if executed from NS EL1.
         * They function normally from EL2 or EL3.
2193
         */
2194 2195 2196 2197 2198 2199
        if (arm_current_el(env) == 1) {
            if (arm_is_secure_below_el3(env)) {
                return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
            }
            return CP_ACCESS_TRAP_UNCATEGORIZED;
        }
2200 2201 2202 2203
    }
    return CP_ACCESS_OK;
}

2204
static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2205
                             MMUAccessType access_type, ARMMMUIdx mmu_idx)
2206
{
A
Avi Kivity 已提交
2207
    hwaddr phys_addr;
2208 2209
    target_ulong page_size;
    int prot;
2210
    bool ret;
F
Fabian Aggeler 已提交
2211
    uint64_t par64;
2212
    bool format64 = false;
2213
    MemTxAttrs attrs = {};
2214
    ARMMMUFaultInfo fi = {};
2215
    ARMCacheAttrs cacheattrs = {};
2216

2217
    ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2218
                        &prot, &page_size, &fi, &cacheattrs);
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246

    if (is_a64(env)) {
        format64 = true;
    } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /*
         * ATS1Cxx:
         * * TTBCR.EAE determines whether the result is returned using the
         *   32-bit or the 64-bit PAR format
         * * Instructions executed in Hyp mode always use the 64bit format
         *
         * ATS1S2NSOxx uses the 64bit format if any of the following is true:
         * * The Non-secure TTBCR.EAE bit is set to 1
         * * The implementation includes EL2, and the value of HCR.VM is 1
         *
         * ATS1Hx always uses the 64bit format (not supported yet).
         */
        format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);

        if (arm_feature(env, ARM_FEATURE_EL2)) {
            if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
                format64 |= env->cp15.hcr_el2 & HCR_VM;
            } else {
                format64 |= arm_current_el(env) == 2;
            }
        }
    }

    if (format64) {
2247
        /* Create a 64-bit PAR */
F
Fabian Aggeler 已提交
2248
        par64 = (1 << 11); /* LPAE bit always set */
2249
        if (!ret) {
2250
            par64 |= phys_addr & ~0xfffULL;
2251 2252 2253
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
2254 2255
            par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
            par64 |= cacheattrs.shareability << 7; /* SH */
2256
        } else {
2257 2258
            uint32_t fsr = arm_fi_to_lfsc(&fi);

2259
            par64 |= 1; /* F */
2260
            par64 |= (fsr & 0x3f) << 1; /* FS */
2261 2262 2263 2264
            /* Note that S2WLK and FSTAGE are always zero, because we don't
             * implement virtualization and therefore there can't be a stage 2
             * fault.
             */
2265 2266
        }
    } else {
2267
        /* fsr is a DFSR/IFSR value for the short descriptor
2268 2269 2270
         * translation table format (with WnR always clear).
         * Convert it to a 32-bit PAR.
         */
2271
        if (!ret) {
2272 2273 2274
            /* We do not set any attribute bits in the PAR */
            if (page_size == (1 << 24)
                && arm_feature(env, ARM_FEATURE_V7)) {
F
Fabian Aggeler 已提交
2275
                par64 = (phys_addr & 0xff000000) | (1 << 1);
2276
            } else {
F
Fabian Aggeler 已提交
2277
                par64 = phys_addr & 0xfffff000;
2278
            }
2279 2280 2281
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
2282
        } else {
2283 2284
            uint32_t fsr = arm_fi_to_sfsc(&fi);

2285 2286
            par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
                    ((fsr & 0xf) << 1) | 1;
2287
        }
2288
    }
2289 2290 2291 2292 2293
    return par64;
}

static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
2294
    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2295
    uint64_t par64;
2296 2297 2298
    ARMMMUIdx mmu_idx;
    int el = arm_current_el(env);
    bool secure = arm_is_secure_below_el3(env);
2299

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
    switch (ri->opc2 & 6) {
    case 0:
        /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_S1E3;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_S1NSE1;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2:
        /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_S1SE0;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_S1NSE0;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 4:
        /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
        mmu_idx = ARMMMUIdx_S12NSE1;
        break;
    case 6:
        /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
        mmu_idx = ARMMMUIdx_S12NSE0;
        break;
    default:
        g_assert_not_reached();
    }

    par64 = do_ats_write(env, value, access_type, mmu_idx);
F
Fabian Aggeler 已提交
2346 2347

    A32_BANKED_CURRENT_REG_SET(env, par, par64);
2348
}
2349

2350 2351 2352
static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
2353
    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2354 2355 2356 2357 2358 2359 2360
    uint64_t par64;

    par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);

    A32_BANKED_CURRENT_REG_SET(env, par, par64);
}

2361 2362
static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
2363 2364 2365 2366 2367 2368 2369
{
    if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

2370 2371 2372
static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
2373
    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
    ARMMMUIdx mmu_idx;
    int secure = arm_is_secure_below_el3(env);

    switch (ri->opc2 & 6) {
    case 0:
        switch (ri->opc1) {
        case 0: /* AT S1E1R, AT S1E1W */
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
            break;
        case 4: /* AT S1E2R, AT S1E2W */
            mmu_idx = ARMMMUIdx_S1E2;
            break;
        case 6: /* AT S1E3R, AT S1E3W */
            mmu_idx = ARMMMUIdx_S1E3;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2: /* AT S1E0R, AT S1E0W */
        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
        break;
    case 4: /* AT S12E1R, AT S12E1W */
2397
        mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2398 2399
        break;
    case 6: /* AT S12E0R, AT S12E0W */
2400
        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2401 2402 2403 2404
        break;
    default:
        g_assert_not_reached();
    }
2405

2406
    env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2407
}
2408 2409 2410 2411 2412
#endif

static const ARMCPRegInfo vapa_cp_reginfo[] = {
    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
F
Fabian Aggeler 已提交
2413 2414
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
                             offsetoflow32(CPUARMState, cp15.par_ns) },
2415 2416
      .writefn = par_write },
#ifndef CONFIG_USER_ONLY
2417
    /* This underdecoding is safe because the reginfo is NO_RAW. */
2418
    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2419
      .access = PL1_W, .accessfn = ats_access,
2420
      .writefn = ats_write, .type = ARM_CP_NO_RAW },
2421 2422 2423 2424
#endif
    REGINFO_SENTINEL
};

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
/* Return basic MPU access permission bits.  */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val >> i) & mask;
        mask <<= 2;
    }
    return ret;
}

/* Pad basic MPU access permission bits to extended format.  */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val & mask) << i;
        mask <<= 2;
    }
    return ret;
}

2455 2456
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
2457
{
2458
    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2459 2460
}

2461
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2462
{
2463
    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2464 2465
}

2466 2467
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
2468
{
2469
    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2470 2471
}

2472
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2473
{
2474
    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2475 2476
}

2477 2478 2479 2480 2481 2482 2483 2484
static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return 0;
    }

2485
    u32p += env->pmsav7.rnr[M_REG_NS];
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
    return *u32p;
}

static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return;
    }

2499
    u32p += env->pmsav7.rnr[M_REG_NS];
2500
    tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
    *u32p = value;
}

static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t nrgs = cpu->pmsav7_dregion;

    if (value >= nrgs) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "PMSAv7 RGNR write >= # supported regions, %" PRIu32
                      " > %" PRIu32 "\n", (uint32_t)value, nrgs);
        return;
    }

    raw_write(env, ri, value);
}

static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2521 2522 2523 2524
    /* Reset for all these registers is handled in arm_cpu_reset(),
     * because the PMSAv7 is also used by M-profile CPUs, which do
     * not register cpregs but still need the state to be reset.
     */
2525 2526 2527
    { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2528 2529
      .readfn = pmsav7_read, .writefn = pmsav7_write,
      .resetfn = arm_cp_reset_ignore },
2530 2531 2532
    { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2533 2534
      .readfn = pmsav7_read, .writefn = pmsav7_write,
      .resetfn = arm_cp_reset_ignore },
2535 2536 2537
    { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2538 2539
      .readfn = pmsav7_read, .writefn = pmsav7_write,
      .resetfn = arm_cp_reset_ignore },
2540 2541
    { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
      .access = PL1_RW,
2542
      .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2543 2544
      .writefn = pmsav7_rgnr_write,
      .resetfn = arm_cp_reset_ignore },
2545 2546 2547
    REGINFO_SENTINEL
};

2548 2549
static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2550
      .access = PL1_RW, .type = ARM_CP_ALIAS,
2551
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2552 2553
      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2554
      .access = PL1_RW, .type = ARM_CP_ALIAS,
2555
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2556 2557 2558
      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW,
2559 2560
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
      .resetvalue = 0, },
2561 2562
    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL1_RW,
2563 2564
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
      .resetvalue = 0, },
2565 2566 2567 2568 2569 2570
    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2571
    /* Protection region base and size registers */
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2596 2597 2598
    REGINFO_SENTINEL
};

2599 2600
static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
2601
{
F
Fabian Aggeler 已提交
2602
    TCR *tcr = raw_ptr(env, ri);
2603 2604
    int maskshift = extract32(value, 0, 3);

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
             * using Long-desciptor translation table format */
            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
            /* In an implementation that includes the Security Extensions
             * TTBCR has additional fields PD0 [4] and PD1 [5] for
             * Short-descriptor translation table format.
             */
            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
        } else {
            value &= TTBCR_N;
        }
2619
    }
2620

2621
    /* Update the masks corresponding to the TCR bank being written
F
Fabian Aggeler 已提交
2622
     * Note that we always calculate mask and base_mask, but
2623
     * they are only used for short-descriptor tables (ie if EAE is 0);
F
Fabian Aggeler 已提交
2624 2625
     * for long-descriptor tables the TCR fields are used differently
     * and the mask and base_mask values are meaningless.
2626
     */
F
Fabian Aggeler 已提交
2627 2628 2629
    tcr->raw_tcr = value;
    tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
    tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2630 2631
}

2632 2633
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
2634
{
2635 2636
    ARMCPU *cpu = arm_env_get_cpu(env);

2637 2638 2639 2640
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /* With LPAE the TTBCR could result in a change of ASID
         * via the TTBCR.A1 bit, so do a TLB flush.
         */
2641
        tlb_flush(CPU(cpu));
2642
    }
2643
    vmsa_ttbcr_raw_write(env, ri, value);
2644 2645
}

2646 2647
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
F
Fabian Aggeler 已提交
2648 2649 2650 2651 2652 2653 2654 2655
    TCR *tcr = raw_ptr(env, ri);

    /* Reset both the TCR as well as the masks corresponding to the bank of
     * the TCR being reset.
     */
    tcr->raw_tcr = 0;
    tcr->mask = 0;
    tcr->base_mask = 0xffffc000u;
2656 2657
}

2658 2659 2660
static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
2661
    ARMCPU *cpu = arm_env_get_cpu(env);
F
Fabian Aggeler 已提交
2662
    TCR *tcr = raw_ptr(env, ri);
2663

2664
    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2665
    tlb_flush(CPU(cpu));
F
Fabian Aggeler 已提交
2666
    tcr->raw_tcr = value;
2667 2668
}

2669 2670 2671 2672 2673 2674 2675
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* 64 bit accesses to the TTBRs can change the ASID and so we
     * must flush the TLB.
     */
    if (cpreg_field_is_64bit(ri)) {
2676 2677
        ARMCPU *cpu = arm_env_get_cpu(env);

2678
        tlb_flush(CPU(cpu));
2679 2680 2681 2682
    }
    raw_write(env, ri, value);
}

E
Edgar E. Iglesias 已提交
2683 2684 2685 2686 2687 2688 2689 2690
static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

    /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
    if (raw_read(env, ri) != value) {
2691
        tlb_flush_by_mmuidx(cs,
2692 2693 2694
                            ARMMMUIdxBit_S12NSE1 |
                            ARMMMUIdxBit_S12NSE0 |
                            ARMMMUIdxBit_S2NS);
E
Edgar E. Iglesias 已提交
2695 2696 2697 2698
        raw_write(env, ri, value);
    }
}

2699
static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2700
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2701
      .access = PL1_RW, .type = ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2702
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2703
                             offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2704
    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
F
Fabian Aggeler 已提交
2705 2706 2707
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
                             offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
    { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
                             offsetof(CPUARMState, cp15.dfar_ns) } },
    { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
      .resetvalue = 0, },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2720 2721 2722
    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
2723
      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2724
    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
F
Fabian Aggeler 已提交
2725 2726 2727 2728
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) } },
2729
    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
F
Fabian Aggeler 已提交
2730 2731 2732 2733
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) } },
2734 2735 2736 2737
    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
F
Fabian Aggeler 已提交
2738
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2739
    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2740
      .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2741
      .raw_writefn = vmsa_ttbcr_raw_write,
F
Fabian Aggeler 已提交
2742 2743
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
                             offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2744 2745 2746
    REGINFO_SENTINEL
};

2747 2748
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
2749 2750 2751 2752 2753 2754 2755
{
    env->cp15.c15_ticonfig = value & 0xe7;
    /* The OS_TYPE bit in this register changes the reported CPUID! */
    env->cp15.c0_cpuid = (value & (1 << 5)) ?
        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
}

2756 2757
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
2758 2759 2760 2761
{
    env->cp15.c15_threadid = value & 0xffff;
}

2762 2763
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
2764 2765
{
    /* Wait-for-interrupt (deprecated) */
2766
    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2767 2768
}

2769 2770
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
2771 2772 2773 2774 2775 2776 2777 2778
{
    /* On OMAP there are registers indicating the max/min index of dcache lines
     * containing a dirty line; cache flush operations have to reset these.
     */
    env->cp15.c15_i_max = 0x000;
    env->cp15.c15_i_min = 0xff0;
}

2779 2780 2781
static const ARMCPRegInfo omap_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2782
      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2783
      .resetvalue = 0, },
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
      .writefn = omap_ticonfig_write },
    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0xff0,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
      .writefn = omap_threadid_write },
    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2802
      .type = ARM_CP_NO_RAW,
2803 2804 2805 2806 2807 2808
      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
    /* TODO: Peripheral port remap register:
     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
     * when MMU is off.
     */
2809
    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2810
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2811
      .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2812
      .writefn = omap_cachemaint_write },
2813 2814 2815
    { .name = "C9", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2816 2817 2818
    REGINFO_SENTINEL
};

2819 2820
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
2821
{
2822
    env->cp15.c15_cpar = value & 0x3fff;
2823 2824 2825 2826 2827 2828 2829
}

static const ARMCPRegInfo xscale_cp_reginfo[] = {
    { .name = "XSCALE_CPAR",
      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
      .writefn = xscale_cpar_write, },
2830 2831 2832 2833
    { .name = "XSCALE_AUXCR",
      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
      .resetvalue = 0, },
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
    /* XScale specific cache-lockdown: since we have no cache we NOP these
     * and hope the guest does not really rely on cache behaviour.
     */
    { .name = "XSCALE_LOCK_ICACHE_LINE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_ICACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_DCACHE_LOCK",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_DCACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
    REGINFO_SENTINEL
};

static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
     * implementation of this implementation-defined space.
     * Ideally this should eventually disappear in favour of actually
     * implementing the correct behaviour for all cores.
     */
    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2860
      .access = PL1_RW,
2861
      .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2862
      .resetvalue = 0 },
2863 2864 2865
    REGINFO_SENTINEL
};

2866 2867 2868
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
    /* Cache status: RAZ because we have no cache so it's always clean */
    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2869
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2870
      .resetvalue = 0 },
2871 2872 2873 2874 2875 2876
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
    /* We never have a a block transfer operation in progress */
    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2877
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2878
      .resetvalue = 0 },
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
    /* The cache ops themselves: these all NOP for QEMU */
    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2892 2893 2894 2895 2896 2897 2898 2899
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
    /* The cache test-and-clean instructions always return (1 << 30)
     * to indicate that there are no dirty cache lines.
     */
    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2900
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2901
      .resetvalue = (1 << 30) },
2902
    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2903
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2904
      .resetvalue = (1 << 30) },
2905 2906 2907
    REGINFO_SENTINEL
};

2908 2909 2910 2911
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
    /* Ignore ReadBuffer accesses */
    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2912
      .access = PL1_RW, .resetvalue = 0,
2913
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2914 2915 2916
    REGINFO_SENTINEL
};

E
Edgar E. Iglesias 已提交
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

    if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
        return env->cp15.vpidr_el2;
    }
    return raw_read(env, ri);
}

2929
static uint64_t mpidr_read_val(CPUARMState *env)
P
Peter Maydell 已提交
2930
{
2931 2932 2933
    ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
    uint64_t mpidr = cpu->mp_affinity;

P
Peter Maydell 已提交
2934
    if (arm_feature(env, ARM_FEATURE_V7MP)) {
2935
        mpidr |= (1U << 31);
P
Peter Maydell 已提交
2936 2937
        /* Cores which are uniprocessor (non-coherent)
         * but still implement the MP extensions set
2938
         * bit 30. (For instance, Cortex-R5).
P
Peter Maydell 已提交
2939
         */
2940 2941 2942
        if (cpu->mp_is_up) {
            mpidr |= (1u << 30);
        }
P
Peter Maydell 已提交
2943
    }
2944
    return mpidr;
P
Peter Maydell 已提交
2945 2946
}

2947 2948
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
E
Edgar E. Iglesias 已提交
2949 2950 2951 2952 2953 2954
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

    if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
        return env->cp15.vmpidr_el2;
    }
2955 2956 2957
    return mpidr_read_val(env);
}

P
Peter Maydell 已提交
2958
static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2959 2960
    { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2961
      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
P
Peter Maydell 已提交
2962 2963 2964
    REGINFO_SENTINEL
};

2965
static const ARMCPRegInfo lpae_cp_reginfo[] = {
2966
    /* NOP AMAIR0/1 */
2967 2968
    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2969
      .access = PL1_RW, .type = ARM_CP_CONST,
2970
      .resetvalue = 0 },
2971
    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2972
    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2973
      .access = PL1_RW, .type = ARM_CP_CONST,
2974
      .resetvalue = 0 },
2975
    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
F
Fabian Aggeler 已提交
2976 2977 2978
      .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
                             offsetof(CPUARMState, cp15.par_ns)} },
2979
    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2980
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2981 2982
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) },
2983
      .writefn = vmsa_ttbr_write, },
2984
    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2985
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2986 2987
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) },
2988
      .writefn = vmsa_ttbr_write, },
2989 2990 2991
    REGINFO_SENTINEL
};

2992
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2993
{
2994
    return vfp_get_fpcr(env);
2995 2996
}

2997 2998
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
2999 3000 3001 3002
{
    vfp_set_fpcr(env, value);
}

3003
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3004
{
3005
    return vfp_get_fpsr(env);
3006 3007
}

3008 3009
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
3010 3011 3012 3013
{
    vfp_set_fpsr(env, value);
}

3014 3015
static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
3016
{
3017
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    env->daif = value & PSTATE_DAIF;
}

3029
static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3030 3031
                                          const ARMCPRegInfo *ri,
                                          bool isread)
3032 3033 3034 3035
{
    /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
     * SCTLR_EL1.UCI is set.
     */
3036
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3037 3038 3039 3040 3041
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

3042 3043 3044 3045
/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
 * Page D4-1736 (DDI0487A.b)
 */

3046 3047
static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
3048
{
3049
    CPUState *cs = ENV_GET_CPU(env);
3050

3051
    if (arm_is_secure_below_el3(env)) {
3052
        tlb_flush_by_mmuidx(cs,
3053 3054
                            ARMMMUIdxBit_S1SE1 |
                            ARMMMUIdxBit_S1SE0);
3055
    } else {
3056
        tlb_flush_by_mmuidx(cs,
3057 3058
                            ARMMMUIdxBit_S12NSE1 |
                            ARMMMUIdxBit_S12NSE0);
3059
    }
3060 3061
}

3062 3063
static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                      uint64_t value)
3064
{
3065
    CPUState *cs = ENV_GET_CPU(env);
3066
    bool sec = arm_is_secure_below_el3(env);
3067

3068 3069
    if (sec) {
        tlb_flush_by_mmuidx_all_cpus_synced(cs,
3070 3071
                                            ARMMMUIdxBit_S1SE1 |
                                            ARMMMUIdxBit_S1SE0);
3072 3073
    } else {
        tlb_flush_by_mmuidx_all_cpus_synced(cs,
3074 3075
                                            ARMMMUIdxBit_S12NSE1 |
                                            ARMMMUIdxBit_S12NSE0);
3076
    }
3077 3078
}

3079 3080
static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
3081
{
3082 3083 3084 3085
    /* Note that the 'ALL' scope must invalidate both stage 1 and
     * stage 2 translations, whereas most other scopes only invalidate
     * stage 1 translations.
     */
3086
    ARMCPU *cpu = arm_env_get_cpu(env);
3087 3088 3089
    CPUState *cs = CPU(cpu);

    if (arm_is_secure_below_el3(env)) {
3090
        tlb_flush_by_mmuidx(cs,
3091 3092
                            ARMMMUIdxBit_S1SE1 |
                            ARMMMUIdxBit_S1SE0);
3093 3094
    } else {
        if (arm_feature(env, ARM_FEATURE_EL2)) {
3095
            tlb_flush_by_mmuidx(cs,
3096 3097 3098
                                ARMMMUIdxBit_S12NSE1 |
                                ARMMMUIdxBit_S12NSE0 |
                                ARMMMUIdxBit_S2NS);
3099
        } else {
3100
            tlb_flush_by_mmuidx(cs,
3101 3102
                                ARMMMUIdxBit_S12NSE1 |
                                ARMMMUIdxBit_S12NSE0);
3103 3104
        }
    }
3105 3106
}

3107
static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3108 3109
                                  uint64_t value)
{
3110 3111 3112
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

3113
    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3114 3115
}

3116 3117 3118 3119 3120 3121
static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

3122
    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3123 3124
}

3125 3126 3127 3128 3129 3130 3131
static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    /* Note that the 'ALL' scope must invalidate both stage 1 and
     * stage 2 translations, whereas most other scopes only invalidate
     * stage 1 translations.
     */
3132
    CPUState *cs = ENV_GET_CPU(env);
3133 3134
    bool sec = arm_is_secure_below_el3(env);
    bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3135 3136 3137

    if (sec) {
        tlb_flush_by_mmuidx_all_cpus_synced(cs,
3138 3139
                                            ARMMMUIdxBit_S1SE1 |
                                            ARMMMUIdxBit_S1SE0);
3140 3141
    } else if (has_el2) {
        tlb_flush_by_mmuidx_all_cpus_synced(cs,
3142 3143 3144
                                            ARMMMUIdxBit_S12NSE1 |
                                            ARMMMUIdxBit_S12NSE0 |
                                            ARMMMUIdxBit_S2NS);
3145 3146
    } else {
          tlb_flush_by_mmuidx_all_cpus_synced(cs,
3147 3148
                                              ARMMMUIdxBit_S12NSE1 |
                                              ARMMMUIdxBit_S12NSE0);
3149 3150 3151
    }
}

3152 3153 3154
static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
3155
    CPUState *cs = ENV_GET_CPU(env);
3156

3157
    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3158 3159
}

3160 3161 3162
static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
3163
    CPUState *cs = ENV_GET_CPU(env);
3164

3165
    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3166 3167
}

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by VA, EL1&0 (AArch64 version).
     * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
     * since we don't support flush-for-specific-ASID-only or
     * flush-last-level-only.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    if (arm_is_secure_below_el3(env)) {
3181
        tlb_flush_page_by_mmuidx(cs, pageaddr,
3182 3183
                                 ARMMMUIdxBit_S1SE1 |
                                 ARMMMUIdxBit_S1SE0);
3184
    } else {
3185
        tlb_flush_page_by_mmuidx(cs, pageaddr,
3186 3187
                                 ARMMMUIdxBit_S12NSE1 |
                                 ARMMMUIdxBit_S12NSE0);
3188 3189 3190 3191 3192
    }
}

static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
3193
{
3194 3195 3196 3197 3198 3199 3200 3201
    /* Invalidate by VA, EL2
     * Currently handles both VAE2 and VALE2, since we don't support
     * flush-last-level-only.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

3202
    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3203 3204
}

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by VA, EL3
     * Currently handles both VAE3 and VALE3, since we don't support
     * flush-last-level-only.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

3216
    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3217 3218
}

3219 3220 3221
static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
{
3222 3223
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
3224
    bool sec = arm_is_secure_below_el3(env);
3225 3226
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

3227 3228
    if (sec) {
        tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3229 3230
                                                 ARMMMUIdxBit_S1SE1 |
                                                 ARMMMUIdxBit_S1SE0);
3231 3232
    } else {
        tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3233 3234
                                                 ARMMMUIdxBit_S12NSE1 |
                                                 ARMMMUIdxBit_S12NSE0);
3235 3236 3237
    }
}

3238 3239
static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
3240
{
3241
    CPUState *cs = ENV_GET_CPU(env);
3242
    uint64_t pageaddr = sextract64(value << 12, 0, 56);
3243

3244
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3245
                                             ARMMMUIdxBit_S1E2);
3246 3247
}

3248 3249 3250
static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
{
3251
    CPUState *cs = ENV_GET_CPU(env);
3252 3253
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

3254
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3255
                                             ARMMMUIdxBit_S1E3);
3256 3257
}

3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    /* Invalidate by IPA. This has to invalidate any structures that
     * contain only stage 2 translation information, but does not need
     * to apply to structures that contain combined stage 1 and stage 2
     * translation information.
     * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 48);

3277
    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3278 3279 3280 3281 3282
}

static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                      uint64_t value)
{
3283
    CPUState *cs = ENV_GET_CPU(env);
3284 3285 3286 3287 3288 3289 3290 3291
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 48);

3292
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3293
                                             ARMMMUIdxBit_S2NS);
3294 3295
}

3296 3297
static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                      bool isread)
3298 3299 3300 3301
{
    /* We don't implement EL2, so the only control on DC ZVA is the
     * bit in the SCTLR which can prohibit access for EL0.
     */
3302
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int dzp_bit = 1 << 4;

    /* DZP indicates whether DC ZVA access is allowed */
3314
    if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3315 3316 3317 3318 3319
        dzp_bit = 0;
    }
    return cpu->dcz_blocksize | dzp_bit;
}

3320 3321
static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                    bool isread)
3322
{
3323
    if (!(env->pstate & PSTATE_SP)) {
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
        /* Access to SP_EL0 is undefined if it's being used as
         * the stack pointer.
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return env->pstate & PSTATE_SP;
}

static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
{
    update_spsel(env, val);
}

3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (raw_read(env, ri) == value) {
        /* Skip the TLB flush if nothing actually changed; Linux likes
         * to do a lot of pointless SCTLR writes.
         */
        return;
    }

3354 3355 3356 3357 3358
    if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
        /* M bit is RAZ/WI for PMSA with no MPU implemented */
        value &= ~SCTLR_M;
    }

3359 3360 3361
    raw_write(env, ri, value);
    /* ??? Lots of these bits are not implemented.  */
    /* This may enable/disable the MMU, so do a TLB flush.  */
3362
    tlb_flush(CPU(cpu));
3363 3364
}

3365 3366
static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
3367 3368
{
    if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3369
        return CP_ACCESS_TRAP_FP_EL2;
3370 3371
    }
    if (env->cp15.cptr_el[3] & CPTR_TFP) {
3372
        return CP_ACCESS_TRAP_FP_EL3;
3373 3374 3375 3376
    }
    return CP_ACCESS_OK;
}

3377 3378 3379 3380 3381 3382
static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
{
    env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
}

3383 3384 3385 3386 3387 3388 3389
static const ARMCPRegInfo v8_cp_reginfo[] = {
    /* Minimal set of EL0-visible registers. This will need to be expanded
     * significantly for system emulation of AArch64 CPUs.
     */
    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
      .access = PL0_RW, .type = ARM_CP_NZCV },
3390 3391
    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3392
      .type = ARM_CP_NO_RAW,
3393 3394 3395
      .access = PL0_RW, .accessfn = aa64_daif_access,
      .fieldoffset = offsetof(CPUARMState, daif),
      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3396 3397
    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3398
      .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3399
      .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3400 3401
    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3402
      .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3403
      .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3404 3405
    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3406
      .access = PL0_R, .type = ARM_CP_NO_RAW,
3407 3408 3409 3410 3411 3412 3413 3414 3415
      .readfn = aa64_dczid_read },
    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_DC_ZVA,
#ifndef CONFIG_USER_ONLY
      /* Avoid overhead of an access check that always passes in user-mode */
      .accessfn = aa64_zva_access,
#endif
    },
3416 3417 3418
    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
      .access = PL1_R, .type = ARM_CP_CURRENTEL },
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
    /* Cache ops: all NOPs since we don't emulate caches */
    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
3454 3455
    /* TLBI operations */
    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3456
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3457
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3458
      .writefn = tlbi_aa64_vmalle1is_write },
3459
    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3460
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3461
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3462
      .writefn = tlbi_aa64_vae1is_write },
3463
    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3464
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3465
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3466
      .writefn = tlbi_aa64_vmalle1is_write },
3467
    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3468
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3469
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3470
      .writefn = tlbi_aa64_vae1is_write },
3471
    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3472
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3473
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3474
      .writefn = tlbi_aa64_vae1is_write },
3475
    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3476
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3477
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3478
      .writefn = tlbi_aa64_vae1is_write },
3479
    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3480
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3481
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3482
      .writefn = tlbi_aa64_vmalle1_write },
3483
    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3484
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3485
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3486
      .writefn = tlbi_aa64_vae1_write },
3487
    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3488
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3489
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3490
      .writefn = tlbi_aa64_vmalle1_write },
3491
    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3492
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3493
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3494
      .writefn = tlbi_aa64_vae1_write },
3495
    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3496
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3497
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3498
      .writefn = tlbi_aa64_vae1_write },
3499
    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3500
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3501
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3502
      .writefn = tlbi_aa64_vae1_write },
3503 3504 3505 3506 3507 3508 3509 3510
    { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1is_write },
    { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1is_write },
3511 3512 3513
    { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
3514
      .writefn = tlbi_aa64_alle1is_write },
3515 3516 3517 3518
    { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle1is_write },
3519 3520 3521 3522 3523 3524 3525 3526
    { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1_write },
    { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1_write },
3527 3528 3529
    { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
3530
      .writefn = tlbi_aa64_alle1_write },
3531 3532 3533 3534
    { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle1is_write },
3535 3536 3537 3538
#ifndef CONFIG_USER_ONLY
    /* 64 bit address translation operations */
    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3539
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3540 3541
    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3542
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3543 3544
    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3545
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3546 3547
    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3548
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3549
    { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3550
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3551 3552
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3553
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3554 3555
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3556
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3557 3558
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3559
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3560 3561 3562 3563 3564 3565 3566 3567
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
    { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3568 3569 3570 3571 3572 3573
    { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
      .writefn = par_write },
3574
#endif
3575
    /* TLB invalidate last level of translation table walk */
3576
    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3577
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3578
    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3579
      .type = ARM_CP_NO_RAW, .access = PL1_W,
3580
      .writefn = tlbimvaa_is_write },
3581
    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3582
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3583
    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3584
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
    { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_write },
    { .name = "TLBIMVALHIS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_is_write },
    { .name = "TLBIIPAS2",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiipas2_write },
    { .name = "TLBIIPAS2IS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiipas2_is_write },
    { .name = "TLBIIPAS2L",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiipas2_write },
    { .name = "TLBIIPAS2LIS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiipas2_is_write },
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
    /* 32 bit cache operations */
    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    /* MMU Domain access control / MPU write buffer control */
F
Fabian Aggeler 已提交
3636 3637 3638 3639 3640
    { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3641
    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3642
      .type = ARM_CP_ALIAS,
3643
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3644 3645
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3646
    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3647
      .type = ARM_CP_ALIAS,
3648
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3649 3650
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3651 3652 3653 3654 3655 3656 3657
    /* We rely on the access checks not allowing the guest to write to the
     * state field when SPSel indicates that it's being used as the stack
     * pointer.
     */
    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .accessfn = sp_el0_access,
3658
      .type = ARM_CP_ALIAS,
3659
      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3660 3661
    { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3662
      .access = PL2_RW, .type = ARM_CP_ALIAS,
3663
      .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3664 3665
    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3666
      .type = ARM_CP_NO_RAW,
3667
      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3668 3669 3670 3671 3672
    { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
      .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
      .access = PL2_RW, .accessfn = fpexc32_access },
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
    { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
    { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
    { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
    { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3702 3703 3704 3705 3706 3707 3708 3709 3710
    { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
      .resetvalue = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
    { .name = "SDCR", .type = ARM_CP_ALIAS,
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
      .writefn = sdcr_write,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3711 3712 3713
    REGINFO_SENTINEL
};

3714
/* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3715
static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3716 3717 3718 3719
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
E
Edgar E. Iglesias 已提交
3720
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3721
      .type = ARM_CP_NO_RAW,
E
Edgar E. Iglesias 已提交
3722 3723 3724
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3725 3726 3727
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3728 3729 3730 3731 3732 3733 3734
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3735 3736 3737 3738 3739 3740 3741 3742
    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
3743 3744 3745 3746 3747 3748 3749 3750
    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3751 3752 3753
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3754 3755 3756 3757
    { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
      .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3758 3759 3760 3761 3762 3763 3764
    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 6, .crm = 2,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3765 3766 3767
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3768 3769 3770
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3771 3772 3773 3774 3775 3776
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3777 3778 3779
    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3780 3781 3782 3783 3784 3785
    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
S
Sergey Fedorov 已提交
3798 3799
    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3800 3801
      .access = PL2_RW, .accessfn = access_tda,
      .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3802 3803 3804 3805
    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
      .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
      .type = ARM_CP_CONST, .resetvalue = 0 },
3806 3807 3808
    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3809 3810 3811
    REGINFO_SENTINEL
};

E
Edgar E. Iglesias 已提交
3812 3813 3814 3815 3816 3817 3818
static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t valid_mask = HCR_MASK;

    if (arm_feature(env, ARM_FEATURE_EL3)) {
        valid_mask &= ~HCR_HCD;
3819 3820 3821 3822 3823 3824 3825 3826
    } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
        /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
         * However, if we're using the SMC PSCI conduit then QEMU is
         * effectively acting like EL3 firmware and so the guest at
         * EL2 should retain the ability to prevent EL1 from being
         * able to make SMC calls into the ersatz firmware, so in
         * that case HCR.TSC should be read/write.
         */
E
Edgar E. Iglesias 已提交
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
        valid_mask &= ~HCR_TSC;
    }

