cpu.h 103.1 KB
Newer Older
B
bellard 已提交
1 2
/*
 * ARM virtual CPU header
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18 19
 */

20 21
#ifndef ARM_CPU_H
#define ARM_CPU_H
B
bellard 已提交
22

23
#include "kvm-consts.h"
24
#include "hw/registerfields.h"
25

26 27 28 29 30 31
#if defined(TARGET_AARCH64)
  /* AArch64 definitions */
#  define TARGET_LONG_BITS 64
#else
#  define TARGET_LONG_BITS 32
#endif
32

33 34 35
/* ARM processors have a weak memory model */
#define TCG_GUEST_DEFAULT_MO      (0)

36
#define CPUArchState struct CPUARMState
37

38
#include "qemu-common.h"
39
#include "cpu-qom.h"
40
#include "exec/cpu-defs.h"
B
bellard 已提交
41

B
bellard 已提交
42 43 44 45
#define EXCP_UDEF            1   /* undefined instruction */
#define EXCP_SWI             2   /* software interrupt */
#define EXCP_PREFETCH_ABORT  3
#define EXCP_DATA_ABORT      4
B
bellard 已提交
46 47
#define EXCP_IRQ             5
#define EXCP_FIQ             6
P
pbrook 已提交
48
#define EXCP_BKPT            7
P
pbrook 已提交
49
#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
50
#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
51
#define EXCP_HVC            11   /* HyperVisor Call */
52
#define EXCP_HYP_TRAP       12
53
#define EXCP_SMC            13   /* Secure Monitor Call */
54 55
#define EXCP_VIRQ           14
#define EXCP_VFIQ           15
56
#define EXCP_SEMIHOST       16   /* semihosting call */
57
#define EXCP_NOCP           17   /* v7M NOCP UsageFault */
58
#define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
59
/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
P
pbrook 已提交
60 61 62 63 64 65 66

#define ARMV7M_EXCP_RESET   1
#define ARMV7M_EXCP_NMI     2
#define ARMV7M_EXCP_HARD    3
#define ARMV7M_EXCP_MEM     4
#define ARMV7M_EXCP_BUS     5
#define ARMV7M_EXCP_USAGE   6
67
#define ARMV7M_EXCP_SECURE  7
P
pbrook 已提交
68 69 70 71
#define ARMV7M_EXCP_SVC     11
#define ARMV7M_EXCP_DEBUG   12
#define ARMV7M_EXCP_PENDSV  14
#define ARMV7M_EXCP_SYSTICK 15
B
bellard 已提交
72

73 74 75 76 77 78 79 80 81
/* For M profile, some registers are banked secure vs non-secure;
 * these are represented as a 2-element array where the first element
 * is the non-secure copy and the second is the secure copy.
 * When the CPU does not have implement the security extension then
 * only the first element is used.
 * This means that the copy for the current security state can be
 * accessed via env->registerfield[env->v7m.secure] (whether the security
 * extension is implemented or not).
 */
82 83 84 85 86
enum {
    M_REG_NS = 0,
    M_REG_S = 1,
    M_REG_NUM_BANKS = 2,
};
87

88 89
/* ARM-specific interrupt pending bits.  */
#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
90 91
#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
92

93 94 95 96 97 98 99
/* The usual mapping for an AArch64 system register to its AArch32
 * counterpart is for the 32 bit world to have access to the lower
 * half only (with writes leaving the upper half untouched). It's
 * therefore useful to be able to pass TCG the offset of the least
 * significant half of a uint64_t struct member.
 */
#ifdef HOST_WORDS_BIGENDIAN
100
#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
101
#define offsetofhigh32(S, M) offsetof(S, M)
102 103
#else
#define offsetoflow32(S, M) offsetof(S, M)
104
#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
105 106
#endif

107
/* Meanings of the ARMCPU object's four inbound GPIO lines */
108 109
#define ARM_CPU_IRQ 0
#define ARM_CPU_FIQ 1
110 111
#define ARM_CPU_VIRQ 2
#define ARM_CPU_VFIQ 3
112

113
#define NB_MMU_MODES 8
114 115 116 117 118 119 120 121 122 123 124 125 126
/* ARM-specific extra insn start words:
 * 1: Conditional execution bits
 * 2: Partial exception syndrome for data aborts
 */
#define TARGET_INSN_START_EXTRA_WORDS 2

/* The 2nd extra word holding syndrome info for data aborts does not use
 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
 * help the sleb128 encoder do a better job.
 * When restoring the CPU state, we shift it back up.
 */
#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
#define ARM_INSN_START_WORD2_SHIFT 14
127

B
bellard 已提交
128 129 130 131
/* We currently assume float and double are IEEE single and double
   precision respectively.
   Doing runtime conversions is tricky because VFP registers may contain
   integer values (eg. as the result of a FTOSI instruction).
B
bellard 已提交
132 133 134
   s<2n> maps to the least significant half of d<n>
   s<2n+1> maps to the most significant half of d<n>
 */
B
bellard 已提交
135

136 137 138
/* CPU state for each instance of a generic timer (in cp15 c14) */
typedef struct ARMGenericTimer {
    uint64_t cval; /* Timer CompareValue register */
139
    uint64_t ctl; /* Timer Control register */
140 141 142 143
} ARMGenericTimer;

