translate-all.c 56.7 KB
Newer Older
B
bellard 已提交
1 2
/*
 *  Host code generation
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19 20 21 22 23 24
#ifdef _WIN32
#include <windows.h>
#else
#include <sys/types.h>
#include <sys/mman.h>
#endif
B
bellard 已提交
25 26 27 28 29 30 31
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>

#include "config.h"
B
bellard 已提交
32

33
#include "qemu-common.h"
B
bellard 已提交
34
#define NO_CPU_IO_DEFS
B
bellard 已提交
35
#include "cpu.h"
36
#include "trace.h"
37
#include "disas/disas.h"
B
bellard 已提交
38
#include "tcg.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#if defined(CONFIG_USER_ONLY)
#include "qemu.h"
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#include <sys/param.h>
#if __FreeBSD_version >= 700104
#define HAVE_KINFO_GETVMMAP
#define sigqueue sigqueue_freebsd  /* avoid redefinition */
#include <sys/time.h>
#include <sys/proc.h>
#include <machine/profile.h>
#define _KERNEL
#include <sys/user.h>
#undef _KERNEL
#undef sigqueue
#include <libutil.h>
#endif
#endif
56 57
#else
#include "exec/address-spaces.h"
58 59
#endif

60
#include "exec/cputlb.h"
61
#include "exec/tb-hash.h"
62
#include "translate-all.h"
63
#include "qemu/bitmap.h"
64
#include "qemu/timer.h"
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

//#define DEBUG_TB_INVALIDATE
//#define DEBUG_FLUSH
/* make various TB consistency checks */
//#define DEBUG_TB_CHECK

#if !defined(CONFIG_USER_ONLY)
/* TB consistency checks only implemented for usermode emulation.  */
#undef DEBUG_TB_CHECK
#endif

#define SMC_BITMAP_USE_THRESHOLD 10

typedef struct PageDesc {
    /* list of TBs intersecting this ram page */
    TranslationBlock *first_tb;
    /* in order to optimize self modifying code, we count the number
       of lookups we do to a given page to use a bitmap */
    unsigned int code_write_count;
84
    unsigned long *code_bitmap;
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#if defined(CONFIG_USER_ONLY)
    unsigned long flags;
#endif
} PageDesc;

/* In system mode we want L1_MAP to be based on ram offsets,
   while in user mode we want it to be based on virtual addresses.  */
#if !defined(CONFIG_USER_ONLY)
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
# define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
#endif
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
#endif

102 103 104 105
/* Size of the L2 (and L3, etc) page tables.  */
#define V_L2_BITS 10
#define V_L2_SIZE (1 << V_L2_BITS)

106 107
/* The bits remaining after N lower levels of page tables.  */
#define V_L1_BITS_REM \
108
    ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
109 110

#if V_L1_BITS_REM < 4
111
#define V_L1_BITS  (V_L1_BITS_REM + V_L2_BITS)
112 113 114 115 116 117 118 119 120
#else
#define V_L1_BITS  V_L1_BITS_REM
#endif

#define V_L1_SIZE  ((target_ulong)1 << V_L1_BITS)

#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)

uintptr_t qemu_real_host_page_size;
121
uintptr_t qemu_real_host_page_mask;
122 123 124
uintptr_t qemu_host_page_size;
uintptr_t qemu_host_page_mask;

125
/* The bottom level has pointers to PageDesc */
126 127
static void *l1_map[V_L1_SIZE];

B
bellard 已提交
128 129
/* code generation context */
TCGContext tcg_ctx;
B
bellard 已提交
130

K
KONRAD Frederic 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/* translation block context */
#ifdef CONFIG_USER_ONLY
__thread int have_tb_lock;
#endif

void tb_lock(void)
{
#ifdef CONFIG_USER_ONLY
    assert(!have_tb_lock);
    qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
    have_tb_lock++;
#endif
}

void tb_unlock(void)
{
#ifdef CONFIG_USER_ONLY
    assert(have_tb_lock);
    have_tb_lock--;
    qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
#endif
}

void tb_lock_reset(void)
{
#ifdef CONFIG_USER_ONLY
    if (have_tb_lock) {
        qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
        have_tb_lock = 0;
    }
#endif
}

164 165
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2);
B
Blue Swirl 已提交
166
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
167

B
bellard 已提交
168 169 170 171 172
void cpu_gen_init(void)
{
    tcg_context_init(&tcg_ctx); 
}

B
bellard 已提交
173
/* return non zero if the very first instruction is invalid so that
174
   the virtual CPU can trigger an exception.
B
bellard 已提交
175 176 177 178

   '*gen_code_size_ptr' contains the size of the generated code (host
   code).
*/
179
int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
B
bellard 已提交
180
{
B
bellard 已提交
181
    TCGContext *s = &tcg_ctx;
182
    tcg_insn_unit *gen_code_buf;
B
bellard 已提交
183
    int gen_code_size;
B
bellard 已提交
184 185 186 187 188
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif

#ifdef CONFIG_PROFILER
B
bellard 已提交
189 190
    s->tb_count1++; /* includes aborted translations because of
                       exceptions */
B
bellard 已提交
191 192 193
    ti = profile_getclock();
#endif
    tcg_func_start(s);
B
bellard 已提交
194

195 196
    gen_intermediate_code(env, tb);

197 198
    trace_translate_block(tb, tb->pc, tb->tc_ptr);

B
bellard 已提交
199
    /* generate machine code */
B
bellard 已提交
200
    gen_code_buf = tb->tc_ptr;
B
bellard 已提交
201 202
    tb->tb_next_offset[0] = 0xffff;
    tb->tb_next_offset[1] = 0xffff;
B
bellard 已提交
203
    s->tb_next_offset = tb->tb_next_offset;
204
#ifdef USE_DIRECT_JUMP
B
bellard 已提交
205 206
    s->tb_jmp_offset = tb->tb_jmp_offset;
    s->tb_next = NULL;
B
bellard 已提交
207
#else
B
bellard 已提交
208 209
    s->tb_jmp_offset = NULL;
    s->tb_next = tb->tb_next;
B
bellard 已提交
210
#endif
B
bellard 已提交
211 212

#ifdef CONFIG_PROFILER
B
bellard 已提交
213 214 215
    s->tb_count++;
    s->interm_time += profile_getclock() - ti;
    s->code_time -= profile_getclock();
B
bellard 已提交
216
#endif
A
aurel32 已提交
217
    gen_code_size = tcg_gen_code(s, gen_code_buf);
B
bellard 已提交
218
    *gen_code_size_ptr = gen_code_size;
B
bellard 已提交
219
#ifdef CONFIG_PROFILER
B
bellard 已提交
220 221 222
    s->code_time += profile_getclock();
    s->code_in_len += tb->size;
    s->code_out_len += gen_code_size;
B
bellard 已提交
223 224
#endif