    /* Clear RES0 bits.  */
    value &= valid_mask;

    /* These bits change the MMU setup:
     * HCR_VM enables stage 2 translation
     * HCR_PTW forbids certain page-table setups
     * HCR_DC Disables stage1 and enables stage2 translation
     */
    if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3839
        tlb_flush(CPU(cpu));
E
Edgar E. Iglesias 已提交
3840 3841 3842 3843
    }
    raw_write(env, ri, value);
}

3844
static const ARMCPRegInfo el2_cp_reginfo[] = {
E
Edgar E. Iglesias 已提交
3845 3846 3847 3848
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
      .writefn = hcr_write },
3849
    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3850
      .type = ARM_CP_ALIAS,
3851 3852 3853
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3854 3855 3856
    { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3857 3858 3859
    { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3860
    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3861
      .type = ARM_CP_ALIAS,
3862
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3863 3864
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3865 3866 3867 3868 3869
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
      .resetvalue = 0 },
3870 3871
    { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3872
      .access = PL3_RW, .type = ARM_CP_ALIAS,
3873
      .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3874 3875 3876 3877
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
E
Edgar E. Iglesias 已提交
3878 3879 3880 3881 3882 3883 3884 3885
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3886 3887 3888 3889 3890 3891 3892 3893 3894
    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
3895 3896 3897 3898 3899 3900 3901 3902
    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3903 3904
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3905 3906 3907 3908
      .access = PL2_RW,
      /* no .writefn needed as this can't cause an ASID change;
       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
       */
E
Edgar E. Iglesias 已提交
3909
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
E
Edgar E. Iglesias 已提交
3910 3911
    { .name = "VTCR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3912
      .type = ARM_CP_ALIAS,
E
Edgar E. Iglesias 已提交
3913 3914 3915 3916
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
    { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3917 3918 3919 3920
      .access = PL2_RW,
      /* no .writefn needed as this can't cause an ASID change;
       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
       */
E
Edgar E. Iglesias 已提交
3921
      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
E
Edgar E. Iglesias 已提交
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 6, .crm = 2,
      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
      .writefn = vttbr_write },
    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .writefn = vttbr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
E
Edgar E. Iglesias 已提交
3932 3933 3934 3935
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
E
Edgar E. Iglesias 已提交
3936 3937 3938 3939
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
E
Edgar E. Iglesias 已提交
3940 3941 3942 3943 3944 3945 3946
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
    { .name = "TLBIALLNSNH",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_nsnh_write },
    { .name = "TLBIALLNSNHIS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_nsnh_is_write },
    { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_hyp_write },
    { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_hyp_is_write },
    { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_write },
    { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_is_write },
E
Edgar E. Iglesias 已提交
3967 3968 3969
    { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
3970
      .writefn = tlbi_aa64_alle2_write },
3971 3972 3973
    { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
3974
      .writefn = tlbi_aa64_vae2_write },
3975 3976 3977 3978 3979 3980 3981 3982
    { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae2_write },
    { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle2is_write },
3983 3984 3985
    { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
3986
      .writefn = tlbi_aa64_vae2is_write },
3987 3988 3989 3990
    { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae2is_write },
E
Edgar E. Iglesias 已提交
3991
#ifndef CONFIG_USER_ONLY
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
    /* Unlike the other EL2-related AT operations, these must
     * UNDEF from EL3 if EL2 is not implemented, which is why we
     * define them here rather than with the rest of the AT ops.
     */
    { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL2_W, .accessfn = at_s1e2_access,
      .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL2_W, .accessfn = at_s1e2_access,
      .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
    /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
     * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
     * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
     * to behave as if SCR.NS was 1.
     */
    { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL2_W,
      .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
    { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL2_W,
      .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
E
Edgar E. Iglesias 已提交
4015 4016 4017 4018 4019 4020 4021 4022
    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
      /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
       * reset values as IMPDEF. We choose to reset to 3 to comply with
       * both ARMv7 and ARMv8.
       */
      .access = PL2_RW, .resetvalue = 3,
      .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
E
Edgar E. Iglesias 已提交
4023 4024 4025 4026 4027 4028 4029 4030 4031
    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
      .writefn = gt_cntvoff_write,
      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
      .writefn = gt_cntvoff_write,
      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
      .type = ARM_CP_IO, .access = PL2_RW,
      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4043
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4044 4045 4046 4047 4048 4049 4050 4051 4052
      .resetfn = gt_hyp_timer_reset,
      .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
      .type = ARM_CP_IO,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
      .resetvalue = 0,
      .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
E
Edgar E. Iglesias 已提交
4053
#endif
S
Sergey Fedorov 已提交
4054 4055 4056 4057 4058 4059 4060 4061 4062
    /* The only field of MDCR_EL2 that has a defined architectural reset value
     * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
     * don't impelment any PMU event counters, so using zero as a reset
     * value for MDCR_EL2 is okay
     */
    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
E
Edgar E. Iglesias 已提交
4063 4064 4065 4066 4067 4068 4069 4070
    { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4071 4072 4073 4074
    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
      .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4075 4076 4077
    REGINFO_SENTINEL
};

4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
     * At Secure EL1 it traps to EL3.
     */
    if (arm_current_el(env) == 3) {
        return CP_ACCESS_OK;
    }
    if (arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL3;
    }
    /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
    if (isread) {
        return CP_ACCESS_OK;
    }
    return CP_ACCESS_TRAP_UNCATEGORIZED;
}

4097 4098 4099 4100 4101
static const ARMCPRegInfo el3_cp_reginfo[] = {
    { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
      .resetvalue = 0, .writefn = scr_write },
4102
    { .name = "SCR",  .type = ARM_CP_ALIAS,
4103
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4104 4105
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4106
      .writefn = scr_write },
4107 4108 4109 4110 4111 4112 4113 4114 4115
    { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.sder) },
    { .name = "SDER",
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
    { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4116 4117
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
      .writefn = vbar_write, .resetvalue = 0,
4118
      .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
F
Fabian Aggeler 已提交
4119 4120 4121 4122
    { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
F
Fabian Aggeler 已提交
4123 4124
    { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4125 4126
      .access = PL3_RW,
      /* no .writefn needed as this can't cause an ASID change;
4127 4128 4129
       * we must provide a .raw_writefn and .resetfn because we handle
       * reset and migration for the AArch32 TTBCR(S), which might be
       * using mask and base_mask.
4130
       */
4131
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
F
Fabian Aggeler 已提交
4132
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4133
    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4134
      .type = ARM_CP_ALIAS,
4135 4136 4137
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL3_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4138 4139 4140
    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4141 4142 4143
    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4144
    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4145
      .type = ARM_CP_ALIAS,
4146
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4147 4148
      .access = PL3_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4149 4150 4151 4152 4153
    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
      .resetvalue = 0 },
4154 4155 4156 4157
    { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4158 4159 4160 4161
    { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4162 4163 4164 4165
    { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
4166 4167 4168 4169 4170 4171 4172 4173
    { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
    { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle3is_write },
    { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3is_write },
    { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3is_write },
    { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle3_write },
    { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3_write },
    { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3_write },
4198 4199 4200
    REGINFO_SENTINEL
};

4201 4202
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
4203 4204 4205 4206
{
    /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
     * but the AArch32 CTR has its own reginfo struct)
     */
4207
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4208 4209 4210 4211 4212
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    /* Writes to OSLAR_EL1 may update the OS lock status, which can be
     * read via a bit in OSLSR_EL1.
     */
    int oslock;

    if (ri->state == ARM_CP_STATE_AA32) {
        oslock = (value == 0xC5ACCE55);
    } else {
        oslock = value & 1;
    }

    env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
}

4230 4231
static const ARMCPRegInfo debug_cp_reginfo[] = {
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4232 4233 4234 4235
     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
     * unlike DBGDRAR it is never accessible from EL0.
     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
     * accessor.
4236 4237
     */
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4238 4239
      .access = PL0_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
4240 4241
    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4242 4243
      .access = PL1_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
4244
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4245 4246
      .access = PL0_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
4247
    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4248 4249
    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4250
      .access = PL1_RW, .accessfn = access_tda,
4251 4252
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
      .resetvalue = 0 },
4253 4254 4255 4256 4257
    /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
     * We don't implement the configurable EL0 access.
     */
    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4258
      .type = ARM_CP_ALIAS,
4259
      .access = PL1_R, .accessfn = access_tda,
4260
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4261 4262
    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4263
      .access = PL1_W, .type = ARM_CP_NO_RAW,
4264
      .accessfn = access_tdosa,
4265 4266 4267 4268
      .writefn = oslar_write },
    { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
      .access = PL1_R, .resetvalue = 10,
4269
      .accessfn = access_tdosa,
4270
      .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4271 4272 4273
    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4274 4275
      .access = PL1_RW, .accessfn = access_tdosa,
      .type = ARM_CP_NOP },
4276 4277 4278 4279 4280
    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
     * implement vector catch debug events yet.
     */
    { .name = "DBGVCR",
      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4281 4282
      .access = PL1_RW, .accessfn = access_tda,
      .type = ARM_CP_NOP },
4283 4284 4285 4286 4287 4288 4289
    /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
     * to save and restore a 32-bit guest's DBGVCR)
     */
    { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
      .access = PL2_RW, .accessfn = access_tda,
      .type = ARM_CP_NOP },
4290 4291 4292 4293 4294 4295 4296 4297
    /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
     * Channel but Linux may try to access this register. The 32-bit
     * alias is DBGDCCINT.
     */
    { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tda,
      .type = ARM_CP_NOP },
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
    REGINFO_SENTINEL
};

static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
    /* 64 bit access versions of the (dummy) debug registers */
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    REGINFO_SENTINEL
};

R
Richard Henderson 已提交
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
/* Return the exception level to which SVE-disabled exceptions should
 * be taken, or 0 if SVE is enabled.
 */
static int sve_exception_el(CPUARMState *env)
{
#ifndef CONFIG_USER_ONLY
    unsigned current_el = arm_current_el(env);

    /* The CPACR.ZEN controls traps to EL1:
     * 0, 2 : trap EL0 and EL1 accesses
     * 1    : trap only EL0 accesses
     * 3    : trap no accesses
     */
    switch (extract32(env->cp15.cpacr_el1, 16, 2)) {
    default:
        if (current_el <= 1) {
            /* Trap to PL1, which might be EL1 or EL3 */
            if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
                return 3;
            }
            return 1;
        }
        break;
    case 1:
        if (current_el == 0) {
            return 1;
        }
        break;
    case 3:
        break;
    }

    /* Similarly for CPACR.FPEN, after having checked ZEN.  */
    switch (extract32(env->cp15.cpacr_el1, 20, 2)) {
    default:
        if (current_el <= 1) {
            if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
                return 3;
            }
            return 1;
        }
        break;
    case 1:
        if (current_el == 0) {
            return 1;
        }
        break;
    case 3:
        break;
    }

    /* CPTR_EL2.  Check both TZ and TFP.  */
    if (current_el <= 2
        && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ))
        && !arm_is_secure_below_el3(env)) {
        return 2;
    }

    /* CPTR_EL3.  Check both EZ and TFP.  */
    if (!(env->cp15.cptr_el[3] & CPTR_EZ)
        || (env->cp15.cptr_el[3] & CPTR_TFP)) {
        return 3;
    }
#endif
    return 0;
}

static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
{
    /* Bits other than [3:0] are RAZ/WI.  */
    raw_write(env, ri, value & 0xf);
}

static const ARMCPRegInfo zcr_el1_reginfo = {
    .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
    .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
4387
    .access = PL1_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
R
Richard Henderson 已提交
4388 4389 4390 4391 4392 4393 4394
    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
    .writefn = zcr_write, .raw_writefn = raw_write
};

static const ARMCPRegInfo zcr_el2_reginfo = {
    .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
    .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4395
    .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
R
Richard Henderson 已提交
4396 4397 4398 4399 4400 4401 4402
    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
    .writefn = zcr_write, .raw_writefn = raw_write
};

static const ARMCPRegInfo zcr_no_el2_reginfo = {
    .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
    .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4403
    .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
R
Richard Henderson 已提交
4404 4405 4406 4407 4408 4409
    .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
};

static const ARMCPRegInfo zcr_el3_reginfo = {
    .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
    .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
4410
    .access = PL3_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
R
Richard Henderson 已提交
4411 4412 4413 4414
    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
    .writefn = zcr_write, .raw_writefn = raw_write
};

4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
void hw_watchpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    vaddr len = 0;
    vaddr wvr = env->cp15.dbgwvr[n];
    uint64_t wcr = env->cp15.dbgwcr[n];
    int mask;
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;

    if (env->cpu_watchpoint[n]) {
        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
        env->cpu_watchpoint[n] = NULL;
    }

    if (!extract64(wcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    switch (extract64(wcr, 3, 2)) {
    case 0:
        /* LSC 00 is reserved and must behave as if the wp is disabled */
        return;
    case 1:
        flags |= BP_MEM_READ;
        break;
    case 2:
        flags |= BP_MEM_WRITE;
        break;
    case 3:
        flags |= BP_MEM_ACCESS;
        break;
    }

    /* Attempts to use both MASK and BAS fields simultaneously are
     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
     * thus generating a watchpoint for every byte in the masked region.
     */
    mask = extract64(wcr, 24, 4);
    if (mask == 1 || mask == 2) {
        /* Reserved values of MASK; we must act as if the mask value was
         * some non-reserved value, or as if the watchpoint were disabled.
         * We choose the latter.
         */
        return;
    } else if (mask) {
        /* Watchpoint covers an aligned area up to 2GB in size */
        len = 1ULL << mask;
        /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
         * whether the watchpoint fires when the unmasked bits match; we opt
         * to generate the exceptions.
         */
        wvr &= ~(len - 1);
    } else {
        /* Watchpoint covers bytes defined by the byte address select bits */
        int bas = extract64(wcr, 5, 8);
        int basstart;

        if (bas == 0) {
            /* This must act as if the watchpoint is disabled */
            return;
        }

        if (extract64(wvr, 2, 1)) {
            /* Deprecated case of an only 4-aligned address. BAS[7:4] are
             * ignored, and BAS[3:0] define which bytes to watch.
             */
            bas &= 0xf;
        }
        /* The BAS bits are supposed to be programmed to indicate a contiguous
         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
         * we fire for each byte in the word/doubleword addressed by the WVR.
         * We choose to ignore any non-zero bits after the first range of 1s.
         */
        basstart = ctz32(bas);
        len = cto32(bas >> basstart);
        wvr += basstart;
    }

    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
                          &env->cpu_watchpoint[n]);
}

void hw_watchpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU watchpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
        hw_watchpoint_update(cpu, i);
    }
}

static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
     * register reads and behaves as if values written are sign extended.
     * Bits [1:0] are RES0.
     */
    value = sextract64(value, 0, 49) & ~3ULL;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
void hw_breakpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    uint64_t bvr = env->cp15.dbgbvr[n];
    uint64_t bcr = env->cp15.dbgbcr[n];
    vaddr addr;
    int bt;
    int flags = BP_CPU;

    if (env->cpu_breakpoint[n]) {
        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
        env->cpu_breakpoint[n] = NULL;
    }

    if (!extract64(bcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    bt = extract64(bcr, 20, 4);

    switch (bt) {
    case 4: /* unlinked address mismatch (reserved if AArch64) */
    case 5: /* linked address mismatch (reserved if AArch64) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: address mismatch breakpoint types not implemented");
        return;
    case 0: /* unlinked address match */
    case 1: /* linked address match */
    {
        /* Bits [63:49] are hardwired to the value of bit [48]; that is,
         * we behave as if the register was sign extended. Bits [1:0] are
         * RES0. The BAS field is used to allow setting breakpoints on 16
         * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
         * a bp will fire if the addresses covered by the bp and the addresses
         * covered by the insn overlap but the insn doesn't start at the
         * start of the bp address range. We choose to require the insn and
         * the bp to have the same address. The constraints on writing to
         * BAS enforced in dbgbcr_write mean we have only four cases:
         *  0b0000  => no breakpoint
         *  0b0011  => breakpoint on addr
         *  0b1100  => breakpoint on addr + 2
         *  0b1111  => breakpoint on addr
         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
         */
        int bas = extract64(bcr, 5, 4);
        addr = sextract64(bvr, 0, 49) & ~3ULL;
        if (bas == 0) {
            return;
        }
        if (bas == 0xc) {
            addr += 2;
        }
        break;
    }
    case 2: /* unlinked context ID match */
    case 8: /* unlinked VMID match (reserved if no EL2) */
    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: unlinked context breakpoint types not implemented");
        return;
    case 9: /* linked VMID match (reserved if no EL2) */
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
    case 3: /* linked context ID match */
    default:
        /* We must generate no events for Linked context matches (unless
         * they are linked to by some other bp/wp, which is handled in
         * updates for the linking bp/wp). We choose to also generate no events
         * for reserved values.
         */
        return;
    }

    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
}

void hw_breakpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU breakpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
        hw_breakpoint_update(cpu, i);
    }
}

static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
     * copy of BAS[0].
     */
    value = deposit64(value, 6, 1, extract64(value, 5, 1));
    value = deposit64(value, 8, 1, extract64(value, 7, 1));

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

4658
static void define_debug_regs(ARMCPU *cpu)
4659
{
4660 4661
    /* Define v7 and v8 architectural debug registers.
     * These are just dummy implementations for now.
4662 4663
     */
    int i;
4664
    int wrps, brps, ctx_cmps;
4665 4666
    ARMCPRegInfo dbgdidr = {
        .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4667 4668
        .access = PL0_R, .accessfn = access_tda,
        .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4669 4670
    };

4671
    /* Note that all these register fields hold "number of Xs minus 1". */
4672 4673
    brps = extract32(cpu->dbgdidr, 24, 4);
    wrps = extract32(cpu->dbgdidr, 28, 4);
4674 4675 4676
    ctx_cmps = extract32(cpu->dbgdidr, 20, 4);

    assert(ctx_cmps <= brps);
4677 4678 4679 4680 4681 4682 4683 4684

    /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
     * of the debug registers such as number of breakpoints;
     * check that if they both exist then they agree.
     */
    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
        assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
        assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4685
        assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4686
    }
4687

4688
    define_one_arm_cp_reg(cpu, &dbgdidr);
4689 4690 4691 4692 4693 4694
    define_arm_cp_regs(cpu, debug_cp_reginfo);

    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
    }

4695
    for (i = 0; i < brps + 1; i++) {
4696
        ARMCPRegInfo dbgregs[] = {
4697 4698
            { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4699
              .access = PL1_RW, .accessfn = access_tda,
4700 4701 4702
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
              .writefn = dbgbvr_write, .raw_writefn = raw_write
            },
4703 4704
            { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4705
              .access = PL1_RW, .accessfn = access_tda,
4706 4707 4708
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
              .writefn = dbgbcr_write, .raw_writefn = raw_write
            },
4709 4710 4711 4712 4713 4714 4715
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, dbgregs);
    }

    for (i = 0; i < wrps + 1; i++) {
        ARMCPRegInfo dbgregs[] = {
4716 4717
            { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4718
              .access = PL1_RW, .accessfn = access_tda,
4719 4720 4721
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
              .writefn = dbgwvr_write, .raw_writefn = raw_write
            },
4722 4723
            { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4724
              .access = PL1_RW, .accessfn = access_tda,
4725 4726 4727 4728
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
              .writefn = dbgwcr_write, .raw_writefn = raw_write
            },
            REGINFO_SENTINEL
4729 4730 4731 4732 4733
        };
        define_arm_cp_regs(cpu, dbgregs);
    }
}

4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
/* We don't know until after realize whether there's a GICv3
 * attached, and that is what registers the gicv3 sysregs.
 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
 * at runtime.
 */
static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t pfr1 = cpu->id_pfr1;

    if (env->gicv3state) {
        pfr1 |= 1 << 28;
    }
    return pfr1;
}

static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t pfr0 = cpu->id_aa64pfr0;

    if (env->gicv3state) {
        pfr0 |= 1 << 24;
    }
    return pfr0;
}

4761 4762 4763 4764 4765 4766 4767 4768 4769
void register_cp_regs_for_features(ARMCPU *cpu)
{
    /* Register all the coprocessor registers based on feature bits */
    CPUARMState *env = &cpu->env;
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile has no coprocessor registers */
        return;
    }

4770
    define_arm_cp_regs(cpu, cp_reginfo);
4771 4772 4773 4774 4775 4776 4777
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* Must go early as it is full of wildcards that may be
         * overridden by later definitions.
         */
        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
    }

4778
    if (arm_feature(env, ARM_FEATURE_V6)) {
4779 4780
        /* The ID registers all have impdef reset values */
        ARMCPRegInfo v6_idregs[] = {
4781 4782 4783
            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
4784
              .resetvalue = cpu->id_pfr0 },
4785 4786 4787
            /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
             * the value of the GIC field until after we define these regs.
             */
4788 4789
            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4790 4791 4792
              .access = PL1_R, .type = ARM_CP_NO_RAW,
              .readfn = id_pfr1_read,
              .writefn = arm_cp_write_ignore },
4793 4794 4795
            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
4796
              .resetvalue = cpu->id_dfr0 },
4797 4798 4799
            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
4800
              .resetvalue = cpu->id_afr0 },
4801 4802 4803
            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
4804
              .resetvalue = cpu->id_mmfr0 },
4805 4806 4807
            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
4808
              .resetvalue = cpu->id_mmfr1 },
4809 4810 4811
            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
4812
              .resetvalue = cpu->id_mmfr2 },
4813 4814 4815
            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
4816
              .resetvalue = cpu->id_mmfr3 },
4817 4818 4819
            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
4820
              .resetvalue = cpu->id_isar0 },
4821 4822 4823
            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
4824
              .resetvalue = cpu->id_isar1 },
4825 4826 4827
            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
4828
              .resetvalue = cpu->id_isar2 },
4829 4830 4831
            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
4832
              .resetvalue = cpu->id_isar3 },
4833 4834 4835
            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
4836
              .resetvalue = cpu->id_isar4 },
4837 4838 4839
            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
4840
              .resetvalue = cpu->id_isar5 },
4841 4842 4843 4844 4845 4846 4847 4848
            { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr4 },
            /* 7 is as yet unallocated and must RAZ */
            { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
4849 4850 4851 4852
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v6_idregs);
4853 4854 4855 4856
        define_arm_cp_regs(cpu, v6_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
    }
4857 4858 4859
    if (arm_feature(env, ARM_FEATURE_V6K)) {
        define_arm_cp_regs(cpu, v6k_cp_reginfo);
    }
4860
    if (arm_feature(env, ARM_FEATURE_V7MP) &&
4861
        !arm_feature(env, ARM_FEATURE_PMSA)) {
4862 4863
        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
    }
4864
    if (arm_feature(env, ARM_FEATURE_V7)) {
4865
        /* v7 performance monitor control register: same implementor
4866 4867
         * field as main ID register, and we implement only the cycle
         * count register.
4868
         */
4869
#ifndef CONFIG_USER_ONLY
4870 4871
        ARMCPRegInfo pmcr = {
            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4872
            .access = PL0_RW,
4873
            .type = ARM_CP_IO | ARM_CP_ALIAS,
4874
            .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4875 4876
            .accessfn = pmreg_access, .writefn = pmcr_write,
            .raw_writefn = raw_write,
4877
        };
4878 4879 4880 4881 4882 4883 4884 4885 4886
        ARMCPRegInfo pmcr64 = {
            .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
            .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
            .access = PL0_RW, .accessfn = pmreg_access,
            .type = ARM_CP_IO,
            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
            .resetvalue = cpu->midr & 0xff000000,
            .writefn = pmcr_write, .raw_writefn = raw_write,
        };
4887
        define_one_arm_cp_reg(cpu, &pmcr);
4888
        define_one_arm_cp_reg(cpu, &pmcr64);
4889
#endif
4890
        ARMCPRegInfo clidr = {
4891 4892
            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4893 4894 4895
            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
        };
        define_one_arm_cp_reg(cpu, &clidr);
4896
        define_arm_cp_regs(cpu, v7_cp_reginfo);
4897
        define_debug_regs(cpu);
4898 4899
    } else {
        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4900
    }
4901
    if (arm_feature(env, ARM_FEATURE_V8)) {
4902 4903 4904 4905 4906
        /* AArch64 ID registers, which all have impdef reset values.
         * Note that within the ID register ranges the unused slots
         * must all RAZ, not UNDEF; future architecture versions may
         * define new registers here.
         */
4907
        ARMCPRegInfo v8_idregs[] = {
4908 4909 4910 4911
            /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
             * know the right value for the GIC field until after we
             * define these regs.
             */
4912 4913
            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4914 4915 4916
              .access = PL1_R, .type = ARM_CP_NO_RAW,
              .readfn = id_aa64pfr0_read,
              .writefn = arm_cp_write_ignore },
4917 4918 4919 4920
            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr1},
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
            { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4945 4946 4947
            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
4948
              .resetvalue = cpu->id_aa64dfr0 },
4949 4950 4951 4952
            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64dfr1 },
4953 4954 4955 4956 4957 4958 4959 4960
            { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4961 4962 4963 4964 4965 4966 4967 4968
            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr0 },
            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr1 },
4969 4970 4971 4972 4973 4974 4975 4976
            { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4977 4978 4979 4980 4981 4982 4983 4984
            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar0 },
            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar1 },
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
            { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
5009 5010 5011 5012 5013 5014 5015 5016
            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr0 },
            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr1 },
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
            { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr0 },
            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr1 },
            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr2 },
5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
            { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
            { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid0 },
            { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid0 },
            { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid1 },
            { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid1 },
5089 5090
            REGINFO_SENTINEL
        };
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
        /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3) &&
            !arm_feature(env, ARM_FEATURE_EL2)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
5101
        define_arm_cp_regs(cpu, v8_idregs);
5102 5103
        define_arm_cp_regs(cpu, v8_cp_reginfo);
    }
5104
    if (arm_feature(env, ARM_FEATURE_EL2)) {
E
Edgar E. Iglesias 已提交
5105
        uint64_t vmpidr_def = mpidr_read_val(env);
E
Edgar E. Iglesias 已提交
5106 5107 5108 5109
        ARMCPRegInfo vpidr_regs[] = {
            { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL2_RW, .accessfn = access_el3_aa32ns,
5110 5111
              .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
              .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
E
Edgar E. Iglesias 已提交
5112 5113 5114 5115
            { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL2_RW, .resetvalue = cpu->midr,
              .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
E
Edgar E. Iglesias 已提交
5116 5117 5118
            { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
              .access = PL2_RW, .accessfn = access_el3_aa32ns,
5119 5120
              .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
              .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
E
Edgar E. Iglesias 已提交
5121 5122 5123 5124 5125
            { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
              .access = PL2_RW,
              .resetvalue = vmpidr_def,
              .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
E
Edgar E. Iglesias 已提交
5126 5127 5128
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, vpidr_regs);
5129
        define_arm_cp_regs(cpu, el2_cp_reginfo);
5130 5131 5132 5133 5134 5135 5136 5137 5138
        /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
5139 5140 5141 5142 5143
    } else {
        /* If EL2 is missing but higher ELs are enabled, we need to
         * register the no_el2 reginfos.
         */
        if (arm_feature(env, ARM_FEATURE_EL3)) {
E
Edgar E. Iglesias 已提交
5144 5145
            /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
             * of MIDR_EL1 and MPIDR_EL1.
E
Edgar E. Iglesias 已提交
5146 5147 5148 5149 5150 5151 5152
             */
            ARMCPRegInfo vpidr_regs[] = {
                { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
                  .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
                  .type = ARM_CP_CONST, .resetvalue = cpu->midr,
                  .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
E
Edgar E. Iglesias 已提交
5153 5154 5155 5156 5157
                { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
                  .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
                  .type = ARM_CP_NO_RAW,
                  .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
E
Edgar E. Iglesias 已提交
5158 5159 5160
                REGINFO_SENTINEL
            };
            define_arm_cp_regs(cpu, vpidr_regs);
5161
            define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
5162
        }
5163
    }
5164
    if (arm_feature(env, ARM_FEATURE_EL3)) {
5165
        define_arm_cp_regs(cpu, el3_cp_reginfo);
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
        ARMCPRegInfo el3_regs[] = {
            { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
              .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
            { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
              .access = PL3_RW,
              .raw_writefn = raw_write, .writefn = sctlr_write,
              .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
              .resetvalue = cpu->reset_sctlr },
            REGINFO_SENTINEL
5177
        };
5178 5179

        define_arm_cp_regs(cpu, el3_regs);
5180
    }
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
    /* The behaviour of NSACR is sufficiently various that we don't
     * try to describe it in a single reginfo:
     *  if EL3 is 64 bit, then trap to EL3 from S EL1,
     *     reads as constant 0xc00 from NS EL1 and NS EL2
     *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
     *  if v7 without EL3, register doesn't exist
     *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
     */
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            ARMCPRegInfo nsacr = {
                .name = "NSACR", .type = ARM_CP_CONST,
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
                .access = PL1_RW, .accessfn = nsacr_access,
                .resetvalue = 0xc00
            };
            define_one_arm_cp_reg(cpu, &nsacr);
        } else {
            ARMCPRegInfo nsacr = {
                .name = "NSACR",
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
                .access = PL3_RW | PL1_R,
                .resetvalue = 0,
                .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
            };
            define_one_arm_cp_reg(cpu, &nsacr);
        }
    } else {
        if (arm_feature(env, ARM_FEATURE_V8)) {
            ARMCPRegInfo nsacr = {
                .name = "NSACR", .type = ARM_CP_CONST,
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
                .access = PL1_R,
                .resetvalue = 0xc00
            };
            define_one_arm_cp_reg(cpu, &nsacr);
        }
    }

5220
    if (arm_feature(env, ARM_FEATURE_PMSA)) {
5221 5222 5223 5224 5225 5226 5227 5228
        if (arm_feature(env, ARM_FEATURE_V6)) {
            /* PMSAv6 not implemented */
            assert(arm_feature(env, ARM_FEATURE_V7));
            define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
            define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
        }
5229
    } else {
5230
        define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5231 5232
        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
    }
5233 5234 5235
    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
    }
5236 5237 5238
    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
    }
5239 5240 5241
    if (arm_feature(env, ARM_FEATURE_VAPA)) {
        define_arm_cp_regs(cpu, vapa_cp_reginfo);
    }
5242 5243 5244 5245 5246 5247 5248 5249 5250
    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
    }
5251 5252 5253
    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
        define_arm_cp_regs(cpu, omap_cp_reginfo);
    }
5254 5255 5256
    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
    }
5257 5258 5259 5260 5261 5262
    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
        define_arm_cp_regs(cpu, xscale_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
    }
5263 5264 5265
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, lpae_cp_reginfo);
    }
5266 5267 5268 5269 5270
    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
     * be read-only (ie write causes UNDEF exception).
     */
    {
5271 5272 5273
        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
            /* Pre-v8 MIDR space.
             * Note that the MIDR isn't a simple constant register because
5274 5275
             * of the TI925 behaviour where writes to another register can
             * cause the MIDR value to change.
5276 5277 5278 5279
             *
             * Unimplemented registers in the c15 0 0 0 space default to
             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
             * and friends override accordingly.
5280 5281
             */
            { .name = "MIDR",
5282
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5283
              .access = PL1_R, .resetvalue = cpu->midr,
5284
              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
E
Edgar E. Iglesias 已提交
5285
              .readfn = midr_read,
5286 5287
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .type = ARM_CP_OVERRIDE },
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
5306 5307 5308
        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
E
Edgar E. Iglesias 已提交
5309 5310 5311
              .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .readfn = midr_read },
5312 5313 5314 5315 5316 5317 5318
            /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
              .access = PL1_R, .resetvalue = cpu->midr },
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
              .access = PL1_R, .resetvalue = cpu->midr },
5319 5320
            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5321
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
            REGINFO_SENTINEL
        };
        ARMCPRegInfo id_cp_reginfo[] = {
            /* These are common to v8 and pre-v8 */
            { .name = "CTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
              .access = PL0_R, .accessfn = ctr_el0_access,
              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
            { .name = "TCMTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
5339 5340 5341 5342 5343 5344
        /* TLBTR is specific to VMSA */
        ARMCPRegInfo id_tlbtr_reginfo = {
              .name = "TLBTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
        };
5345 5346 5347 5348 5349 5350 5351
        /* MPUIR is specific to PMSA V6+ */
        ARMCPRegInfo id_mpuir_reginfo = {
              .name = "MPUIR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmsav7_dregion << 8
        };
5352 5353 5354 5355 5356 5357 5358 5359 5360
        ARMCPRegInfo crn0_wi_reginfo = {
            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
        };
        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
            arm_feature(env, ARM_FEATURE_STRONGARM)) {
            ARMCPRegInfo *r;
            /* Register the blanket "writes ignored" value first to cover the
5361 5362 5363
             * whole space. Then update the specific ID registers to allow write
             * access, so that they ignore writes rather than causing them to
             * UNDEF.
5364 5365
             */
            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5366 5367 5368 5369
            for (r = id_pre_v8_midr_cp_reginfo;
                 r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
5370 5371 5372
            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
5373
            id_mpuir_reginfo.access = PL1_RW;
5374
            id_tlbtr_reginfo.access = PL1_RW;
5375
        }
5376 5377 5378 5379 5380
        if (arm_feature(env, ARM_FEATURE_V8)) {
            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
        }
5381
        define_arm_cp_regs(cpu, id_cp_reginfo);
5382
        if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5383
            define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5384 5385
        } else if (arm_feature(env, ARM_FEATURE_V7)) {
            define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5386
        }
5387 5388
    }

5389 5390 5391 5392
    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
    }

5393
    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
        ARMCPRegInfo auxcr_reginfo[] = {
            { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL1_RW, .type = ARM_CP_CONST,
              .resetvalue = cpu->reset_auxcr },
            { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL2_RW, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL3_RW, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            REGINFO_SENTINEL
5408
        };
5409
        define_arm_cp_regs(cpu, auxcr_reginfo);
5410 5411
    }

5412
    if (arm_feature(env, ARM_FEATURE_CBAR)) {
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            /* 32 bit view is [31:18] 0...0 [43:32]. */
            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
                | extract64(cpu->reset_cbar, 32, 12);
            ARMCPRegInfo cbar_reginfo[] = {
                { .name = "CBAR",
                  .type = ARM_CP_CONST,
                  .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
                  .type = ARM_CP_CONST,
                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cbar32 },
                REGINFO_SENTINEL
            };
            /* We don't implement a r/w 64 bit CBAR currently */
            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
            define_arm_cp_regs(cpu, cbar_reginfo);
        } else {
            ARMCPRegInfo cbar = {
                .name = "CBAR",
                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
                .fieldoffset = offsetof(CPUARMState,
                                        cp15.c15_config_base_address)
            };
            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
                cbar.access = PL1_R;
                cbar.fieldoffset = 0;
                cbar.type = ARM_CP_CONST;
            }
            define_one_arm_cp_reg(cpu, &cbar);
        }
5446 5447
    }