#define GTIMER_PHYS 0
#define GTIMER_VIRT 1
144
#define GTIMER_HYP  2
145 146
#define GTIMER_SEC  3
#define NUM_GTIMERS 4
147

F
Fabian Aggeler 已提交
148 149 150 151 152 153
typedef struct {
    uint64_t raw_tcr;
    uint32_t mask;
    uint32_t base_mask;
} TCR;

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/* Define a maximum sized vector register.
 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
 * For 64-bit, this is a 2048-bit SVE register.
 *
 * Note that the mapping between S, D, and Q views of the register bank
 * differs between AArch64 and AArch32.
 * In AArch32:
 *  Qn = regs[n].d[1]:regs[n].d[0]
 *  Dn = regs[n / 2].d[n & 1]
 *  Sn = regs[n / 4].d[n % 4 / 2],
 *       bits 31..0 for even n, and bits 63..32 for odd n
 *       (and regs[16] to regs[31] are inaccessible)
 * In AArch64:
 *  Zn = regs[n].d[*]
 *  Qn = regs[n].d[1]:regs[n].d[0]
 *  Dn = regs[n].d[0]
 *  Sn = regs[n].d[0] bits 31..0
171
 *  Hn = regs[n].d[0] bits 15..0
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
 *
 * This corresponds to the architecturally defined mapping between
 * the two execution states, and means we do not need to explicitly
 * map these registers when changing states.
 *
 * Align the data for use with TCG host vector operations.
 */

#ifdef TARGET_AARCH64
# define ARM_MAX_VQ    16
#else
# define ARM_MAX_VQ    1
#endif

typedef struct ARMVectorReg {
    uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
} ARMVectorReg;

190 191 192 193 194 195 196
/* In AArch32 mode, predicate registers do not exist at all.  */
#ifdef TARGET_AARCH64
typedef struct ARMPredicateReg {
    uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
} ARMPredicateReg;
#endif

197

B
bellard 已提交
198
typedef struct CPUARMState {
B
bellard 已提交
199
    /* Regs for current mode.  */
B
bellard 已提交
200
    uint32_t regs[16];
201 202 203 204 205 206 207 208

    /* 32/64 switch only happens when taking and returning from
     * exceptions so the overlap semantics are taken care of then
     * instead of having a complicated union.
     */
    /* Regs for A64 mode.  */
    uint64_t xregs[32];
    uint64_t pc;
209 210 211 212 213 214 215 216
    /* PSTATE isn't an architectural register for ARMv8. However, it is
     * convenient for us to assemble the underlying state into a 32 bit format
     * identical to the architectural format used for the SPSR. (This is also
     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
     * 'pstate' register are.) Of the PSTATE bits:
     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
     *    semantics as for AArch32, as described in the comments on each field)
     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
217
     *  DAIF (exception masks) are kept in env->daif
218
     *  all other bits are stored in their correct places in env->pstate
219 220 221 222
     */
    uint32_t pstate;
    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */

223
    /* Frequently accessed CPSR bits are stored separately for efficiency.
P
pbrook 已提交
224
       This contains all the other bits.  Use cpsr_{read,write} to access
B
bellard 已提交
225 226 227 228 229
       the whole CPSR.  */
    uint32_t uncached_cpsr;
    uint32_t spsr;

    /* Banked registers.  */
230
    uint64_t banked_spsr[8];
231 232
    uint32_t banked_r13[8];
    uint32_t banked_r14[8];
233

B
bellard 已提交
234 235 236
    /* These hold r8-r12.  */
    uint32_t usr_regs[5];
    uint32_t fiq_regs[5];
237

B
bellard 已提交
238 239 240
    /* cpsr flag cache for faster execution */
    uint32_t CF; /* 0 or 1 */
    uint32_t VF; /* V is the bit 31. All other bits are undefined */
P
pbrook 已提交
241 242
    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
    uint32_t ZF; /* Z set if zero.  */
B
bellard 已提交
243
    uint32_t QF; /* 0 or 1 */
P
pbrook 已提交
244
    uint32_t GE; /* cpsr[19:16] */
P
pbrook 已提交
245
    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
P
pbrook 已提交
246
    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
247
    uint64_t daif; /* exception masks, in the bits they are in PSTATE */
B
bellard 已提交
248

249
    uint64_t elr_el[4]; /* AArch64 exception link regs  */
250
    uint64_t sp_el[4]; /* AArch64 banked stack pointers */
251