B
bellard 已提交
225
#ifdef DEBUG_DISAS
226
    if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
227 228
        qemu_log("OUT: [size=%d]\n", gen_code_size);
        log_disas(tb->tc_ptr, gen_code_size);
229
        qemu_log("\n");
230
        qemu_log_flush();
B
bellard 已提交
231 232 233 234 235
    }
#endif
    return 0;
}

236
/* The cpu state corresponding to 'searched_pc' is restored.
B
bellard 已提交
237
 */
238
static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
B
Blue Swirl 已提交
239
                                     uintptr_t searched_pc)
B
bellard 已提交
240
{
241
    CPUArchState *env = cpu->env_ptr;
B
bellard 已提交
242 243
    TCGContext *s = &tcg_ctx;
    int j;
244
    uintptr_t tc_ptr;
B
bellard 已提交
245 246 247 248 249 250 251 252
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif

#ifdef CONFIG_PROFILER
    ti = profile_getclock();
#endif
    tcg_func_start(s);
B
bellard 已提交
253

254
    gen_intermediate_code_pc(env, tb);
255

256
    if (tb->cflags & CF_USE_ICOUNT) {
257
        assert(use_icount);
P
pbrook 已提交
258
        /* Reset the cycle counter to the start of the block.  */
259
        cpu->icount_decr.u16.low += tb->icount;
P
pbrook 已提交
260
        /* Clear the IO flag.  */
261
        cpu->can_do_io = 0;
P
pbrook 已提交
262 263
    }

B
bellard 已提交
264
    /* find opc index corresponding to search_pc */
265
    tc_ptr = (uintptr_t)tb->tc_ptr;
B
bellard 已提交
266 267
    if (searched_pc < tc_ptr)
        return -1;
B
bellard 已提交
268 269 270 271 272 273 274 275 276

    s->tb_next_offset = tb->tb_next_offset;
#ifdef USE_DIRECT_JUMP
    s->tb_jmp_offset = tb->tb_jmp_offset;
    s->tb_next = NULL;
#else
    s->tb_jmp_offset = NULL;
    s->tb_next = tb->tb_next;
#endif
277 278
    j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
                               searched_pc - tc_ptr);
B
bellard 已提交
279 280
    if (j < 0)
        return -1;
B
bellard 已提交
281
    /* now find start of instruction before */
282
    while (s->gen_opc_instr_start[j] == 0) {
B
bellard 已提交
283
        j--;
284
    }
285
    cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
286

287
    restore_state_to_opc(env, tb, j);
B
bellard 已提交
288 289

#ifdef CONFIG_PROFILER
B
bellard 已提交
290 291
    s->restore_time += profile_getclock() - ti;
    s->restore_count++;
B
bellard 已提交
292
#endif
B
bellard 已提交
293 294
    return 0;
}
295

296
bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
B
Blue Swirl 已提交
297 298 299 300 301
{
    TranslationBlock *tb;

    tb = tb_find_pc(retaddr);
    if (tb) {
302
        cpu_restore_state_from_tb(cpu, tb, retaddr);
303 304 305 306 307 308
        if (tb->cflags & CF_NOCACHE) {
            /* one-shot translation, invalidate it immediately */
            cpu->current_tb = NULL;
            tb_phys_invalidate(tb, -1);
            tb_free(tb);
        }
B
Blue Swirl 已提交
309 310 311 312 313
        return true;
    }
    return false;
}

314
#ifdef _WIN32
315
static __attribute__((unused)) void map_exec(void *addr, long size)
316 317 318 319 320 321
{
    DWORD old_protect;
    VirtualProtect(addr, size,
                   PAGE_EXECUTE_READWRITE, &old_protect);
}
#else
322
static __attribute__((unused)) void map_exec(void *addr, long size)
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
{
    unsigned long start, end, page_size;

    page_size = getpagesize();
    start = (unsigned long)addr;
    start &= ~(page_size - 1);

    end = (unsigned long)addr + size;
    end += page_size - 1;
    end &= ~(page_size - 1);

    mprotect((void *)start, end - start,
             PROT_READ | PROT_WRITE | PROT_EXEC);
}
#endif

339
void page_size_init(void)
340 341 342 343
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    qemu_real_host_page_size = getpagesize();
344
    qemu_real_host_page_mask = ~(qemu_real_host_page_size - 1);
345 346 347 348 349 350 351
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = ~(qemu_host_page_size - 1);
352
}
353

354 355 356
static void page_init(void)
{
    page_size_init();
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
    {
#ifdef HAVE_KINFO_GETVMMAP
        struct kinfo_vmentry *freep;
        int i, cnt;

        freep = kinfo_getvmmap(getpid(), &cnt);
        if (freep) {
            mmap_lock();
            for (i = 0; i < cnt; i++) {
                unsigned long startaddr, endaddr;

                startaddr = freep[i].kve_start;
                endaddr = freep[i].kve_end;
                if (h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                    } else {
#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
                        endaddr = ~0ul;
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
#endif
                    }
                }
            }
            free(freep);
            mmap_unlock();
        }
#else
        FILE *f;

        last_brk = (unsigned long)sbrk(0);

        f = fopen("/compat/linux/proc/self/maps", "r");
        if (f) {
            mmap_lock();

            do {
                unsigned long startaddr, endaddr;
                int n;

                n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);

                if (n == 2 && h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                    } else {
                        endaddr = ~0ul;
                    }
                    page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                }
            } while (!feof(f));

            fclose(f);
            mmap_unlock();
        }
#endif
    }
#endif
}

static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
{
    PageDesc *pd;
    void **lp;
    int i;

    /* Level 1.  Always allocated.  */
    lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));

    /* Level 2..N-1.  */
433
    for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
434 435 436 437 438 439
        void **p = *lp;

        if (p == NULL) {
            if (!alloc) {
                return NULL;
            }
440
            p = g_new0(void *, V_L2_SIZE);
441 442 443
            *lp = p;
        }

444
        lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
445 446 447 448 449 450 451
    }

    pd = *lp;
    if (pd == NULL) {
        if (!alloc) {
            return NULL;
        }
452
        pd = g_new0(PageDesc, V_L2_SIZE);
453 454 455
        *lp = pd;
    }

456
    return pd + (index & (V_L2_SIZE - 1));
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
}

static inline PageDesc *page_find(tb_page_addr_t index)
{
    return page_find_alloc(index, 0);
}

#if !defined(CONFIG_USER_ONLY)
#define mmap_lock() do { } while (0)
#define mmap_unlock() do { } while (0)
#endif

#if defined(CONFIG_USER_ONLY)
/* Currently it is not recommended to allocate big chunks of data in
   user mode. It will change when a dedicated libc will be used.  */
/* ??? 64-bit hosts ought to have no problem mmaping data outside the
   region in which the guest needs to run.  Revisit this.  */
#define USE_STATIC_CODE_GEN_BUFFER
#endif