5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
    if (arm_feature(env, ARM_FEATURE_VBAR)) {
        ARMCPRegInfo vbar_cp_reginfo[] = {
            { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
              .access = PL1_RW, .writefn = vbar_write,
              .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
                                     offsetof(CPUARMState, cp15.vbar_ns) },
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, vbar_cp_reginfo);
    }

5461 5462 5463
    /* Generic registers whose values depend on the implementation */
    {
        ARMCPRegInfo sctlr = {
5464
            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5465 5466 5467 5468
            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
            .access = PL1_RW,
            .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
                                   offsetof(CPUARMState, cp15.sctlr_ns) },
5469 5470
            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
            .raw_writefn = raw_write,
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
        };
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
            /* Normally we would always end the TB on an SCTLR write, but Linux
             * arch/arm/mach-pxa/sleep.S expects two instructions following
             * an MMU enable to execute from cache.  Imitate this behaviour.
             */
            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
        }
        define_one_arm_cp_reg(cpu, &sctlr);
    }
R
Richard Henderson 已提交
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492

    if (arm_feature(env, ARM_FEATURE_SVE)) {
        define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
        if (arm_feature(env, ARM_FEATURE_EL2)) {
            define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
        } else {
            define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
        }
        if (arm_feature(env, ARM_FEATURE_EL3)) {
            define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
        }
    }
5493 5494
}

5495 5496
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
5497
    CPUState *cs = CPU(cpu);
5498 5499
    CPUARMState *env = &cpu->env;

5500 5501 5502 5503 5504
    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
                                 aarch64_fpu_gdb_set_reg,
                                 34, "aarch64-fpu.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5505
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
5506 5507
                                 51, "arm-neon.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5508
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
5509 5510
                                 35, "arm-vfp3.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5511
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
5512 5513
                                 19, "arm-vfp.xml", 0);
    }
5514 5515 5516
    gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
                             arm_gen_dynamic_xml(cs),
                             "system-registers.xml", 0);
P
pbrook 已提交
5517 5518
}

5519 5520
/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
P
pbrook 已提交
5521
{
5522 5523 5524
    ObjectClass *class_a = (ObjectClass *)a;
    ObjectClass *class_b = (ObjectClass *)b;
    const char *name_a, *name_b;
P
pbrook 已提交
5525

5526 5527
    name_a = object_class_get_name(class_a);
    name_b = object_class_get_name(class_b);
A
Andreas Färber 已提交
5528
    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5529
        return 1;
A
Andreas Färber 已提交
5530
    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5531 5532 5533
        return -1;
    } else {
        return strcmp(name_a, name_b);
P
pbrook 已提交
5534 5535 5536
    }
}

5537
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
P
pbrook 已提交
5538
{
5539
    ObjectClass *oc = data;
5540
    CPUListState *s = user_data;
A
Andreas Färber 已提交
5541 5542
    const char *typename;
    char *name;
P
pbrook 已提交
5543

A
Andreas Färber 已提交
5544 5545
    typename = object_class_get_name(oc);
    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5546
    (*s->cpu_fprintf)(s->file, "  %s\n",
A
Andreas Färber 已提交
5547 5548
                      name);
    g_free(name);
5549 5550 5551 5552
}

void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
5553
    CPUListState s = {
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
        .file = f,
        .cpu_fprintf = cpu_fprintf,
    };
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    list = g_slist_sort(list, arm_cpu_list_compare);
    (*cpu_fprintf)(f, "Available CPUs:\n");
    g_slist_foreach(list, arm_cpu_list_entry, &s);
    g_slist_free(list);
5564 5565 5566 5567 5568 5569
#ifdef CONFIG_KVM
    /* The 'host' CPU type is dynamically registered only if KVM is
     * enabled, so we have to special-case it here:
     */
    (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
#endif
P
pbrook 已提交
5570 5571
}

5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    CpuDefinitionInfoList **cpu_list = user_data;
    CpuDefinitionInfoList *entry;
    CpuDefinitionInfo *info;
    const char *typename;

    typename = object_class_get_name(oc);
    info = g_malloc0(sizeof(*info));
    info->name = g_strndup(typename,
                           strlen(typename) - strlen("-" TYPE_ARM_CPU));
5584
    info->q_typename = g_strdup(typename);
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603

    entry = g_malloc0(sizeof(*entry));
    entry->value = info;
    entry->next = *cpu_list;
    *cpu_list = entry;
}

CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
    CpuDefinitionInfoList *cpu_list = NULL;
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
    g_slist_free(list);

    return cpu_list;
}

5604
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5605
                                   void *opaque, int state, int secstate,
5606 5607
                                   int crm, int opc1, int opc2,
                                   const char *name)
5608 5609 5610 5611 5612 5613 5614
{
    /* Private utility function for define_one_arm_cp_reg_with_opaque():
     * add a single reginfo struct to the hash table.
     */
    uint32_t *key = g_new(uint32_t, 1);
    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5615 5616
    int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;

5617
    r2->name = g_strdup(name);
5618 5619 5620 5621 5622 5623 5624 5625 5626
    /* Reset the secure state to the specific incoming state.  This is
     * necessary as the register may have been defined with both states.
     */
    r2->secure = secstate;

    if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
        /* Register is banked (using both entries in array).
         * Overwriting fieldoffset as the array is only used to define
         * banked registers but later only fieldoffset is used.
5627
         */
5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
        r2->fieldoffset = r->bank_fieldoffsets[ns];
    }

    if (state == ARM_CP_STATE_AA32) {
        if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
            /* If the register is banked then we don't need to migrate or
             * reset the 32-bit instance in certain cases:
             *
             * 1) If the register has both 32-bit and 64-bit instances then we
             *    can count on the 64-bit instance taking care of the
             *    non-secure bank.
             * 2) If ARMv8 is enabled then we can count on a 64-bit version
             *    taking care of the secure bank.  This requires that separate
             *    32 and 64-bit definitions are provided.
             */
            if ((r->state == ARM_CP_STATE_BOTH && ns) ||
                (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5645
                r2->type |= ARM_CP_ALIAS;
5646 5647 5648 5649 5650
            }
        } else if ((secstate != r->secure) && !ns) {
            /* The register is not banked so we only want to allow migration of
             * the non-secure instance.
             */
5651
            r2->type |= ARM_CP_ALIAS;
5652
        }
5653 5654 5655 5656 5657 5658 5659 5660

        if (r->state == ARM_CP_STATE_BOTH) {
            /* We assume it is a cp15 register if the .cp field is left unset.
             */
            if (r2->cp == 0) {
                r2->cp = 15;
            }

5661
#ifdef HOST_WORDS_BIGENDIAN
5662 5663 5664
            if (r2->fieldoffset) {
                r2->fieldoffset += sizeof(uint32_t);
            }
5665
#endif
5666
        }
5667 5668 5669 5670 5671
    }
    if (state == ARM_CP_STATE_AA64) {
        /* To allow abbreviation of ARMCPRegInfo
         * definitions, we treat cp == 0 as equivalent to
         * the value for "standard guest-visible sysreg".
5672 5673 5674
         * STATE_BOTH definitions are also always "standard
         * sysreg" in their AArch64 view (the .cp value may
         * be non-zero for the benefit of the AArch32 view).
5675
         */
5676
        if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5677 5678 5679 5680 5681
            r2->cp = CP_REG_ARM64_SYSREG_CP;
        }
        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
                                  r2->opc0, opc1, opc2);
    } else {
5682
        *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5683
    }
5684 5685 5686
    if (opaque) {
        r2->opaque = opaque;
    }
5687 5688 5689 5690
    /* reginfo passed to helpers is correct for the actual access,
     * and is never ARM_CP_STATE_BOTH:
     */
    r2->state = state;
5691 5692 5693 5694 5695 5696 5697 5698
    /* Make sure reginfo passed to helpers for wildcarded regs
     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
     */
    r2->crm = crm;
    r2->opc1 = opc1;
    r2->opc2 = opc2;
    /* By convention, for wildcarded registers only the first
     * entry is used for migration; the others are marked as
5699
     * ALIAS so we don't try to transfer the register
5700
     * multiple times. Special registers (ie NOP/WFI) are
5701
     * never migratable and not even raw-accessible.
5702
     */
5703 5704 5705 5706
    if ((r->type & ARM_CP_SPECIAL)) {
        r2->type |= ARM_CP_NO_RAW;
    }
    if (((r->crm == CP_ANY) && crm != 0) ||
5707 5708
        ((r->opc1 == CP_ANY) && opc1 != 0) ||
        ((r->opc2 == CP_ANY) && opc2 != 0)) {
5709
        r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
5710 5711
    }

5712 5713 5714 5715 5716 5717 5718 5719
    /* Check that raw accesses are either forbidden or handled. Note that
     * we can't assert this earlier because the setup of fieldoffset for
     * banked registers has to be done first.
     */
    if (!(r2->type & ARM_CP_NO_RAW)) {
        assert(!raw_accessors_invalid(r2));
    }

5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
    /* Overriding of an existing definition must be explicitly
     * requested.
     */
    if (!(r->type & ARM_CP_OVERRIDE)) {
        ARMCPRegInfo *oldreg;
        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
            fprintf(stderr, "Register redefined: cp=%d %d bit "
                    "crn=%d crm=%d opc1=%d opc2=%d, "
                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
                    r2->crn, r2->crm, r2->opc1, r2->opc2,
                    oldreg->name, r2->name);
            g_assert_not_reached();
        }
    }
    g_hash_table_insert(cpu->cp_regs, key, r2);
}


5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *r, void *opaque)
{
    /* Define implementations of coprocessor registers.
     * We store these in a hashtable because typically
     * there are less than 150 registers in a space which
     * is 16*16*16*8*8 = 262144 in size.
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
     * If a register is defined twice then the second definition is
     * used, so this can be used to define some generic registers and
     * then override them with implementation specific variations.
     * At least one of the original and the second definition should
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
     * against accidental use.
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763
     *
     * The state field defines whether the register is to be
     * visible in the AArch32 or AArch64 execution state. If the
     * state is set to ARM_CP_STATE_BOTH then we synthesise a
     * reginfo structure for the AArch32 view, which sees the lower
     * 32 bits of the 64 bit register.
     *
     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
     * be wildcarded. AArch64 registers are always considered to be 64
     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
     * the register, if any.
5764
     */
5765
    int crm, opc1, opc2, state;
5766 5767 5768 5769 5770 5771 5772 5773
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
    /* 64 bit registers have only CRm and Opc1 fields */
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
    /* op0 only exists in the AArch64 encodings */
    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
     * encodes a minimum access level for the register. We roll this
     * runtime check into our general permission check code, so check
     * here that the reginfo's specified permissions are strict enough
     * to encompass the generic architectural permission check.
     */
    if (r->state != ARM_CP_STATE_AA32) {
        int mask = 0;
        switch (r->opc1) {
        case 0: case 1: case 2:
            /* min_EL EL1 */
            mask = PL1_RW;
            break;
        case 3:
            /* min_EL EL0 */
            mask = PL0_RW;
            break;
        case 4:
            /* min_EL EL2 */
            mask = PL2_RW;
            break;
        case 5:
            /* unallocated encoding, so not possible */
            assert(false);
            break;
        case 6:
            /* min_EL EL3 */
            mask = PL3_RW;
            break;
        case 7:
            /* min_EL EL1, secure mode only (we don't check the latter) */
            mask = PL1_RW;
            break;
        default:
            /* broken reginfo with out-of-range opc1 */
            assert(false);
            break;
        }
        /* assert our permissions are not too lax (stricter is fine) */
        assert((r->access & ~mask) == 0);
    }

5820 5821 5822 5823 5824
    /* Check that the register definition has enough info to handle
     * reads and writes if they are permitted.
     */
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
        if (r->access & PL3_R) {
5825 5826 5827
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->readfn);
5828 5829
        }
        if (r->access & PL3_W) {
5830 5831 5832
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->writefn);
5833 5834 5835 5836 5837 5838 5839
        }
    }
    /* Bad type field probably means missing sentinel at end of reg list */
    assert(cptype_valid(r->type));
    for (crm = crmmin; crm <= crmmax; crm++) {
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5840 5841 5842 5843 5844
                for (state = ARM_CP_STATE_AA32;
                     state <= ARM_CP_STATE_AA64; state++) {
                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
                        continue;
                    }
5845 5846 5847 5848
                    if (state == ARM_CP_STATE_AA32) {
                        /* Under AArch32 CP registers can be common
                         * (same for secure and non-secure world) or banked.
                         */
5849 5850
                        char *name;

5851 5852 5853 5854
                        switch (r->secure) {
                        case ARM_CP_SECSTATE_S:
                        case ARM_CP_SECSTATE_NS:
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
5855 5856
                                                   r->secure, crm, opc1, opc2,
                                                   r->name);
5857 5858
                            break;
                        default:
5859
                            name = g_strdup_printf("%s_S", r->name);
5860 5861
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_S,
5862 5863
                                                   crm, opc1, opc2, name);
                            g_free(name);
5864 5865
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_NS,
5866
                                                   crm, opc1, opc2, r->name);
5867 5868 5869 5870 5871 5872 5873
                            break;
                        }
                    } else {
                        /* AArch64 registers get mapped to non-secure instance
                         * of AArch32 */
                        add_cpreg_to_hashtable(cpu, r, opaque, state,
                                               ARM_CP_SECSTATE_NS,
5874
                                               crm, opc1, opc2, r->name);
5875
                    }
5876
                }
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
            }
        }
    }
}

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque)
{
    /* Define a whole list of registers */
    const ARMCPRegInfo *r;
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
    }
}

5892
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5893
{
5894
    return g_hash_table_lookup(cpregs, &encoded_cp);
5895 5896
}

5897 5898
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
5899 5900 5901 5902
{
    /* Helper coprocessor write function for write-ignore registers */
}

5903
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5904 5905 5906 5907 5908
{
    /* Helper coprocessor write function for read-as-zero registers */
    return 0;
}

5909 5910 5911 5912 5913
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
    /* Helper coprocessor reset function for do-nothing-on-reset registers */
}

5914
static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5915 5916 5917 5918 5919
{
    /* Return true if it is not valid for us to switch to
     * this CPU mode (ie all the UNPREDICTABLE cases in
     * the ARM ARM CPSRWriteByInstr pseudocode).
     */
5920 5921 5922 5923 5924 5925 5926 5927

    /* Changes to or from Hyp via MSR and CPS are illegal. */
    if (write_type == CPSRWriteByInstr &&
        ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
         mode == ARM_CPU_MODE_HYP)) {
        return 1;
    }

5928 5929
    switch (mode) {
    case ARM_CPU_MODE_USR:
5930
        return 0;
5931 5932 5933 5934 5935 5936
    case ARM_CPU_MODE_SYS:
    case ARM_CPU_MODE_SVC:
    case ARM_CPU_MODE_ABT:
    case ARM_CPU_MODE_UND:
    case ARM_CPU_MODE_IRQ:
    case ARM_CPU_MODE_FIQ:
5937 5938 5939
        /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
         * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
         */
5940 5941 5942 5943 5944 5945 5946 5947 5948
        /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
         * and CPS are treated as illegal mode changes.
         */
        if (write_type == CPSRWriteByInstr &&
            (env->cp15.hcr_el2 & HCR_TGE) &&
            (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
            !arm_is_secure_below_el3(env)) {
            return 1;
        }
5949
        return 0;
5950 5951 5952
    case ARM_CPU_MODE_HYP:
        return !arm_feature(env, ARM_FEATURE_EL2)
            || arm_current_el(env) < 2 || arm_is_secure(env);
5953
    case ARM_CPU_MODE_MON:
5954
        return arm_current_el(env) < 3;
5955 5956 5957 5958 5959
    default:
        return 1;
    }
}

5960 5961 5962
uint32_t cpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
5963 5964
    ZF = (env->ZF == 0);
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5965 5966 5967
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
5968
        | (env->GE << 16) | (env->daif & CPSR_AIF);
5969 5970
}

5971 5972
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
                CPSRWriteType write_type)
5973
{
5974 5975
    uint32_t changed_daif;

5976
    if (mask & CPSR_NZCV) {
P
pbrook 已提交
5977 5978
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & CPSR_T)
        env->thumb = ((val & CPSR_T) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & CPSR_GE) {
        env->GE = (val >> 16) & 0xf;
    }

5998 5999 6000 6001 6002 6003 6004 6005
    /* In a V7 implementation that includes the security extensions but does
     * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
     * whether non-secure software is allowed to change the CPSR_F and CPSR_A
     * bits respectively.
     *
     * In a V8 implementation, it is permitted for privileged software to
     * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
     */
6006
    if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049
        arm_feature(env, ARM_FEATURE_EL3) &&
        !arm_feature(env, ARM_FEATURE_EL2) &&
        !arm_is_secure(env)) {

        changed_daif = (env->daif ^ val) & mask;

        if (changed_daif & CPSR_A) {
            /* Check to see if we are allowed to change the masking of async
             * abort exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_AW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_A flag from "
                              "non-secure world with SCR.AW bit clear\n");
                mask &= ~CPSR_A;
            }
        }

        if (changed_daif & CPSR_F) {
            /* Check to see if we are allowed to change the masking of FIQ
             * exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_FW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_F flag from "
                              "non-secure world with SCR.FW bit clear\n");
                mask &= ~CPSR_F;
            }

            /* Check whether non-maskable FIQ (NMFI) support is enabled.
             * If this bit is set software is not allowed to mask
             * FIQs, but is allowed to set CPSR_F to 0.
             */
            if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
                (val & CPSR_F)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to enable CPSR_F flag "
                              "(non-maskable FIQ [NMFI] support enabled)\n");
                mask &= ~CPSR_F;
            }
        }
    }

6050 6051 6052
    env->daif &= ~(CPSR_AIF & mask);
    env->daif |= val & CPSR_AIF & mask;

6053 6054
    if (write_type != CPSRWriteRaw &&
        ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
6055 6056 6057 6058 6059 6060 6061 6062 6063
        if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
            /* Note that we can only get here in USR mode if this is a
             * gdb stub write; for this case we follow the architectural
             * behaviour for guest writes in USR mode of ignoring an attempt
             * to switch mode. (Those are caught by translate.c for writes
             * triggered by guest instructions.)
             */
            mask &= ~CPSR_M;
        } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
6064 6065 6066 6067 6068 6069 6070
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
             * v7, and has defined behaviour in v8:
             *  + leave CPSR.M untouched
             *  + allow changes to the other CPSR fields
             *  + set PSTATE.IL
             * For user changes via the GDB stub, we don't set PSTATE.IL,
             * as this would be unnecessarily harsh for a user error.
6071 6072
             */
            mask &= ~CPSR_M;
6073 6074 6075 6076 6077
            if (write_type != CPSRWriteByGDBStub &&
                arm_feature(env, ARM_FEATURE_V8)) {
                mask |= CPSR_IL;
                val |= CPSR_IL;
            }
6078 6079 6080
        } else {
            switch_mode(env, val & CPSR_M);
        }
6081 6082 6083 6084 6085
    }
    mask &= ~CACHED_CPSR_BITS;
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}

P
pbrook 已提交
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(int8_t)x;
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
    return res;
}

uint32_t HELPER(uxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(uint8_t)x;
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
    return res;
}

P
pbrook 已提交
6103 6104 6105 6106
int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
    if (den == 0)
      return 0;
A
Aurelien Jarno 已提交
6107 6108
    if (num == INT_MIN && den == -1)
      return INT_MIN;
P
pbrook 已提交
6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120
    return num / den;
}

uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
    if (den == 0)
      return 0;
    return num / den;
}

uint32_t HELPER(rbit)(uint32_t x)
{
6121
    return revbit32(x);
P
pbrook 已提交
6122 6123
}

6124
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
6125

P
pbrook 已提交
6126
/* These should probably raise undefined insn exceptions.  */
6127
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
6128
{
6129 6130 6131
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
P
pbrook 已提交
6132 6133
}

6134
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
6135
{
6136 6137 6138
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
P
pbrook 已提交
6139 6140 6141
    return 0;
}

6142 6143 6144 6145 6146 6147
void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
{
    /* translate.c should never generate calls here in user-only mode */
    g_assert_not_reached();
}

P
Peter Maydell 已提交
6148 6149 6150 6151 6152 6153
void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
{
    /* translate.c should never generate calls here in user-only mode */
    g_assert_not_reached();
}

6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
{
    /* The TT instructions can be used by unprivileged code, but in
     * user-only emulation we don't have the MPU.
     * Luckily since we know we are NonSecure unprivileged (and that in
     * turn means that the A flag wasn't specified), all the bits in the
     * register must be zero:
     *  IREGION: 0 because IRVALID is 0
     *  IRVALID: 0 because NS
     *  S: 0 because NS
     *  NSRW: 0 because NS
     *  NSR: 0 because NS
     *  RW: 0 because unpriv and A flag not set
     *  R: 0 because unpriv and A flag not set
     *  SRVALID: 0 because NS
     *  MRVALID: 0 because unpriv and A flag not set
     *  SREGION: 0 becaus SRVALID is 0
     *  MREGION: 0 because MRVALID is 0
     */
    return 0;
}

6176
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
6177
{
6178 6179 6180 6181 6182
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (mode != ARM_CPU_MODE_USR) {
        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
    }
B
bellard 已提交
6183 6184
}

6185 6186
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure)
6187 6188 6189 6190
{
    return 1;
}

6191 6192 6193 6194 6195
void aarch64_sync_64_to_32(CPUARMState *env)
{
    g_assert_not_reached();
}

B
bellard 已提交
6196 6197
#else

6198
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
{
    int old_mode;
    int i;

    old_mode = env->uncached_cpsr & CPSR_M;
    if (mode == old_mode)
        return;

    if (old_mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
6209
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
6210 6211
    } else if (mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
6212
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
6213 6214
    }

6215
    i = bank_number(old_mode);
B
bellard 已提交
6216 6217 6218 6219
    env->banked_r13[i] = env->regs[13];
    env->banked_r14[i] = env->regs[14];
    env->banked_spsr[i] = env->spsr;

6220
    i = bank_number(mode);
B
bellard 已提交
6221 6222 6223 6224 6225
    env->regs[13] = env->banked_r13[i];
    env->regs[14] = env->banked_r14[i];
    env->spsr = env->banked_spsr[i];
}

6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
/* Physical Interrupt Target EL Lookup Table
 *
 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
 *
 * The below multi-dimensional table is used for looking up the target
 * exception level given numerous condition criteria.  Specifically, the
 * target EL is based on SCR and HCR routing controls as well as the
 * currently executing EL and secure state.
 *
 *    Dimensions:
 *    target_el_table[2][2][2][2][2][4]
 *                    |  |  |  |  |  +--- Current EL
 *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
 *                    |  |  |  +--------- HCR mask override
 *                    |  |  +------------ SCR exec state control
 *                    |  +--------------- SCR mask override
 *                    +------------------ 32-bit(0)/64-bit(1) EL3
 *
 *    The table values are as such:
 *    0-3 = EL0-EL3
 *     -1 = Cannot occur
 *
 * The ARM ARM target EL table includes entries indicating that an "exception
 * is not taken".  The two cases where this is applicable are:
 *    1) An exception is taken from EL3 but the SCR does not have the exception
 *    routed to EL3.
 *    2) An exception is taken from EL2 but the HCR does not have the exception
 *    routed to EL2.
 * In these two cases, the below table contain a target of EL1.  This value is
 * returned as it is expected that the consumer of the table data will check
 * for "target EL >= current EL" to ensure the exception is not taken.
 *
 *            SCR     HCR
 *         64  EA     AMO                 From
 *        BIT IRQ     IMO      Non-secure         Secure
 *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
 */
6263
static const int8_t target_el_table[2][2][2][2][2][4] = {
6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284
    {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
     {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
    {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
      {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
     {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
      {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
};

/*
 * Determine the target EL for physical exceptions
 */
6285 6286
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure)
6287 6288
{
    CPUARMState *env = cs->env_ptr;
6289
    int rw;
6290 6291 6292
    int scr;
    int hcr;
    int target_el;
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
    /* Is the highest EL AArch64? */
    int is64 = arm_feature(env, ARM_FEATURE_AARCH64);

    if (arm_feature(env, ARM_FEATURE_EL3)) {
        rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
    } else {
        /* Either EL2 is the highest EL (and so the EL2 register width
         * is given by is64); or there is no EL2 or EL3, in which case
         * the value of 'rw' does not affect the table lookup anyway.
         */
        rw = is64;
    }
6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331

    switch (excp_idx) {
    case EXCP_IRQ:
        scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
        hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
        break;
    case EXCP_FIQ:
        scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
        hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
        break;
    default:
        scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
        hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
        break;
    };

    /* If HCR.TGE is set then HCR is treated as being 1 */
    hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);

    /* Perform a table-lookup for the target EL given the current state */
    target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];

    assert(target_el > 0);

    return target_el;
}

6332 6333
static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
                            ARMMMUIdx mmu_idx, bool ignfault)
P
pbrook 已提交
6334
{
6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
    CPUState *cs = CPU(cpu);
    CPUARMState *env = &cpu->env;
    MemTxAttrs attrs = {};
    MemTxResult txres;
    target_ulong page_size;
    hwaddr physaddr;
    int prot;
    ARMMMUFaultInfo fi;
    bool secure = mmu_idx & ARM_MMU_IDX_M_S;
    int exc;
    bool exc_secure;

    if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
                      &attrs, &prot, &page_size, &fi, NULL)) {
        /* MPU/SAU lookup failed */
        if (fi.type == ARMFault_QEMU_SFault) {
            qemu_log_mask(CPU_LOG_INT,
                          "...SecureFault with SFSR.AUVIOL during stacking\n");
            env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
            env->v7m.sfar = addr;
            exc = ARMV7M_EXCP_SECURE;
            exc_secure = false;
        } else {
            qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
            env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
            exc = ARMV7M_EXCP_MEM;
            exc_secure = secure;
        }
        goto pend_fault;
    }
    address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
                         attrs, &txres);
    if (txres != MEMTX_OK) {
        /* BusFault trying to write the data */
        qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
        env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
        exc = ARMV7M_EXCP_BUS;
        exc_secure = false;
        goto pend_fault;
    }
    return true;
6376

6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391
pend_fault:
    /* By pending the exception at this point we are making
     * the IMPDEF choice "overridden exceptions pended" (see the
     * MergeExcInfo() pseudocode). The other choice would be to not
     * pend them now and then make a choice about which to throw away
     * later if we have two derived exceptions.
     * The only case when we must not pend the exception but instead
     * throw it away is if we are doing the push of the callee registers
     * and we've already generated a derived exception. Even in this
     * case we will still update the fault status registers.
     */
    if (!ignfault) {
        armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
    }
    return false;
P
pbrook 已提交
6392 6393
}

6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454
static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
                           ARMMMUIdx mmu_idx)
{
    CPUState *cs = CPU(cpu);
    CPUARMState *env = &cpu->env;
    MemTxAttrs attrs = {};
    MemTxResult txres;
    target_ulong page_size;
    hwaddr physaddr;
    int prot;
    ARMMMUFaultInfo fi;
    bool secure = mmu_idx & ARM_MMU_IDX_M_S;
    int exc;
    bool exc_secure;
    uint32_t value;

    if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
                      &attrs, &prot, &page_size, &fi, NULL)) {
        /* MPU/SAU lookup failed */
        if (fi.type == ARMFault_QEMU_SFault) {
            qemu_log_mask(CPU_LOG_INT,
                          "...SecureFault with SFSR.AUVIOL during unstack\n");
            env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
            env->v7m.sfar = addr;
            exc = ARMV7M_EXCP_SECURE;
            exc_secure = false;
        } else {
            qemu_log_mask(CPU_LOG_INT,
                          "...MemManageFault with CFSR.MUNSTKERR\n");
            env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
            exc = ARMV7M_EXCP_MEM;
            exc_secure = secure;
        }
        goto pend_fault;
    }

    value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
                              attrs, &txres);
    if (txres != MEMTX_OK) {
        /* BusFault trying to read the data */
        qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
        env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
        exc = ARMV7M_EXCP_BUS;
        exc_secure = false;
        goto pend_fault;
    }

    *dest = value;
    return true;

pend_fault:
    /* By pending the exception at this point we are making
     * the IMPDEF choice "overridden exceptions pended" (see the
     * MergeExcInfo() pseudocode). The other choice would be to not
     * pend them now and then make a choice about which to throw away
     * later if we have two derived exceptions.
     */
    armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
    return false;
}

6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466
/* Return true if we're using the process stack pointer (not the MSP) */
static bool v7m_using_psp(CPUARMState *env)
{
    /* Handler mode always uses the main stack; for thread mode
     * the CONTROL.SPSEL bit determines the answer.
     * Note that in v7M it is not possible to be in Handler mode with
     * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
     */
    return !arm_v7m_is_handler_mode(env) &&
        env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
}

6467 6468 6469 6470
/* Write to v7M CONTROL.SPSEL bit for the specified security bank.
 * This may change the current stack pointer between Main and Process
 * stack pointers if it is done for the CONTROL register for the current
 * security state.
6471
 */
6472 6473 6474
static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
                                                 bool new_spsel,
                                                 bool secstate)
P
pbrook 已提交
6475
{
6476
    bool old_is_psp = v7m_using_psp(env);
6477

6478 6479
    env->v7m.control[secstate] =
        deposit32(env->v7m.control[secstate],
6480 6481 6482
                  R_V7M_CONTROL_SPSEL_SHIFT,
                  R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);

6483 6484 6485
    if (secstate == env->v7m.secure) {
        bool new_is_psp = v7m_using_psp(env);
        uint32_t tmp;
6486

6487 6488 6489 6490 6491
        if (old_is_psp != new_is_psp) {
            tmp = env->v7m.other_sp;
            env->v7m.other_sp = env->regs[13];
            env->regs[13] = tmp;
        }
6492 6493 6494
    }
}

6495 6496 6497 6498 6499 6500 6501 6502
/* Write to v7M CONTROL.SPSEL bit. This may change the current
 * stack pointer between Main and Process stack pointers.
 */
static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
{
    write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
}

6503 6504 6505 6506 6507 6508 6509
void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
{
    /* Write a new value to v7m.exception, thus transitioning into or out
     * of Handler mode; this may result in a change of active stack pointer.
     */
    bool new_is_psp, old_is_psp = v7m_using_psp(env);
    uint32_t tmp;
6510

6511 6512 6513 6514 6515 6516 6517 6518
    env->v7m.exception = new_exc;

    new_is_psp = v7m_using_psp(env);

    if (old_is_psp != new_is_psp) {
        tmp = env->v7m.other_sp;
        env->v7m.other_sp = env->regs[13];
        env->regs[13] = tmp;
P
pbrook 已提交
6519 6520 6521
    }
}

6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
/* Switch M profile security state between NS and S */
static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
{
    uint32_t new_ss_msp, new_ss_psp;

    if (env->v7m.secure == new_secstate) {
        return;
    }

    /* All the banked state is accessed by looking at env->v7m.secure
     * except for the stack pointer; rearrange the SP appropriately.
     */
    new_ss_msp = env->v7m.other_ss_msp;
    new_ss_psp = env->v7m.other_ss_psp;

    if (v7m_using_psp(env)) {
        env->v7m.other_ss_psp = env->regs[13];
        env->v7m.other_ss_msp = env->v7m.other_sp;
    } else {
        env->v7m.other_ss_msp = env->regs[13];
        env->v7m.other_ss_psp = env->v7m.other_sp;
    }

    env->v7m.secure = new_secstate;

    if (v7m_using_psp(env)) {
        env->regs[13] = new_ss_psp;
        env->v7m.other_sp = new_ss_msp;
    } else {
        env->regs[13] = new_ss_msp;
        env->v7m.other_sp = new_ss_psp;
    }
}

void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
{
    /* Handle v7M BXNS:
     *  - if the return value is a magic value, do exception return (like BX)
     *  - otherwise bit 0 of the return value is the target security state
     */
6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
    uint32_t min_magic;

    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
        /* Covers FNC_RETURN and EXC_RETURN magic */
        min_magic = FNC_RETURN_MIN_MAGIC;
    } else {
        /* EXC_RETURN magic only */
        min_magic = EXC_RETURN_MIN_MAGIC;
    }

    if (dest >= min_magic) {
6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592
        /* This is an exception return magic value; put it where
         * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
         * Note that if we ever add gen_ss_advance() singlestep support to
         * M profile this should count as an "instruction execution complete"
         * event (compare gen_bx_excret_final_code()).
         */
        env->regs[15] = dest & ~1;
        env->thumb = dest & 1;
        HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
        /* notreached */
    }

    /* translate.c should have made BXNS UNDEF unless we're secure */
    assert(env->v7m.secure);

    switch_v7m_security_state(env, dest & 1);
    env->thumb = 1;
    env->regs[15] = dest & ~1;
}

P
Peter Maydell 已提交
6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645
void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
{
    /* Handle v7M BLXNS:
     *  - bit 0 of the destination address is the target security state
     */

    /* At this point regs[15] is the address just after the BLXNS */
    uint32_t nextinst = env->regs[15] | 1;
    uint32_t sp = env->regs[13] - 8;
    uint32_t saved_psr;

    /* translate.c will have made BLXNS UNDEF unless we're secure */
    assert(env->v7m.secure);

    if (dest & 1) {
        /* target is Secure, so this is just a normal BLX,
         * except that the low bit doesn't indicate Thumb/not.
         */
        env->regs[14] = nextinst;
        env->thumb = 1;
        env->regs[15] = dest & ~1;
        return;
    }

    /* Target is non-secure: first push a stack frame */
    if (!QEMU_IS_ALIGNED(sp, 8)) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "BLXNS with misaligned SP is UNPREDICTABLE\n");
    }

    saved_psr = env->v7m.exception;
    if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
        saved_psr |= XPSR_SFPA;
    }