B
bellard 已提交
252 253
    /* System control coprocessor (cp15) */
    struct {
P
pbrook 已提交
254
        uint32_t c0_cpuid;
F
Fabian Aggeler 已提交
255 256 257 258 259 260 261 262 263
        union { /* Cache size selection */
            struct {
                uint64_t _unused_csselr0;
                uint64_t csselr_ns;
                uint64_t _unused_csselr1;
                uint64_t csselr_s;
            };
            uint64_t csselr_el[4];
        };
264 265 266 267 268 269 270 271 272
        union { /* System control register. */
            struct {
                uint64_t _unused_sctlr;
                uint64_t sctlr_ns;
                uint64_t hsctlr;
                uint64_t sctlr_s;
            };
            uint64_t sctlr_el[4];
        };
273
        uint64_t cpacr_el1; /* Architectural feature access control register */
274
        uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
275
        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
G
Greg Bellows 已提交
276
        uint64_t sder; /* Secure debug enable register. */
F
Fabian Aggeler 已提交
277
        uint32_t nsacr; /* Non-secure access control register. */
F
Fabian Aggeler 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
        union { /* MMU translation table base 0. */
            struct {
                uint64_t _unused_ttbr0_0;
                uint64_t ttbr0_ns;
                uint64_t _unused_ttbr0_1;
                uint64_t ttbr0_s;
            };
            uint64_t ttbr0_el[4];
        };
        union { /* MMU translation table base 1. */
            struct {
                uint64_t _unused_ttbr1_0;
                uint64_t ttbr1_ns;
                uint64_t _unused_ttbr1_1;
                uint64_t ttbr1_s;
            };
            uint64_t ttbr1_el[4];
        };
E
Edgar E. Iglesias 已提交
296
        uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
F
Fabian Aggeler 已提交
297 298
        /* MMU translation table base control. */
        TCR tcr_el[4];
E
Edgar E. Iglesias 已提交
299
        TCR vtcr_el2; /* Virtualization Translation Control.  */
V
Veres Lajos 已提交
300 301
        uint32_t c2_data; /* MPU data cacheable bits.  */
        uint32_t c2_insn; /* MPU instruction cacheable bits.  */
F
Fabian Aggeler 已提交
302 303 304 305 306 307 308 309 310 311 312
        union { /* MMU domain access control register
                 * MPU write buffer control.
                 */
            struct {
                uint64_t dacr_ns;
                uint64_t dacr_s;
            };
            struct {
                uint64_t dacr32_el2;
            };
        };
313 314
        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
E
Edgar E. Iglesias 已提交
315
        uint64_t hcr_el2; /* Hypervisor configuration register */
E
Edgar E. Iglesias 已提交
316
        uint64_t scr_el3; /* Secure configuration register.  */
F
Fabian Aggeler 已提交
317 318 319 320 321 322 323 324 325
        union { /* Fault status registers.  */
            struct {
                uint64_t ifsr_ns;
                uint64_t ifsr_s;
            };
            struct {
                uint64_t ifsr32_el2;
            };
        };
F
Fabian Aggeler 已提交
326 327 328 329 330 331 332 333 334
        union {
            struct {
                uint64_t _unused_dfsr;
                uint64_t dfsr_ns;
                uint64_t hsr;
                uint64_t dfsr_s;
            };
            uint64_t esr_el[4];
        };
P
pbrook 已提交
335
        uint32_t c6_region[8]; /* MPU base/size registers.  */
F
Fabian Aggeler 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
        union { /* Fault address registers. */
            struct {
                uint64_t _unused_far0;
#ifdef HOST_WORDS_BIGENDIAN
                uint32_t ifar_ns;
                uint32_t dfar_ns;
                uint32_t ifar_s;
                uint32_t dfar_s;
#else
                uint32_t dfar_ns;
                uint32_t ifar_ns;
                uint32_t dfar_s;
                uint32_t ifar_s;
#endif
                uint64_t _unused_far3;
            };
            uint64_t far_el[4];
        };
E
Edgar E. Iglesias 已提交
354
        uint64_t hpfar_el2;
355
        uint64_t hstr_el2;
F
Fabian Aggeler 已提交
356 357 358 359 360 361 362 363 364
        union { /* Translation result. */
            struct {
                uint64_t _unused_par_0;
                uint64_t par_ns;
                uint64_t _unused_par_1;
                uint64_t par_s;
            };
            uint64_t par_el[4];
        };
365

B
bellard 已提交
366 367
        uint32_t c9_insn; /* Cache lockdown registers.  */
        uint32_t c9_data;
368 369
        uint64_t c9_pmcr; /* performance monitor control register */
        uint64_t c9_pmcnten; /* perf monitor counter enables */
370 371
        uint64_t c9_pmovsr; /* perf monitor overflow status */
        uint64_t c9_pmuserenr; /* perf monitor user enable */
372
        uint64_t c9_pmselr; /* perf monitor counter selection register */
373
        uint64_t c9_pminten; /* perf monitor interrupt enables */
G
Greg Bellows 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
        union { /* Memory attribute redirection */
            struct {
#ifdef HOST_WORDS_BIGENDIAN
                uint64_t _unused_mair_0;
                uint32_t mair1_ns;
                uint32_t mair0_ns;
                uint64_t _unused_mair_1;
                uint32_t mair1_s;
                uint32_t mair0_s;
#else
                uint64_t _unused_mair_0;
                uint32_t mair0_ns;
                uint32_t mair1_ns;
                uint64_t _unused_mair_1;
                uint32_t mair0_s;
                uint32_t mair1_s;
#endif
            };
            uint64_t mair_el[4];
        };
G
Greg Bellows 已提交
394 395 396 397 398 399 400 401 402
        union { /* vector base address register */
            struct {
                uint64_t _unused_vbar;
                uint64_t vbar_ns;
                uint64_t hvbar;
                uint64_t vbar_s;
            };
            uint64_t vbar_el[4];
        };
F
Fabian Aggeler 已提交
403
        uint32_t mvbar; /* (monitor) vector base address register */
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
        struct { /* FCSE PID. */
            uint32_t fcseidr_ns;
            uint32_t fcseidr_s;
        };
        union { /* Context ID. */
            struct {
                uint64_t _unused_contextidr_0;
                uint64_t contextidr_ns;
                uint64_t _unused_contextidr_1;
                uint64_t contextidr_s;
            };
            uint64_t contextidr_el[4];
        };
        union { /* User RW Thread register. */
            struct {
                uint64_t tpidrurw_ns;
                uint64_t tpidrprw_ns;
                uint64_t htpidr;
                uint64_t _tpidr_el3;
            };
            uint64_t tpidr_el[4];
        };
        /* The secure banks of these registers don't map anywhere */
        uint64_t tpidrurw_s;
        uint64_t tpidrprw_s;
        uint64_t tpidruro_s;