/* ??? Should configure for this, not list operating systems here.  */
#if (defined(__linux__) \
    || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
    || defined(__DragonFly__) || defined(__OpenBSD__) \
    || defined(__NetBSD__))
# define USE_MMAP
#endif

/* Minimum size of the code gen buffer.  This number is randomly chosen,
   but not so small that we can't have a fair number of TB's live.  */
#define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)

/* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
   indicated, this is constrained by the range of direct branches on the
   host cpu, as used by the TCG implementation of goto_tb.  */
#if defined(__x86_64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
#elif defined(__sparc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
496 497
#elif defined(__aarch64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
498 499 500 501 502
#elif defined(__arm__)
# define MAX_CODE_GEN_BUFFER_SIZE  (16u * 1024 * 1024)
#elif defined(__s390x__)
  /* We have a +- 4GB range on the branches; leave some slop.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
503 504 505 506
#elif defined(__mips__)
  /* We have a 256MB branch region, but leave room to make sure the
     main executable is also within that region.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
#else
# define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
#endif

#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)

#define DEFAULT_CODE_GEN_BUFFER_SIZE \
  (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
   ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)

static inline size_t size_code_gen_buffer(size_t tb_size)
{
    /* Size the buffer.  */
    if (tb_size == 0) {
#ifdef USE_STATIC_CODE_GEN_BUFFER
        tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
#else
        /* ??? Needs adjustments.  */
        /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
           static buffer, we could size this on RESERVED_VA, on the text
           segment size of the executable, or continue to use the default.  */
        tb_size = (unsigned long)(ram_size / 4);
#endif
    }
    if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
        tb_size = MIN_CODE_GEN_BUFFER_SIZE;
    }
    if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
        tb_size = MAX_CODE_GEN_BUFFER_SIZE;
    }
E
Evgeny Voevodin 已提交
537
    tcg_ctx.code_gen_buffer_size = tb_size;
538 539 540
    return tb_size;
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
#ifdef __mips__
/* In order to use J and JAL within the code_gen_buffer, we require
   that the buffer not cross a 256MB boundary.  */
static inline bool cross_256mb(void *addr, size_t size)
{
    return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
}

/* We weren't able to allocate a buffer without crossing that boundary,
   so make do with the larger portion of the buffer that doesn't cross.
   Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
static inline void *split_cross_256mb(void *buf1, size_t size1)
{
    void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
    size_t size2 = buf1 + size1 - buf2;

    size1 = buf2 - buf1;
    if (size1 < size2) {
        size1 = size2;
        buf1 = buf2;
    }

    tcg_ctx.code_gen_buffer_size = size1;
    return buf1;
}
#endif

568 569 570 571 572 573
#ifdef USE_STATIC_CODE_GEN_BUFFER
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
    __attribute__((aligned(CODE_GEN_ALIGN)));

static inline void *alloc_code_gen_buffer(void)
{
574 575 576 577 578 579 580 581
    void *buf = static_code_gen_buffer;
#ifdef __mips__
    if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
        buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
    }
#endif
    map_exec(buf, tcg_ctx.code_gen_buffer_size);
    return buf;
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
}
#elif defined(USE_MMAP)
static inline void *alloc_code_gen_buffer(void)
{
    int flags = MAP_PRIVATE | MAP_ANONYMOUS;
    uintptr_t start = 0;
    void *buf;

    /* Constrain the position of the buffer based on the host cpu.
       Note that these addresses are chosen in concert with the
       addresses assigned in the relevant linker script file.  */
# if defined(__PIE__) || defined(__PIC__)
    /* Don't bother setting a preferred location if we're building
       a position-independent executable.  We're more likely to get
       an address near the main executable if we let the kernel
       choose the address.  */
# elif defined(__x86_64__) && defined(MAP_32BIT)
    /* Force the memory down into low memory with the executable.
       Leave the choice of exact location with the kernel.  */
    flags |= MAP_32BIT;
    /* Cannot expect to map more than 800MB in low memory.  */
E
Evgeny Voevodin 已提交
603 604
    if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
        tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
605 606 607 608 609
    }
# elif defined(__sparc__)
    start = 0x40000000ul;
# elif defined(__s390x__)
    start = 0x90000000ul;
610 611 612 613 614 615 616 617 618
# elif defined(__mips__)
    /* ??? We ought to more explicitly manage layout for softmmu too.  */
#  ifdef CONFIG_USER_ONLY
    start = 0x68000000ul;
#  elif _MIPS_SIM == _ABI64
    start = 0x128000000ul;
#  else
    start = 0x08000000ul;
#  endif
619 620
# endif

E
Evgeny Voevodin 已提交
621
    buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
622
               PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
623 624 625 626 627 628
    if (buf == MAP_FAILED) {
        return NULL;
    }

#ifdef __mips__
    if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
S
Stefan Weil 已提交
629
        /* Try again, with the original still mapped, to avoid re-acquiring
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
           that 256mb crossing.  This time don't specify an address.  */
        size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
        void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
                          flags, -1, 0);
        if (buf2 != MAP_FAILED) {
            if (!cross_256mb(buf2, size1)) {
                /* Success!  Use the new buffer.  */
                munmap(buf, size1);
                return buf2;
            }
            /* Failure.  Work with what we had.  */
            munmap(buf2, size1);
        }

        /* Split the original buffer.  Free the smaller half.  */
        buf2 = split_cross_256mb(buf, size1);
        size2 = tcg_ctx.code_gen_buffer_size;
        munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
        return buf2;
    }
#endif

    return buf;
653 654 655 656
}
#else
static inline void *alloc_code_gen_buffer(void)
{
657
    void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
658

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
    if (buf == NULL) {
        return NULL;
    }

#ifdef __mips__
    if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
        void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
        if (buf2 != NULL && !cross_256mb(buf2, size1)) {
            /* Success!  Use the new buffer.  */
            free(buf);
            buf = buf2;
        } else {
            /* Failure.  Work with what we had.  Since this is malloc
               and not mmap, we can't free the other half.  */
            free(buf2);
            buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
        }
676
    }
677 678 679
#endif

    map_exec(buf, tcg_ctx.code_gen_buffer_size);
680 681 682 683 684 685
    return buf;
}
#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */

static inline void code_gen_alloc(size_t tb_size)
{
E
Evgeny Voevodin 已提交
686 687 688
    tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
    tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
    if (tcg_ctx.code_gen_buffer == NULL) {
689 690 691 692
        fprintf(stderr, "Could not allocate dynamic translator buffer\n");
        exit(1);
    }

E
Evgeny Voevodin 已提交
693 694
    qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
            QEMU_MADV_HUGEPAGE);
695 696 697 698 699 700

    /* Steal room for the prologue at the end of the buffer.  This ensures
       (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
       from TB's to the prologue are going to be in range.  It also means
       that we don't need to mark (additional) portions of the data segment
       as executable.  */
E
Evgeny Voevodin 已提交
701 702 703
    tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
            tcg_ctx.code_gen_buffer_size - 1024;
    tcg_ctx.code_gen_buffer_size -= 1024;
704