    /* Note that these stores can throw exceptions on MPU faults */
    cpu_stl_data(env, sp, nextinst);
    cpu_stl_data(env, sp + 4, saved_psr);

    env->regs[13] = sp;
    env->regs[14] = 0xfeffffff;
    if (arm_v7m_is_handler_mode(env)) {
        /* Write a dummy value to IPSR, to avoid leaking the current secure
         * exception number to non-secure code. This is guaranteed not
         * to cause write_v7m_exception() to actually change stacks.
         */
        write_v7m_exception(env, 1);
    }
    switch_v7m_security_state(env, 0);
    env->thumb = 1;
    env->regs[15] = dest;
}

6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666
static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
                                bool spsel)
{
    /* Return a pointer to the location where we currently store the
     * stack pointer for the requested security state and thread mode.
     * This pointer will become invalid if the CPU state is updated
     * such that the stack pointers are switched around (eg changing
     * the SPSEL control bit).
     * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
     * Unlike that pseudocode, we require the caller to pass us in the
     * SPSEL control bit value; this is because we also use this
     * function in handling of pushing of the callee-saves registers
     * part of the v8M stack frame (pseudocode PushCalleeStack()),
     * and in the tailchain codepath the SPSEL bit comes from the exception
     * return magic LR value from the previous exception. The pseudocode
     * opencodes the stack-selection in PushCalleeStack(), but we prefer
     * to make this utility function generic enough to do the job.
     */
    bool want_psp = threadmode && spsel;

    if (secure == env->v7m.secure) {
6667 6668 6669 6670 6671
        if (want_psp == v7m_using_psp(env)) {
            return &env->regs[13];
        } else {
            return &env->v7m.other_sp;
        }
6672 6673 6674 6675 6676 6677 6678 6679 6680
    } else {
        if (want_psp) {
            return &env->v7m.other_ss_psp;
        } else {
            return &env->v7m.other_ss_msp;
        }
    }
}

6681 6682
static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
                                uint32_t *pvec)
6683 6684 6685 6686
{
    CPUState *cs = CPU(cpu);
    CPUARMState *env = &cpu->env;
    MemTxResult result;
6687 6688 6689 6690 6691 6692 6693
    uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
    uint32_t vector_entry;
    MemTxAttrs attrs = {};
    ARMMMUIdx mmu_idx;
    bool exc_secure;

    mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
6694

6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718
    /* We don't do a get_phys_addr() here because the rules for vector
     * loads are special: they always use the default memory map, and
     * the default memory map permits reads from all addresses.
     * Since there's no easy way to pass through to pmsav8_mpu_lookup()
     * that we want this special case which would always say "yes",
     * we just do the SAU lookup here followed by a direct physical load.
     */
    attrs.secure = targets_secure;
    attrs.user = false;

    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
        V8M_SAttributes sattrs = {};

        v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
        if (sattrs.ns) {
            attrs.secure = false;
        } else if (!targets_secure) {
            /* NS access to S memory */
            goto load_fail;
        }
    }

    vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
                                     attrs, &result);
6719
    if (result != MEMTX_OK) {
6720
        goto load_fail;
6721
    }
6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737
    *pvec = vector_entry;
    return true;

load_fail:
    /* All vector table fetch fails are reported as HardFault, with
     * HFSR.VECTTBL and .FORCED set. (FORCED is set because
     * technically the underlying exception is a MemManage or BusFault
     * that is escalated to HardFault.) This is a terminal exception,
     * so we will either take the HardFault immediately or else enter
     * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
     */
    exc_secure = targets_secure ||
        !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
    env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
    armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
    return false;
6738 6739
}

6740
static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6741
                                  bool ignore_faults)
6742 6743 6744 6745 6746 6747 6748 6749
{
    /* For v8M, push the callee-saves register part of the stack frame.
     * Compare the v8M pseudocode PushCalleeStack().
     * In the tailchaining case this may not be the current stack.
     */
    CPUARMState *env = &cpu->env;
    uint32_t *frame_sp_p;
    uint32_t frameptr;
6750 6751
    ARMMMUIdx mmu_idx;
    bool stacked_ok;
6752 6753

    if (dotailchain) {
6754 6755 6756 6757 6758 6759
        bool mode = lr & R_V7M_EXCRET_MODE_MASK;
        bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
            !mode;

        mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
        frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
6760 6761
                                    lr & R_V7M_EXCRET_SPSEL_MASK);
    } else {
6762
        mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6763 6764 6765 6766 6767
        frame_sp_p = &env->regs[13];
    }

    frameptr = *frame_sp_p - 0x28;

6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
    /* Write as much of the stack frame as we can. A write failure may
     * cause us to pend a derived exception.
     */
    stacked_ok =
        v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
        v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
                        ignore_faults) &&
        v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
                        ignore_faults) &&
        v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
                        ignore_faults) &&
        v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
                        ignore_faults) &&
        v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
                        ignore_faults) &&
        v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
                        ignore_faults) &&
        v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
                        ignore_faults) &&
        v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
                        ignore_faults);

    /* Update SP regardless of whether any of the stack accesses failed.
     * When we implement v8M stack limit checking then this attempt to
     * update SP might also fail and result in a derived exception.
     */
6794
    *frame_sp_p = frameptr;
6795 6796

    return !stacked_ok;
6797 6798
}

6799 6800
static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
                                bool ignore_stackfaults)
6801 6802 6803 6804 6805 6806 6807
{
    /* Do the "take the exception" parts of exception entry,
     * but not the pushing of state to the stack. This is
     * similar to the pseudocode ExceptionTaken() function.
     */
    CPUARMState *env = &cpu->env;
    uint32_t addr;
6808
    bool targets_secure;
6809
    int exc;
6810
    bool push_failed = false;
6811

6812
    armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837

    if (arm_feature(env, ARM_FEATURE_V8)) {
        if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
            (lr & R_V7M_EXCRET_S_MASK)) {
            /* The background code (the owner of the registers in the
             * exception frame) is Secure. This means it may either already
             * have or now needs to push callee-saves registers.
             */
            if (targets_secure) {
                if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
                    /* We took an exception from Secure to NonSecure
                     * (which means the callee-saved registers got stacked)
                     * and are now tailchaining to a Secure exception.
                     * Clear DCRS so eventual return from this Secure
                     * exception unstacks the callee-saved registers.
                     */
                    lr &= ~R_V7M_EXCRET_DCRS_MASK;
                }
            } else {
                /* We're going to a non-secure exception; push the
                 * callee-saves registers to the stack now, if they're
                 * not already saved.
                 */
                if (lr & R_V7M_EXCRET_DCRS_MASK &&
                    !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6838 6839
                    push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
                                                        ignore_stackfaults);
6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
                }
                lr |= R_V7M_EXCRET_DCRS_MASK;
            }
        }

        lr &= ~R_V7M_EXCRET_ES_MASK;
        if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
            lr |= R_V7M_EXCRET_ES_MASK;
        }
        lr &= ~R_V7M_EXCRET_SPSEL_MASK;
        if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
            lr |= R_V7M_EXCRET_SPSEL_MASK;
        }

        /* Clear registers if necessary to prevent non-secure exception
         * code being able to see register values from secure code.
         * Where register values become architecturally UNKNOWN we leave
         * them with their previous values.
         */
        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
            if (!targets_secure) {
                /* Always clear the caller-saved registers (they have been
                 * pushed to the stack earlier in v7m_push_stack()).
                 * Clear callee-saved registers if the background code is
                 * Secure (in which case these regs were saved in
                 * v7m_push_callee_stack()).
                 */
                int i;

                for (i = 0; i < 13; i++) {
                    /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
                    if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
                        env->regs[i] = 0;
                    }
                }
                /* Clear EAPSR */
                xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
            }
        }
    }
6880

6881 6882 6883 6884 6885 6886 6887 6888 6889
    if (push_failed && !ignore_stackfaults) {
        /* Derived exception on callee-saves register stacking:
         * we might now want to take a different exception which
         * targets a different security state, so try again from the top.
         */
        v7m_exception_taken(cpu, lr, true, true);
        return;
    }

6890 6891 6892 6893 6894
    if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
        /* Vector load failed: derived exception */
        v7m_exception_taken(cpu, lr, true, true);
        return;
    }
6895 6896 6897 6898 6899 6900 6901

    /* Now we've done everything that might cause a derived exception
     * we can go ahead and activate whichever exception we're going to
     * take (which might now be the derived exception).
     */
    armv7m_nvic_acknowledge_irq(env->nvic);

6902 6903
    /* Switch to target security state -- must do this before writing SPSEL */
    switch_v7m_security_state(env, targets_secure);
6904
    write_v7m_control_spsel(env, 0);
6905
    arm_clear_exclusive(env);
6906 6907 6908 6909 6910 6911 6912
    /* Clear IT bits */
    env->condexec_bits = 0;
    env->regs[14] = lr;
    env->regs[15] = addr & 0xfffffffe;
    env->thumb = addr & 1;
}

6913
static bool v7m_push_stack(ARMCPU *cpu)
6914 6915 6916
{
    /* Do the "set up stack frame" part of exception entry,
     * similar to pseudocode PushStack().
6917 6918 6919
     * Return true if we generate a derived exception (and so
     * should ignore further stack faults trying to process
     * that derived exception.)
6920
     */
6921
    bool stacked_ok;
6922 6923
    CPUARMState *env = &cpu->env;
    uint32_t xpsr = xpsr_read(env);
6924 6925
    uint32_t frameptr = env->regs[13];
    ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6926 6927

    /* Align stack pointer if the guest wants that */
6928
    if ((frameptr & 4) &&
6929
        (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6930
        frameptr -= 4;
6931
        xpsr |= XPSR_SPREALIGN;
6932
    }
6933

6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
    frameptr -= 0x20;

    /* Write as much of the stack frame as we can. If we fail a stack
     * write this will result in a derived exception being pended
     * (which may be taken in preference to the one we started with
     * if it has higher priority).
     */
    stacked_ok =
        v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
        v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
        v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
        v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
        v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
        v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
        v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
        v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);

    /* Update SP regardless of whether any of the stack accesses failed.
     * When we implement v8M stack limit checking then this attempt to
     * update SP might also fail and result in a derived exception.
     */
    env->regs[13] = frameptr;

    return !stacked_ok;
6958 6959
}

6960
static void do_v7m_exception_exit(ARMCPU *cpu)
P
pbrook 已提交
6961
{
6962
    CPUARMState *env = &cpu->env;
6963
    uint32_t excret;
P
pbrook 已提交
6964
    uint32_t xpsr;
6965
    bool ufault = false;
6966 6967 6968
    bool sfault = false;
    bool return_to_sp_process;
    bool return_to_handler;
6969
    bool rettobase = false;
6970
    bool exc_secure = false;
6971
    bool return_to_secure;
6972

6973 6974 6975 6976 6977 6978 6979 6980 6981
    /* If we're not in Handler mode then jumps to magic exception-exit
     * addresses don't have magic behaviour. However for the v8M
     * security extensions the magic secure-function-return has to
     * work in thread mode too, so to avoid doing an extra check in
     * the generated code we allow exception-exit magic to also cause the
     * internal exception and bring us here in thread mode. Correct code
     * will never try to do this (the following insn fetch will always
     * fault) so we the overhead of having taken an unnecessary exception
     * doesn't matter.
6982
     */
6983 6984 6985
    if (!arm_v7m_is_handler_mode(env)) {
        return;
    }
6986 6987 6988 6989 6990 6991 6992 6993

    /* In the spec pseudocode ExceptionReturn() is called directly
     * from BXWritePC() and gets the full target PC value including
     * bit zero. In QEMU's implementation we treat it as a normal
     * jump-to-register (which is then caught later on), and so split
     * the target value up between env->regs[15] and env->thumb in
     * gen_bx(). Reconstitute it.
     */
6994
    excret = env->regs[15];
6995
    if (env->thumb) {
6996
        excret |= 1;
6997 6998 6999 7000
    }

    qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
                  " previous exception %d\n",
7001
                  excret, env->v7m.exception);
7002

7003
    if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
7004
        qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
7005 7006
                      "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
                      excret);
7007 7008
    }

7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021
    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
        /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
         * we pick which FAULTMASK to clear.
         */
        if (!env->v7m.secure &&
            ((excret & R_V7M_EXCRET_ES_MASK) ||
             !(excret & R_V7M_EXCRET_DCRS_MASK))) {
            sfault = 1;
            /* For all other purposes, treat ES as 0 (R_HXSR) */
            excret &= ~R_V7M_EXCRET_ES_MASK;
        }
    }

7022
    if (env->v7m.exception != ARMV7M_EXCP_NMI) {
7023 7024 7025 7026 7027 7028 7029
        /* Auto-clear FAULTMASK on return from other than NMI.
         * If the security extension is implemented then this only
         * happens if the raw execution priority is >= 0; the
         * value of the ES bit in the exception return value indicates
         * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
         */
        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7030
            exc_secure = excret & R_V7M_EXCRET_ES_MASK;
7031
            if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
7032
                env->v7m.faultmask[exc_secure] = 0;
7033 7034 7035 7036
            }
        } else {
            env->v7m.faultmask[M_REG_NS] = 0;
        }
7037
    }
7038

7039 7040
    switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
                                     exc_secure)) {
7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058
    case -1:
        /* attempt to exit an exception that isn't active */
        ufault = true;
        break;
    case 0:
        /* still an irq active now */
        break;
    case 1:
        /* we returned to base exception level, no nesting.
         * (In the pseudocode this is written using "NestedActivation != 1"
         * where we have 'rettobase == false'.)
         */
        rettobase = true;
        break;
    default:
        g_assert_not_reached();
    }

7059 7060
    return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
    return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
7061 7062 7063
    return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
        (excret & R_V7M_EXCRET_S_MASK);

7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075
    if (arm_feature(env, ARM_FEATURE_V8)) {
        if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
            /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
             * we choose to take the UsageFault.
             */
            if ((excret & R_V7M_EXCRET_S_MASK) ||
                (excret & R_V7M_EXCRET_ES_MASK) ||
                !(excret & R_V7M_EXCRET_DCRS_MASK)) {
                ufault = true;
            }
        }
        if (excret & R_V7M_EXCRET_RES0_MASK) {
7076 7077
            ufault = true;
        }
7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101
    } else {
        /* For v7M we only recognize certain combinations of the low bits */
        switch (excret & 0xf) {
        case 1: /* Return to Handler */
            break;
        case 13: /* Return to Thread using Process stack */
        case 9: /* Return to Thread using Main stack */
            /* We only need to check NONBASETHRDENA for v7M, because in
             * v8M this bit does not exist (it is RES1).
             */
            if (!rettobase &&
                !(env->v7m.ccr[env->v7m.secure] &
                  R_V7M_CCR_NONBASETHRDENA_MASK)) {
                ufault = true;
            }
            break;
        default:
            ufault = true;
        }
    }

    if (sfault) {
        env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7102
        v7m_exception_taken(cpu, excret, true, false);
7103 7104 7105
        qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
                      "stackframe: failed EXC_RETURN.ES validity check\n");
        return;
7106 7107 7108 7109 7110 7111
    }

    if (ufault) {
        /* Bad exception return: instead of popping the exception
         * stack, directly take a usage fault on the current stack.
         */
7112
        env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7113
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7114
        v7m_exception_taken(cpu, excret, true, false);
7115 7116 7117
        qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
                      "stackframe: failed exception return integrity check\n");
        return;
7118
    }
P
pbrook 已提交
7119

7120 7121 7122
    /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
     * Handler mode (and will be until we write the new XPSR.Interrupt
     * field) this does not switch around the current stack pointer.
7123
     */
7124
    write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
7125

7126 7127
    switch_v7m_security_state(env, return_to_secure);

7128 7129 7130 7131 7132 7133 7134 7135 7136
    {
        /* The stack pointer we should be reading the exception frame from
         * depends on bits in the magic exception return type value (and
         * for v8M isn't necessarily the stack pointer we will eventually
         * end up resuming execution with). Get a pointer to the location
         * in the CPU state struct where the SP we need is currently being
         * stored; we will use and modify it in place.
         * We use this limited C variable scope so we don't accidentally
         * use 'frame_sp_p' after we do something that makes it invalid.
7137
         */
7138 7139 7140 7141 7142
        uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
                                              return_to_secure,
                                              !return_to_handler,
                                              return_to_sp_process);
        uint32_t frameptr = *frame_sp_p;
7143 7144 7145 7146 7147
        bool pop_ok = true;
        ARMMMUIdx mmu_idx;

        mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
                                                        !return_to_handler);
7148

7149 7150 7151 7152 7153 7154 7155
        if (!QEMU_IS_ALIGNED(frameptr, 8) &&
            arm_feature(env, ARM_FEATURE_V8)) {
            qemu_log_mask(LOG_GUEST_ERROR,
                          "M profile exception return with non-8-aligned SP "
                          "for destination state is UNPREDICTABLE\n");
        }

7156 7157 7158 7159 7160
        /* Do we need to pop callee-saved registers? */
        if (return_to_secure &&
            ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
             (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
            uint32_t expected_sig = 0xfefa125b;
7161 7162 7163
            uint32_t actual_sig;

            pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
7164

7165
            if (pop_ok && expected_sig != actual_sig) {
7166 7167 7168
                /* Take a SecureFault on the current stack */
                env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
                armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7169
                v7m_exception_taken(cpu, excret, true, false);
7170 7171 7172 7173 7174 7175
                qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
                              "stackframe: failed exception return integrity "
                              "signature check\n");
                return;
            }

7176
            pop_ok = pop_ok &&
7177 7178 7179 7180 7181 7182 7183 7184 7185
                v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
                v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
                v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
                v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
                v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
                v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
                v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
                v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
                v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
7186 7187 7188 7189

            frameptr += 0x28;
        }

7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207
        /* Pop registers */
        pop_ok = pop_ok &&
            v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
            v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
            v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
            v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
            v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
            v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
            v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
            v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);

        if (!pop_ok) {
            /* v7m_stack_read() pended a fault, so take it (as a tail
             * chained exception on the same stack frame)
             */
            v7m_exception_taken(cpu, excret, true, false);
            return;
        }
7208 7209 7210 7211 7212 7213 7214 7215 7216

        /* Returning from an exception with a PC with bit 0 set is defined
         * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
         * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
         * the lsbit, and there are several RTOSes out there which incorrectly
         * assume the r15 in the stack frame should be a Thumb-style "lsbit
         * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
         * complain about the badly behaved guest.
         */
7217 7218
        if (env->regs[15] & 1) {
            env->regs[15] &= ~1U;
7219 7220 7221 7222 7223
            if (!arm_feature(env, ARM_FEATURE_V8)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "M profile return from interrupt with misaligned "
                              "PC is UNPREDICTABLE on v7M\n");
            }
7224
        }
7225

7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240
        if (arm_feature(env, ARM_FEATURE_V8)) {
            /* For v8M we have to check whether the xPSR exception field
             * matches the EXCRET value for return to handler/thread
             * before we commit to changing the SP and xPSR.
             */
            bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
            if (return_to_handler != will_be_handler) {
                /* Take an INVPC UsageFault on the current stack.
                 * By this point we will have switched to the security state
                 * for the background state, so this UsageFault will target
                 * that state.
                 */
                armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
                                        env->v7m.secure);
                env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7241
                v7m_exception_taken(cpu, excret, true, false);
7242 7243 7244 7245 7246 7247 7248
                qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
                              "stackframe: failed exception return integrity "
                              "check\n");
                return;
            }
        }

7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260
        /* Commit to consuming the stack frame */
        frameptr += 0x20;
        /* Undo stack alignment (the SPREALIGN bit indicates that the original
         * pre-exception SP was not 8-aligned and we added a padding word to
         * align it, so we undo this by ORing in the bit that increases it
         * from the current 8-aligned value to the 8-unaligned value. (Adding 4
         * would work too but a logical OR is how the pseudocode specifies it.)
         */
        if (xpsr & XPSR_SPREALIGN) {
            frameptr |= 4;
        }
        *frame_sp_p = frameptr;
7261
    }
7262
    /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
7263
    xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
7264 7265 7266

    /* The restored xPSR exception field will be zero if we're
     * resuming in Thread mode. If that doesn't match what the
7267
     * exception return excret specified then this is a UsageFault.
7268
     * v7M requires we make this check here; v8M did it earlier.
7269
     */
7270
    if (return_to_handler != arm_v7m_is_handler_mode(env)) {
7271 7272
        /* Take an INVPC UsageFault by pushing the stack again;
         * we know we're v7M so this is never a Secure UsageFault.
7273
         */
7274 7275
        bool ignore_stackfaults;

7276
        assert(!arm_feature(env, ARM_FEATURE_V8));
7277
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
7278
        env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7279 7280
        ignore_stackfaults = v7m_push_stack(cpu);
        v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
7281 7282 7283 7284 7285 7286
        qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
                      "failed exception return integrity check\n");
        return;
    }

    /* Otherwise, we have a successful exception exit. */
7287
    arm_clear_exclusive(env);
7288
    qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
P
pbrook 已提交
7289 7290
}

7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362
static bool do_v7m_function_return(ARMCPU *cpu)
{
    /* v8M security extensions magic function return.
     * We may either:
     *  (1) throw an exception (longjump)
     *  (2) return true if we successfully handled the function return
     *  (3) return false if we failed a consistency check and have
     *      pended a UsageFault that needs to be taken now
     *
     * At this point the magic return value is split between env->regs[15]
     * and env->thumb. We don't bother to reconstitute it because we don't
     * need it (all values are handled the same way).
     */
    CPUARMState *env = &cpu->env;
    uint32_t newpc, newpsr, newpsr_exc;

    qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");

    {
        bool threadmode, spsel;
        TCGMemOpIdx oi;
        ARMMMUIdx mmu_idx;
        uint32_t *frame_sp_p;
        uint32_t frameptr;

        /* Pull the return address and IPSR from the Secure stack */
        threadmode = !arm_v7m_is_handler_mode(env);
        spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;

        frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
        frameptr = *frame_sp_p;

        /* These loads may throw an exception (for MPU faults). We want to
         * do them as secure, so work out what MMU index that is.
         */
        mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
        oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
        newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
        newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);

        /* Consistency checks on new IPSR */
        newpsr_exc = newpsr & XPSR_EXCP;
        if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
              (env->v7m.exception == 1 && newpsr_exc != 0))) {
            /* Pend the fault and tell our caller to take it */
            env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
            armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
                                    env->v7m.secure);
            qemu_log_mask(CPU_LOG_INT,
                          "...taking INVPC UsageFault: "
                          "IPSR consistency check failed\n");
            return false;
        }

        *frame_sp_p = frameptr + 8;
    }

    /* This invalidates frame_sp_p */
    switch_v7m_security_state(env, true);
    env->v7m.exception = newpsr_exc;
    env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
    if (newpsr & XPSR_SFPA) {
        env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
    }
    xpsr_write(env, 0, XPSR_IT);
    env->thumb = newpc & 1;
    env->regs[15] = newpc & ~1;

    qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
    return true;
}

7363 7364 7365 7366
static void arm_log_exception(int idx)
{
    if (qemu_loglevel_mask(CPU_LOG_INT)) {
        const char *exc = NULL;
7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385
        static const char * const excnames[] = {
            [EXCP_UDEF] = "Undefined Instruction",
            [EXCP_SWI] = "SVC",
            [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
            [EXCP_DATA_ABORT] = "Data Abort",
            [EXCP_IRQ] = "IRQ",
            [EXCP_FIQ] = "FIQ",
            [EXCP_BKPT] = "Breakpoint",
            [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
            [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
            [EXCP_HVC] = "Hypervisor Call",
            [EXCP_HYP_TRAP] = "Hypervisor Trap",
            [EXCP_SMC] = "Secure Monitor Call",
            [EXCP_VIRQ] = "Virtual IRQ",
            [EXCP_VFIQ] = "Virtual FIQ",
            [EXCP_SEMIHOST] = "Semihosting call",
            [EXCP_NOCP] = "v7M NOCP UsageFault",
            [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
        };
7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396

        if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
            exc = excnames[idx];
        }
        if (!exc) {
            exc = "unknown";
        }
        qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
    }
}

7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432
static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
                               uint32_t addr, uint16_t *insn)
{
    /* Load a 16-bit portion of a v7M instruction, returning true on success,
     * or false on failure (in which case we will have pended the appropriate
     * exception).
     * We need to do the instruction fetch's MPU and SAU checks
     * like this because there is no MMU index that would allow
     * doing the load with a single function call. Instead we must
     * first check that the security attributes permit the load
     * and that they don't mismatch on the two halves of the instruction,
     * and then we do the load as a secure load (ie using the security
     * attributes of the address, not the CPU, as architecturally required).
     */
    CPUState *cs = CPU(cpu);
    CPUARMState *env = &cpu->env;
    V8M_SAttributes sattrs = {};
    MemTxAttrs attrs = {};
    ARMMMUFaultInfo fi = {};
    MemTxResult txres;
    target_ulong page_size;
    hwaddr physaddr;
    int prot;

    v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
    if (!sattrs.nsc || sattrs.ns) {
        /* This must be the second half of the insn, and it straddles a
         * region boundary with the second half not being S&NSC.
         */
        env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
        qemu_log_mask(CPU_LOG_INT,
                      "...really SecureFault with SFSR.INVEP\n");
        return false;
    }
    if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
7433
                      &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515
        /* the MPU lookup failed */
        env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
        qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
        return false;
    }
    *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
                                 attrs, &txres);
    if (txres != MEMTX_OK) {
        env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
        qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
        return false;
    }
    return true;
}

static bool v7m_handle_execute_nsc(ARMCPU *cpu)
{
    /* Check whether this attempt to execute code in a Secure & NS-Callable
     * memory region is for an SG instruction; if so, then emulate the
     * effect of the SG instruction and return true. Otherwise pend
     * the correct kind of exception and return false.
     */
    CPUARMState *env = &cpu->env;
    ARMMMUIdx mmu_idx;
    uint16_t insn;

    /* We should never get here unless get_phys_addr_pmsav8() caused
     * an exception for NS executing in S&NSC memory.
     */
    assert(!env->v7m.secure);
    assert(arm_feature(env, ARM_FEATURE_M_SECURITY));

    /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
    mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);

    if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
        return false;
    }

    if (!env->thumb) {
        goto gen_invep;
    }

    if (insn != 0xe97f) {
        /* Not an SG instruction first half (we choose the IMPDEF
         * early-SG-check option).
         */
        goto gen_invep;
    }

    if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
        return false;
    }

    if (insn != 0xe97f) {
        /* Not an SG instruction second half (yes, both halves of the SG
         * insn have the same hex value)
         */
        goto gen_invep;
    }

    /* OK, we have confirmed that we really have an SG instruction.
     * We know we're NS in S memory so don't need to repeat those checks.
     */
    qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
                  ", executing it\n", env->regs[15]);
    env->regs[14] &= ~1;
    switch_v7m_security_state(env, true);
    xpsr_write(env, 0, XPSR_IT);
    env->regs[15] += 4;
    return true;

gen_invep:
    env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
    armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
    qemu_log_mask(CPU_LOG_INT,
                  "...really SecureFault with SFSR.INVEP\n");
    return false;
}

7516
void arm_v7m_cpu_do_interrupt(CPUState *cs)
P
pbrook 已提交
7517
{
7518 7519
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
P
pbrook 已提交
7520
    uint32_t lr;
7521
    bool ignore_stackfaults;
P
pbrook 已提交
7522

7523
    arm_log_exception(cs->exception_index);
7524

P
pbrook 已提交
7525 7526
    /* For exceptions we just mark as pending on the NVIC, and let that
       handle it.  */
7527
    switch (cs->exception_index) {
P
pbrook 已提交
7528
    case EXCP_UDEF:
7529
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7530
        env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7531
        break;
7532
    case EXCP_NOCP:
7533
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7534
        env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7535
        break;
7536
    case EXCP_INVSTATE:
7537
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7538
        env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7539
        break;
P
pbrook 已提交
7540
    case EXCP_SWI:
7541
        /* The PC already points to the next instruction.  */
7542
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7543
        break;
P
pbrook 已提交
7544 7545
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
7546 7547 7548
        /* Note that for M profile we don't have a guest facing FSR, but
         * the env->exception.fsr will be populated by the code that
         * raises the fault, in the A profile short-descriptor format.
7549
         */
7550
        switch (env->exception.fsr & 0xf) {
7551 7552 7553 7554 7555 7556 7557 7558 7559
        case M_FAKE_FSR_NSC_EXEC:
            /* Exception generated when we try to execute code at an address
             * which is marked as Secure & Non-Secure Callable and the CPU
             * is in the Non-Secure state. The only instruction which can
             * be executed like this is SG (and that only if both halves of
             * the SG instruction have the same security attributes.)
             * Everything else must generate an INVEP SecureFault, so we
             * emulate the SG instruction here.
             */
7560 7561 7562
            if (v7m_handle_execute_nsc(cpu)) {
                return;
            }
7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588
            break;
        case M_FAKE_FSR_SFAULT:
            /* Various flavours of SecureFault for attempts to execute or
             * access data in the wrong security state.
             */
            switch (cs->exception_index) {
            case EXCP_PREFETCH_ABORT:
                if (env->v7m.secure) {
                    env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
                    qemu_log_mask(CPU_LOG_INT,
                                  "...really SecureFault with SFSR.INVTRAN\n");
                } else {
                    env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
                    qemu_log_mask(CPU_LOG_INT,
                                  "...really SecureFault with SFSR.INVEP\n");
                }
                break;
            case EXCP_DATA_ABORT:
                /* This must be an NS access to S memory */
                env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
                qemu_log_mask(CPU_LOG_INT,
                              "...really SecureFault with SFSR.AUVIOL\n");
                break;
            }
            armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
            break;
7589 7590 7591
        case 0x8: /* External Abort */
            switch (cs->exception_index) {
            case EXCP_PREFETCH_ABORT:
7592 7593
                env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
                qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7594 7595
                break;
            case EXCP_DATA_ABORT:
7596
                env->v7m.cfsr[M_REG_NS] |=
7597
                    (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7598 7599
                env->v7m.bfar = env->exception.vaddress;
                qemu_log_mask(CPU_LOG_INT,
7600
                              "...with CFSR.PRECISERR and BFAR 0x%x\n",
7601 7602 7603
                              env->v7m.bfar);
                break;
            }
7604
            armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7605 7606 7607 7608 7609 7610 7611
            break;
        default:
            /* All other FSR values are either MPU faults or "can't happen
             * for M profile" cases.
             */
            switch (cs->exception_index) {
            case EXCP_PREFETCH_ABORT:
7612
                env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7613 7614 7615
                qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
                break;
            case EXCP_DATA_ABORT:
7616
                env->v7m.cfsr[env->v7m.secure] |=
7617
                    (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7618
                env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7619 7620
                qemu_log_mask(CPU_LOG_INT,
                              "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7621
                              env->v7m.mmfar[env->v7m.secure]);
7622 7623
                break;
            }
7624 7625
            armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
                                    env->v7m.secure);
7626 7627
            break;
        }
7628
        break;
P
pbrook 已提交
7629
    case EXCP_BKPT:
7630
        if (semihosting_enabled()) {
P
pbrook 已提交
7631
            int nr;
7632
            nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
P
pbrook 已提交
7633 7634
            if (nr == 0xab) {
                env->regs[15] += 2;
7635 7636 7637
                qemu_log_mask(CPU_LOG_INT,
                              "...handling as semihosting call 0x%x\n",
                              env->regs[0]);
P
pbrook 已提交
7638 7639 7640 7641
                env->regs[0] = do_arm_semihosting(env);
                return;
            }
        }
7642
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7643
        break;
P
pbrook 已提交
7644 7645 7646
    case EXCP_IRQ:
        break;
    case EXCP_EXCEPTION_EXIT:
7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658
        if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
            /* Must be v8M security extension function return */
            assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
            assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
            if (do_v7m_function_return(cpu)) {
                return;
            }
        } else {
            do_v7m_exception_exit(cpu);
            return;
        }
        break;
P
pbrook 已提交
7659
    default:
7660
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
P
pbrook 已提交
7661 7662 7663
        return; /* Never happens.  Keep compiler happy.  */
    }

7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690
    if (arm_feature(env, ARM_FEATURE_V8)) {
        lr = R_V7M_EXCRET_RES1_MASK |
            R_V7M_EXCRET_DCRS_MASK |
            R_V7M_EXCRET_FTYPE_MASK;
        /* The S bit indicates whether we should return to Secure
         * or NonSecure (ie our current state).
         * The ES bit indicates whether we're taking this exception
         * to Secure or NonSecure (ie our target state). We set it
         * later, in v7m_exception_taken().
         * The SPSEL bit is also set in v7m_exception_taken() for v8M.
         * This corresponds to the ARM ARM pseudocode for v8M setting
         * some LR bits in PushStack() and some in ExceptionTaken();
         * the distinction matters for the tailchain cases where we
         * can take an exception without pushing the stack.
         */
        if (env->v7m.secure) {
            lr |= R_V7M_EXCRET_S_MASK;
        }
    } else {
        lr = R_V7M_EXCRET_RES1_MASK |
            R_V7M_EXCRET_S_MASK |
            R_V7M_EXCRET_DCRS_MASK |
            R_V7M_EXCRET_FTYPE_MASK |
            R_V7M_EXCRET_ES_MASK;
        if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
            lr |= R_V7M_EXCRET_SPSEL_MASK;
        }
7691
    }
7692
    if (!arm_v7m_is_handler_mode(env)) {
7693
        lr |= R_V7M_EXCRET_MODE_MASK;
7694 7695
    }

7696 7697
    ignore_stackfaults = v7m_push_stack(cpu);
    v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
7698
    qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
P
pbrook 已提交
7699 7700
}

7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751
/* Function used to synchronize QEMU's AArch64 register set with AArch32
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_32_to_64(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy R[0:7] to X[0:7] */
    for (i = 0; i < 8; i++) {
        env->xregs[i] = env->regs[i];
    }

    /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
     * Otherwise, they come from the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->usr_regs[i - 8];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->regs[i];
        }
    }