        union { /* User RO Thread register. */
            uint64_t tpidruro_ns;
            uint64_t tpidrro_el[1];
        };
435 436
        uint64_t c14_cntfrq; /* Counter Frequency register */
        uint64_t c14_cntkctl; /* Timer Control register */
E
Edgar E. Iglesias 已提交
437
        uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
E
Edgar E. Iglesias 已提交
438
        uint64_t cntvoff_el2; /* Counter Virtual Offset register */
439
        ARMGenericTimer c14_timer[NUM_GTIMERS];
440
        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
441 442 443 444
        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
        uint32_t c15_threadid; /* TI debugger thread-ID.  */
445 446 447 448
        uint32_t c15_config_base_address; /* SCU base address.  */
        uint32_t c15_diagnostic; /* diagnostic register */
        uint32_t c15_power_diagnostic;
        uint32_t c15_power_control; /* power control */
449 450 451 452
        uint64_t dbgbvr[16]; /* breakpoint value registers */
        uint64_t dbgbcr[16]; /* breakpoint control registers */
        uint64_t dbgwvr[16]; /* watchpoint value registers */
        uint64_t dbgwcr[16]; /* watchpoint control registers */
453
        uint64_t mdscr_el1;
454
        uint64_t oslsr_el1; /* OS Lock Status */
S
Sergey Fedorov 已提交
455
        uint64_t mdcr_el2;
456
        uint64_t mdcr_el3;
457 458 459
        /* If the counter is enabled, this stores the last time the counter
         * was reset. Otherwise it stores the counter value
         */
460
        uint64_t c15_ccnt;
461
        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
E
Edgar E. Iglesias 已提交
462
        uint64_t vpidr_el2; /* Virtualization Processor ID Register */
E
Edgar E. Iglesias 已提交
463
        uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
B
bellard 已提交
464
    } cp15;
P
pbrook 已提交
465

P
pbrook 已提交
466
    struct {
467 468 469 470 471 472 473 474 475 476 477
        /* M profile has up to 4 stack pointers:
         * a Main Stack Pointer and a Process Stack Pointer for each
         * of the Secure and Non-Secure states. (If the CPU doesn't support
         * the security extension then it has only two SPs.)
         * In QEMU we always store the currently active SP in regs[13],
         * and the non-active SP for the current security state in
         * v7m.other_sp. The stack pointers for the inactive security state
         * are stored in other_ss_msp and other_ss_psp.
         * switch_v7m_security_state() is responsible for rearranging them
         * when we change security state.
         */
P
pbrook 已提交
478
        uint32_t other_sp;
479 480
        uint32_t other_ss_msp;
        uint32_t other_ss_psp;
481 482 483 484 485
        uint32_t vecbase[M_REG_NUM_BANKS];
        uint32_t basepri[M_REG_NUM_BANKS];
        uint32_t control[M_REG_NUM_BANKS];
        uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
        uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
486 487
        uint32_t hfsr; /* HardFault Status */
        uint32_t dfsr; /* Debug Fault Status Register */
488
        uint32_t sfsr; /* Secure Fault Status Register */
489
        uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
490
        uint32_t bfar; /* BusFault Address */
491
        uint32_t sfar; /* Secure Fault Address Register */
492
        unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
P
pbrook 已提交
493
        int exception;
494 495
        uint32_t primask[M_REG_NUM_BANKS];
        uint32_t faultmask[M_REG_NUM_BANKS];
496
        uint32_t aircr; /* only holds r/w state if security extn implemented */
497
        uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
498
        uint32_t csselr[M_REG_NUM_BANKS];
499
        uint32_t scr[M_REG_NUM_BANKS];
500 501
        uint32_t msplim[M_REG_NUM_BANKS];
        uint32_t psplim[M_REG_NUM_BANKS];
P
pbrook 已提交
502 503
    } v7m;

504 505 506 507 508 509 510 511 512 513
    /* Information associated with an exception about to be taken:
     * code which raises an exception must set cs->exception_index and
     * the relevant parts of this structure; the cpu_do_interrupt function
     * will then set the guest-visible registers as part of the exception
     * entry process.
     */
    struct {
        uint32_t syndrome; /* AArch64 format syndrome register */
        uint32_t fsr; /* AArch32 format fault status register info */
        uint64_t vaddress; /* virtual addr associated with exception, if any */
514
        uint32_t target_el; /* EL the exception should be targeted for */
515 516 517 518 519
        /* If we implement EL2 we will also need to store information
         * about the intermediate physical address for stage 2 faults.
         */
    } exception;