E
Evgeny Voevodin 已提交
705
    tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
706
        (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
E
Evgeny Voevodin 已提交
707 708
    tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
            CODE_GEN_AVG_BLOCK_SIZE;
709 710
    tcg_ctx.tb_ctx.tbs =
            g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
K
KONRAD Frederic 已提交
711
    qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
712 713 714 715 716 717 718 719 720
}

/* Must be called before using the QEMU cpus. 'tb_size' is the size
   (in bytes) allocated to the translation buffer. Zero means default
   size. */
void tcg_exec_init(unsigned long tb_size)
{
    cpu_gen_init();
    code_gen_alloc(tb_size);
E
Evgeny Voevodin 已提交
721 722
    tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
    tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
723
    page_init();
724
#if defined(CONFIG_SOFTMMU)
725 726 727 728 729 730 731 732
    /* There's no guest base to take into account, so go ahead and
       initialize the prologue now.  */
    tcg_prologue_init(&tcg_ctx);
#endif
}

bool tcg_enabled(void)
{
E
Evgeny Voevodin 已提交
733
    return tcg_ctx.code_gen_buffer != NULL;
734 735 736 737 738 739 740 741
}

/* Allocate a new translation block. Flush the translation buffer if
   too many translation blocks or too much generated code. */
static TranslationBlock *tb_alloc(target_ulong pc)
{
    TranslationBlock *tb;

742
    if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
E
Evgeny Voevodin 已提交
743 744
        (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
         tcg_ctx.code_gen_buffer_max_size) {
745 746
        return NULL;
    }
747
    tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
748 749 750 751 752 753 754 755 756 757
    tb->pc = pc;
    tb->cflags = 0;
    return tb;
}

void tb_free(TranslationBlock *tb)
{
    /* In practice this is mostly used for single use temporary TB
       Ignore the hard cases and just back up if this TB happens to
       be the last one generated.  */
758 759
    if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
            tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
E
Evgeny Voevodin 已提交
760
        tcg_ctx.code_gen_ptr = tb->tc_ptr;
761
        tcg_ctx.tb_ctx.nb_tbs--;
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
    }
}

static inline void invalidate_page_bitmap(PageDesc *p)
{
    if (p->code_bitmap) {
        g_free(p->code_bitmap);
        p->code_bitmap = NULL;
    }
    p->code_write_count = 0;
}

/* Set to NULL all the 'first_tb' fields in all PageDescs. */
static void page_flush_tb_1(int level, void **lp)
{
    int i;

    if (*lp == NULL) {
        return;
    }
    if (level == 0) {
        PageDesc *pd = *lp;

785
        for (i = 0; i < V_L2_SIZE; ++i) {
786 787 788 789 790 791
            pd[i].first_tb = NULL;
            invalidate_page_bitmap(pd + i);
        }
    } else {
        void **pp = *lp;

792
        for (i = 0; i < V_L2_SIZE; ++i) {
793 794 795 796 797 798 799 800 801 802
            page_flush_tb_1(level - 1, pp + i);
        }
    }
}

static void page_flush_tb(void)
{
    int i;

    for (i = 0; i < V_L1_SIZE; i++) {
803
        page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
804 805 806 807 808
    }
}

/* flush all the translation blocks */
/* XXX: tb_flush is currently not thread safe */
809
void tb_flush(CPUState *cpu)
810 811 812
{
#if defined(DEBUG_FLUSH)
    printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
E
Evgeny Voevodin 已提交
813
           (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
814
           tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
E
Evgeny Voevodin 已提交
815
           ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
816
           tcg_ctx.tb_ctx.nb_tbs : 0);
817
#endif
E
Evgeny Voevodin 已提交
818 819
    if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
        > tcg_ctx.code_gen_buffer_size) {
820
        cpu_abort(cpu, "Internal error: code buffer overflow\n");
821
    }
822
    tcg_ctx.tb_ctx.nb_tbs = 0;
823

A
Andreas Färber 已提交
824
    CPU_FOREACH(cpu) {
825
        memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
826 827
    }

828
    memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
829 830
    page_flush_tb();

E
Evgeny Voevodin 已提交
831
    tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
832 833
    /* XXX: flush processor icache at this point if cache flush is
       expensive */
834
    tcg_ctx.tb_ctx.tb_flush_count++;
835 836 837 838 839 840 841 842 843 844 845
}

#ifdef DEBUG_TB_CHECK

static void tb_invalidate_check(target_ulong address)
{
    TranslationBlock *tb;
    int i;

    address &= TARGET_PAGE_MASK;
    for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
846
        for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
            if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
                  address >= tb->pc + tb->size)) {
                printf("ERROR invalidate: address=" TARGET_FMT_lx
                       " PC=%08lx size=%04x\n",
                       address, (long)tb->pc, tb->size);
            }
        }
    }
}

/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
    TranslationBlock *tb;
    int i, flags1, flags2;

    for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
864 865
        for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
                tb = tb->phys_hash_next) {
866 867 868 869 870 871 872 873 874 875 876 877
            flags1 = page_get_flags(tb->pc);
            flags2 = page_get_flags(tb->pc + tb->size - 1);
            if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
                printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
                       (long)tb->pc, tb->size, flags1, flags2);
            }
        }
    }
}

#endif

878
static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
879 880 881 882 883 884
{
    TranslationBlock *tb1;

    for (;;) {
        tb1 = *ptb;
        if (tb1 == tb) {
885
            *ptb = tb1->phys_hash_next;
886 887
            break;
        }
888
        ptb = &tb1->phys_hash_next;
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
    }
}

static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
{
    TranslationBlock *tb1;
    unsigned int n1;

    for (;;) {
        tb1 = *ptb;
        n1 = (uintptr_t)tb1 & 3;
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        if (tb1 == tb) {
            *ptb = tb1->page_next[n1];
            break;
        }
        ptb = &tb1->page_next[n1];
    }
}

static inline void tb_jmp_remove(TranslationBlock *tb, int n)
{
    TranslationBlock *tb1, **ptb;
    unsigned int n1;

    ptb = &tb->jmp_next[n];
    tb1 = *ptb;
    if (tb1) {
        /* find tb(n) in circular list */
        for (;;) {
            tb1 = *ptb;
            n1 = (uintptr_t)tb1 & 3;
            tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
            if (n1 == n && tb1 == tb) {
                break;
            }
            if (n1 == 2) {
                ptb = &tb1->jmp_first;
            } else {
                ptb = &tb1->jmp_next[n1];
            }
        }
        /* now we can suppress tb(n) from the list */
        *ptb = tb->jmp_next[n];

        tb->jmp_next[n] = NULL;
    }
}

/* reset the jump entry 'n' of a TB so that it is not chained to
   another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
    tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
}