    /* Registers x13-x23 are the various mode SP and FP registers. Registers
     * r13 and r14 are only copied if we are in that mode, otherwise we copy
     * from the mode banked register.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->xregs[13] = env->regs[13];
        env->xregs[14] = env->regs[14];
    } else {
        env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
        /* HYP is an exception in that it is copied from r14 */
        if (mode == ARM_CPU_MODE_HYP) {
            env->xregs[14] = env->regs[14];
        } else {
            env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->xregs[15] = env->regs[13];
    } else {
        env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
7752 7753
        env->xregs[16] = env->regs[14];
        env->xregs[17] = env->regs[13];
7754
    } else {
7755 7756
        env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
        env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7757 7758 7759
    }

    if (mode == ARM_CPU_MODE_SVC) {
7760 7761
        env->xregs[18] = env->regs[14];
        env->xregs[19] = env->regs[13];
7762
    } else {
7763 7764
        env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
        env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7765 7766 7767
    }

    if (mode == ARM_CPU_MODE_ABT) {
7768 7769
        env->xregs[20] = env->regs[14];
        env->xregs[21] = env->regs[13];
7770
    } else {
7771 7772
        env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
        env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7773 7774 7775
    }

    if (mode == ARM_CPU_MODE_UND) {
7776 7777
        env->xregs[22] = env->regs[14];
        env->xregs[23] = env->regs[13];
7778
    } else {
7779 7780
        env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
        env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy from r8-r14.  Otherwise, we copy from the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->xregs[i] = env->fiq_regs[i - 24];
        }
        env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
        env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
    }

    env->pc = env->regs[15];
}

/* Function used to synchronize QEMU's AArch32 register set with AArch64
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_64_to_32(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy X[0:7] to R[0:7] */
    for (i = 0; i < 8; i++) {
        env->regs[i] = env->xregs[i];
    }

    /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
     * Otherwise, we copy x8-x12 into the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->usr_regs[i - 8] = env->xregs[i];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->regs[i] = env->xregs[i];
        }
    }

    /* Registers r13 & r14 depend on the current mode.
     * If we are in a given mode, we copy the corresponding x registers to r13
     * and r14.  Otherwise, we copy the x register to the banked r13 and r14
     * for the mode.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->regs[13] = env->xregs[13];
        env->regs[14] = env->xregs[14];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];

        /* HYP is an exception in that it does not have its own banked r14 but
         * shares the USR r14
         */
        if (mode == ARM_CPU_MODE_HYP) {
            env->regs[14] = env->xregs[14];
        } else {
            env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->regs[13] = env->xregs[15];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
7857 7858
        env->regs[14] = env->xregs[16];
        env->regs[13] = env->xregs[17];
7859
    } else {
7860 7861
        env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
        env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7862 7863 7864
    }

    if (mode == ARM_CPU_MODE_SVC) {
7865 7866
        env->regs[14] = env->xregs[18];
        env->regs[13] = env->xregs[19];
7867
    } else {
7868 7869
        env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
        env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7870 7871 7872
    }

    if (mode == ARM_CPU_MODE_ABT) {
7873 7874
        env->regs[14] = env->xregs[20];
        env->regs[13] = env->xregs[21];
7875
    } else {
7876 7877
        env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
        env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7878 7879 7880
    }

    if (mode == ARM_CPU_MODE_UND) {
7881 7882
        env->regs[14] = env->xregs[22];
        env->regs[13] = env->xregs[23];
7883
    } else {
7884 7885
        env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
        env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy to r8-r14.  Otherwise, we copy to the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->fiq_regs[i - 24] = env->xregs[i];
        }
        env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
        env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
    }

    env->regs[15] = env->pc;
}

7907
static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
B
bellard 已提交
7908
{
7909 7910
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
B
bellard 已提交
7911 7912 7913 7914
    uint32_t addr;
    uint32_t mask;
    int new_mode;
    uint32_t offset;
7915
    uint32_t moe;
B
bellard 已提交
7916

7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941
    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
    switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
    case EC_BREAKPOINT:
    case EC_BREAKPOINT_SAME_EL:
        moe = 1;
        break;
    case EC_WATCHPOINT:
    case EC_WATCHPOINT_SAME_EL:
        moe = 10;
        break;
    case EC_AA32_BKPT:
        moe = 3;
        break;
    case EC_VECTORCATCH:
        moe = 5;
        break;
    default:
        moe = 0;
        break;
    }

    if (moe) {
        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
    }

B
bellard 已提交
7942
    /* TODO: Vectored interrupt controller.  */
7943
    switch (cs->exception_index) {
B
bellard 已提交
7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956
    case EXCP_UDEF:
        new_mode = ARM_CPU_MODE_UND;
        addr = 0x04;
        mask = CPSR_I;
        if (env->thumb)
            offset = 2;
        else
            offset = 4;
        break;
    case EXCP_SWI:
        new_mode = ARM_CPU_MODE_SVC;
        addr = 0x08;
        mask = CPSR_I;
7957
        /* The PC already points to the next instruction.  */
B
bellard 已提交
7958 7959
        offset = 0;
        break;
P
pbrook 已提交
7960
    case EXCP_BKPT:
P
pbrook 已提交
7961 7962
        /* Fall through to prefetch abort.  */
    case EXCP_PREFETCH_ABORT:
F
Fabian Aggeler 已提交
7963
        A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
F
Fabian Aggeler 已提交
7964
        A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
7965
        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
F
Fabian Aggeler 已提交
7966
                      env->exception.fsr, (uint32_t)env->exception.vaddress);
B
bellard 已提交
7967 7968 7969 7970 7971 7972
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x0c;
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_DATA_ABORT:
F
Fabian Aggeler 已提交
7973
        A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
F
Fabian Aggeler 已提交
7974
        A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
7975
        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
F
Fabian Aggeler 已提交
7976
                      env->exception.fsr,
7977
                      (uint32_t)env->exception.vaddress);
B
bellard 已提交
7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x10;
        mask = CPSR_A | CPSR_I;
        offset = 8;
        break;
    case EXCP_IRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
7989 7990 7991 7992 7993
        if (env->cp15.scr_el3 & SCR_IRQ) {
            /* IRQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
            mask |= CPSR_F;
        }
B
bellard 已提交
7994 7995 7996 7997 7998 7999
        break;
    case EXCP_FIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
8000 8001 8002 8003
        if (env->cp15.scr_el3 & SCR_FIQ) {
            /* FIQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
        }
B
bellard 已提交
8004 8005
        offset = 4;
        break;
8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019
    case EXCP_VIRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_VFIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 4;
        break;
8020 8021 8022 8023 8024 8025
    case EXCP_SMC:
        new_mode = ARM_CPU_MODE_MON;
        addr = 0x08;
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 0;
        break;
B
bellard 已提交
8026
    default:
8027
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
B
bellard 已提交
8028 8029
        return; /* Never happens.  Keep compiler happy.  */
    }
F
Fabian Aggeler 已提交
8030 8031 8032

    if (new_mode == ARM_CPU_MODE_MON) {
        addr += env->cp15.mvbar;
8033
    } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
F
Fabian Aggeler 已提交
8034
        /* High vectors. When enabled, base address cannot be remapped. */
B
bellard 已提交
8035
        addr += 0xffff0000;
N
Nathan Rossi 已提交
8036 8037 8038
    } else {
        /* ARM v7 architectures provide a vector base address register to remap
         * the interrupt vector table.
F
Fabian Aggeler 已提交
8039
         * This register is only followed in non-monitor mode, and is banked.
N
Nathan Rossi 已提交
8040 8041
         * Note: only bits 31:5 are valid.
         */
G
Greg Bellows 已提交
8042
        addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
B
bellard 已提交
8043
    }
8044 8045 8046 8047 8048

    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
        env->cp15.scr_el3 &= ~SCR_NS;
    }

B
bellard 已提交
8049
    switch_mode (env, new_mode);
8050 8051 8052 8053
    /* For exceptions taken to AArch32 we must clear the SS bit in both
     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
     */
    env->uncached_cpsr &= ~PSTATE_SS;
B
bellard 已提交
8054
    env->spsr = cpsr_read(env);
P
pbrook 已提交
8055 8056
    /* Clear IT bits.  */
    env->condexec_bits = 0;
8057
    /* Switch to the new mode, and to the correct instruction set.  */
8058
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8059 8060 8061
    /* Set new mode endianness */
    env->uncached_cpsr &= ~CPSR_E;
    if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8062
        env->uncached_cpsr |= CPSR_E;
8063
    }
8064
    env->daif |= mask;
8065 8066 8067
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
     * and we should just guard the thumb mode on V4 */
    if (arm_feature(env, ARM_FEATURE_V4T)) {
8068
        env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8069
    }
B
bellard 已提交
8070 8071 8072 8073
    env->regs[14] = env->regs[15] + offset;
    env->regs[15] = addr;
}

8074 8075
/* Handle exception entry to a target EL which is using AArch64 */
static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8076 8077 8078 8079 8080 8081 8082 8083
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    unsigned int new_el = env->exception.target_el;
    target_ulong addr = env->cp15.vbar_el[new_el];
    unsigned int new_mode = aarch64_pstate_mode(new_el, true);

    if (arm_current_el(env) < new_el) {
8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103
        /* Entry vector offset depends on whether the implemented EL
         * immediately lower than the target level is using AArch32 or AArch64
         */
        bool is_aa64;

        switch (new_el) {
        case 3:
            is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
            break;
        case 2:
            is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
            break;
        case 1:
            is_aa64 = is_a64(env);
            break;
        default:
            g_assert_not_reached();
        }

        if (is_aa64) {
8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167
            addr += 0x400;
        } else {
            addr += 0x600;
        }
    } else if (pstate_read(env) & PSTATE_SP) {
        addr += 0x200;
    }

    switch (cs->exception_index) {
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
        env->cp15.far_el[new_el] = env->exception.vaddress;
        qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
                      env->cp15.far_el[new_el]);
        /* fall through */
    case EXCP_BKPT:
    case EXCP_UDEF:
    case EXCP_SWI:
    case EXCP_HVC:
    case EXCP_HYP_TRAP:
    case EXCP_SMC:
        env->cp15.esr_el[new_el] = env->exception.syndrome;
        break;
    case EXCP_IRQ:
    case EXCP_VIRQ:
        addr += 0x80;
        break;
    case EXCP_FIQ:
    case EXCP_VFIQ:
        addr += 0x100;
        break;
    case EXCP_SEMIHOST:
        qemu_log_mask(CPU_LOG_INT,
                      "...handling as semihosting call 0x%" PRIx64 "\n",
                      env->xregs[0]);
        env->xregs[0] = do_arm_semihosting(env);
        return;
    default:
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
    }

    if (is_a64(env)) {
        env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
        aarch64_save_sp(env, arm_current_el(env));
        env->elr_el[new_el] = env->pc;
    } else {
        env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
        env->elr_el[new_el] = env->regs[15];

        aarch64_sync_32_to_64(env);

        env->condexec_bits = 0;
    }
    qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
                  env->elr_el[new_el]);

    pstate_write(env, PSTATE_DAIF | new_mode);
    env->aarch64 = 1;
    aarch64_restore_sp(env, new_el);

    env->pc = addr;

    qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
                  new_el, env->pc, pstate_read(env));
8168 8169
}

8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196
static inline bool check_for_semihosting(CPUState *cs)
{
    /* Check whether this exception is a semihosting call; if so
     * then handle it and return true; otherwise return false.
     */
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    if (is_a64(env)) {
        if (cs->exception_index == EXCP_SEMIHOST) {
            /* This is always the 64-bit semihosting exception.
             * The "is this usermode" and "is semihosting enabled"
             * checks have been done at translate time.
             */
            qemu_log_mask(CPU_LOG_INT,
                          "...handling as semihosting call 0x%" PRIx64 "\n",
                          env->xregs[0]);
            env->xregs[0] = do_arm_semihosting(env);
            return true;
        }
        return false;
    } else {
        uint32_t imm;

        /* Only intercept calls from privileged modes, to provide some
         * semblance of security.
         */
8197 8198 8199
        if (cs->exception_index != EXCP_SEMIHOST &&
            (!semihosting_enabled() ||
             ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
8200 8201 8202 8203
            return false;
        }

        switch (cs->exception_index) {
8204 8205 8206 8207 8208 8209
        case EXCP_SEMIHOST:
            /* This is always a semihosting call; the "is this usermode"
             * and "is semihosting enabled" checks have been done at
             * translate time.
             */
            break;
8210 8211 8212
        case EXCP_SWI:
            /* Check for semihosting interrupt.  */
            if (env->thumb) {
8213
                imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
8214 8215 8216 8217 8218
                    & 0xff;
                if (imm == 0xab) {
                    break;
                }
            } else {
8219
                imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
8220 8221 8222 8223 8224 8225 8226 8227 8228
                    & 0xffffff;
                if (imm == 0x123456) {
                    break;
                }
            }
            return false;
        case EXCP_BKPT:
            /* See if this is a semihosting syscall.  */
            if (env->thumb) {
8229
                imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248
                    & 0xff;
                if (imm == 0xab) {
                    env->regs[15] += 2;
                    break;
                }
            }
            return false;
        default:
            return false;
        }

        qemu_log_mask(CPU_LOG_INT,
                      "...handling as semihosting call 0x%x\n",
                      env->regs[0]);
        env->regs[0] = do_arm_semihosting(env);
        return true;
    }
}

8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259
/* Handle a CPU exception for A and R profile CPUs.
 * Do any appropriate logging, handle PSCI calls, and then hand off
 * to the AArch64-entry or AArch32-entry function depending on the
 * target exception level's register width.
 */
void arm_cpu_do_interrupt(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    unsigned int new_el = env->exception.target_el;

P
Peter Maydell 已提交
8260
    assert(!arm_feature(env, ARM_FEATURE_M));
8261 8262 8263 8264 8265 8266

    arm_log_exception(cs->exception_index);
    qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
                  new_el);
    if (qemu_loglevel_mask(CPU_LOG_INT)
        && !excp_is_internal(cs->exception_index)) {
8267
        qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8268 8269 8270 8271 8272 8273 8274 8275 8276 8277
                      env->exception.syndrome >> ARM_EL_EC_SHIFT,
                      env->exception.syndrome);
    }

    if (arm_is_psci_call(cpu, cs->exception_index)) {
        arm_handle_psci_call(cpu);
        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
        return;
    }

8278 8279 8280
    /* Semihosting semantics depend on the register width of the
     * code that caused the exception, not the target exception level,
     * so must be handled here.
8281
     */
8282 8283 8284 8285
    if (check_for_semihosting(cs)) {
        return;
    }

8286 8287 8288 8289 8290 8291 8292 8293
    /* Hooks may change global state so BQL should be held, also the
     * BQL needs to be held for any modification of
     * cs->interrupt_request.
     */
    g_assert(qemu_mutex_iothread_locked());

    arm_call_pre_el_change_hook(cpu);

8294 8295
    assert(!excp_is_internal(cs->exception_index));
    if (arm_el_is_aa64(env, new_el)) {
8296 8297 8298 8299
        arm_cpu_do_interrupt_aarch64(cs);
    } else {
        arm_cpu_do_interrupt_aarch32(cs);
    }
8300

8301 8302
    arm_call_el_change_hook(cpu);

8303 8304 8305 8306
    if (!kvm_enabled()) {
        cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
    }
}
8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321

/* Return the exception level which controls this address translation regime */
static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S2NS:
    case ARMMMUIdx_S1E2:
        return 2;
    case ARMMMUIdx_S1E3:
        return 3;
    case ARMMMUIdx_S1SE0:
        return arm_el_is_aa64(env, 3) ? 1 : 3;
    case ARMMMUIdx_S1SE1:
    case ARMMMUIdx_S1NSE0:
    case ARMMMUIdx_S1NSE1:
8322 8323
    case ARMMMUIdx_MPrivNegPri:
    case ARMMMUIdx_MUserNegPri:
8324 8325
    case ARMMMUIdx_MPriv:
    case ARMMMUIdx_MUser:
8326 8327
    case ARMMMUIdx_MSPrivNegPri:
    case ARMMMUIdx_MSUserNegPri:
8328 8329
    case ARMMMUIdx_MSPriv:
    case ARMMMUIdx_MSUser:
8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345
        return 1;
    default:
        g_assert_not_reached();
    }
}

/* Return the SCTLR value which controls this address translation regime */
static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
}

/* Return true if the specified stage of address translation is disabled */
static inline bool regime_translation_disabled(CPUARMState *env,
                                               ARMMMUIdx mmu_idx)
{
8346
    if (arm_feature(env, ARM_FEATURE_M)) {
8347
        switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8348 8349 8350
                (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
        case R_V7M_MPU_CTRL_ENABLE_MASK:
            /* Enabled, but not for HardFault and NMI */
8351
            return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8352 8353 8354 8355 8356 8357 8358 8359 8360 8361
        case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
            /* Enabled for all cases */
            return false;
        case 0:
        default:
            /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
             * we warned about that in armv7m_nvic.c when the guest set it.
             */
            return true;
        }
8362 8363
    }

8364 8365 8366 8367 8368 8369
    if (mmu_idx == ARMMMUIdx_S2NS) {
        return (env->cp15.hcr_el2 & HCR_VM) == 0;
    }
    return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
}

8370 8371 8372 8373 8374 8375
static inline bool regime_translation_big_endian(CPUARMState *env,
                                                 ARMMMUIdx mmu_idx)
{
    return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
}

8376 8377 8378 8379
/* Return the TCR controlling this translation regime */
static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
E
Edgar E. Iglesias 已提交
8380
        return &env->cp15.vtcr_el2;
8381 8382 8383 8384
    }
    return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
}

8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395
/* Convert a possible stage1+2 MMU index into the appropriate
 * stage 1 MMU index
 */
static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
        mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
    }
    return mmu_idx;
}

8396 8397 8398 8399 8400 8401 8402
/* Returns TBI0 value for current regime el */
uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    TCR *tcr;
    uint32_t el;

    /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8403 8404 8405
     * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
     */
    mmu_idx = stage_1_mmu_idx(mmu_idx);
8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423

    tcr = regime_tcr(env, mmu_idx);
    el = regime_el(env, mmu_idx);

    if (el > 1) {
        return extract64(tcr->raw_tcr, 20, 1);
    } else {
        return extract64(tcr->raw_tcr, 37, 1);
    }
}

/* Returns TBI1 value for current regime el */
uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    TCR *tcr;
    uint32_t el;

    /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8424 8425 8426
     * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
     */
    mmu_idx = stage_1_mmu_idx(mmu_idx);
8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437

    tcr = regime_tcr(env, mmu_idx);
    el = regime_el(env, mmu_idx);

    if (el > 1) {
        return 0;
    } else {
        return extract64(tcr->raw_tcr, 38, 1);
    }
}

8438 8439 8440 8441 8442
/* Return the TTBR associated with this translation regime */
static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
                                   int ttbrn)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
E
Edgar E. Iglesias 已提交
8443
        return env->cp15.vttbr_el2;
8444 8445 8446 8447 8448 8449 8450 8451
    }
    if (ttbrn == 0) {
        return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
    } else {
        return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
    }
}

8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466
/* Return true if the translation regime is using LPAE format page tables */
static inline bool regime_using_lpae_format(CPUARMState *env,
                                            ARMMMUIdx mmu_idx)
{
    int el = regime_el(env, mmu_idx);
    if (el == 2 || arm_el_is_aa64(env, el)) {
        return true;
    }
    if (arm_feature(env, ARM_FEATURE_LPAE)
        && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
        return true;
    }
    return false;
}

8467 8468 8469 8470
/* Returns true if the stage 1 translation regime is using LPAE format page
 * tables. Used when raising alignment exceptions, whose FSR changes depending
 * on whether the long or short descriptor format is in use. */
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8471
{
8472
    mmu_idx = stage_1_mmu_idx(mmu_idx);
8473

8474 8475 8476
    return regime_using_lpae_format(env, mmu_idx);
}

8477 8478 8479 8480 8481
static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S1SE0:
    case ARMMMUIdx_S1NSE0:
8482
    case ARMMMUIdx_MUser:
8483
    case ARMMMUIdx_MSUser:
8484 8485
    case ARMMMUIdx_MUserNegPri:
    case ARMMMUIdx_MSUserNegPri:
8486 8487 8488 8489 8490 8491 8492 8493 8494
        return true;
    default:
        return false;
    case ARMMMUIdx_S12NSE0:
    case ARMMMUIdx_S12NSE1:
        g_assert_not_reached();
    }
}

8495 8496
/* Translate section/page access permissions to page
 * R/W protection flags
8497 8498 8499 8500 8501
 *
 * @env:         CPUARMState
 * @mmu_idx:     MMU index indicating required translation regime
 * @ap:          The 3-bit access permissions (AP[2:0])
 * @domain_prot: The 2-bit domain access permissions
8502 8503 8504 8505
 */
static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
                                int ap, int domain_prot)
{
8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527
    bool is_user = regime_is_user(env, mmu_idx);

    if (domain_prot == 3) {
        return PAGE_READ | PAGE_WRITE;
    }

    switch (ap) {
    case 0:
        if (arm_feature(env, ARM_FEATURE_V7)) {
            return 0;
        }
        switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
        case SCTLR_S:
            return is_user ? 0 : PAGE_READ;
        case SCTLR_R:
            return PAGE_READ;
        default:
            return 0;
        }
    case 1:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 2:
8528
        if (is_user) {
8529
            return PAGE_READ;
8530
        } else {
8531
            return PAGE_READ | PAGE_WRITE;
8532
        }
8533 8534 8535 8536 8537
    case 3:
        return PAGE_READ | PAGE_WRITE;
    case 4: /* Reserved.  */
        return 0;
    case 5:
8538
        return is_user ? 0 : PAGE_READ;
8539
    case 6:
8540
        return PAGE_READ;
8541
    case 7:
8542
        if (!arm_feature(env, ARM_FEATURE_V6K)) {
8543
            return 0;
8544
        }
8545
        return PAGE_READ;
8546
    default:
8547
        g_assert_not_reached();
8548
    }
B
bellard 已提交
8549 8550
}

8551 8552 8553 8554
/* Translate section/page access permissions to page
 * R/W protection flags.
 *
 * @ap:      The 2-bit simple AP (AP[2:1])
8555
 * @is_user: TRUE if accessing from PL0
8556
 */
8557
static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572
{
    switch (ap) {
    case 0:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 1:
        return PAGE_READ | PAGE_WRITE;
    case 2:
        return is_user ? 0 : PAGE_READ;
    case 3:
        return PAGE_READ;
    default:
        g_assert_not_reached();
    }
}

8573 8574 8575 8576 8577 8578
static inline int
simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
{
    return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
}

8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595
/* Translate S2 section/page access permissions to protection flags
 *
 * @env:     CPUARMState
 * @s2ap:    The 2-bit stage2 access permissions (S2AP)
 * @xn:      XN (execute-never) bit
 */
static int get_S2prot(CPUARMState *env, int s2ap, int xn)
{
    int prot = 0;

    if (s2ap & 1) {
        prot |= PAGE_READ;
    }
    if (s2ap & 2) {
        prot |= PAGE_WRITE;
    }
    if (!xn) {
8596 8597 8598
        if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
            prot |= PAGE_EXEC;
        }
8599 8600 8601 8602
    }
    return prot;
}

8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683
/* Translate section/page access permissions to protection flags
 *
 * @env:     CPUARMState
 * @mmu_idx: MMU index indicating required translation regime
 * @is_aa64: TRUE if AArch64
 * @ap:      The 2-bit simple AP (AP[2:1])
 * @ns:      NS (non-secure) bit
 * @xn:      XN (execute-never) bit
 * @pxn:     PXN (privileged execute-never) bit
 */
static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
                      int ap, int ns, int xn, int pxn)
{
    bool is_user = regime_is_user(env, mmu_idx);
    int prot_rw, user_rw;
    bool have_wxn;
    int wxn = 0;

    assert(mmu_idx != ARMMMUIdx_S2NS);

    user_rw = simple_ap_to_rw_prot_is_user(ap, true);
    if (is_user) {
        prot_rw = user_rw;
    } else {
        prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
    }

    if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
        return prot_rw;
    }

    /* TODO have_wxn should be replaced with
     *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
     * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
     * compatible processors have EL2, which is required for [U]WXN.
     */
    have_wxn = arm_feature(env, ARM_FEATURE_LPAE);

    if (have_wxn) {
        wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
    }

    if (is_aa64) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
            if (!is_user) {
                xn = pxn || (user_rw & PAGE_WRITE);
            }
            break;
        case 2:
        case 3:
            break;
        }
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
        case 3:
            if (is_user) {
                xn = xn || !(user_rw & PAGE_READ);
            } else {
                int uwxn = 0;
                if (have_wxn) {
                    uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
                }
                xn = xn || !(prot_rw & PAGE_READ) || pxn ||
                     (uwxn && (user_rw & PAGE_WRITE));
            }
            break;
        case 2:
            break;
        }
    } else {
        xn = wxn = 0;
    }

    if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
        return prot_rw;
    }
    return prot_rw | PAGE_EXEC;
}

8684 8685
static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
                                     uint32_t *table, uint32_t address)
8686
{
8687 8688
    /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
    TCR *tcr = regime_tcr(env, mmu_idx);
F
Fabian Aggeler 已提交
8689 8690 8691

    if (address & tcr->mask) {
        if (tcr->raw_tcr & TTBCR_PD1) {
8692 8693 8694
            /* Translation table walk disabled for TTBR1 */
            return false;
        }
8695
        *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8696
    } else {
F
Fabian Aggeler 已提交
8697
        if (tcr->raw_tcr & TTBCR_PD0) {
8698 8699 8700
            /* Translation table walk disabled for TTBR0 */
            return false;
        }
8701
        *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8702 8703 8704
    }
    *table |= (address >> 18) & 0x3ffc;
    return true;
8705 8706
}

8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719
/* Translate a S1 pagetable walk through S2 if needed.  */
static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
                               hwaddr addr, MemTxAttrs txattrs,
                               ARMMMUFaultInfo *fi)
{
    if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
        !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
        target_ulong s2size;
        hwaddr s2pa;
        int s2prot;
        int ret;

        ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8720
                                 &txattrs, &s2prot, &s2size, fi, NULL);
8721
        if (ret) {
8722
            assert(fi->type != ARMFault_None);
8723 8724 8725 8726 8727 8728 8729 8730 8731 8732
            fi->s2addr = addr;
            fi->stage2 = true;
            fi->s1ptw = true;
            return ~0;
        }
        addr = s2pa;
    }
    return addr;
}

8733
/* All loads done in the course of a page table walk go through here. */
8734
static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8735
                            ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8736
{
8737 8738
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
8739
    MemTxAttrs attrs = {};
8740
    MemTxResult result = MEMTX_OK;
8741
    AddressSpace *as;
8742
    uint32_t data;
8743 8744

    attrs.secure = is_secure;
8745
    as = arm_addressspace(cs, attrs);
8746
    addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8747 8748 8749
    if (fi->s1ptw) {
        return 0;
    }
8750
    if (regime_translation_big_endian(env, mmu_idx)) {
8751
        data = address_space_ldl_be(as, addr, attrs, &result);
8752
    } else {
8753
        data = address_space_ldl_le(as, addr, attrs, &result);
8754
    }
8755 8756 8757 8758 8759 8760
    if (result == MEMTX_OK) {
        return data;
    }
    fi->type = ARMFault_SyncExternalOnWalk;
    fi->ea = arm_extabort_type(result);
    return 0;
8761 8762
}

8763
static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8764
                            ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8765
{
8766 8767
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
8768
    MemTxAttrs attrs = {};
8769
    MemTxResult result = MEMTX_OK;
8770
    AddressSpace *as;
8771
    uint64_t data;
8772 8773

    attrs.secure = is_secure;
8774
    as = arm_addressspace(cs, attrs);
8775
    addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8776 8777 8778
    if (fi->s1ptw) {
        return 0;
    }
8779
    if (regime_translation_big_endian(env, mmu_idx)) {
8780
        data = address_space_ldq_be(as, addr, attrs, &result);
8781
    } else {
8782 8783 8784 8785
        data = address_space_ldq_le(as, addr, attrs, &result);
    }
    if (result == MEMTX_OK) {
        return data;
8786
    }
8787 8788 8789
    fi->type = ARMFault_SyncExternalOnWalk;
    fi->ea = arm_extabort_type(result);
    return 0;
8790 8791
}

8792
static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8793
                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
8794
                             hwaddr *phys_ptr, int *prot,
8795
                             target_ulong *page_size,
8796
                             ARMMMUFaultInfo *fi)
B
bellard 已提交
8797
{
8798
    CPUState *cs = CPU(arm_env_get_cpu(env));
8799
    int level = 1;
B
bellard 已提交
8800 8801 8802 8803
    uint32_t table;
    uint32_t desc;
    int type;
    int ap;
8804
    int domain = 0;
8805
    int domain_prot;
A
Avi Kivity 已提交
8806
    hwaddr phys_addr;
8807
    uint32_t dacr;
B
bellard 已提交
8808

P
pbrook 已提交
8809 8810
    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
8811
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8812
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
8813
        fi->type = ARMFault_Translation;
8814 8815
        goto do_fault;
    }
8816
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8817
                       mmu_idx, fi);
8818 8819 8820
    if (fi->type != ARMFault_None) {
        goto do_fault;
    }
P
pbrook 已提交
8821
    type = (desc & 3);
8822
    domain = (desc >> 5) & 0x0f;
8823 8824 8825 8826 8827 8828
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
P
pbrook 已提交
8829
    if (type == 0) {
8830
        /* Section translation fault.  */
8831
        fi->type = ARMFault_Translation;
P
pbrook 已提交
8832 8833
        goto do_fault;
    }
8834 8835 8836
    if (type != 2) {
        level = 2;
    }
8837
    if (domain_prot == 0 || domain_prot == 2) {
8838
        fi->type = ARMFault_Domain;
P
pbrook 已提交
8839 8840 8841 8842 8843 8844
        goto do_fault;
    }
    if (type == 2) {
        /* 1Mb section.  */
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
        ap = (desc >> 10) & 3;
P
Paul Brook 已提交
8845
        *page_size = 1024 * 1024;
P
pbrook 已提交
8846 8847
    } else {
        /* Lookup l2 entry.  */
8848 8849 8850 8851 8852 8853 8854
        if (type == 1) {
            /* Coarse pagetable.  */
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
        } else {
            /* Fine pagetable.  */
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
        }
8855
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8856
                           mmu_idx, fi);
8857 8858 8859
        if (fi->type != ARMFault_None) {
            goto do_fault;
        }
P
pbrook 已提交
8860 8861
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
8862
            fi->type = ARMFault_Translation;
P
pbrook 已提交
8863 8864 8865 8866
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
P
Paul Brook 已提交
8867
            *page_size = 0x10000;
P
pbrook 已提交
8868
            break;
P
pbrook 已提交
8869 8870
        case 2: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8871
            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
P
Paul Brook 已提交
8872
            *page_size = 0x1000;
P
pbrook 已提交
8873
            break;
8874
        case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8875
            if (type == 1) {
8876 8877 8878
                /* ARMv6/XScale extended small page format */
                if (arm_feature(env, ARM_FEATURE_XSCALE)
                    || arm_feature(env, ARM_FEATURE_V6)) {
8879
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8880
                    *page_size = 0x1000;
8881
                } else {
8882 8883 8884
                    /* UNPREDICTABLE in ARMv5; we choose to take a
                     * page translation fault.
                     */
8885
                    fi->type = ARMFault_Translation;
8886 8887 8888 8889
                    goto do_fault;
                }
            } else {
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8890
                *page_size = 0x400;
8891
            }
P
pbrook 已提交
8892
            ap = (desc >> 4) & 3;
P
pbrook 已提交
8893 8894
            break;
        default:
P
pbrook 已提交
8895 8896
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
P
pbrook 已提交
8897
        }
P
pbrook 已提交
8898
    }
8899 8900 8901
    *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
    *prot |= *prot ? PAGE_EXEC : 0;
    if (!(*prot & (1 << access_type))) {
P
pbrook 已提交
8902
        /* Access permission fault.  */
8903
        fi->type = ARMFault_Permission;
P
pbrook 已提交
8904 8905 8906
        goto do_fault;
    }
    *phys_ptr = phys_addr;
8907
    return false;
P
pbrook 已提交
8908
do_fault:
8909 8910
    fi->domain = domain;
    fi->level = level;
8911
    return true;
P
pbrook 已提交
8912 8913
}

8914
static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8915
                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
8916
                             hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8917
                             target_ulong *page_size, ARMMMUFaultInfo *fi)
P
pbrook 已提交
8918
{
8919
    CPUState *cs = CPU(arm_env_get_cpu(env));
8920
    int level = 1;
P
pbrook 已提交
8921 8922 8923
    uint32_t table;
    uint32_t desc;
    uint32_t xn;
8924
    uint32_t pxn = 0;
P
pbrook 已提交
8925 8926
    int type;
    int ap;
8927
    int domain = 0;
8928
    int domain_prot;
A
Avi Kivity 已提交
8929
    hwaddr phys_addr;
8930
    uint32_t dacr;
8931
    bool ns;
P
pbrook 已提交
8932 8933 8934

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
8935
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8936
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
8937
        fi->type = ARMFault_Translation;
8938 8939
        goto do_fault;
    }
8940
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8941
                       mmu_idx, fi);
8942 8943 8944
    if (fi->type != ARMFault_None) {
        goto do_fault;
    }
P
pbrook 已提交
8945
    type = (desc & 3);
8946 8947 8948 8949
    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
        /* Section translation fault, or attempt to use the encoding
         * which is Reserved on implementations without PXN.
         */
8950
        fi->type = ARMFault_Translation;
P
pbrook 已提交
8951
        goto do_fault;
8952 8953 8954
    }
    if ((type == 1) || !(desc & (1 << 18))) {
        /* Page or Section.  */
8955
        domain = (desc >> 5) & 0x0f;
P
pbrook 已提交
8956
    }
8957 8958 8959 8960 8961
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
8962 8963 8964
    if (type == 1) {
        level = 2;
    }
8965
    domain_prot = (dacr >> (domain * 2)) & 3;
8966
    if (domain_prot == 0 || domain_prot == 2) {
8967 8968
        /* Section or Page domain fault */
        fi->type = ARMFault_Domain;
P
pbrook 已提交
8969 8970
        goto do_fault;
    }
8971
    if (type != 1) {
P
pbrook 已提交
8972 8973 8974
        if (desc & (1 << 18)) {
            /* Supersection.  */
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
8975 8976
            phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
            phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
P
Paul Brook 已提交
8977
            *page_size = 0x1000000;
B
bellard 已提交
8978
        } else {
P
pbrook 已提交
8979 8980
            /* Section.  */
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
P
Paul Brook 已提交
8981
            *page_size = 0x100000;
B
bellard 已提交
8982
        }
P
pbrook 已提交
8983 8984
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
        xn = desc & (1 << 4);
8985
        pxn = desc & 1;
8986
        ns = extract32(desc, 19, 1);
P
pbrook 已提交
8987
    } else {
8988 8989 8990
        if (arm_feature(env, ARM_FEATURE_PXN)) {
            pxn = (desc >> 2) & 1;
        }
8991
        ns = extract32(desc, 3, 1);
P
pbrook 已提交
8992 8993
        /* Lookup l2 entry.  */
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8994
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8995
                           mmu_idx, fi);
8996 8997 8998
        if (fi->type != ARMFault_None) {
            goto do_fault;
        }
P
pbrook 已提交
8999 9000 9001
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
9002
            fi->type = ARMFault_Translation;
B
bellard 已提交
9003
            goto do_fault;
P
pbrook 已提交
9004 9005 9006
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            xn = desc & (1 << 15);
P
Paul Brook 已提交
9007
            *page_size = 0x10000;
P
pbrook 已提交
9008 9009 9010 9011
            break;
        case 2: case 3: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            xn = desc & 1;
P
Paul Brook 已提交
9012
            *page_size = 0x1000;
P
pbrook 已提交
9013 9014 9015 9016
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
B
bellard 已提交
9017
        }
P
pbrook 已提交
9018
    }
9019
    if (domain_prot == 3) {
9020 9021
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    } else {
9022
        if (pxn && !regime_is_user(env, mmu_idx)) {
9023 9024
            xn = 1;
        }
9025 9026
        if (xn && access_type == MMU_INST_FETCH) {
            fi->type = ARMFault_Permission;
9027
            goto do_fault;
9028
        }
P
pbrook 已提交
9029