520 521 522 523
    /* Thumb-2 EE state.  */
    uint32_t teecr;
    uint32_t teehbr;

B
bellard 已提交
524 525
    /* VFP coprocessor state.  */
    struct {
526
        ARMVectorReg zregs[32];
B
bellard 已提交
527

528 529 530 531 532
#ifdef TARGET_AARCH64
        /* Store FFR as pregs[16] to make it easier to treat as any other.  */
        ARMPredicateReg pregs[17];
#endif

P
pbrook 已提交
533
        uint32_t xregs[16];
B
bellard 已提交
534 535 536 537
        /* We store these fpcsr fields separately for convenience.  */
        int vec_len;
        int vec_stride;

P
pbrook 已提交
538 539
        /* scratch space when Tn are not sufficient.  */
        uint32_t scratch[8];
540

541 542 543 544 545 546 547 548 549 550 551 552 553 554
        /* There are a number of distinct float control structures:
         *
         *  fp_status: is the "normal" fp status.
         *  fp_status_fp16: used for half-precision calculations
         *  standard_fp_status : the ARM "Standard FPSCR Value"
         *
         * Half-precision operations are governed by a separate
         * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
         * status structure to control this.
         *
         * The "Standard FPSCR", ie default-NaN, flush-to-zero,
         * round-to-nearest and is used by any operations (generally
         * Neon) which the architecture defines as controlled by the
         * standard FPSCR value rather than the FPSCR.
555 556 557
         *
         * To avoid having to transfer exception bits around, we simply
         * say that the FPSCR cumulative exception flags are the logical
558
         * OR of the flags in the three fp statuses. This relies on the
559 560 561
         * only thing which needs to read the exception flags being
         * an explicit FPSCR read.
         */
B
bellard 已提交
562
        float_status fp_status;
563
        float_status fp_status_f16;
564
        float_status standard_fp_status;
R
Richard Henderson 已提交
565 566 567

        /* ZCR_EL[1-3] */
        uint64_t zcr_el[4];
B
bellard 已提交
568
    } vfp;
569 570 571
    uint64_t exclusive_addr;
    uint64_t exclusive_val;
    uint64_t exclusive_high;
B
bellard 已提交
572

573 574 575 576 577 578 579 580
    /* iwMMXt coprocessor state.  */
    struct {
        uint64_t regs[16];
        uint64_t val;

        uint32_t cregs[16];
    } iwmmxt;

P
pbrook 已提交
581 582 583 584 585
#if defined(CONFIG_USER_ONLY)
    /* For usermode syscall translation.  */
    int eabi;
#endif

586
    struct CPUBreakpoint *cpu_breakpoint[16];
587 588
    struct CPUWatchpoint *cpu_watchpoint[16];

589 590 591
    /* Fields up to this point are cleared by a CPU reset */
    struct {} end_reset_fields;

592 593
    CPU_COMMON

594
    /* Fields after CPU_COMMON are preserved across CPU reset. */
L
Lars Munch 已提交
595

596
    /* Internal CPU feature flags.  */
597
    uint64_t features;
598

599 600 601 602 603
    /* PMSAv7 MPU */
    struct {
        uint32_t *drbar;
        uint32_t *drsr;
        uint32_t *dracr;
604
        uint32_t rnr[M_REG_NUM_BANKS];
605 606
    } pmsav7;

607 608 609 610 611 612 613
    /* PMSAv8 MPU */
    struct {
        /* The PMSAv8 implementation also shares some PMSAv7 config
         * and state:
         *  pmsav7.rnr (region number register)
         *  pmsav7_dregion (number of configured regions)
         */
614 615 616 617
        uint32_t *rbar[M_REG_NUM_BANKS];
        uint32_t *rlar[M_REG_NUM_BANKS];
        uint32_t mair0[M_REG_NUM_BANKS];
        uint32_t mair1[M_REG_NUM_BANKS];
618 619
    } pmsav8;

620 621 622 623 624 625 626 627
    /* v8M SAU */
    struct {
        uint32_t *rbar;
        uint32_t *rlar;
        uint32_t rnr;
        uint32_t ctrl;
    } sau;

P
Paul Brook 已提交
628
    void *nvic;
629
    const struct arm_boot_info *boot_info;
630 631
    /* Store GICv3CPUState to access from this struct */
    void *gicv3state;
B
bellard 已提交
632 633
} CPUARMState;

634
/**
635
 * ARMELChangeHookFn:
636 637 638
 * type of a function which can be registered via arm_register_el_change_hook()
 * to get callbacks when the CPU changes its exception level or mode.
 */
639 640 641 642 643 644 645
typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
typedef struct ARMELChangeHook ARMELChangeHook;
struct ARMELChangeHook {
    ARMELChangeHookFn *hook;
    void *opaque;
    QLIST_ENTRY(ARMELChangeHook) node;
};
646 647 648 649

/* These values map onto the return values for
 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
typedef enum ARMPSCIState {
650 651
    PSCI_ON = 0,
    PSCI_OFF = 1,
652 653 654
    PSCI_ON_PENDING = 2
} ARMPSCIState;

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
/**
 * ARMCPU:
 * @env: #CPUARMState
 *
 * An ARM CPU core.
 */
struct ARMCPU {
    /*< private >*/
    CPUState parent_obj;
    /*< public >*/

    CPUARMState env;