945
/* invalidate one TB */
946 947
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
948
    CPUState *cpu;
949 950 951 952 953 954 955 956
    PageDesc *p;
    unsigned int h, n1;
    tb_page_addr_t phys_pc;
    TranslationBlock *tb1, *tb2;

    /* remove the TB from the hash list */
    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
    h = tb_phys_hash_func(phys_pc);
957
    tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
958 959 960 961 962 963 964 965 966 967 968 969 970

    /* remove the TB from the page list */
    if (tb->page_addr[0] != page_addr) {
        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }
    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }

971
    tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
972 973 974

    /* remove the TB from the hash list */
    h = tb_jmp_cache_hash_func(tb->pc);
A
Andreas Färber 已提交
975
    CPU_FOREACH(cpu) {
976 977
        if (cpu->tb_jmp_cache[h] == tb) {
            cpu->tb_jmp_cache[h] = NULL;
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
        }
    }

    /* suppress this TB from the two jump lists */
    tb_jmp_remove(tb, 0);
    tb_jmp_remove(tb, 1);

    /* suppress any remaining jumps to this TB */
    tb1 = tb->jmp_first;
    for (;;) {
        n1 = (uintptr_t)tb1 & 3;
        if (n1 == 2) {
            break;
        }
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        tb2 = tb1->jmp_next[n1];
        tb_reset_jump(tb1, n1);
        tb1->jmp_next[n1] = NULL;
        tb1 = tb2;
    }
    tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */

1000
    tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1001 1002 1003 1004 1005 1006 1007
}

static void build_page_bitmap(PageDesc *p)
{
    int n, tb_start, tb_end;
    TranslationBlock *tb;

1008
    p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->pc & ~TARGET_PAGE_MASK;
            tb_end = tb_start + tb->size;
            if (tb_end > TARGET_PAGE_SIZE) {
                tb_end = TARGET_PAGE_SIZE;
            }
        } else {
            tb_start = 0;
            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
1027
        bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1028 1029 1030 1031
        tb = tb->page_next[n];
    }
}

1032
TranslationBlock *tb_gen_code(CPUState *cpu,
1033 1034 1035
                              target_ulong pc, target_ulong cs_base,
                              int flags, int cflags)
{
1036
    CPUArchState *env = cpu->env_ptr;
1037 1038 1039 1040 1041 1042
    TranslationBlock *tb;
    tb_page_addr_t phys_pc, phys_page2;
    target_ulong virt_page2;
    int code_gen_size;

    phys_pc = get_page_addr_code(env, pc);
1043 1044 1045
    if (use_icount) {
        cflags |= CF_USE_ICOUNT;
    }
1046 1047 1048
    tb = tb_alloc(pc);
    if (!tb) {
        /* flush must be done */
1049
        tb_flush(cpu);
1050 1051 1052
        /* cannot fail at this point */
        tb = tb_alloc(pc);
        /* Don't forget to invalidate previous TB info.  */
1053
        tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1054
    }
1055
    tb->tc_ptr = tcg_ctx.code_gen_ptr;
1056 1057 1058 1059
    tb->cs_base = cs_base;
    tb->flags = flags;
    tb->cflags = cflags;
    cpu_gen_code(env, tb, &code_gen_size);
E
Evgeny Voevodin 已提交
1060 1061
    tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
            code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

    /* check next page if needed */
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
    phys_page2 = -1;
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
        phys_page2 = get_page_addr_code(env, virt_page2);
    }
    tb_link_page(tb, phys_pc, phys_page2);
    return tb;
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end may refer to *different* physical pages.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
 */
1080
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1081 1082
{
    while (start < end) {
1083
        tb_invalidate_phys_page_range(start, end, 0);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
        start &= TARGET_PAGE_MASK;
        start += TARGET_PAGE_SIZE;
    }
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end must refer to the *same* physical page.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
 */
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
                                   int is_cpu_write_access)
{
    TranslationBlock *tb, *tb_next, *saved_tb;
1100
    CPUState *cpu = current_cpu;
1101
#if defined(TARGET_HAS_PRECISE_SMC)
1102 1103
    CPUArchState *env = NULL;
#endif
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
    tb_page_addr_t tb_start, tb_end;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    int current_tb_not_found = is_cpu_write_access;
    TranslationBlock *current_tb = NULL;
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
    int current_flags = 0;
#endif /* TARGET_HAS_PRECISE_SMC */

    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1120
#if defined(TARGET_HAS_PRECISE_SMC)
1121 1122
    if (cpu != NULL) {
        env = cpu->env_ptr;
1123
    }
1124
#endif
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

    /* we remove all the TBs in the range [start, end[ */
    /* XXX: see if in some cases it could be faster to invalidate all
       the code */
    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        tb_next = tb->page_next[n];
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
            tb_end = tb_start + tb->size;
        } else {
            tb_start = tb->page_addr[1];
            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
            if (current_tb_not_found) {
                current_tb_not_found = 0;
                current_tb = NULL;
1149
                if (cpu->mem_io_pc) {
1150
                    /* now we have a real cpu fault */
1151
                    current_tb = tb_find_pc(cpu->mem_io_pc);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
                }
            }
            if (current_tb == tb &&
                (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                its execution. We could be more precise by checking
                that the modification is after the current PC, but it
                would require a specialized function to partially
                restore the CPU state */

                current_tb_modified = 1;
1163
                cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1164 1165 1166 1167 1168 1169 1170
                cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                     &current_flags);
            }
#endif /* TARGET_HAS_PRECISE_SMC */
            /* we need to do that to handle the case where a signal
               occurs while doing tb_phys_invalidate() */
            saved_tb = NULL;
1171 1172 1173
            if (cpu != NULL) {
                saved_tb = cpu->current_tb;
                cpu->current_tb = NULL;
1174 1175
            }
            tb_phys_invalidate(tb, -1);
1176 1177
            if (cpu != NULL) {
                cpu->current_tb = saved_tb;
1178 1179
                if (cpu->interrupt_request && cpu->current_tb) {
                    cpu_interrupt(cpu, cpu->interrupt_request);
1180 1181 1182 1183 1184 1185 1186 1187 1188
                }
            }
        }
        tb = tb_next;
    }
#if !defined(CONFIG_USER_ONLY)
    /* if no code remaining, no need to continue to use slow writes */
    if (!p->first_tb) {
        invalidate_page_bitmap(p);
1189
        tlb_unprotect_code(start);
1190 1191 1192 1193 1194 1195 1196
    }
#endif
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1197
        cpu->current_tb = NULL;
1198
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1199
        cpu_resume_from_signal(cpu, NULL);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
    }
#endif
}

/* len must be <= 8 and start must be a multiple of len */
void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
{
    PageDesc *p;