9030 9031 9032 9033 9034
        if (arm_feature(env, ARM_FEATURE_V6K) &&
                (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
            /* The simplified model uses AP[0] as an access control bit.  */
            if ((ap & 1) == 0) {
                /* Access flag fault.  */
9035
                fi->type = ARMFault_AccessFlag;
9036 9037 9038 9039 9040
                goto do_fault;
            }
            *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
        } else {
            *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9041
        }
9042 9043 9044 9045
        if (*prot && !xn) {
            *prot |= PAGE_EXEC;
        }
        if (!(*prot & (1 << access_type))) {
9046
            /* Access permission fault.  */
9047
            fi->type = ARMFault_Permission;
9048 9049
            goto do_fault;
        }
9050
    }
9051 9052 9053 9054 9055 9056 9057
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        attrs->secure = false;
    }
P
pbrook 已提交
9058
    *phys_ptr = phys_addr;
9059
    return false;
B
bellard 已提交
9060
do_fault:
9061 9062
    fi->domain = domain;
    fi->level = level;
9063
    return true;
B
bellard 已提交
9064 9065
}

9066
/*
9067
 * check_s2_mmu_setup
9068 9069 9070 9071 9072 9073
 * @cpu:        ARMCPU
 * @is_aa64:    True if the translation regime is in AArch64 state
 * @startlevel: Suggested starting level
 * @inputsize:  Bitsize of IPAs
 * @stride:     Page-table stride (See the ARM ARM)
 *
9074 9075
 * Returns true if the suggested S2 translation parameters are OK and
 * false otherwise.
9076
 */
9077 9078
static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
                               int inputsize, int stride)
9079
{
9080 9081 9082
    const int grainsize = stride + 3;
    int startsizecheck;

9083 9084 9085 9086 9087
    /* Negative levels are never allowed.  */
    if (level < 0) {
        return false;
    }

9088 9089 9090 9091 9092
    startsizecheck = inputsize - ((3 - level) * stride + grainsize);
    if (startsizecheck < 1 || startsizecheck > stride + 4) {
        return false;
    }

9093
    if (is_aa64) {
9094
        CPUARMState *env = &cpu->env;
9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115
        unsigned int pamax = arm_pamax(cpu);

        switch (stride) {
        case 13: /* 64KB Pages.  */
            if (level == 0 || (level == 1 && pamax <= 42)) {
                return false;
            }
            break;
        case 11: /* 16KB Pages.  */
            if (level == 0 || (level == 1 && pamax <= 40)) {
                return false;
            }
            break;
        case 9: /* 4KB Pages.  */
            if (level == 0 && pamax <= 42) {
                return false;
            }
            break;
        default:
            g_assert_not_reached();
        }
9116 9117 9118 9119 9120 9121 9122

        /* Inputsize checks.  */
        if (inputsize > pamax &&
            (arm_el_is_aa64(env, 1) || inputsize > 40)) {
            /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
            return false;
        }
9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133
    } else {
        /* AArch32 only supports 4KB pages. Assert on that.  */
        assert(stride == 9);

        if (level == 0) {
            return false;
        }
    }
    return true;
}

9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163
/* Translate from the 4-bit stage 2 representation of
 * memory attributes (without cache-allocation hints) to
 * the 8-bit representation of the stage 1 MAIR registers
 * (which includes allocation hints).
 *
 * ref: shared/translation/attrs/S2AttrDecode()
 *      .../S2ConvertAttrsHints()
 */
static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
{
    uint8_t hiattr = extract32(s2attrs, 2, 2);
    uint8_t loattr = extract32(s2attrs, 0, 2);
    uint8_t hihint = 0, lohint = 0;

    if (hiattr != 0) { /* normal memory */
        if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
            hiattr = loattr = 1; /* non-cacheable */
        } else {
            if (hiattr != 1) { /* Write-through or write-back */
                hihint = 3; /* RW allocate */
            }
            if (loattr != 1) { /* Write-through or write-back */
                lohint = 3; /* RW allocate */
            }
        }
    }

    return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
}

9164
static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9165
                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
9166
                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9167
                               target_ulong *page_size_ptr,
9168
                               ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9169
{
9170 9171
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
9172
    /* Read an LPAE long-descriptor translation table. */
9173
    ARMFaultType fault_type = ARMFault_Translation;
9174
    uint32_t level;
9175
    uint32_t epd = 0;
9176
    int32_t t0sz, t1sz;
9177
    uint32_t tg;
9178 9179
    uint64_t ttbr;
    int ttbr_select;
9180
    hwaddr descaddr, indexmask, indexmask_grainsize;
9181 9182 9183
    uint32_t tableattrs;
    target_ulong page_size;
    uint32_t attrs;
9184
    int32_t stride = 9;
9185
    int32_t addrsize;
9186
    int inputsize;
9187
    int32_t tbi = 0;
9188
    TCR *tcr = regime_tcr(env, mmu_idx);
9189
    int ap, ns, xn, pxn;
9190 9191
    uint32_t el = regime_el(env, mmu_idx);
    bool ttbr1_valid = true;
9192
    uint64_t descaddrmask;
9193
    bool aarch64 = arm_el_is_aa64(env, el);
9194 9195

    /* TODO:
9196 9197 9198 9199
     * This code does not handle the different format TCR for VTCR_EL2.
     * This code also does not support shareability levels.
     * Attribute and permission bit handling should also be checked when adding
     * support for those page table walks.
9200
     */
9201
    if (aarch64) {
9202
        level = 0;
9203
        addrsize = 64;
9204
        if (el > 1) {
9205 9206 9207
            if (mmu_idx != ARMMMUIdx_S2NS) {
                tbi = extract64(tcr->raw_tcr, 20, 1);
            }
9208 9209 9210 9211 9212 9213 9214
        } else {
            if (extract64(address, 55, 1)) {
                tbi = extract64(tcr->raw_tcr, 38, 1);
            } else {
                tbi = extract64(tcr->raw_tcr, 37, 1);
            }
        }
9215
        tbi *= 8;
9216 9217 9218 9219 9220 9221 9222

        /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
         * invalid.
         */
        if (el > 1) {
            ttbr1_valid = false;
        }
9223
    } else {
9224
        level = 1;
9225
        addrsize = 32;
9226 9227 9228 9229
        /* There is no TTBR1 for EL2 */
        if (el == 2) {
            ttbr1_valid = false;
        }
9230
    }
9231 9232 9233 9234 9235 9236

    /* Determine whether this address is in the region controlled by
     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
     */
9237
    if (aarch64) {
9238 9239
        /* AArch64 translation.  */
        t0sz = extract32(tcr->raw_tcr, 0, 6);
9240 9241
        t0sz = MIN(t0sz, 39);
        t0sz = MAX(t0sz, 16);
9242 9243 9244 9245 9246 9247 9248
    } else if (mmu_idx != ARMMMUIdx_S2NS) {
        /* AArch32 stage 1 translation.  */
        t0sz = extract32(tcr->raw_tcr, 0, 3);
    } else {
        /* AArch32 stage 2 translation.  */
        bool sext = extract32(tcr->raw_tcr, 4, 1);
        bool sign = extract32(tcr->raw_tcr, 3, 1);
9249 9250 9251 9252 9253 9254
        /* Address size is 40-bit for a stage 2 translation,
         * and t0sz can be negative (from -8 to 7),
         * so we need to adjust it to use the TTBR selecting logic below.
         */
        addrsize = 40;
        t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
9255 9256 9257 9258 9259

        /* If the sign-extend bit is not the same as t0sz[3], the result
         * is unpredictable. Flag this as a guest error.  */
        if (sign != sext) {
            qemu_log_mask(LOG_GUEST_ERROR,
M
Michael Tokarev 已提交
9260
                          "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9261
        }
9262
    }
9263
    t1sz = extract32(tcr->raw_tcr, 16, 6);
9264
    if (aarch64) {
9265 9266 9267
        t1sz = MIN(t1sz, 39);
        t1sz = MAX(t1sz, 16);
    }
9268
    if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
9269 9270
        /* there is a ttbr0 region and we are in it (high bits all zero) */
        ttbr_select = 0;
9271
    } else if (ttbr1_valid && t1sz &&
9272
               !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
9273 9274 9275 9276 9277
        /* there is a ttbr1 region and we are in it (high bits all one) */
        ttbr_select = 1;
    } else if (!t0sz) {
        /* ttbr0 region is "everything not in the ttbr1 region" */
        ttbr_select = 0;
9278
    } else if (!t1sz && ttbr1_valid) {
9279 9280 9281 9282
        /* ttbr1 region is "everything not in the ttbr0 region" */
        ttbr_select = 1;
    } else {
        /* in the gap between the two regions, this is a Translation fault */
9283
        fault_type = ARMFault_Translation;
9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294
        goto do_fault;
    }

    /* Note that QEMU ignores shareability and cacheability attributes,
     * so we don't need to do anything with the SH, ORGN, IRGN fields
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
     * implement any ASID-like capability so we can ignore it (instead
     * we will always flush the TLB any time the ASID is changed).
     */
    if (ttbr_select == 0) {
9295
        ttbr = regime_ttbr(env, mmu_idx, 0);
9296 9297 9298
        if (el < 2) {
            epd = extract32(tcr->raw_tcr, 7, 1);
        }
9299
        inputsize = addrsize - t0sz;
9300

F
Fabian Aggeler 已提交
9301
        tg = extract32(tcr->raw_tcr, 14, 2);
9302
        if (tg == 1) { /* 64KB pages */
9303
            stride = 13;
9304 9305
        }
        if (tg == 2) { /* 16KB pages */
9306
            stride = 11;
9307
        }
9308
    } else {
9309 9310 9311
        /* We should only be here if TTBR1 is valid */
        assert(ttbr1_valid);

9312
        ttbr = regime_ttbr(env, mmu_idx, 1);
F
Fabian Aggeler 已提交
9313
        epd = extract32(tcr->raw_tcr, 23, 1);
9314
        inputsize = addrsize - t1sz;
9315

F
Fabian Aggeler 已提交
9316
        tg = extract32(tcr->raw_tcr, 30, 2);
9317
        if (tg == 3)  { /* 64KB pages */
9318
            stride = 13;
9319 9320
        }
        if (tg == 1) { /* 16KB pages */
9321
            stride = 11;
9322
        }
9323 9324
    }

9325
    /* Here we should have set up all the parameters for the translation:
9326
     * inputsize, ttbr, epd, stride, tbi
9327 9328
     */

9329
    if (epd) {
9330 9331 9332
        /* Translation table walk disabled => Translation fault on TLB miss
         * Note: This is always 0 on 64-bit EL2 and EL3.
         */
9333 9334 9335
        goto do_fault;
    }

9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352
    if (mmu_idx != ARMMMUIdx_S2NS) {
        /* The starting level depends on the virtual address size (which can
         * be up to 48 bits) and the translation granule size. It indicates
         * the number of strides (stride bits at a time) needed to
         * consume the bits of the input address. In the pseudocode this is:
         *  level = 4 - RoundUp((inputsize - grainsize) / stride)
         * where their 'inputsize' is our 'inputsize', 'grainsize' is
         * our 'stride + 3' and 'stride' is our 'stride'.
         * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
         * = 4 - (inputsize - stride - 3 + stride - 1) / stride
         * = 4 - (inputsize - 4) / stride;
         */
        level = 4 - (inputsize - 4) / stride;
    } else {
        /* For stage 2 translations the starting level is specified by the
         * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
         */
9353 9354
        uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
        uint32_t startlevel;
9355 9356
        bool ok;

9357
        if (!aarch64 || stride == 9) {
9358
            /* AArch32 or 4KB pages */
9359
            startlevel = 2 - sl0;
9360 9361
        } else {
            /* 16KB or 64KB pages */
9362
            startlevel = 3 - sl0;
9363 9364 9365
        }

        /* Check that the starting level is valid. */
9366
        ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9367
                                inputsize, stride);
9368
        if (!ok) {
9369
            fault_type = ARMFault_Translation;
9370 9371
            goto do_fault;
        }
9372
        level = startlevel;
9373
    }
9374

9375 9376
    indexmask_grainsize = (1ULL << (stride + 3)) - 1;
    indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9377 9378

    /* Now we can extract the actual base address from the TTBR */
9379
    descaddr = extract64(ttbr, 0, 48);
9380
    descaddr &= ~indexmask;
9381

9382
    /* The address field in the descriptor goes up to bit 39 for ARMv7
9383 9384 9385
     * but up to bit 47 for ARMv8, but we use the descaddrmask
     * up to bit 39 for AArch32, because we don't need other bits in that case
     * to construct next descriptor address (anyway they should be all zeroes).
9386
     */
9387
    descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9388
                   ~indexmask_grainsize;
9389

9390 9391 9392 9393 9394 9395
    /* Secure accesses start with the page table in secure memory and
     * can be downgraded to non-secure at any step. Non-secure accesses
     * remain non-secure. We implement this by just ORing in the NSTable/NS
     * bits at each step.
     */
    tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9396 9397
    for (;;) {
        uint64_t descriptor;
9398
        bool nstable;
9399

9400
        descaddr |= (address >> (stride * (4 - level))) & indexmask;
9401
        descaddr &= ~7ULL;
9402
        nstable = extract32(tableattrs, 4, 1);
9403
        descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9404
        if (fi->type != ARMFault_None) {
9405 9406 9407
            goto do_fault;
        }

9408 9409 9410 9411 9412
        if (!(descriptor & 1) ||
            (!(descriptor & 2) && (level == 3))) {
            /* Invalid, or the Reserved level 3 encoding */
            goto do_fault;
        }
9413
        descaddr = descriptor & descaddrmask;
9414 9415 9416 9417 9418 9419 9420 9421 9422

        if ((descriptor & 2) && (level < 3)) {
            /* Table entry. The top five bits are attributes which  may
             * propagate down through lower levels of the table (and
             * which are all arranged so that 0 means "no effect", so
             * we can gather them up by ORing in the bits at each level).
             */
            tableattrs |= extract64(descriptor, 59, 5);
            level++;
9423
            indexmask = indexmask_grainsize;
9424 9425 9426 9427 9428 9429
            continue;
        }
        /* Block entry at level 1 or 2, or page entry at level 3.
         * These are basically the same thing, although the number
         * of bits we pull in from the vaddr varies.
         */
9430
        page_size = (1ULL << ((stride * (4 - level)) + 3));
9431
        descaddr |= (address & (page_size - 1));
9432
        /* Extract attributes from the descriptor */
9433 9434
        attrs = extract64(descriptor, 2, 10)
            | (extract64(descriptor, 52, 12) << 10);
9435 9436 9437 9438 9439 9440

        if (mmu_idx == ARMMMUIdx_S2NS) {
            /* Stage 2 table descriptors do not include any attribute fields */
            break;
        }
        /* Merge in attributes from table descriptors */
9441 9442 9443 9444 9445 9446 9447 9448
        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
         * means "force PL1 access only", which means forcing AP[1] to 0.
         */
        if (extract32(tableattrs, 2, 1)) {
            attrs &= ~(1 << 4);
        }
9449
        attrs |= nstable << 3; /* NS */
9450 9451 9452 9453 9454
        break;
    }
    /* Here descaddr is the final physical address, and attributes
     * are all in attrs.
     */
9455
    fault_type = ARMFault_AccessFlag;
9456 9457 9458 9459
    if ((attrs & (1 << 8)) == 0) {
        /* Access flag */
        goto do_fault;
    }
9460 9461 9462 9463

    ap = extract32(attrs, 4, 2);
    xn = extract32(attrs, 12, 1);

9464 9465 9466 9467 9468 9469
    if (mmu_idx == ARMMMUIdx_S2NS) {
        ns = true;
        *prot = get_S2prot(env, ap, xn);
    } else {
        ns = extract32(attrs, 3, 1);
        pxn = extract32(attrs, 11, 1);
9470
        *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9471
    }
9472

9473
    fault_type = ARMFault_Permission;
9474
    if (!(*prot & (1 << access_type))) {
9475 9476 9477
        goto do_fault;
    }

9478 9479 9480 9481 9482 9483 9484
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        txattrs->secure = false;
    }
9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499

    if (cacheattrs != NULL) {
        if (mmu_idx == ARMMMUIdx_S2NS) {
            cacheattrs->attrs = convert_stage2_attrs(env,
                                                     extract32(attrs, 0, 4));
        } else {
            /* Index into MAIR registers for cache attributes */
            uint8_t attrindx = extract32(attrs, 0, 3);
            uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
            assert(attrindx <= 7);
            cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
        }
        cacheattrs->shareability = extract32(attrs, 6, 2);
    }

9500 9501
    *phys_ptr = descaddr;
    *page_size_ptr = page_size;
9502
    return false;
9503 9504

do_fault:
9505 9506
    fi->type = fault_type;
    fi->level = level;
9507 9508
    /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
    fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9509
    return true;
9510 9511
}

9512 9513 9514 9515
static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
                                                ARMMMUIdx mmu_idx,
                                                int32_t address, int *prot)
{
9516 9517 9518 9519 9520 9521 9522 9523 9524 9525
    if (!arm_feature(env, ARM_FEATURE_M)) {
        *prot = PAGE_READ | PAGE_WRITE;
        switch (address) {
        case 0xF0000000 ... 0xFFFFFFFF:
            if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
                /* hivecs execing is ok */
                *prot |= PAGE_EXEC;
            }
            break;
        case 0x00000000 ... 0x7FFFFFFF:
9526
            *prot |= PAGE_EXEC;
9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548
            break;
        }
    } else {
        /* Default system address map for M profile cores.
         * The architecture specifies which regions are execute-never;
         * at the MPU level no other checks are defined.
         */
        switch (address) {
        case 0x00000000 ... 0x1fffffff: /* ROM */
        case 0x20000000 ... 0x3fffffff: /* SRAM */
        case 0x60000000 ... 0x7fffffff: /* RAM */
        case 0x80000000 ... 0x9fffffff: /* RAM */
            *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
            break;
        case 0x40000000 ... 0x5fffffff: /* Peripheral */
        case 0xa0000000 ... 0xbfffffff: /* Device */
        case 0xc0000000 ... 0xdfffffff: /* Device */
        case 0xe0000000 ... 0xffffffff: /* System */
            *prot = PAGE_READ | PAGE_WRITE;
            break;
        default:
            g_assert_not_reached();
9549 9550 9551 9552
        }
    }
}

9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565
static bool pmsav7_use_background_region(ARMCPU *cpu,
                                         ARMMMUIdx mmu_idx, bool is_user)
{
    /* Return true if we should use the default memory map as a
     * "background" region if there are no hits against any MPU regions.
     */
    CPUARMState *env = &cpu->env;

    if (is_user) {
        return false;
    }

    if (arm_feature(env, ARM_FEATURE_M)) {
9566 9567
        return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
            & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9568 9569 9570 9571 9572
    } else {
        return regime_sctlr(env, mmu_idx) & SCTLR_BR;
    }
}

9573 9574 9575 9576 9577 9578 9579
static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
{
    /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
    return arm_feature(env, ARM_FEATURE_M) &&
        extract32(address, 20, 12) == 0xe00;
}

9580 9581 9582 9583 9584 9585 9586 9587
static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
{
    /* True if address is in the M profile system region
     * 0xe0000000 - 0xffffffff
     */
    return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
}

9588
static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9589
                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9590 9591
                                 hwaddr *phys_ptr, int *prot,
                                 ARMMMUFaultInfo *fi)
9592 9593 9594 9595 9596 9597 9598 9599
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int n;
    bool is_user = regime_is_user(env, mmu_idx);

    *phys_ptr = address;
    *prot = 0;

9600 9601 9602 9603 9604 9605 9606 9607 9608
    if (regime_translation_disabled(env, mmu_idx) ||
        m_is_ppb_region(env, address)) {
        /* MPU disabled or M profile PPB access: use default memory map.
         * The other case which uses the default memory map in the
         * v7M ARM ARM pseudocode is exception vector reads from the vector
         * table. In QEMU those accesses are done in arm_v7m_load_vector(),
         * which always does a direct read using address_space_ldl(), rather
         * than going via this function, so we don't need to check that here.
         */
9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622
        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
    } else { /* MPU enabled */
        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
            /* region search */
            uint32_t base = env->pmsav7.drbar[n];
            uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
            uint32_t rmask;
            bool srdis = false;

            if (!(env->pmsav7.drsr[n] & 0x1)) {
                continue;
            }

            if (!rsize) {
9623 9624
                qemu_log_mask(LOG_GUEST_ERROR,
                              "DRSR[%d]: Rsize field cannot be 0\n", n);
9625 9626 9627 9628 9629 9630
                continue;
            }
            rsize++;
            rmask = (1ull << rsize) - 1;

            if (base & rmask) {
9631 9632 9633 9634
                qemu_log_mask(LOG_GUEST_ERROR,
                              "DRBAR[%d]: 0x%" PRIx32 " misaligned "
                              "to DRSR region size, mask = 0x%" PRIx32 "\n",
                              n, base, rmask);
9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670
                continue;
            }

            if (address < base || address > base + rmask) {
                continue;
            }

            /* Region matched */

            if (rsize >= 8) { /* no subregions for regions < 256 bytes */
                int i, snd;
                uint32_t srdis_mask;

                rsize -= 3; /* sub region size (power of 2) */
                snd = ((address - base) >> rsize) & 0x7;
                srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);

                srdis_mask = srdis ? 0x3 : 0x0;
                for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
                    /* This will check in groups of 2, 4 and then 8, whether
                     * the subregion bits are consistent. rsize is incremented
                     * back up to give the region size, considering consistent
                     * adjacent subregions as one region. Stop testing if rsize
                     * is already big enough for an entire QEMU page.
                     */
                    int snd_rounded = snd & ~(i - 1);
                    uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
                                                     snd_rounded + 8, i);
                    if (srdis_mask ^ srdis_multi) {
                        break;
                    }
                    srdis_mask = (srdis_mask << i) | srdis_mask;
                    rsize++;
                }
            }
            if (rsize < TARGET_PAGE_BITS) {
9671
                qemu_log_mask(LOG_UNIMP,
9672 9673 9674
                              "DRSR[%d]: No support for MPU (sub)region size of"
                              " %" PRIu32 " bytes. Minimum is %d.\n",
                              n, (1 << rsize), TARGET_PAGE_SIZE);
9675 9676 9677 9678 9679 9680 9681 9682 9683
                continue;
            }
            if (srdis) {
                continue;
            }
            break;
        }

        if (n == -1) { /* no hits */
9684
            if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9685
                /* background fault */
9686
                fi->type = ARMFault_Background;
9687 9688 9689 9690 9691
                return true;
            }
            get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
        } else { /* a MPU hit! */
            uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9692 9693 9694 9695 9696 9697
            uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);

            if (m_is_system_region(env, address)) {
                /* System space is always execute never */
                xn = 1;
            }
9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711

            if (is_user) { /* User mode AP bit decoding */
                switch (ap) {
                case 0:
                case 1:
                case 5:
                    break; /* no access */
                case 3:
                    *prot |= PAGE_WRITE;
                    /* fall through */
                case 2:
                case 6:
                    *prot |= PAGE_READ | PAGE_EXEC;
                    break;
9712 9713 9714 9715 9716 9717 9718
                case 7:
                    /* for v7M, same as 6; for R profile a reserved value */
                    if (arm_feature(env, ARM_FEATURE_M)) {
                        *prot |= PAGE_READ | PAGE_EXEC;
                        break;
                    }
                    /* fall through */
9719 9720
                default:
                    qemu_log_mask(LOG_GUEST_ERROR,
9721 9722
                                  "DRACR[%d]: Bad value for AP bits: 0x%"
                                  PRIx32 "\n", n, ap);
9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736
                }
            } else { /* Priv. mode AP bits decoding */
                switch (ap) {
                case 0:
                    break; /* no access */
                case 1:
                case 2:
                case 3:
                    *prot |= PAGE_WRITE;
                    /* fall through */
                case 5:
                case 6:
                    *prot |= PAGE_READ | PAGE_EXEC;
                    break;
9737 9738 9739 9740 9741 9742 9743
                case 7:
                    /* for v7M, same as 6; for R profile a reserved value */
                    if (arm_feature(env, ARM_FEATURE_M)) {
                        *prot |= PAGE_READ | PAGE_EXEC;
                        break;
                    }
                    /* fall through */
9744 9745
                default:
                    qemu_log_mask(LOG_GUEST_ERROR,
9746 9747
                                  "DRACR[%d]: Bad value for AP bits: 0x%"
                                  PRIx32 "\n", n, ap);
9748 9749 9750 9751
                }
            }

            /* execute never */
9752
            if (xn) {
9753 9754 9755 9756 9757
                *prot &= ~PAGE_EXEC;
            }
        }
    }

9758 9759
    fi->type = ARMFault_Permission;
    fi->level = 1;
9760 9761 9762
    return !(*prot & (1 << access_type));
}

9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787
static bool v8m_is_sau_exempt(CPUARMState *env,
                              uint32_t address, MMUAccessType access_type)
{
    /* The architecture specifies that certain address ranges are
     * exempt from v8M SAU/IDAU checks.
     */
    return
        (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
        (address >= 0xe0000000 && address <= 0xe0002fff) ||
        (address >= 0xe000e000 && address <= 0xe000efff) ||
        (address >= 0xe002e000 && address <= 0xe002efff) ||
        (address >= 0xe0040000 && address <= 0xe0041fff) ||
        (address >= 0xe00ff000 && address <= 0xe00fffff);
}

static void v8m_security_lookup(CPUARMState *env, uint32_t address,
                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
                                V8M_SAttributes *sattrs)
{
    /* Look up the security attributes for this address. Compare the
     * pseudocode SecurityCheck() function.
     * We assume the caller has zero-initialized *sattrs.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    int r;
9788 9789
    bool idau_exempt = false, idau_ns = true, idau_nsc = true;
    int idau_region = IREGION_NOTVALID;
9790

9791 9792 9793 9794 9795 9796 9797
    if (cpu->idau) {
        IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
        IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);

        iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
                   &idau_nsc);
    }
9798 9799 9800 9801 9802 9803

    if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
        /* 0xf0000000..0xffffffff is always S for insn fetches */
        return;
    }

9804
    if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
9805 9806 9807 9808
        sattrs->ns = !regime_is_secure(env, mmu_idx);
        return;
    }

9809 9810 9811 9812 9813
    if (idau_region != IREGION_NOTVALID) {
        sattrs->irvalid = true;
        sattrs->iregion = idau_region;
    }

9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849
    switch (env->sau.ctrl & 3) {
    case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
        break;
    case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
        sattrs->ns = true;
        break;
    default: /* SAU.ENABLE == 1 */
        for (r = 0; r < cpu->sau_sregion; r++) {
            if (env->sau.rlar[r] & 1) {
                uint32_t base = env->sau.rbar[r] & ~0x1f;
                uint32_t limit = env->sau.rlar[r] | 0x1f;

                if (base <= address && limit >= address) {
                    if (sattrs->srvalid) {
                        /* If we hit in more than one region then we must report
                         * as Secure, not NS-Callable, with no valid region
                         * number info.
                         */
                        sattrs->ns = false;
                        sattrs->nsc = false;
                        sattrs->sregion = 0;
                        sattrs->srvalid = false;
                        break;
                    } else {
                        if (env->sau.rlar[r] & 2) {
                            sattrs->nsc = true;
                        } else {
                            sattrs->ns = true;
                        }
                        sattrs->srvalid = true;
                        sattrs->sregion = r;
                    }
                }
            }
        }

9850 9851 9852 9853 9854 9855 9856 9857 9858
        /* The IDAU will override the SAU lookup results if it specifies
         * higher security than the SAU does.
         */
        if (!idau_ns) {
            if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
                sattrs->ns = false;
                sattrs->nsc = idau_nsc;
            }
        }
9859 9860 9861 9862
        break;
    }
}

9863 9864 9865
static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
                              hwaddr *phys_ptr, MemTxAttrs *txattrs,
9866
                              int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion)
9867 9868 9869 9870 9871 9872 9873
{
    /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
     * that a full phys-to-virt translation does).
     * mregion is (if not NULL) set to the region number which matched,
     * or -1 if no region number is returned (MPU off, address did not
     * hit a region, address hit in multiple regions).
     */
9874 9875
    ARMCPU *cpu = arm_env_get_cpu(env);
    bool is_user = regime_is_user(env, mmu_idx);
9876
    uint32_t secure = regime_is_secure(env, mmu_idx);
9877 9878 9879 9880 9881 9882
    int n;
    int matchregion = -1;
    bool hit = false;

    *phys_ptr = address;
    *prot = 0;
9883 9884
    if (mregion) {
        *mregion = -1;
9885 9886
    }

9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905
    /* Unlike the ARM ARM pseudocode, we don't need to check whether this
     * was an exception vector read from the vector table (which is always
     * done using the default system address map), because those accesses
     * are done in arm_v7m_load_vector(), which always does a direct
     * read using address_space_ldl(), rather than going via this function.
     */
    if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
        hit = true;
    } else if (m_is_ppb_region(env, address)) {
        hit = true;
    } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
        hit = true;
    } else {
        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
            /* region search */
            /* Note that the base address is bits [31:5] from the register
             * with bits [4:0] all zeroes, but the limit address is bits
             * [31:5] from the register with bits [4:0] all ones.
             */
9906 9907
            uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
            uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
9908

9909
            if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921
                /* Region disabled */
                continue;
            }

            if (address < base || address > limit) {
                continue;
            }

            if (hit) {
                /* Multiple regions match -- always a failure (unlike
                 * PMSAv7 where highest-numbered-region wins)
                 */
9922 9923
                fi->type = ARMFault_Permission;
                fi->level = 1;
9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950
                return true;
            }

            matchregion = n;
            hit = true;

            if (base & ~TARGET_PAGE_MASK) {
                qemu_log_mask(LOG_UNIMP,
                              "MPU_RBAR[%d]: No support for MPU region base"
                              "address of 0x%" PRIx32 ". Minimum alignment is "
                              "%d\n",
                              n, base, TARGET_PAGE_BITS);
                continue;
            }
            if ((limit + 1) & ~TARGET_PAGE_MASK) {
                qemu_log_mask(LOG_UNIMP,
                              "MPU_RBAR[%d]: No support for MPU region limit"
                              "address of 0x%" PRIx32 ". Minimum alignment is "
                              "%d\n",
                              n, limit, TARGET_PAGE_BITS);
                continue;
            }
        }
    }

    if (!hit) {
        /* background fault */
9951
        fi->type = ARMFault_Background;
9952 9953 9954 9955 9956 9957 9958
        return true;
    }

    if (matchregion == -1) {
        /* hit using the background region */
        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
    } else {
9959 9960
        uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
        uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973

        if (m_is_system_region(env, address)) {
            /* System space is always execute never */
            xn = 1;
        }

        *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
        if (*prot && !xn) {
            *prot |= PAGE_EXEC;
        }
        /* We don't need to look the attribute up in the MAIR0/MAIR1
         * registers because that only tells us about cacheability.
         */
9974 9975 9976
        if (mregion) {
            *mregion = matchregion;
        }
9977 9978
    }

9979 9980
    fi->type = ARMFault_Permission;
    fi->level = 1;
9981 9982 9983
    return !(*prot & (1 << access_type));
}

9984 9985 9986 9987

static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, MemTxAttrs *txattrs,
9988
                                 int *prot, ARMMMUFaultInfo *fi)
9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013
{
    uint32_t secure = regime_is_secure(env, mmu_idx);
    V8M_SAttributes sattrs = {};

    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
        v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
        if (access_type == MMU_INST_FETCH) {
            /* Instruction fetches always use the MMU bank and the
             * transaction attribute determined by the fetch address,
             * regardless of CPU state. This is painful for QEMU
             * to handle, because it would mean we need to encode
             * into the mmu_idx not just the (user, negpri) information
             * for the current security state but also that for the
             * other security state, which would balloon the number
             * of mmu_idx values needed alarmingly.
             * Fortunately we can avoid this because it's not actually
             * possible to arbitrarily execute code from memory with
             * the wrong security attribute: it will always generate
             * an exception of some kind or another, apart from the
             * special case of an NS CPU executing an SG instruction
             * in S&NSC memory. So we always just fail the translation
             * here and sort things out in the exception handler
             * (including possibly emulating an SG instruction).
             */
            if (sattrs.ns != !secure) {
10014 10015 10016 10017 10018
                if (sattrs.nsc) {
                    fi->type = ARMFault_QEMU_NSCExec;
                } else {
                    fi->type = ARMFault_QEMU_SFault;
                }
10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039
                *phys_ptr = address;
                *prot = 0;
                return true;
            }
        } else {
            /* For data accesses we always use the MMU bank indicated
             * by the current CPU state, but the security attributes
             * might downgrade a secure access to nonsecure.
             */
            if (sattrs.ns) {
                txattrs->secure = false;
            } else if (!secure) {
                /* NS access to S memory must fault.
                 * Architecturally we should first check whether the
                 * MPU information for this address indicates that we
                 * are doing an unaligned access to Device memory, which
                 * should generate a UsageFault instead. QEMU does not
                 * currently check for that kind of unaligned access though.
                 * If we added it we would need to do so as a special case
                 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
                 */
10040
                fi->type = ARMFault_QEMU_SFault;
10041 10042 10043 10044 10045 10046 10047 10048
                *phys_ptr = address;
                *prot = 0;
                return true;
            }
        }
    }

    return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10049
                             txattrs, prot, fi, NULL);
10050 10051
}