    /* Coprocessor information */
    GHashTable *cp_regs;
    /* For marshalling (mostly coprocessor) register state between the
     * kernel and QEMU (for KVM) and between two QEMUs (for migration),
     * we use these arrays.
     */
    /* List of register indexes managed via these arrays; (full KVM style
     * 64 bit indexes, not CPRegInfo 32 bit indexes)
     */
    uint64_t *cpreg_indexes;
    /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
    uint64_t *cpreg_values;
    /* Length of the indexes, values, reset_values arrays */
    int32_t cpreg_array_len;
    /* These are used only for migration: incoming data arrives in
     * these fields and is sanity checked in post_load before copying
     * to the working data structures above.
     */
    uint64_t *cpreg_vmstate_indexes;
    uint64_t *cpreg_vmstate_values;
    int32_t cpreg_vmstate_array_len;

    /* Timers used by the generic (architected) timer */
    QEMUTimer *gt_timer[NUM_GTIMERS];
    /* GPIO outputs for generic timer */
    qemu_irq gt_timer_outputs[NUM_GTIMERS];
694 695
    /* GPIO output for GICv3 maintenance interrupt signal */
    qemu_irq gicv3_maintenance_interrupt;
696 697
    /* GPIO output for the PMU interrupt */
    qemu_irq pmu_interrupt;
698 699 700 701

    /* MemoryRegion to use for secure physical accesses */
    MemoryRegion *secure_memory;

702 703 704
    /* For v8M, pointer to the IDAU interface provided by board/SoC */
    Object *idau;

705 706 707 708 709 710 711 712 713 714 715
    /* 'compatible' string for this CPU for Linux device trees */
    const char *dtb_compatible;

    /* PSCI version for this CPU
     * Bits[31:16] = Major Version
     * Bits[15:0] = Minor Version
     */
    uint32_t psci_version;

    /* Should CPU start in PSCI powered-off state? */
    bool start_powered_off;
716 717 718 719

    /* Current power state, access guarded by BQL */
    ARMPSCIState power_state;

720 721
    /* CPU has virtualization extension */
    bool has_el2;
722 723
    /* CPU has security extension */
    bool has_el3;
724 725
    /* CPU has PMU (Performance Monitor Unit) */
    bool has_pmu;
726 727 728 729 730

    /* CPU has memory protection unit */
    bool has_mpu;
    /* PMSAv7 MPU number of supported regions */
    uint32_t pmsav7_dregion;
731 732
    /* v8M SAU number of supported regions */
    uint32_t sau_sregion;
733 734 735 736 737 738

    /* PSCI conduit used to invoke PSCI methods
     * 0 - disabled, 1 - smc, 2 - hvc
     */
    uint32_t psci_conduit;

739 740 741
    /* For v8M, initial value of the Secure VTOR */
    uint32_t init_svtor;

742 743 744 745 746 747 748 749 750 751 752
    /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
     * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
     */
    uint32_t kvm_target;

    /* KVM init features for this CPU */
    uint32_t kvm_init_features[7];

    /* Uniprocessor system with MP extensions */
    bool mp_is_up;

753 754 755 756 757
    /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
     * and the probe failed (so we need to report the error in realize)
     */
    bool host_cpu_probe_failed;

758 759 760 761 762
    /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
     * register.
     */
    int32_t core_count;

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
    /* The instance init functions for implementation-specific subclasses
     * set these fields to specify the implementation-dependent values of
     * various constant registers and reset values of non-constant
     * registers.
     * Some of these might become QOM properties eventually.
     * Field names match the official register names as defined in the
     * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
     * is used for reset values of non-constant registers; no reset_
     * prefix means a constant register.
     */
    uint32_t midr;
    uint32_t revidr;
    uint32_t reset_fpsid;
    uint32_t mvfr0;
    uint32_t mvfr1;
    uint32_t mvfr2;
    uint32_t ctr;
    uint32_t reset_sctlr;
    uint32_t id_pfr0;
    uint32_t id_pfr1;
    uint32_t id_dfr0;
    uint32_t pmceid0;
    uint32_t pmceid1;
    uint32_t id_afr0;
    uint32_t id_mmfr0;
    uint32_t id_mmfr1;
    uint32_t id_mmfr2;
    uint32_t id_mmfr3;
    uint32_t id_mmfr4;
    uint32_t id_isar0;
    uint32_t id_isar1;
    uint32_t id_isar2;
    uint32_t id_isar3;
    uint32_t id_isar4;
    uint32_t id_isar5;
    uint64_t id_aa64pfr0;
    uint64_t id_aa64pfr1;
    uint64_t id_aa64dfr0;
    uint64_t id_aa64dfr1;
    uint64_t id_aa64afr0;
    uint64_t id_aa64afr1;
    uint64_t id_aa64isar0;
    uint64_t id_aa64isar1;
    uint64_t id_aa64mmfr0;
    uint64_t id_aa64mmfr1;
    uint32_t dbgdidr;
    uint32_t clidr;
    uint64_t mp_affinity; /* MP ID without feature bits */
    /* The elements of this array are the CCSIDR values for each cache,
     * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
     */
    uint32_t ccsidr[16];
    uint64_t reset_cbar;
    uint32_t reset_auxcr;
    bool reset_hivecs;
    /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
    uint32_t dcz_blocksize;
    uint64_t rvbar;
821