#if 0
    if (1) {
        qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
                  cpu_single_env->mem_io_vaddr, len,
                  cpu_single_env->eip,
                  cpu_single_env->eip +
                  (intptr_t)cpu_single_env->segs[R_CS].base);
    }
#endif
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1222 1223 1224 1225 1226
    if (!p->code_bitmap &&
        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
        /* build code bitmap */
        build_page_bitmap(p);
    }
1227
    if (p->code_bitmap) {
1228 1229 1230 1231 1232
        unsigned int nr;
        unsigned long b;

        nr = start & ~TARGET_PAGE_MASK;
        b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
        if (b & ((1 << len) - 1)) {
            goto do_invalidate;
        }
    } else {
    do_invalidate:
        tb_invalidate_phys_page_range(start, start + len, 1);
    }
}

#if !defined(CONFIG_SOFTMMU)
static void tb_invalidate_phys_page(tb_page_addr_t addr,
1244 1245
                                    uintptr_t pc, void *puc,
                                    bool locked)
1246 1247 1248 1249 1250 1251
{
    TranslationBlock *tb;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    TranslationBlock *current_tb = NULL;
1252 1253
    CPUState *cpu = current_cpu;
    CPUArchState *env = NULL;
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
    int current_flags = 0;
#endif

    addr &= TARGET_PAGE_MASK;
    p = page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
    tb = p->first_tb;
#ifdef TARGET_HAS_PRECISE_SMC
    if (tb && pc != 0) {
        current_tb = tb_find_pc(pc);
    }
1270 1271
    if (cpu != NULL) {
        env = cpu->env_ptr;
1272
    }
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
#endif
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
        if (current_tb == tb &&
            (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                   its execution. We could be more precise by checking
                   that the modification is after the current PC, but it
                   would require a specialized function to partially
                   restore the CPU state */

            current_tb_modified = 1;
1287
            cpu_restore_state_from_tb(cpu, current_tb, pc);
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
            cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                 &current_flags);
        }
#endif /* TARGET_HAS_PRECISE_SMC */
        tb_phys_invalidate(tb, addr);
        tb = tb->page_next[n];
    }
    p->first_tb = NULL;
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1301
        cpu->current_tb = NULL;
1302
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1303 1304 1305
        if (locked) {
            mmap_unlock();
        }
1306
        cpu_resume_from_signal(cpu, puc);
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
    }
#endif
}
#endif

/* add the tb in the target page and protect it if necessary */
static inline void tb_alloc_page(TranslationBlock *tb,
                                 unsigned int n, tb_page_addr_t page_addr)
{
    PageDesc *p;
#ifndef CONFIG_USER_ONLY
    bool page_already_protected;
#endif

    tb->page_addr[n] = page_addr;
    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
    tb->page_next[n] = p->first_tb;
#ifndef CONFIG_USER_ONLY
    page_already_protected = p->first_tb != NULL;
#endif
    p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
    invalidate_page_bitmap(p);

#if defined(CONFIG_USER_ONLY)
    if (p->flags & PAGE_WRITE) {
        target_ulong addr;
        PageDesc *p2;
        int prot;

        /* force the host page as non writable (writes will have a
           page fault + mprotect overhead) */
        page_addr &= qemu_host_page_mask;
        prot = 0;
        for (addr = page_addr; addr < page_addr + qemu_host_page_size;
            addr += TARGET_PAGE_SIZE) {

            p2 = page_find(addr >> TARGET_PAGE_BITS);
            if (!p2) {
                continue;
            }
            prot |= p2->flags;
            p2->flags &= ~PAGE_WRITE;
          }
        mprotect(g2h(page_addr), qemu_host_page_size,
                 (prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
        printf("protecting code page: 0x" TARGET_FMT_lx "\n",
               page_addr);
#endif
    }
#else
    /* if some code is already present, then the pages are already
       protected. So we handle the case where only the first TB is
       allocated in a physical page */
    if (!page_already_protected) {
        tlb_protect_code(page_addr);
    }
#endif
}

/* add a new TB and link it to the physical page tables. phys_page2 is
   (-1) to indicate that only one page contains the TB. */
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2)
{
    unsigned int h;
    TranslationBlock **ptb;

    /* Grab the mmap lock to stop another thread invalidating this TB
       before we are done.  */
    mmap_lock();
    /* add in the physical hash table */
    h = tb_phys_hash_func(phys_pc);
1380
    ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    tb->phys_hash_next = *ptb;
    *ptb = tb;

    /* add in the page list */
    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
    if (phys_page2 != -1) {
        tb_alloc_page(tb, 1, phys_page2);
    } else {
        tb->page_addr[1] = -1;
    }

    tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
    tb->jmp_next[0] = NULL;
    tb->jmp_next[1] = NULL;

    /* init original jump addresses */
    if (tb->tb_next_offset[0] != 0xffff) {
        tb_reset_jump(tb, 0);
    }
    if (tb->tb_next_offset[1] != 0xffff) {
        tb_reset_jump(tb, 1);
    }

#ifdef DEBUG_TB_CHECK
    tb_page_check();
#endif
    mmap_unlock();
}

/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
   tb[1].tc_ptr. Return NULL if not found */
B
Blue Swirl 已提交
1412
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1413 1414 1415 1416 1417
{
    int m_min, m_max, m;
    uintptr_t v;
    TranslationBlock *tb;

1418
    if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1419 1420
        return NULL;
    }
E
Evgeny Voevodin 已提交
1421 1422
    if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
        tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1423 1424 1425 1426
        return NULL;
    }
    /* binary search (cf Knuth) */
    m_min = 0;
1427
    m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1428 1429
    while (m_min <= m_max) {
        m = (m_min + m_max) >> 1;
1430
        tb = &tcg_ctx.tb_ctx.tbs[m];
1431 1432 1433 1434 1435 1436 1437 1438 1439
        v = (uintptr_t)tb->tc_ptr;
        if (v == tc_ptr) {
            return tb;
        } else if (tc_ptr < v) {
            m_max = m - 1;
        } else {
            m_min = m + 1;
        }
    }
1440
    return &tcg_ctx.tb_ctx.tbs[m_max];
1441 1442
}

1443
#if !defined(CONFIG_USER_ONLY)
1444
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1445 1446
{
    ram_addr_t ram_addr;
1447
    MemoryRegion *mr;
1448
    hwaddr l = 1;
1449

1450
    rcu_read_lock();
1451
    mr = address_space_translate(as, addr, &addr, &l, false);
1452 1453
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
1454
        rcu_read_unlock();
1455 1456
        return;
    }
1457
    ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1458
        + addr;
1459
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1460
    rcu_read_unlock();
1461
}
1462
#endif /* !defined(CONFIG_USER_ONLY) */
1463

1464
void tb_check_watchpoint(CPUState *cpu)
1465 1466 1467
{
    TranslationBlock *tb;