10052
static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10053
                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10054 10055
                                 hwaddr *phys_ptr, int *prot,
                                 ARMMMUFaultInfo *fi)
P
pbrook 已提交
10056 10057 10058 10059
{
    int n;
    uint32_t mask;
    uint32_t base;
10060
    bool is_user = regime_is_user(env, mmu_idx);
P
pbrook 已提交
10061

10062 10063 10064 10065 10066 10067 10068
    if (regime_translation_disabled(env, mmu_idx)) {
        /* MPU disabled.  */
        *phys_ptr = address;
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
        return false;
    }

P
pbrook 已提交
10069 10070
    *phys_ptr = address;
    for (n = 7; n >= 0; n--) {
10071
        base = env->cp15.c6_region[n];
10072
        if ((base & 1) == 0) {
10073
            continue;
10074
        }
10075 10076 10077 10078
        mask = 1 << ((base >> 1) & 0x1f);
        /* Keep this shift separate from the above to avoid an
           (undefined) << 32.  */
        mask = (mask << 1) - 1;
10079
        if (((base ^ address) & ~mask) == 0) {
10080
            break;
10081
        }
P
pbrook 已提交
10082
    }
10083
    if (n < 0) {
10084
        fi->type = ARMFault_Background;
10085
        return true;
10086
    }
P
pbrook 已提交
10087

10088
    if (access_type == MMU_INST_FETCH) {
10089
        mask = env->cp15.pmsav5_insn_ap;
P
pbrook 已提交
10090
    } else {
10091
        mask = env->cp15.pmsav5_data_ap;
P
pbrook 已提交
10092 10093 10094 10095
    }
    mask = (mask >> (n * 4)) & 0xf;
    switch (mask) {
    case 0:
10096 10097
        fi->type = ARMFault_Permission;
        fi->level = 1;
10098
        return true;
P
pbrook 已提交
10099
    case 1:
10100
        if (is_user) {
10101 10102
            fi->type = ARMFault_Permission;
            fi->level = 1;
10103
            return true;
10104
        }
10105 10106
        *prot = PAGE_READ | PAGE_WRITE;
        break;
P
pbrook 已提交
10107
    case 2:
10108
        *prot = PAGE_READ;
10109
        if (!is_user) {
10110
            *prot |= PAGE_WRITE;
10111
        }
10112
        break;
P
pbrook 已提交
10113
    case 3:
10114 10115
        *prot = PAGE_READ | PAGE_WRITE;
        break;
P
pbrook 已提交
10116
    case 5:
10117
        if (is_user) {
10118 10119
            fi->type = ARMFault_Permission;
            fi->level = 1;
10120
            return true;
10121
        }
10122 10123
        *prot = PAGE_READ;
        break;
P
pbrook 已提交
10124
    case 6:
10125 10126
        *prot = PAGE_READ;
        break;
P
pbrook 已提交
10127
    default:
10128
        /* Bad permission.  */
10129 10130
        fi->type = ARMFault_Permission;
        fi->level = 1;
10131
        return true;
P
pbrook 已提交
10132
    }
10133
    *prot |= PAGE_EXEC;
10134
    return false;
P
pbrook 已提交
10135 10136
}

10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223
/* Combine either inner or outer cacheability attributes for normal
 * memory, according to table D4-42 and pseudocode procedure
 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
 *
 * NB: only stage 1 includes allocation hints (RW bits), leading to
 * some asymmetry.
 */
static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
{
    if (s1 == 4 || s2 == 4) {
        /* non-cacheable has precedence */
        return 4;
    } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
        /* stage 1 write-through takes precedence */
        return s1;
    } else if (extract32(s2, 2, 2) == 2) {
        /* stage 2 write-through takes precedence, but the allocation hint
         * is still taken from stage 1
         */
        return (2 << 2) | extract32(s1, 0, 2);
    } else { /* write-back */
        return s1;
    }
}

/* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
 * and CombineS1S2Desc()
 *
 * @s1:      Attributes from stage 1 walk
 * @s2:      Attributes from stage 2 walk
 */
static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
{
    uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
    uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
    ARMCacheAttrs ret;

    /* Combine shareability attributes (table D4-43) */
    if (s1.shareability == 2 || s2.shareability == 2) {
        /* if either are outer-shareable, the result is outer-shareable */
        ret.shareability = 2;
    } else if (s1.shareability == 3 || s2.shareability == 3) {
        /* if either are inner-shareable, the result is inner-shareable */
        ret.shareability = 3;
    } else {
        /* both non-shareable */
        ret.shareability = 0;
    }

    /* Combine memory type and cacheability attributes */
    if (s1hi == 0 || s2hi == 0) {
        /* Device has precedence over normal */
        if (s1lo == 0 || s2lo == 0) {
            /* nGnRnE has precedence over anything */
            ret.attrs = 0;
        } else if (s1lo == 4 || s2lo == 4) {
            /* non-Reordering has precedence over Reordering */
            ret.attrs = 4;  /* nGnRE */
        } else if (s1lo == 8 || s2lo == 8) {
            /* non-Gathering has precedence over Gathering */
            ret.attrs = 8;  /* nGRE */
        } else {
            ret.attrs = 0xc; /* GRE */
        }

        /* Any location for which the resultant memory type is any
         * type of Device memory is always treated as Outer Shareable.
         */
        ret.shareability = 2;
    } else { /* Normal memory */
        /* Outer/inner cacheability combine independently */
        ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
                  | combine_cacheattr_nibble(s1lo, s2lo);

        if (ret.attrs == 0x44) {
            /* Any location for which the resultant memory type is Normal
             * Inner Non-cacheable, Outer Non-cacheable is always treated
             * as Outer Shareable.
             */
            ret.shareability = 2;
        }
    }

    return ret;
}


10224 10225 10226 10227 10228 10229
/* get_phys_addr - get the physical address for this virtual address
 *
 * Find the physical address corresponding to the given virtual address,
 * by doing a translation table walk on MMU based systems or using the
 * MPU state on MPU based systems.
 *
10230 10231
 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
 * prot and page_size may not be filled in, and the populated fsr value provides
10232 10233 10234 10235
 * information on why the translation aborted, in the format of a
 * DFSR/IFSR fault register, with the following caveats:
 *  * we honour the short vs long DFSR format differences.
 *  * the WnR bit is never set (the caller must do this).
10236
 *  * for PSMAv5 based systems we don't bother to return a full FSR format
10237 10238 10239 10240 10241
 *    value.
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: 0 for read, 1 for write, 2 for execute
10242
 * @mmu_idx: MMU index indicating required translation regime
10243
 * @phys_ptr: set to the physical address corresponding to the virtual address
10244
 * @attrs: set to the memory transaction attributes to use
10245 10246
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size: set to the size of the page containing phys_ptr
10247 10248
 * @fi: set to fault info if the translation fails
 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10249
 */
10250
static bool get_phys_addr(CPUARMState *env, target_ulong address,
10251
                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
10252
                          hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10253
                          target_ulong *page_size,
10254
                          ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
P
pbrook 已提交
10255
{
10256
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10257 10258
        /* Call ourselves recursively to do the stage 1 and then stage 2
         * translations.
10259
         */
10260 10261 10262 10263
        if (arm_feature(env, ARM_FEATURE_EL2)) {
            hwaddr ipa;
            int s2_prot;
            int ret;
10264
            ARMCacheAttrs cacheattrs2 = {};
10265 10266

            ret = get_phys_addr(env, address, access_type,
10267
                                stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10268
                                prot, page_size, fi, cacheattrs);
10269 10270 10271 10272 10273 10274 10275 10276 10277 10278

            /* If S1 fails or S2 is disabled, return early.  */
            if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
                *phys_ptr = ipa;
                return ret;
            }

            /* S1 is done. Now do S2 translation.  */
            ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
                                     phys_ptr, attrs, &s2_prot,
10279
                                     page_size, fi,
10280
                                     cacheattrs != NULL ? &cacheattrs2 : NULL);
10281 10282 10283
            fi->s2addr = ipa;
            /* Combine the S1 and S2 perms.  */
            *prot &= s2_prot;
10284 10285 10286 10287 10288 10289

            /* Combine the S1 and S2 cache attributes, if needed */
            if (!ret && cacheattrs != NULL) {
                *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
            }

10290 10291 10292 10293 10294
            return ret;
        } else {
            /*
             * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
             */
10295
            mmu_idx = stage_1_mmu_idx(mmu_idx);
10296
        }
10297
    }
10298

10299 10300 10301 10302 10303
    /* The page table entries may downgrade secure to non-secure, but
     * cannot upgrade an non-secure translation regime's attributes
     * to secure.
     */
    attrs->secure = regime_is_secure(env, mmu_idx);
10304
    attrs->user = regime_is_user(env, mmu_idx);
10305

10306 10307 10308 10309 10310 10311 10312 10313 10314 10315
    /* Fast Context Switch Extension. This doesn't exist at all in v8.
     * In v7 and earlier it affects all stage 1 translations.
     */
    if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
        && !arm_feature(env, ARM_FEATURE_V8)) {
        if (regime_el(env, mmu_idx) == 3) {
            address += env->cp15.fcseidr_s;
        } else {
            address += env->cp15.fcseidr_ns;
        }
10316
    }
P
pbrook 已提交
10317

10318
    if (arm_feature(env, ARM_FEATURE_PMSA)) {
10319
        bool ret;
10320
        *page_size = TARGET_PAGE_SIZE;
10321

10322 10323 10324
        if (arm_feature(env, ARM_FEATURE_V8)) {
            /* PMSAv8 */
            ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10325
                                       phys_ptr, attrs, prot, fi);
10326
        } else if (arm_feature(env, ARM_FEATURE_V7)) {
10327 10328
            /* PMSAv7 */
            ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10329
                                       phys_ptr, prot, fi);
10330 10331 10332
        } else {
            /* Pre-v7 MPU */
            ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10333
                                       phys_ptr, prot, fi);
10334 10335
        }
        qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10336
                      " mmu_idx %u -> %s (prot %c%c%c)\n",
10337 10338
                      access_type == MMU_DATA_LOAD ? "reading" :
                      (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10339 10340 10341 10342 10343 10344 10345
                      (uint32_t)address, mmu_idx,
                      ret ? "Miss" : "Hit",
                      *prot & PAGE_READ ? 'r' : '-',
                      *prot & PAGE_WRITE ? 'w' : '-',
                      *prot & PAGE_EXEC ? 'x' : '-');

        return ret;
10346 10347
    }

10348 10349
    /* Definitely a real MMU, not an MPU */

10350
    if (regime_translation_disabled(env, mmu_idx)) {
10351
        /* MMU disabled. */
P
pbrook 已提交
10352
        *phys_ptr = address;
10353
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
P
Paul Brook 已提交
10354
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
10355
        return 0;
10356 10357 10358
    }

    if (regime_using_lpae_format(env, mmu_idx)) {
10359 10360 10361
        return get_phys_addr_lpae(env, address, access_type, mmu_idx,
                                  phys_ptr, attrs, prot, page_size,
                                  fi, cacheattrs);
10362
    } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10363 10364
        return get_phys_addr_v6(env, address, access_type, mmu_idx,
                                phys_ptr, attrs, prot, page_size, fi);
P
pbrook 已提交
10365
    } else {
10366
        return get_phys_addr_v5(env, address, access_type, mmu_idx,
10367
                                    phys_ptr, prot, page_size, fi);
P
pbrook 已提交
10368 10369 10370
    }
}

10371
/* Walk the page table and (if the mapping exists) add the page
10372 10373
 * to the TLB. Return false on success, or true on failure. Populate
 * fsr with ARM DFSR/IFSR fault register format value on failure.
10374
 */
10375
bool arm_tlb_fill(CPUState *cs, vaddr address,
10376
                  MMUAccessType access_type, int mmu_idx,
10377
                  ARMMMUFaultInfo *fi)
B
bellard 已提交
10378
{
10379 10380
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
A
Avi Kivity 已提交
10381
    hwaddr phys_addr;
P
Paul Brook 已提交
10382
    target_ulong page_size;
B
bellard 已提交
10383
    int prot;
10384
    int ret;
10385
    MemTxAttrs attrs = {};
B
bellard 已提交
10386

10387 10388
    ret = get_phys_addr(env, address, access_type,
                        core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
10389
                        &attrs, &prot, &page_size, fi, NULL);
10390
    if (!ret) {
B
bellard 已提交
10391
        /* Map a single [sub]page.  */
10392 10393
        phys_addr &= TARGET_PAGE_MASK;
        address &= TARGET_PAGE_MASK;
10394 10395
        tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
                                prot, mmu_idx, page_size);
P
Paul Brook 已提交
10396
        return 0;
B
bellard 已提交
10397 10398
    }

10399
    return ret;
B
bellard 已提交
10400 10401
}

10402 10403
hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
                                         MemTxAttrs *attrs)
B
bellard 已提交
10404
{
10405
    ARMCPU *cpu = ARM_CPU(cs);
10406
    CPUARMState *env = &cpu->env;
A
Avi Kivity 已提交
10407
    hwaddr phys_addr;
P
Paul Brook 已提交
10408
    target_ulong page_size;
B
bellard 已提交
10409
    int prot;
10410
    bool ret;
10411
    ARMMMUFaultInfo fi = {};
10412
    ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
B
bellard 已提交
10413

10414 10415
    *attrs = (MemTxAttrs) {};

10416
    ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10417
                        attrs, &prot, &page_size, &fi, NULL);
B
bellard 已提交
10418

10419
    if (ret) {
B
bellard 已提交
10420
        return -1;
10421
    }
B
bellard 已提交
10422 10423 10424
    return phys_addr;
}

10425
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
10426
{
10427 10428 10429 10430 10431 10432 10433 10434 10435
    uint32_t mask;
    unsigned el = arm_current_el(env);

    /* First handle registers which unprivileged can read */

    switch (reg) {
    case 0 ... 7: /* xPSR sub-fields */
        mask = 0;
        if ((reg & 1) && el) {
10436
            mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
10437 10438
        }
        if (!(reg & 4)) {
10439
            mask |= XPSR_NZCV | XPSR_Q; /* APSR */
10440 10441 10442 10443 10444
        }
        /* EPSR reads as zero */
        return xpsr_read(env) & mask;
        break;
    case 20: /* CONTROL */
10445
        return env->v7m.control[env->v7m.secure];
10446 10447 10448 10449 10450 10451 10452 10453
    case 0x94: /* CONTROL_NS */
        /* We have to handle this here because unprivileged Secure code
         * can read the NS CONTROL register.
         */
        if (!env->v7m.secure) {
            return 0;
        }
        return env->v7m.control[M_REG_NS];
10454 10455 10456 10457 10458
    }

    if (el == 0) {
        return 0; /* unprivileged reads others as zero */
    }
10459

10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471
    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
        switch (reg) {
        case 0x88: /* MSP_NS */
            if (!env->v7m.secure) {
                return 0;
            }
            return env->v7m.other_ss_msp;
        case 0x89: /* PSP_NS */
            if (!env->v7m.secure) {
                return 0;
            }
            return env->v7m.other_ss_psp;
10472 10473 10474 10475 10476 10477 10478 10479 10480 10481
        case 0x8a: /* MSPLIM_NS */
            if (!env->v7m.secure) {
                return 0;
            }
            return env->v7m.msplim[M_REG_NS];
        case 0x8b: /* PSPLIM_NS */
            if (!env->v7m.secure) {
                return 0;
            }
            return env->v7m.psplim[M_REG_NS];
10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517
        case 0x90: /* PRIMASK_NS */
            if (!env->v7m.secure) {
                return 0;
            }
            return env->v7m.primask[M_REG_NS];
        case 0x91: /* BASEPRI_NS */
            if (!env->v7m.secure) {
                return 0;
            }
            return env->v7m.basepri[M_REG_NS];
        case 0x93: /* FAULTMASK_NS */
            if (!env->v7m.secure) {
                return 0;
            }
            return env->v7m.faultmask[M_REG_NS];
        case 0x98: /* SP_NS */
        {
            /* This gives the non-secure SP selected based on whether we're
             * currently in handler mode or not, using the NS CONTROL.SPSEL.
             */
            bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;

            if (!env->v7m.secure) {
                return 0;
            }
            if (!arm_v7m_is_handler_mode(env) && spsel) {
                return env->v7m.other_ss_psp;
            } else {
                return env->v7m.other_ss_msp;
            }
        }
        default:
            break;
        }
    }

P
pbrook 已提交
10518 10519
    switch (reg) {
    case 8: /* MSP */
10520
        return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
P
pbrook 已提交
10521
    case 9: /* PSP */
10522
        return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
10523 10524 10525 10526 10527 10528 10529 10530 10531 10532
    case 10: /* MSPLIM */
        if (!arm_feature(env, ARM_FEATURE_V8)) {
            goto bad_reg;
        }
        return env->v7m.msplim[env->v7m.secure];
    case 11: /* PSPLIM */
        if (!arm_feature(env, ARM_FEATURE_V8)) {
            goto bad_reg;
        }
        return env->v7m.psplim[env->v7m.secure];
P
pbrook 已提交
10533
    case 16: /* PRIMASK */
10534
        return env->v7m.primask[env->v7m.secure];
10535 10536
    case 17: /* BASEPRI */
    case 18: /* BASEPRI_MAX */
10537
        return env->v7m.basepri[env->v7m.secure];
10538
    case 19: /* FAULTMASK */
10539
        return env->v7m.faultmask[env->v7m.secure];
P
pbrook 已提交
10540
    default:
10541
    bad_reg:
10542 10543
        qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
                                       " register %d\n", reg);
P
pbrook 已提交
10544 10545 10546 10547
        return 0;
    }
}

10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559
void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
{
    /* We're passed bits [11..0] of the instruction; extract
     * SYSm and the mask bits.
     * Invalid combinations of SYSm and mask are UNPREDICTABLE;
     * we choose to treat them as if the mask bits were valid.
     * NB that the pseudocode 'mask' variable is bits [11..10],
     * whereas ours is [11..8].
     */
    uint32_t mask = extract32(maskreg, 8, 4);
    uint32_t reg = extract32(maskreg, 0, 8);

10560 10561 10562 10563
    if (arm_current_el(env) == 0 && reg > 7) {
        /* only xPSR sub-fields may be written by unprivileged */
        return;
    }
10564

10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578
    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
        switch (reg) {
        case 0x88: /* MSP_NS */
            if (!env->v7m.secure) {
                return;
            }
            env->v7m.other_ss_msp = val;
            return;
        case 0x89: /* PSP_NS */
            if (!env->v7m.secure) {
                return;
            }
            env->v7m.other_ss_psp = val;
            return;
10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590
        case 0x8a: /* MSPLIM_NS */
            if (!env->v7m.secure) {
                return;
            }
            env->v7m.msplim[M_REG_NS] = val & ~7;
            return;
        case 0x8b: /* PSPLIM_NS */
            if (!env->v7m.secure) {
                return;
            }
            env->v7m.psplim[M_REG_NS] = val & ~7;
            return;
10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608
        case 0x90: /* PRIMASK_NS */
            if (!env->v7m.secure) {
                return;
            }
            env->v7m.primask[M_REG_NS] = val & 1;
            return;
        case 0x91: /* BASEPRI_NS */
            if (!env->v7m.secure) {
                return;
            }
            env->v7m.basepri[M_REG_NS] = val & 0xff;
            return;
        case 0x93: /* FAULTMASK_NS */
            if (!env->v7m.secure) {
                return;
            }
            env->v7m.faultmask[M_REG_NS] = val & 1;
            return;
10609 10610 10611 10612 10613 10614 10615 10616 10617 10618
        case 0x94: /* CONTROL_NS */
            if (!env->v7m.secure) {
                return;
            }
            write_v7m_control_spsel_for_secstate(env,
                                                 val & R_V7M_CONTROL_SPSEL_MASK,
                                                 M_REG_NS);
            env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
            env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
            return;
10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640
        case 0x98: /* SP_NS */
        {
            /* This gives the non-secure SP selected based on whether we're
             * currently in handler mode or not, using the NS CONTROL.SPSEL.
             */
            bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;

            if (!env->v7m.secure) {
                return;
            }
            if (!arm_v7m_is_handler_mode(env) && spsel) {
                env->v7m.other_ss_psp = val;
            } else {
                env->v7m.other_ss_msp = val;
            }
            return;
        }
        default:
            break;
        }
    }

P
pbrook 已提交
10641
    switch (reg) {
10642 10643
    case 0 ... 7: /* xPSR sub-fields */
        /* only APSR is actually writable */
10644 10645 10646 10647
        if (!(reg & 4)) {
            uint32_t apsrmask = 0;

            if (mask & 8) {
10648
                apsrmask |= XPSR_NZCV | XPSR_Q;
10649 10650
            }
            if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
10651
                apsrmask |= XPSR_GE;
10652 10653
            }
            xpsr_write(env, val, apsrmask);
10654
        }
P
pbrook 已提交
10655 10656
        break;
    case 8: /* MSP */
10657
        if (v7m_using_psp(env)) {
P
pbrook 已提交
10658
            env->v7m.other_sp = val;
10659
        } else {
P
pbrook 已提交
10660
            env->regs[13] = val;
10661
        }
P
pbrook 已提交
10662 10663
        break;
    case 9: /* PSP */
10664
        if (v7m_using_psp(env)) {
P
pbrook 已提交
10665
            env->regs[13] = val;
10666
        } else {
P
pbrook 已提交
10667
            env->v7m.other_sp = val;
10668
        }
P
pbrook 已提交
10669
        break;
10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681
    case 10: /* MSPLIM */
        if (!arm_feature(env, ARM_FEATURE_V8)) {
            goto bad_reg;
        }
        env->v7m.msplim[env->v7m.secure] = val & ~7;
        break;
    case 11: /* PSPLIM */
        if (!arm_feature(env, ARM_FEATURE_V8)) {
            goto bad_reg;
        }
        env->v7m.psplim[env->v7m.secure] = val & ~7;
        break;
P
pbrook 已提交
10682
    case 16: /* PRIMASK */
10683
        env->v7m.primask[env->v7m.secure] = val & 1;
P
pbrook 已提交
10684
        break;
10685
    case 17: /* BASEPRI */
10686
        env->v7m.basepri[env->v7m.secure] = val & 0xff;
P
pbrook 已提交
10687
        break;
10688
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
10689
        val &= 0xff;
10690 10691 10692 10693
        if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
                         || env->v7m.basepri[env->v7m.secure] == 0)) {
            env->v7m.basepri[env->v7m.secure] = val;
        }
P
pbrook 已提交
10694
        break;
10695
    case 19: /* FAULTMASK */
10696
        env->v7m.faultmask[env->v7m.secure] = val & 1;
10697
        break;
P
pbrook 已提交
10698
    case 20: /* CONTROL */
10699 10700
        /* Writing to the SPSEL bit only has an effect if we are in
         * thread mode; other bits can be updated by any privileged code.
10701
         * write_v7m_control_spsel() deals with updating the SPSEL bit in
10702
         * env->v7m.control, so we only need update the others.
10703 10704
         * For v7M, we must just ignore explicit writes to SPSEL in handler
         * mode; for v8M the write is permitted but will have no effect.
10705
         */
10706 10707
        if (arm_feature(env, ARM_FEATURE_V8) ||
            !arm_v7m_is_handler_mode(env)) {
10708
            write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
10709
        }
10710 10711
        env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
        env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
P
pbrook 已提交
10712 10713
        break;
    default:
10714
    bad_reg:
10715 10716
        qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
                                       " register %d\n", reg);
P
pbrook 已提交
10717 10718 10719 10720
        return;
    }
}

10721 10722 10723 10724 10725 10726 10727 10728 10729
uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
{
    /* Implement the TT instruction. op is bits [7:6] of the insn. */
    bool forceunpriv = op & 1;
    bool alt = op & 2;
    V8M_SAttributes sattrs = {};
    uint32_t tt_resp;
    bool r, rw, nsr, nsrw, mrvalid;
    int prot;
10730
    ARMMMUFaultInfo fi = {};
10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765
    MemTxAttrs attrs = {};
    hwaddr phys_addr;
    ARMMMUIdx mmu_idx;
    uint32_t mregion;
    bool targetpriv;
    bool targetsec = env->v7m.secure;

    /* Work out what the security state and privilege level we're
     * interested in is...
     */
    if (alt) {
        targetsec = !targetsec;
    }

    if (forceunpriv) {
        targetpriv = false;
    } else {
        targetpriv = arm_v7m_is_handler_mode(env) ||
            !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
    }

    /* ...and then figure out which MMU index this is */
    mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);

    /* We know that the MPU and SAU don't care about the access type
     * for our purposes beyond that we don't want to claim to be
     * an insn fetch, so we arbitrarily call this a read.
     */

    /* MPU region info only available for privileged or if
     * inspecting the other MPU state.
     */
    if (arm_current_el(env) != 0 || alt) {
        /* We can ignore the return value as prot is always set */
        pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
10766
                          &phys_addr, &attrs, &prot, &fi, &mregion);
10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806
        if (mregion == -1) {
            mrvalid = false;
            mregion = 0;
        } else {
            mrvalid = true;
        }
        r = prot & PAGE_READ;
        rw = prot & PAGE_WRITE;
    } else {
        r = false;
        rw = false;
        mrvalid = false;
        mregion = 0;
    }

    if (env->v7m.secure) {
        v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
        nsr = sattrs.ns && r;
        nsrw = sattrs.ns && rw;
    } else {
        sattrs.ns = true;
        nsr = false;
        nsrw = false;
    }

    tt_resp = (sattrs.iregion << 24) |
        (sattrs.irvalid << 23) |
        ((!sattrs.ns) << 22) |
        (nsrw << 21) |
        (nsr << 20) |
        (rw << 19) |
        (r << 18) |
        (sattrs.srvalid << 17) |
        (mrvalid << 16) |
        (sattrs.sregion << 8) |
        mregion;

    return tt_resp;
}

B
bellard 已提交
10807
#endif
P
pbrook 已提交
10808

10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833
void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
{
    /* Implement DC ZVA, which zeroes a fixed-length block of memory.
     * Note that we do not implement the (architecturally mandated)
     * alignment fault for attempts to use this on Device memory
     * (which matches the usual QEMU behaviour of not implementing either
     * alignment faults or any memory attribute handling).
     */

    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t blocklen = 4 << cpu->dcz_blocksize;
    uint64_t vaddr = vaddr_in & ~(blocklen - 1);

#ifndef CONFIG_USER_ONLY
    {
        /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
         * the block size so we might have to do more than one TLB lookup.
         * We know that in fact for any v8 CPU the page size is at least 4K
         * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
         * 1K as an artefact of legacy v5 subpage support being present in the
         * same QEMU executable.
         */
        int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
        void *hostaddr[maxidx];
        int try, i;
10834
        unsigned mmu_idx = cpu_mmu_index(env, false);
10835
        TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
10836 10837 10838 10839 10840 10841

        for (try = 0; try < 2; try++) {

            for (i = 0; i < maxidx; i++) {
                hostaddr[i] = tlb_vaddr_to_host(env,
                                                vaddr + TARGET_PAGE_SIZE * i,
10842
                                                1, mmu_idx);
10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862
                if (!hostaddr[i]) {
                    break;
                }
            }
            if (i == maxidx) {
                /* If it's all in the TLB it's fair game for just writing to;
                 * we know we don't need to update dirty status, etc.
                 */
                for (i = 0; i < maxidx - 1; i++) {
                    memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
                }
                memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
                return;
            }
            /* OK, try a store and see if we can populate the tlb. This
             * might cause an exception if the memory isn't writable,
             * in which case we will longjmp out of here. We must for
             * this purpose use the actual register value passed to us
             * so that we get the fault address right.
             */
R
Richard Henderson 已提交
10863
            helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
10864 10865 10866 10867
            /* Now we can populate the other TLB entries, if any */
            for (i = 0; i < maxidx; i++) {
                uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
                if (va != (vaddr_in & TARGET_PAGE_MASK)) {
R
Richard Henderson 已提交
10868
                    helper_ret_stb_mmu(env, va, 0, oi, GETPC());
10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884
                }
            }
        }

        /* Slow path (probably attempt to do this to an I/O device or
         * similar, or clearing of a block of code we have translations
         * cached for). Just do a series of byte writes as the architecture
         * demands. It's not worth trying to use a cpu_physical_memory_map(),
         * memset(), unmap() sequence here because:
         *  + we'd need to account for the blocksize being larger than a page
         *  + the direct-RAM access case is almost always going to be dealt
         *    with in the fastpath code above, so there's no speed benefit
         *  + we would have to deal with the map returning NULL because the
         *    bounce buffer was in use
         */
        for (i = 0; i < blocklen; i++) {
R
Richard Henderson 已提交
10885
            helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
10886 10887 10888 10889 10890 10891 10892
        }
    }
#else
    memset(g2h(vaddr), 0, blocklen);
#endif
}

P
pbrook 已提交
10893 10894 10895 10896 10897 10898
/* Note that signed overflow is undefined in C.  The following routines are
   careful to use unsigned types where modulo arithmetic is required.
   Failure to do so _will_ break on newer gcc.  */

/* Signed saturating arithmetic.  */

A
aurel32 已提交
10899
/* Perform 16-bit signed saturating addition.  */
P
pbrook 已提交
10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a + b;
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
10914
/* Perform 8-bit signed saturating addition.  */
P
pbrook 已提交
10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a + b;
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

A
aurel32 已提交
10929
/* Perform 16-bit signed saturating subtraction.  */
P
pbrook 已提交
10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a - b;
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
10944
/* Perform 8-bit signed saturating subtraction.  */
P
pbrook 已提交
10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a - b;
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
#define PFX q

#include "op_addsub.h"

/* Unsigned saturating arithmetic.  */
P
pbrook 已提交
10968
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
10969 10970 10971 10972 10973 10974 10975 10976
{
    uint16_t res;
    res = a + b;
    if (res < a)
        res = 0xffff;
    return res;
}

P
pbrook 已提交
10977
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
10978
{
10979
    if (a > b)
P
pbrook 已提交
10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995
        return a - b;
    else
        return 0;
}

static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
    uint8_t res;
    res = a + b;
    if (res < a)
        res = 0xff;
    return res;
}

static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
10996
    if (a > b)
P
pbrook 已提交
10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012
        return a - b;
    else
        return 0;
}

#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
#define PFX uq

#include "op_addsub.h"

/* Signed modulo arithmetic.  */
#define SARITH16(a, b, n, op) do { \
    int32_t sum; \
11013
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
P
pbrook 已提交
11014 11015 11016 11017 11018 11019 11020
    RESULT(sum, n, 16); \
    if (sum >= 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SARITH8(a, b, n, op) do { \
    int32_t sum; \
11021
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
P
pbrook 已提交
11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041
    RESULT(sum, n, 8); \
    if (sum >= 0) \
        ge |= 1 << n; \
    } while(0)


#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE

#include "op_addsub.h"

/* Unsigned modulo arithmetic.  */
#define ADD16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
11042
    if ((sum >> 16) == 1) \
P
pbrook 已提交
11043 11044 11045 11046 11047 11048 11049
        ge |= 3 << (n * 2); \
    } while(0)

#define ADD8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
11050 11051
    if ((sum >> 8) == 1) \
        ge |= 1 << n; \
P
pbrook 已提交
11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066
    } while(0)

#define SUB16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
    if ((sum >> 16) == 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SUB8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
    if ((sum >> 8) == 0) \
11067
        ge |= 1 << n; \
P
pbrook 已提交
11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136
    } while(0)

#define PFX u
#define ARITH_GE

#include "op_addsub.h"

/* Halved signed arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh

#include "op_addsub.h"

/* Halved unsigned arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh

#include "op_addsub.h"

static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
    if (a > b)
        return a - b;
    else
        return b - a;
}

/* Unsigned sum of absolute byte differences.  */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
    uint32_t sum;
    sum = do_usad(a, b);
    sum += do_usad(a >> 8, b >> 8);
    sum += do_usad(a >> 16, b >>16);
    sum += do_usad(a >> 24, b >> 24);
    return sum;
}

/* For ARMv6 SEL instruction.  */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
    uint32_t mask;

    mask = 0;
    if (flags & 1)
        mask |= 0xff;
    if (flags & 2)
        mask |= 0xff00;
    if (flags & 4)
        mask |= 0xff0000;
    if (flags & 8)
        mask |= 0xff000000;
    return (a & mask) | (b & ~mask);
}

11137 11138
/* VFP support.  We follow the convention used for VFP instructions:
   Single precision routines have a "s" suffix, double precision a
P
pbrook 已提交
11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151
   "d" suffix.  */

/* Convert host exception flags to vfp form.  */
static inline int vfp_exceptbits_from_host(int host_bits)
{
    int target_bits = 0;

    if (host_bits & float_flag_invalid)
        target_bits |= 1;
    if (host_bits & float_flag_divbyzero)
        target_bits |= 2;
    if (host_bits & float_flag_overflow)
        target_bits |= 4;
11152
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
P
pbrook 已提交
11153 11154 11155
        target_bits |= 8;
    if (host_bits & float_flag_inexact)
        target_bits |= 0x10;
11156 11157
    if (host_bits & float_flag_input_denormal)
        target_bits |= 0x80;
P
pbrook 已提交
11158 11159 11160
    return target_bits;
}

11161
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
P
pbrook 已提交
11162 11163 11164 11165 11166 11167 11168 11169
{
    int i;
    uint32_t fpscr;

    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
            | (env->vfp.vec_len << 16)
            | (env->vfp.vec_stride << 20);
    i = get_float_exception_flags(&env->vfp.fp_status);
11170
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
11171
    i |= get_float_exception_flags(&env->vfp.fp_status_f16);
P
pbrook 已提交
11172 11173 11174 11175
    fpscr |= vfp_exceptbits_from_host(i);
    return fpscr;
}

11176
uint32_t vfp_get_fpscr(CPUARMState *env)
11177 11178 11179 11180
{
    return HELPER(vfp_get_fpscr)(env);
}

P
pbrook 已提交
11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195
/* Convert vfp exception flags to target form.  */
static inline int vfp_exceptbits_to_host(int target_bits)
{
    int host_bits = 0;

    if (target_bits & 1)
        host_bits |= float_flag_invalid;
    if (target_bits & 2)
        host_bits |= float_flag_divbyzero;
    if (target_bits & 4)
        host_bits |= float_flag_overflow;
    if (target_bits & 8)
        host_bits |= float_flag_underflow;
    if (target_bits & 0x10)
        host_bits |= float_flag_inexact;
11196 11197
    if (target_bits & 0x80)
        host_bits |= float_flag_input_denormal;
P
pbrook 已提交
11198 11199 11200
    return host_bits;
}