822 823 824 825 826
    /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
    int gic_num_lrs; /* number of list registers */
    int gic_vpribits; /* number of virtual priority bits */
    int gic_vprebits; /* number of virtual preemption bits */

827 828 829 830 831 832 833
    /* Whether the cfgend input is high (i.e. this CPU should reset into
     * big-endian mode).  This setting isn't used directly: instead it modifies
     * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
     * architecture version.
     */
    bool cfgend;

834
    QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
835
    QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
836 837

    int32_t node_id; /* NUMA node this CPU belongs to */
838 839 840

    /* Used to synchronize KVM and QEMU in-kernel device levels */
    uint8_t device_irq_level;
841 842 843 844 845 846 847
};

static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
{
    return container_of(env, ARMCPU, env);
}

848 849
uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))

#define ENV_OFFSET offsetof(ARMCPU, env)

#ifndef CONFIG_USER_ONLY
extern const struct VMStateDescription vmstate_arm_cpu;
#endif

void arm_cpu_do_interrupt(CPUState *cpu);
void arm_v7m_cpu_do_interrupt(CPUState *cpu);
bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);

void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
                        int flags);

hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
                                         MemTxAttrs *attrs);

int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);

int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
                             int cpuid, void *opaque);
int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
                             int cpuid, void *opaque);

#ifdef TARGET_AARCH64
int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
879
void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
880
#endif
881

882
target_ulong do_arm_semihosting(CPUARMState *env);
883 884
void aarch64_sync_32_to_64(CPUARMState *env);
void aarch64_sync_64_to_32(CPUARMState *env);
B
bellard 已提交
885

886 887 888 889 890
static inline bool is_a64(CPUARMState *env)
{
    return env->aarch64;
}

B
bellard 已提交
891 892 893
/* you can call this signal handler from your SIGBUS and SIGSEGV
   signal handlers to inform the virtual CPU of exceptions. non zero
   is returned if the signal was handled by the virtual CPU.  */
894
int cpu_arm_signal_handler(int host_signum, void *pinfo,
B
bellard 已提交
895 896
                           void *puc);

897 898 899 900 901 902 903 904 905 906 907
/**
 * pmccntr_sync
 * @env: CPUARMState
 *
 * Synchronises the counter in the PMCCNTR. This must always be called twice,
 * once before any action that might affect the timer and again afterwards.
 * The function is used to swap the state of the register if required.
 * This only happens when not in user mode (!CONFIG_USER_ONLY)
 */
void pmccntr_sync(CPUARMState *env);

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
/* SCTLR bit meanings. Several bits have been reused in newer
 * versions of the architecture; in that case we define constants
 * for both old and new bit meanings. Code which tests against those
 * bits should probably check or otherwise arrange that the CPU
 * is the architectural version it expects.
 */
#define SCTLR_M       (1U << 0)
#define SCTLR_A       (1U << 1)
#define SCTLR_C       (1U << 2)
#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
#define SCTLR_SA      (1U << 3)
#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
#define SCTLR_ITD     (1U << 7) /* v8 onward */
#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
#define SCTLR_SED     (1U << 8) /* v8 onward */
#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
#define SCTLR_F       (1U << 10) /* up to v6 */
#define SCTLR_SW      (1U << 10) /* v7 onward */
#define SCTLR_Z       (1U << 11)
#define SCTLR_I       (1U << 12)
#define SCTLR_V       (1U << 13)
#define SCTLR_RR      (1U << 14) /* up to v7 */
#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
#define SCTLR_nTWI    (1U << 16) /* v8 onward */
#define SCTLR_HA      (1U << 17)
942
#define SCTLR_BR      (1U << 17) /* PMSA only */
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
#define SCTLR_nTWE    (1U << 18) /* v8 onward */
#define SCTLR_WXN     (1U << 19)
#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
#define SCTLR_UWXN    (1U << 20) /* v7 onward */
#define SCTLR_FI      (1U << 21)
#define SCTLR_U       (1U << 22)
#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
#define SCTLR_VE      (1U << 24) /* up to v7 */
#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
#define SCTLR_EE      (1U << 25)
#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
#define SCTLR_NMFI    (1U << 27)
#define SCTLR_TRE     (1U << 28)
#define SCTLR_AFE     (1U << 29)
#define SCTLR_TE      (1U << 30)

961 962 963
#define CPTR_TCPAC    (1U << 31)
#define CPTR_TTA      (1U << 20)
#define CPTR_TFP      (1U << 10)
R
Richard Henderson 已提交
964 965
#define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
#define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
966

967 968 969 970
#define MDCR_EPMAD    (1U << 21)
#define MDCR_EDAD     (1U << 20)
#define MDCR_SPME     (1U << 17)
#define MDCR_SDD      (1U << 16)
971
#define MDCR_SPD      (3U << 14)
972 973 974 975 976 977 978 979
#define MDCR_TDRA     (1U << 11)
#define MDCR_TDOSA    (1U << 10)
#define MDCR_TDA      (1U << 9)
#define MDCR_TDE      (1U << 8)
#define MDCR_HPME     (1U << 7)
#define MDCR_TPM      (1U << 6)
#define MDCR_TPMCR    (1U << 5)

980 981 982
/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)