1468
    tb = tb_find_pc(cpu->mem_io_pc);
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
    if (tb) {
        /* We can use retranslation to find the PC.  */
        cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
        tb_phys_invalidate(tb, -1);
    } else {
        /* The exception probably happened in a helper.  The CPU state should
           have been saved before calling it. Fetch the PC from there.  */
        CPUArchState *env = cpu->env_ptr;
        target_ulong pc, cs_base;
        tb_page_addr_t addr;
        int flags;

        cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
        addr = get_page_addr_code(env, pc);
        tb_invalidate_phys_range(addr, addr + 1);
1484 1485 1486 1487 1488
    }
}

#ifndef CONFIG_USER_ONLY
/* mask must never be zero, except for A20 change call */
1489
static void tcg_handle_interrupt(CPUState *cpu, int mask)
1490 1491 1492
{
    int old_mask;

1493 1494
    old_mask = cpu->interrupt_request;
    cpu->interrupt_request |= mask;
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

    /*
     * If called from iothread context, wake the target cpu in
     * case its halted.
     */
    if (!qemu_cpu_is_self(cpu)) {
        qemu_cpu_kick(cpu);
        return;
    }

    if (use_icount) {
1506
        cpu->icount_decr.u16.high = 0xffff;
1507
        if (!cpu->can_do_io
1508
            && (mask & ~old_mask) != 0) {
1509
            cpu_abort(cpu, "Raised interrupt while not in I/O function");
1510 1511
        }
    } else {
1512
        cpu->tcg_exit_req = 1;
1513 1514 1515 1516 1517 1518 1519
    }
}

CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;

/* in deterministic execution mode, instructions doing device I/Os
   must be at the end of the TB */
1520
void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1521
{
1522
#if defined(TARGET_MIPS) || defined(TARGET_SH4)
1523
    CPUArchState *env = cpu->env_ptr;
1524
#endif
1525 1526 1527 1528 1529 1530 1531
    TranslationBlock *tb;
    uint32_t n, cflags;
    target_ulong pc, cs_base;
    uint64_t flags;

    tb = tb_find_pc(retaddr);
    if (!tb) {
1532
        cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1533 1534
                  (void *)retaddr);
    }
1535
    n = cpu->icount_decr.u16.low + tb->icount;
1536
    cpu_restore_state_from_tb(cpu, tb, retaddr);
1537 1538
    /* Calculate how many instructions had been executed before the fault
       occurred.  */
1539
    n = n - cpu->icount_decr.u16.low;
1540 1541 1542 1543 1544 1545 1546 1547
    /* Generate a new TB ending on the I/O insn.  */
    n++;
    /* On MIPS and SH, delay slot instructions can only be restarted if
       they were already the first instruction in the TB.  If this is not
       the first instruction in a TB then re-execute the preceding
       branch.  */
#if defined(TARGET_MIPS)
    if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1548
        env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1549
        cpu->icount_decr.u16.low++;
1550 1551 1552 1553 1554 1555
        env->hflags &= ~MIPS_HFLAG_BMASK;
    }
#elif defined(TARGET_SH4)
    if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
            && n > 1) {
        env->pc -= 2;
1556
        cpu->icount_decr.u16.low++;
1557 1558 1559 1560 1561
        env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
    }
#endif
    /* This should never happen.  */
    if (n > CF_COUNT_MASK) {
1562
        cpu_abort(cpu, "TB too big during recompile");
1563 1564 1565 1566 1567 1568 1569
    }

    cflags = n | CF_LAST_IO;
    pc = tb->pc;
    cs_base = tb->cs_base;
    flags = tb->flags;
    tb_phys_invalidate(tb, -1);
1570 1571 1572 1573 1574 1575 1576 1577
    if (tb->cflags & CF_NOCACHE) {
        if (tb->orig_tb) {
            /* Invalidate original TB if this TB was generated in
             * cpu_exec_nocache() */
            tb_phys_invalidate(tb->orig_tb, -1);
        }
        tb_free(tb);
    }
1578 1579
    /* FIXME: In theory this could raise an exception.  In practice
       we have already translated the block once so it's probably ok.  */
1580
    tb_gen_code(cpu, pc, cs_base, flags, cflags);
1581 1582 1583 1584 1585
    /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
       the first in the TB) then we end up generating a whole new TB and
       repeating the fault, which is horribly inefficient.
       Better would be to execute just this insn uncached, or generate a
       second new TB.  */
1586
    cpu_resume_from_signal(cpu, NULL);
1587 1588
}

1589
void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1590 1591 1592 1593 1594 1595
{
    unsigned int i;

    /* Discard jump cache entries for any tb which might potentially
       overlap the flushed page.  */
    i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1596
    memset(&cpu->tb_jmp_cache[i], 0,
1597 1598 1599
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));

    i = tb_jmp_cache_hash_page(addr);
1600
    memset(&cpu->tb_jmp_cache[i], 0,
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
}

void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
{
    int i, target_code_size, max_target_code_size;
    int direct_jmp_count, direct_jmp2_count, cross_page;
    TranslationBlock *tb;

    target_code_size = 0;
    max_target_code_size = 0;
    cross_page = 0;
    direct_jmp_count = 0;
    direct_jmp2_count = 0;
1615 1616
    for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
        tb = &tcg_ctx.tb_ctx.tbs[i];
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
        target_code_size += tb->size;
        if (tb->size > max_target_code_size) {
            max_target_code_size = tb->size;
        }
        if (tb->page_addr[1] != -1) {
            cross_page++;
        }
        if (tb->tb_next_offset[0] != 0xffff) {
            direct_jmp_count++;
            if (tb->tb_next_offset[1] != 0xffff) {
                direct_jmp2_count++;
            }
        }
    }
    /* XXX: avoid using doubles ? */
    cpu_fprintf(f, "Translation buffer state:\n");
    cpu_fprintf(f, "gen code size       %td/%zd\n",
E
Evgeny Voevodin 已提交
1634 1635
                tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
                tcg_ctx.code_gen_buffer_max_size);
1636
    cpu_fprintf(f, "TB count            %d/%d\n",
1637
            tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1638
    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
1639 1640 1641
            tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
                    tcg_ctx.tb_ctx.nb_tbs : 0,
            max_target_code_size);
1642
    cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
1643 1644 1645 1646 1647 1648 1649 1650 1651
            tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
                                     tcg_ctx.code_gen_buffer) /
                                     tcg_ctx.tb_ctx.nb_tbs : 0,
                target_code_size ? (double) (tcg_ctx.code_gen_ptr -
                                             tcg_ctx.code_gen_buffer) /
                                             target_code_size : 0);
    cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
            tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
                                    tcg_ctx.tb_ctx.nb_tbs : 0);
1652 1653
    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
                direct_jmp_count,
1654 1655
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0,
1656
                direct_jmp2_count,
1657 1658
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0);
1659
    cpu_fprintf(f, "\nStatistics:\n");
1660 1661 1662
    cpu_fprintf(f, "TB flush count      %d\n", tcg_ctx.tb_ctx.tb_flush_count);
    cpu_fprintf(f, "TB invalidate count %d\n",
            tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1663 1664 1665 1666
    cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
    tcg_dump_info(f, cpu_fprintf);
}