11201
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
P
pbrook 已提交
11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214
{
    int i;
    uint32_t changed;

    changed = env->vfp.xregs[ARM_VFP_FPSCR];
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
    env->vfp.vec_len = (val >> 16) & 7;
    env->vfp.vec_stride = (val >> 20) & 3;

    changed ^= val;
    if (changed & (3 << 22)) {
        i = (val >> 22) & 3;
        switch (i) {
11215
        case FPROUNDING_TIEEVEN:
P
pbrook 已提交
11216 11217
            i = float_round_nearest_even;
            break;
11218
        case FPROUNDING_POSINF:
P
pbrook 已提交
11219 11220
            i = float_round_up;
            break;
11221
        case FPROUNDING_NEGINF:
P
pbrook 已提交
11222 11223
            i = float_round_down;
            break;
11224
        case FPROUNDING_ZERO:
P
pbrook 已提交
11225 11226 11227 11228
            i = float_round_to_zero;
            break;
        }
        set_float_rounding_mode(i, &env->vfp.fp_status);
11229
        set_float_rounding_mode(i, &env->vfp.fp_status_f16);
P
pbrook 已提交
11230
    }
11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244
    if (changed & FPCR_FZ16) {
        bool ftz_enabled = val & FPCR_FZ16;
        set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
    }
    if (changed & FPCR_FZ) {
        bool ftz_enabled = val & FPCR_FZ;
        set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
    }
    if (changed & FPCR_DN) {
        bool dnan_enabled = val & FPCR_DN;
        set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
        set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
11245
    }
P
pbrook 已提交
11246

11247 11248 11249 11250
    /* The exception flags are ORed together when we read fpscr so we
     * only need to preserve the current state in one of our
     * float_status values.
     */
11251
    i = vfp_exceptbits_to_host(val);
P
pbrook 已提交
11252
    set_float_exception_flags(i, &env->vfp.fp_status);
11253
    set_float_exception_flags(0, &env->vfp.fp_status_f16);
11254
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
P
pbrook 已提交
11255 11256
}

11257
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
11258 11259 11260 11261
{
    HELPER(vfp_set_fpscr)(env, val);
}

P
pbrook 已提交
11262 11263 11264
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))

#define VFP_BINOP(name) \
11265
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
P
pbrook 已提交
11266
{ \
11267 11268
    float_status *fpst = fpstp; \
    return float32_ ## name(a, b, fpst); \
P
pbrook 已提交
11269
} \
11270
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
P
pbrook 已提交
11271
{ \
11272 11273
    float_status *fpst = fpstp; \
    return float64_ ## name(a, b, fpst); \
P
pbrook 已提交
11274 11275 11276 11277 11278
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
11279 11280 11281 11282
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
P
pbrook 已提交
11283 11284 11285 11286 11287 11288 11289 11290 11291
#undef VFP_BINOP

float32 VFP_HELPER(neg, s)(float32 a)
{
    return float32_chs(a);
}

float64 VFP_HELPER(neg, d)(float64 a)
{
11292
    return float64_chs(a);
P
pbrook 已提交
11293 11294 11295 11296 11297 11298 11299 11300 11301
}

float32 VFP_HELPER(abs, s)(float32 a)
{
    return float32_abs(a);
}

float64 VFP_HELPER(abs, d)(float64 a)
{
11302
    return float64_abs(a);
P
pbrook 已提交
11303 11304
}

11305
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
P
pbrook 已提交
11306 11307 11308 11309
{
    return float32_sqrt(a, &env->vfp.fp_status);
}

11310
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
P
pbrook 已提交
11311 11312 11313 11314 11315 11316
{
    return float64_sqrt(a, &env->vfp.fp_status);
}

/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
11317
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
P
pbrook 已提交
11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328
{ \
    uint32_t flags; \
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
11329
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
P
pbrook 已提交
11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344
{ \
    uint32_t flags; \
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp

11345
/* Integer to float and float to integer conversions */
P
pbrook 已提交
11346

11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375
#define CONV_ITOF(name, ftype, fsz, sign)                           \
ftype HELPER(name)(uint32_t x, void *fpstp)                         \
{                                                                   \
    float_status *fpst = fpstp;                                     \
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
}

#define CONV_FTOI(name, ftype, fsz, sign, round)                \
uint32_t HELPER(name)(ftype x, void *fpstp)                     \
{                                                               \
    float_status *fpst = fpstp;                                 \
    if (float##fsz##_is_any_nan(x)) {                           \
        float_raise(float_flag_invalid, fpst);                  \
        return 0;                                               \
    }                                                           \
    return float##fsz##_to_##sign##int32##round(x, fpst);       \
}

#define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
    CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
    CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
    CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)

FLOAT_CONVS(si, h, uint32_t, 16, )
FLOAT_CONVS(si, s, float32, 32, )
FLOAT_CONVS(si, d, float64, 64, )
FLOAT_CONVS(ui, h, uint32_t, 16, u)
FLOAT_CONVS(ui, s, float32, 32, u)
FLOAT_CONVS(ui, d, float64, 64, u)
P
pbrook 已提交
11376

11377 11378 11379
#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS
P
pbrook 已提交
11380 11381

/* floating point conversion */
11382
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
P
pbrook 已提交
11383
{
11384
    return float32_to_float64(x, &env->vfp.fp_status);
P
pbrook 已提交
11385 11386
}

11387
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
P
pbrook 已提交
11388
{
11389
    return float64_to_float32(x, &env->vfp.fp_status);
P
pbrook 已提交
11390 11391 11392
}

/* VFP3 fixed point conversion.  */
11393
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11394 11395
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
                                     void *fpstp) \
P
pbrook 已提交
11396
{ \
11397
    float_status *fpst = fpstp; \
11398
    float##fsz tmp; \
11399
    tmp = itype##_to_##float##fsz(x, fpst); \
11400
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
11401 11402
}

11403 11404 11405 11406 11407
/* Notice that we want only input-denormal exception flags from the
 * scalbn operation: the other possible flags (overflow+inexact if
 * we overflow to infinity, output-denormal) aren't correct for the
 * complete scale-and-convert operation.
 */
11408 11409 11410 11411
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
                                             uint32_t shift, \
                                             void *fpstp) \
P
pbrook 已提交
11412
{ \
11413
    float_status *fpst = fpstp; \
11414
    int old_exc_flags = get_float_exception_flags(fpst); \
11415 11416
    float##fsz tmp; \
    if (float##fsz##_is_any_nan(x)) { \
11417
        float_raise(float_flag_invalid, fpst); \
11418
        return 0; \
11419
    } \
11420
    tmp = float##fsz##_scalbn(x, shift, fpst); \
11421 11422 11423
    old_exc_flags |= get_float_exception_flags(fpst) \
        & float_flag_input_denormal; \
    set_float_exception_flags(old_exc_flags, fpst); \
11424
    return float##fsz##_to_##itype##round(tmp, fpst); \
11425 11426
}

11427 11428
#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
11429 11430 11431 11432 11433 11434
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )

#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11435

11436 11437
VFP_CONV_FIX(sh, d, 64, 64, int16)
VFP_CONV_FIX(sl, d, 64, 64, int32)
11438
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
11439 11440
VFP_CONV_FIX(uh, d, 64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, 64, uint32)
11441
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
11442 11443
VFP_CONV_FIX(sh, s, 32, 32, int16)
VFP_CONV_FIX(sl, s, 32, 32, int32)
11444
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
11445 11446
VFP_CONV_FIX(uh, s, 32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, 32, uint32)
11447
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
11448

P
pbrook 已提交
11449
#undef VFP_CONV_FIX
11450 11451
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND
11452 11453 11454
#undef VFP_CONV_FIX_A64

/* Conversion to/from f16 can overflow to infinity before/after scaling.
11455 11456 11457 11458 11459 11460
 * Therefore we convert to f64, scale, and then convert f64 to f16; or
 * vice versa for conversion to integer.
 *
 * For 16- and 32-bit integers, the conversion to f64 never rounds.
 * For 64-bit integers, any integer that would cause rounding will also
 * overflow to f16 infinity, so there is no double rounding problem.
11461 11462 11463 11464 11465 11466 11467
 */

static float16 do_postscale_fp16(float64 f, int shift, float_status *fpst)
{
    return float64_to_float16(float64_scalbn(f, -shift, fpst), true, fpst);
}

11468
uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
11469 11470 11471 11472
{
    return do_postscale_fp16(int32_to_float64(x, fpst), shift, fpst);
}

11473
uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
11474 11475 11476 11477
{
    return do_postscale_fp16(uint32_to_float64(x, fpst), shift, fpst);
}

11478
uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
11479 11480 11481 11482
{
    return do_postscale_fp16(int64_to_float64(x, fpst), shift, fpst);
}

11483
uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
11484 11485 11486 11487
{
    return do_postscale_fp16(uint64_to_float64(x, fpst), shift, fpst);
}

11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506
static float64 do_prescale_fp16(float16 f, int shift, float_status *fpst)
{
    if (unlikely(float16_is_any_nan(f))) {
        float_raise(float_flag_invalid, fpst);
        return 0;
    } else {
        int old_exc_flags = get_float_exception_flags(fpst);
        float64 ret;

        ret = float16_to_float64(f, true, fpst);
        ret = float64_scalbn(ret, shift, fpst);
        old_exc_flags |= get_float_exception_flags(fpst)
            & float_flag_input_denormal;
        set_float_exception_flags(old_exc_flags, fpst);

        return ret;
    }
}

11507
uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
11508 11509 11510 11511
{
    return float64_to_int16(do_prescale_fp16(x, shift, fpst), fpst);
}

11512
uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
11513 11514 11515
{
    return float64_to_uint16(do_prescale_fp16(x, shift, fpst), fpst);
}
P
pbrook 已提交
11516

11517
uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
11518 11519 11520 11521
{
    return float64_to_int32(do_prescale_fp16(x, shift, fpst), fpst);
}

11522
uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
11523 11524 11525 11526
{
    return float64_to_uint32(do_prescale_fp16(x, shift, fpst), fpst);
}

11527
uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
11528 11529 11530 11531
{
    return float64_to_int64(do_prescale_fp16(x, shift, fpst), fpst);
}

11532
uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
11533 11534 11535 11536
{
    return float64_to_uint64(do_prescale_fp16(x, shift, fpst), fpst);
}

11537 11538 11539
/* Set the current fp rounding mode and return the old one.
 * The argument is a softfloat float_round_ value.
 */
11540
uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
11541
{
11542
    float_status *fp_status = fpstp;
11543 11544 11545 11546 11547 11548 11549

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566
/* Set the current fp rounding mode in the standard fp status and return
 * the old one. This is for NEON instructions that need to change the
 * rounding mode but wish to use the standard FPSCR values for everything
 * else. Always set the rounding mode back to the correct value after
 * modifying it.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.standard_fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

P
Paul Brook 已提交
11567
/* Half precision conversions.  */
11568
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
P
Paul Brook 已提交
11569
{
11570 11571 11572 11573 11574 11575 11576 11577 11578
    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
     * it would affect flushing input denormals.
     */
    float_status *fpst = fpstp;
    flag save = get_flush_inputs_to_zero(fpst);
    set_flush_inputs_to_zero(false, fpst);
    float32 r = float16_to_float32(a, !ahp_mode, fpst);
    set_flush_inputs_to_zero(save, fpst);
    return r;
11579 11580
}

11581
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
11582
{
11583 11584 11585 11586 11587 11588 11589 11590 11591
    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
     * it would affect flushing output denormals.
     */
    float_status *fpst = fpstp;
    flag save = get_flush_to_zero(fpst);
    set_flush_to_zero(false, fpst);
    float16 r = float32_to_float16(a, !ahp_mode, fpst);
    set_flush_to_zero(save, fpst);
    return r;
11592 11593
}

11594
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
11595
{
11596 11597 11598 11599 11600 11601 11602 11603 11604
    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
     * it would affect flushing input denormals.
     */
    float_status *fpst = fpstp;
    flag save = get_flush_inputs_to_zero(fpst);
    set_flush_inputs_to_zero(false, fpst);
    float64 r = float16_to_float64(a, !ahp_mode, fpst);
    set_flush_inputs_to_zero(save, fpst);
    return r;
11605 11606
}

11607
uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
11608
{
11609 11610 11611 11612 11613 11614 11615 11616 11617
    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
     * it would affect flushing output denormals.
     */
    float_status *fpst = fpstp;
    flag save = get_flush_to_zero(fpst);
    set_flush_to_zero(false, fpst);
    float16 r = float64_to_float16(a, !ahp_mode, fpst);
    set_flush_to_zero(save, fpst);
    return r;
11618 11619
}

11620
#define float32_two make_float32(0x40000000)
11621 11622
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
11623

11624
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
11625
{
11626 11627 11628
    float_status *s = &env->vfp.standard_fp_status;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11629 11630 11631
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
11632 11633 11634
        return float32_two;
    }
    return float32_sub(float32_two, float32_mul(a, b, s), s);
P
pbrook 已提交
11635 11636
}

11637
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
11638
{
11639
    float_status *s = &env->vfp.standard_fp_status;
11640 11641 11642
    float32 product;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11643 11644 11645
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
11646
        return float32_one_point_five;
11647
    }
11648 11649
    product = float32_mul(a, b, s);
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
P
pbrook 已提交
11650 11651
}

P
pbrook 已提交
11652 11653
/* NEON helpers.  */

11654 11655 11656 11657
/* Constants 256 and 512 are used in some helpers; we avoid relying on
 * int->float conversions at run-time.  */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)
11658
#define float16_maxnorm make_float16(0x7bff)
11659 11660
#define float32_maxnorm make_float32(0x7f7fffff)
#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
11661

11662 11663 11664
/* Reciprocal functions
 *
 * The algorithm that must be used to calculate the estimate
11665
 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
11666
 */
11667

11668 11669 11670 11671 11672 11673
/* See RecipEstimate()
 *
 * input is a 9 bit fixed point number
 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
 * result range 256 .. 511 for a number from 1.0 to 511/256.
 */
11674

11675 11676 11677 11678 11679 11680 11681 11682 11683
static int recip_estimate(int input)
{
    int a, b, r;
    assert(256 <= input && input < 512);
    a = (input * 2) + 1;
    b = (1 << 19) / a;
    r = (b + 1) >> 1;
    assert(256 <= r && r < 512);
    return r;
11684 11685
}

11686 11687 11688 11689 11690 11691 11692 11693 11694 11695
/*
 * Common wrapper to call recip_estimate
 *
 * The parameters are exponent and 64 bit fraction (without implicit
 * bit) where the binary point is nominally at bit 52. Returns a
 * float64 which can then be rounded to the appropriate size by the
 * callee.
 */

static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
P
pbrook 已提交
11696
{
11697 11698 11699
    uint32_t scaled, estimate;
    uint64_t result_frac;
    int result_exp;
11700

11701 11702
    /* Handle sub-normals */
    if (*exp == 0) {
11703
        if (extract64(frac, 51, 1) == 0) {
11704 11705
            *exp = -1;
            frac <<= 2;
11706
        } else {
11707
            frac <<= 1;
11708 11709
        }
    }
11710

11711 11712 11713
    /* scaled = UInt('1':fraction<51:44>) */
    scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
    estimate = recip_estimate(scaled);
11714

11715 11716 11717 11718 11719 11720 11721
    result_exp = exp_off - *exp;
    result_frac = deposit64(0, 44, 8, estimate);
    if (result_exp == 0) {
        result_frac = deposit64(result_frac >> 1, 51, 1, 1);
    } else if (result_exp == -1) {
        result_frac = deposit64(result_frac >> 2, 50, 2, 1);
        result_exp = 0;
11722 11723
    }

11724 11725 11726
    *exp = result_exp;

    return result_frac;
11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744
}

static bool round_to_inf(float_status *fpst, bool sign_bit)
{
    switch (fpst->float_rounding_mode) {
    case float_round_nearest_even: /* Round to Nearest */
        return true;
    case float_round_up: /* Round to +Inf */
        return !sign_bit;
    case float_round_down: /* Round to -Inf */
        return sign_bit;
    case float_round_to_zero: /* Round to Zero */
        return false;
    }

    g_assert_not_reached();
}

11745
uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758
{
    float_status *fpst = fpstp;
    float16 f16 = float16_squash_input_denormal(input, fpst);
    uint32_t f16_val = float16_val(f16);
    uint32_t f16_sign = float16_is_neg(f16);
    int f16_exp = extract32(f16_val, 10, 5);
    uint32_t f16_frac = extract32(f16_val, 0, 10);
    uint64_t f64_frac;

    if (float16_is_any_nan(f16)) {
        float16 nan = f16;
        if (float16_is_signaling_nan(f16, fpst)) {
            float_raise(float_flag_invalid, fpst);
11759
            nan = float16_silence_nan(f16, fpst);
11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792
        }
        if (fpst->default_nan_mode) {
            nan =  float16_default_nan(fpst);
        }
        return nan;
    } else if (float16_is_infinity(f16)) {
        return float16_set_sign(float16_zero, float16_is_neg(f16));
    } else if (float16_is_zero(f16)) {
        float_raise(float_flag_divbyzero, fpst);
        return float16_set_sign(float16_infinity, float16_is_neg(f16));
    } else if (float16_abs(f16) < (1 << 8)) {
        /* Abs(value) < 2.0^-16 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f16_sign)) {
            return float16_set_sign(float16_infinity, f16_sign);
        } else {
            return float16_set_sign(float16_maxnorm, f16_sign);
        }
    } else if (f16_exp >= 29 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float16_set_sign(float16_zero, float16_is_neg(f16));
    }

    f64_frac = call_recip_estimate(&f16_exp, 29,
                                   ((uint64_t) f16_frac) << (52 - 10));

    /* result = sign : result_exp<4:0> : fraction<51:42> */
    f16_val = deposit32(0, 15, 1, f16_sign);
    f16_val = deposit32(f16_val, 10, 5, f16_exp);
    f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
    return make_float16(f16_val);
}

11793 11794 11795 11796 11797
float32 HELPER(recpe_f32)(float32 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float32 f32 = float32_squash_input_denormal(input, fpst);
    uint32_t f32_val = float32_val(f32);
11798 11799
    bool f32_sign = float32_is_neg(f32);
    int f32_exp = extract32(f32_val, 23, 8);
11800
    uint32_t f32_frac = extract32(f32_val, 0, 23);
11801
    uint64_t f64_frac;
11802 11803 11804

    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
11805
        if (float32_is_signaling_nan(f32, fpst)) {
11806
            float_raise(float_flag_invalid, fpst);
11807
            nan = float32_silence_nan(f32, fpst);
11808
        }
11809
        if (fpst->default_nan_mode) {
11810
            nan =  float32_default_nan(fpst);
11811
        }
11812 11813 11814 11815 11816 11817
        return nan;
    } else if (float32_is_infinity(f32)) {
        return float32_set_sign(float32_zero, float32_is_neg(f32));
    } else if (float32_is_zero(f32)) {
        float_raise(float_flag_divbyzero, fpst);
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
11818
    } else if (float32_abs(f32) < (1ULL << 21)) {
11819 11820
        /* Abs(value) < 2.0^-128 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
11821 11822
        if (round_to_inf(fpst, f32_sign)) {
            return float32_set_sign(float32_infinity, f32_sign);
11823
        } else {
11824
            return float32_set_sign(float32_maxnorm, f32_sign);
11825 11826 11827 11828
        }
    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float32_set_sign(float32_zero, float32_is_neg(f32));
11829 11830
    }

11831 11832
    f64_frac = call_recip_estimate(&f32_exp, 253,
                                   ((uint64_t) f32_frac) << (52 - 23));
11833

11834 11835 11836 11837 11838
    /* result = sign : result_exp<7:0> : fraction<51:29> */
    f32_val = deposit32(0, 31, 1, f32_sign);
    f32_val = deposit32(f32_val, 23, 8, f32_exp);
    f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
    return make_float32(f32_val);
11839 11840 11841 11842 11843 11844 11845
}

float64 HELPER(recpe_f64)(float64 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float64 f64 = float64_squash_input_denormal(input, fpst);
    uint64_t f64_val = float64_val(f64);
11846 11847 11848
    bool f64_sign = float64_is_neg(f64);
    int f64_exp = extract64(f64_val, 52, 11);
    uint64_t f64_frac = extract64(f64_val, 0, 52);
11849 11850 11851 11852

    /* Deal with any special cases */
    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
11853
        if (float64_is_signaling_nan(f64, fpst)) {
11854
            float_raise(float_flag_invalid, fpst);
11855
            nan = float64_silence_nan(f64, fpst);
11856 11857
        }
        if (fpst->default_nan_mode) {
11858
            nan =  float64_default_nan(fpst);
11859 11860 11861 11862 11863 11864 11865 11866 11867 11868
        }
        return nan;
    } else if (float64_is_infinity(f64)) {
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, fpst);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
        /* Abs(value) < 2.0^-1024 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
11869 11870
        if (round_to_inf(fpst, f64_sign)) {
            return float64_set_sign(float64_infinity, f64_sign);
11871
        } else {
11872
            return float64_set_sign(float64_maxnorm, f64_sign);
11873
        }
11874
    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
11875 11876 11877
        float_raise(float_flag_underflow, fpst);
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    }
11878

11879
    f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
11880

11881 11882 11883 11884 11885
    /* result = sign : result_exp<10:0> : fraction<51:0>; */
    f64_val = deposit64(0, 63, 1, f64_sign);
    f64_val = deposit64(f64_val, 52, 11, f64_exp);
    f64_val = deposit64(f64_val, 0, 52, f64_frac);
    return make_float64(f64_val);
P
pbrook 已提交
11886 11887
}

11888 11889 11890
/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */
11891 11892 11893 11894 11895 11896 11897 11898

static int do_recip_sqrt_estimate(int a)
{
    int b, estimate;

    assert(128 <= a && a < 512);
    if (a < 256) {
        a = a * 2 + 1;
11899
    } else {
11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912
        a = (a >> 1) << 1;
        a = (a + 1) * 2;
    }
    b = 512;
    while (a * (b + 1) * (b + 1) < (1 << 28)) {
        b += 1;
    }
    estimate = (b + 1) / 2;
    assert(256 <= estimate && estimate < 512);

    return estimate;
}

11913

11914 11915 11916 11917
static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
{
    int estimate;
    uint32_t scaled;
11918

11919 11920 11921 11922 11923 11924
    if (*exp == 0) {
        while (extract64(frac, 51, 1) == 0) {
            frac = frac << 1;
            *exp -= 1;
        }
        frac = extract64(frac, 0, 51) << 1;
11925 11926
    }

11927 11928 11929 11930 11931 11932 11933 11934
    if (*exp & 1) {
        /* scaled = UInt('01':fraction<51:45>) */
        scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
    } else {
        /* scaled = UInt('1':fraction<51:44>) */
        scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
    }
    estimate = do_recip_sqrt_estimate(scaled);
11935

11936 11937 11938 11939
    *exp = (exp_off - *exp) / 2;
    return extract64(estimate, 0, 8) << 44;
}

11940
uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953
{
    float_status *s = fpstp;
    float16 f16 = float16_squash_input_denormal(input, s);
    uint16_t val = float16_val(f16);
    bool f16_sign = float16_is_neg(f16);
    int f16_exp = extract32(val, 10, 5);
    uint16_t f16_frac = extract32(val, 0, 10);
    uint64_t f64_frac;

    if (float16_is_any_nan(f16)) {
        float16 nan = f16;
        if (float16_is_signaling_nan(f16, s)) {
            float_raise(float_flag_invalid, s);
11954
            nan = float16_silence_nan(f16, s);
11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981
        }
        if (s->default_nan_mode) {
            nan =  float16_default_nan(s);
        }
        return nan;
    } else if (float16_is_zero(f16)) {
        float_raise(float_flag_divbyzero, s);
        return float16_set_sign(float16_infinity, f16_sign);
    } else if (f16_sign) {
        float_raise(float_flag_invalid, s);
        return float16_default_nan(s);
    } else if (float16_is_infinity(f16)) {
        return float16_zero;
    }

    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
     * preserving the parity of the exponent.  */

    f64_frac = ((uint64_t) f16_frac) << (52 - 10);

    f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);

    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
    val = deposit32(0, 15, 1, f16_sign);
    val = deposit32(val, 10, 5, f16_exp);
    val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
    return make_float16(val);
11982 11983
}

11984
float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
P
pbrook 已提交
11985
{
11986 11987 11988
    float_status *s = fpstp;
    float32 f32 = float32_squash_input_denormal(input, s);
    uint32_t val = float32_val(f32);
11989 11990
    uint32_t f32_sign = float32_is_neg(f32);
    int f32_exp = extract32(val, 23, 8);
11991 11992
    uint32_t f32_frac = extract32(val, 0, 23);
    uint64_t f64_frac;
11993

11994 11995
    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
11996
        if (float32_is_signaling_nan(f32, s)) {
11997
            float_raise(float_flag_invalid, s);
11998
            nan = float32_silence_nan(f32, s);
11999
        }
12000
        if (s->default_nan_mode) {
12001
            nan =  float32_default_nan(s);
12002
        }
12003 12004
        return nan;
    } else if (float32_is_zero(f32)) {
12005
        float_raise(float_flag_divbyzero, s);
12006 12007
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if (float32_is_neg(f32)) {
12008
        float_raise(float_flag_invalid, s);
12009
        return float32_default_nan(s);
12010
    } else if (float32_is_infinity(f32)) {
12011 12012 12013
        return float32_zero;
    }

12014
    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12015
     * preserving the parity of the exponent.  */
12016 12017

    f64_frac = ((uint64_t) f32_frac) << 29;
12018

12019
    f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
12020

12021 12022 12023 12024
    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
    val = deposit32(0, 31, 1, f32_sign);
    val = deposit32(val, 23, 8, f32_exp);
    val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
12025
    return make_float32(val);
P
pbrook 已提交
12026 12027
}

12028 12029 12030 12031 12032
float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
{
    float_status *s = fpstp;
    float64 f64 = float64_squash_input_denormal(input, s);
    uint64_t val = float64_val(f64);
12033 12034
    bool f64_sign = float64_is_neg(f64);
    int f64_exp = extract64(val, 52, 11);
12035 12036 12037 12038
    uint64_t f64_frac = extract64(val, 0, 52);

    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
12039
        if (float64_is_signaling_nan(f64, s)) {
12040
            float_raise(float_flag_invalid, s);
12041
            nan = float64_silence_nan(f64, s);
12042 12043
        }
        if (s->default_nan_mode) {
12044
            nan =  float64_default_nan(s);
12045 12046 12047 12048 12049 12050 12051
        }
        return nan;
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, s);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if (float64_is_neg(f64)) {
        float_raise(float_flag_invalid, s);
12052
        return float64_default_nan(s);
12053 12054 12055 12056
    } else if (float64_is_infinity(f64)) {
        return float64_zero;
    }

12057
    f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
12058

12059 12060 12061 12062 12063
    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
    val = deposit64(0, 61, 1, f64_sign);
    val = deposit64(val, 52, 11, f64_exp);
    val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
    return make_float64(val);
12064 12065
}

12066
uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
12067
{
12068 12069
    /* float_status *s = fpstp; */
    int input, estimate;
12070 12071 12072 12073 12074

    if ((a & 0x80000000) == 0) {
        return 0xffffffff;
    }

12075 12076
    input = extract32(a, 23, 9);
    estimate = recip_estimate(input);
12077

12078
    return deposit32(0, (32 - 9), 9, estimate);
P
pbrook 已提交
12079 12080
}

12081
uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
12082
{
12083
    int estimate;
12084 12085 12086 12087 12088

    if ((a & 0xc0000000) == 0) {
        return 0xffffffff;
    }

12089
    estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
12090

12091
    return deposit32(0, 23, 9, estimate);
P
pbrook 已提交
12092
}
12093

12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105
/* VFPv4 fused multiply-accumulate */
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float32_muladd(a, b, c, 0, fpst);
}

float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float64_muladd(a, b, c, 0, fpst);
}
12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150

/* ARMv8 round to integral */
float32 HELPER(rints_exact)(float32 x, void *fp_status)
{
    return float32_round_to_int(x, fp_status);
}

float64 HELPER(rintd_exact)(float64 x, void *fp_status)
{
    return float64_round_to_int(x, fp_status);
}

float32 HELPER(rints)(float32 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float32 ret;

    ret = float32_round_to_int(x, fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

float64 HELPER(rintd)(float64 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float64 ret;

    ret = float64_round_to_int(x, fp_status);

    new_flags = get_float_exception_flags(fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}
12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178

/* Convert ARM rounding mode to softfloat */
int arm_rmode_to_sf(int rmode)
{
    switch (rmode) {
    case FPROUNDING_TIEAWAY:
        rmode = float_round_ties_away;
        break;
    case FPROUNDING_ODD:
        /* FIXME: add support for TIEAWAY and ODD */
        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
                      rmode);
    case FPROUNDING_TIEEVEN:
    default:
        rmode = float_round_nearest_even;
        break;
    case FPROUNDING_POSINF:
        rmode = float_round_up;
        break;
    case FPROUNDING_NEGINF:
        rmode = float_round_down;
        break;
    case FPROUNDING_ZERO:
        rmode = float_round_to_zero;
        break;
    }
    return rmode;
}
12179

12180 12181 12182 12183
/* CRC helpers.
 * The upper bytes of val (above the number specified by 'bytes') must have
 * been zeroed out by the caller.
 */
12184 12185 12186 12187
uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

12188
    stl_le_p(buf, val);
12189 12190 12191 12192 12193 12194 12195 12196 12197

    /* zlib crc32 converts the accumulator and output to one's complement.  */
    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}

uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

12198
    stl_le_p(buf, val);
12199 12200 12201 12202

    /* Linux crc32c converts the output to one's complement.  */
    return crc32c(acc, buf, bytes) ^ 0xffffffff;
}
12203 12204 12205 12206 12207 12208

/* Return the exception level to which FP-disabled exceptions should
 * be taken, or 0 if FP is enabled.
 */
static inline int fp_exception_el(CPUARMState *env)
{
12209
#ifndef CONFIG_USER_ONLY
12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265
    int fpen;
    int cur_el = arm_current_el(env);

    /* CPACR and the CPTR registers don't exist before v6, so FP is
     * always accessible
     */
    if (!arm_feature(env, ARM_FEATURE_V6)) {
        return 0;
    }

    /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
     * 0, 2 : trap EL0 and EL1/PL1 accesses
     * 1    : trap only EL0 accesses
     * 3    : trap no accesses
     */
    fpen = extract32(env->cp15.cpacr_el1, 20, 2);
    switch (fpen) {
    case 0:
    case 2:
        if (cur_el == 0 || cur_el == 1) {
            /* Trap to PL1, which might be EL1 or EL3 */
            if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
                return 3;
            }
            return 1;
        }
        if (cur_el == 3 && !is_a64(env)) {
            /* Secure PL1 running at EL3 */
            return 3;
        }
        break;
    case 1:
        if (cur_el == 0) {
            return 1;
        }
        break;
    case 3:
        break;
    }

    /* For the CPTR registers we don't need to guard with an ARM_FEATURE
     * check because zero bits in the registers mean "don't trap".
     */

    /* CPTR_EL2 : present in v7VE or v8 */
    if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
        && !arm_is_secure_below_el3(env)) {
        /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
        return 2;
    }

    /* CPTR_EL3 : present in v8 */
    if (extract32(env->cp15.cptr_el[3], 10, 1)) {
        /* Trap all FP ops to EL3 */
        return 3;
    }
12266
#endif
12267 12268 12269 12270
    return 0;
}

void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12271
                          target_ulong *cs_base, uint32_t *pflags)
12272 12273
{
    ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
12274
    int fp_el = fp_exception_el(env);
12275 12276
    uint32_t flags;

12277
    if (is_a64(env)) {
12278 12279 12280
        int sve_el = sve_exception_el(env);
        uint32_t zcr_len;

12281
        *pc = env->pc;
12282
        flags = ARM_TBFLAG_AARCH64_STATE_MASK;
12283
        /* Get control bits for tagged addresses */
12284 12285
        flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
        flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304
        flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT;

        /* If SVE is disabled, but FP is enabled,
           then the effective len is 0.  */
        if (sve_el != 0 && fp_el == 0) {
            zcr_len = 0;
        } else {
            int current_el = arm_current_el(env);

            zcr_len = env->vfp.zcr_el[current_el <= 1 ? 1 : current_el];
            zcr_len &= 0xf;
            if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
                zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
            }
            if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
                zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
            }
        }
        flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT;
12305 12306
    } else {
        *pc = env->regs[15];
12307
        flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
12308 12309 12310 12311 12312
            | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
            | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
            | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
            | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
        if (!(access_secure_reg(env))) {
12313
            flags |= ARM_TBFLAG_NS_MASK;
12314 12315 12316
        }
        if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
            || arm_el_is_aa64(env, 1)) {
12317
            flags |= ARM_TBFLAG_VFPEN_MASK;
12318
        }
12319 12320
        flags |= (extract32(env->cp15.c15_cpar, 0, 2)
                  << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
12321 12322
    }

12323
    flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
12324 12325 12326 12327 12328 12329 12330 12331 12332

    /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
     * states defined in the ARM ARM for software singlestep:
     *  SS_ACTIVE   PSTATE.SS   State
     *     0            x       Inactive (the TB flag for SS is always 0)
     *     1            0       Active-pending
     *     1            1       Active-not-pending
     */
    if (arm_singlestep_active(env)) {
12333
        flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
12334 12335
        if (is_a64(env)) {
            if (env->pstate & PSTATE_SS) {
12336
                flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12337 12338 12339
            }
        } else {
            if (env->uncached_cpsr & PSTATE_SS) {
12340
                flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12341 12342 12343 12344
            }
        }
    }
    if (arm_cpu_data_is_big_endian(env)) {
12345
        flags |= ARM_TBFLAG_BE_DATA_MASK;
12346
    }
12347
    flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT;
12348 12349

    if (arm_v7m_is_handler_mode(env)) {
12350
        flags |= ARM_TBFLAG_HANDLER_MASK;
12351 12352
    }

12353
    *pflags = flags;
12354 12355
    *cs_base = 0;
}