1667 1668 1669 1670 1671
void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
{
    tcg_dump_op_count(f, cpu_fprintf);
}

1672 1673
#else /* CONFIG_USER_ONLY */

1674
void cpu_interrupt(CPUState *cpu, int mask)
1675
{
1676
    cpu->interrupt_request |= mask;
1677
    cpu->tcg_exit_req = 1;
1678 1679 1680 1681 1682 1683 1684 1685 1686
}

/*
 * Walks guest process memory "regions" one by one
 * and calls callback function 'fn' for each region.
 */
struct walk_memory_regions_data {
    walk_memory_regions_fn fn;
    void *priv;
1687
    target_ulong start;
1688 1689 1690 1691
    int prot;
};

static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1692
                                   target_ulong end, int new_prot)
1693
{
1694
    if (data->start != -1u) {
1695 1696 1697 1698 1699 1700
        int rc = data->fn(data->priv, data->start, end, data->prot);
        if (rc != 0) {
            return rc;
        }
    }

1701
    data->start = (new_prot ? end : -1u);
1702 1703 1704 1705 1706 1707
    data->prot = new_prot;

    return 0;
}

static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1708
                                 target_ulong base, int level, void **lp)
1709
{
1710
    target_ulong pa;
1711 1712 1713 1714 1715 1716 1717 1718 1719
    int i, rc;

    if (*lp == NULL) {
        return walk_memory_regions_end(data, base, 0);
    }

    if (level == 0) {
        PageDesc *pd = *lp;

1720
        for (i = 0; i < V_L2_SIZE; ++i) {
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
            int prot = pd[i].flags;

            pa = base | (i << TARGET_PAGE_BITS);
            if (prot != data->prot) {
                rc = walk_memory_regions_end(data, pa, prot);
                if (rc != 0) {
                    return rc;
                }
            }
        }
    } else {
        void **pp = *lp;

1734
        for (i = 0; i < V_L2_SIZE; ++i) {
1735
            pa = base | ((target_ulong)i <<
1736
                (TARGET_PAGE_BITS + V_L2_BITS * level));
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
            rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
            if (rc != 0) {
                return rc;
            }
        }
    }

    return 0;
}

int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
    struct walk_memory_regions_data data;
    uintptr_t i;

    data.fn = fn;
    data.priv = priv;
1754
    data.start = -1u;
1755 1756 1757
    data.prot = 0;

    for (i = 0; i < V_L1_SIZE; i++) {
1758
        int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1759
                                       V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1760 1761 1762 1763 1764 1765 1766 1767
        if (rc != 0) {
            return rc;
        }
    }

    return walk_memory_regions_end(&data, 0, 0);
}

1768 1769
static int dump_region(void *priv, target_ulong start,
    target_ulong end, unsigned long prot)
1770 1771 1772
{
    FILE *f = (FILE *)priv;

1773 1774
    (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
        " "TARGET_FMT_lx" %c%c%c\n",
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
        start, end, end - start,
        ((prot & PAGE_READ) ? 'r' : '-'),
        ((prot & PAGE_WRITE) ? 'w' : '-'),
        ((prot & PAGE_EXEC) ? 'x' : '-'));

    return 0;
}

/* dump memory mappings */
void page_dump(FILE *f)
{
1786
    const int length = sizeof(target_ulong) * 2;
1787 1788
    (void) fprintf(f, "%-*s %-*s %-*s %s\n",
            length, "start", length, "end", length, "size", "prot");
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
    walk_memory_regions(f, dump_region);
}

int page_get_flags(target_ulong address)
{
    PageDesc *p;

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        return 0;
    }
    return p->flags;
}

/* Modify the flags of a page and invalidate the code if necessary.
   The flag PAGE_WRITE_ORG is positioned automatically depending
   on PAGE_WRITE.  The mmap_lock should already be held.  */
void page_set_flags(target_ulong start, target_ulong end, int flags)
{
    target_ulong addr, len;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1814
    assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
#endif
    assert(start < end);

    start = start & TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    if (flags & PAGE_WRITE) {
        flags |= PAGE_WRITE_ORG;
    }

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);

        /* If the write protection bit is set, then we invalidate
           the code inside.  */
        if (!(p->flags & PAGE_WRITE) &&
            (flags & PAGE_WRITE) &&
            p->first_tb) {
1835
            tb_invalidate_phys_page(addr, 0, NULL, false);
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
        }
        p->flags = flags;
    }
}

int page_check_range(target_ulong start, target_ulong len, int flags)
{
    PageDesc *p;
    target_ulong end;
    target_ulong addr;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1851
    assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
#endif

    if (len == 0) {
        return 0;
    }
    if (start + len - 1 < start) {
        /* We've wrapped around.  */
        return -1;
    }

    /* must do before we loose bits in the next step */
    end = TARGET_PAGE_ALIGN(start + len);
    start = start & TARGET_PAGE_MASK;

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        p = page_find(addr >> TARGET_PAGE_BITS);
        if (!p) {
            return -1;
        }
        if (!(p->flags & PAGE_VALID)) {
            return -1;
        }

        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
            return -1;
        }
        if (flags & PAGE_WRITE) {
            if (!(p->flags & PAGE_WRITE_ORG)) {
                return -1;
            }
            /* unprotect the page if it was put read-only because it
               contains translated code */
            if (!(p->flags & PAGE_WRITE)) {
                if (!page_unprotect(addr, 0, NULL)) {
                    return -1;
                }
            }
        }
    }
    return 0;
}

/* called from signal handler: invalidate the code and unprotect the
   page. Return TRUE if the fault was successfully handled. */
int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
{
    unsigned int prot;
    PageDesc *p;
    target_ulong host_start, host_end, addr;

    /* Technically this isn't safe inside a signal handler.  However we
       know this only ever happens in a synchronous SEGV handler, so in
       practice it seems to be ok.  */
    mmap_lock();

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        mmap_unlock();
        return 0;
    }

    /* if the page was really writable, then we change its
       protection back to writable */
    if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
        host_start = address & qemu_host_page_mask;
        host_end = host_start + qemu_host_page_size;

        prot = 0;
        for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
            p = page_find(addr >> TARGET_PAGE_BITS);
            p->flags |= PAGE_WRITE;
            prot |= p->flags;

            /* and since the content will be modified, we must invalidate
               the corresponding translated code. */
1929
            tb_invalidate_phys_page(addr, pc, puc, true);
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
#ifdef DEBUG_TB_CHECK
            tb_invalidate_check(addr);
#endif
        }
        mprotect((void *)g2h(host_start), qemu_host_page_size,
                 prot & PAGE_BITS);

        mmap_unlock();
        return 1;
    }
    mmap_unlock();
    return 0;
}
#endif /* CONFIG_USER_ONLY */