983 984 985 986 987 988 989 990
#define CPSR_M (0x1fU)
#define CPSR_T (1U << 5)
#define CPSR_F (1U << 6)
#define CPSR_I (1U << 7)
#define CPSR_A (1U << 8)
#define CPSR_E (1U << 9)
#define CPSR_IT_2_7 (0xfc00U)
#define CPSR_GE (0xfU << 16)
991 992 993 994 995 996 997
#define CPSR_IL (1U << 20)
/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
 * where it is live state but not accessible to the AArch32 code.
 */
#define CPSR_RESERVED (0x7U << 21)
998 999 1000 1001 1002 1003 1004
#define CPSR_J (1U << 24)
#define CPSR_IT_0_1 (3U << 25)
#define CPSR_Q (1U << 27)
#define CPSR_V (1U << 28)
#define CPSR_C (1U << 29)
#define CPSR_Z (1U << 30)
#define CPSR_N (1U << 31)
P
pbrook 已提交
1005
#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1006
#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
P
pbrook 已提交
1007 1008

#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1009 1010
#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
    | CPSR_NZCV)
P
pbrook 已提交
1011 1012 1013
/* Bits writable in user mode.  */
#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1014 1015 1016
#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
/* Mask of bits which may be set by exception return copying them from SPSR */
#define CPSR_ERET_MASK (~CPSR_RESERVED)
B
bellard 已提交
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
#define XPSR_EXCP 0x1ffU
#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
#define XPSR_IT_2_7 CPSR_IT_2_7
#define XPSR_GE CPSR_GE
#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
#define XPSR_IT_0_1 CPSR_IT_0_1
#define XPSR_Q CPSR_Q
#define XPSR_V CPSR_V
#define XPSR_C CPSR_C
#define XPSR_Z CPSR_Z
#define XPSR_N CPSR_N
#define XPSR_NZCV CPSR_NZCV
#define XPSR_IT CPSR_IT

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
#define TTBCR_PD0    (1U << 4)
#define TTBCR_PD1    (1U << 5)
#define TTBCR_EPD0   (1U << 7)
#define TTBCR_IRGN0  (3U << 8)
#define TTBCR_ORGN0  (3U << 10)
#define TTBCR_SH0    (3U << 12)
#define TTBCR_T1SZ   (3U << 16)
#define TTBCR_A1     (1U << 22)
#define TTBCR_EPD1   (1U << 23)
#define TTBCR_IRGN1  (3U << 24)
#define TTBCR_ORGN1  (3U << 26)
#define TTBCR_SH1    (1U << 28)
#define TTBCR_EAE    (1U << 31)

1050 1051 1052 1053
/* Bit definitions for ARMv8 SPSR (PSTATE) format.
 * Only these are valid when in AArch64 mode; in
 * AArch32 mode SPSRs are basically CPSR-format.
 */
1054
#define PSTATE_SP (1U)
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
#define PSTATE_M (0xFU)
#define PSTATE_nRW (1U << 4)
#define PSTATE_F (1U << 6)
#define PSTATE_I (1U << 7)
#define PSTATE_A (1U << 8)
#define PSTATE_D (1U << 9)
#define PSTATE_IL (1U << 20)
#define PSTATE_SS (1U << 21)
#define PSTATE_V (1U << 28)
#define PSTATE_C (1U << 29)
#define PSTATE_Z (1U << 30)
#define PSTATE_N (1U << 31)
#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1068 1069
#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
1070 1071 1072 1073 1074 1075 1076 1077 1078
/* Mode values for AArch64 */
#define PSTATE_MODE_EL3h 13
#define PSTATE_MODE_EL3t 12
#define PSTATE_MODE_EL2h 9
#define PSTATE_MODE_EL2t 8
#define PSTATE_MODE_EL1h 5
#define PSTATE_MODE_EL1t 4
#define PSTATE_MODE_EL0t 0

1079 1080 1081 1082 1083
/* Write a new value to v7m.exception, thus transitioning into or out
 * of Handler mode; this may result in a change of active stack pointer.
 */
void write_v7m_exception(CPUARMState *env, uint32_t new_exc);

1084 1085 1086 1087 1088 1089
/* Map EL and handler into a PSTATE_MODE.  */
static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
{
    return (el << 2) | handler;
}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
 * interprocessing, so we don't attempt to sync with the cpsr state used by
 * the 32 bit decoder.
 */
static inline uint32_t pstate_read(CPUARMState *env)
{
    int ZF;

    ZF = (env->ZF == 0);
    return (env->NF & 0x80000000) | (ZF << 30)
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1101
        | env->pstate | env->daif;
1102 1103 1104 1105 1106 1107 1108 1109
}

static inline void pstate_write(CPUARMState *env, uint32_t val)
{
    env->ZF = (~val) & PSTATE_Z;
    env->NF = val;
    env->CF = (val >> 29) & 1;
    env->VF = (val << 3) & 0x80000000;
1110
    env->daif = val & PSTATE_DAIF;
1111 1112 1113
    env->pstate = val & ~CACHED_PSTATE_BITS;
}

B
bellard 已提交
1114
/* Return the current CPSR value.  */
1115
uint32_t cpsr_read(CPUARMState *env);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

typedef enum CPSRWriteType {
    CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
    CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
    CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
    CPSRWriteByGDBStub = 3,       /* from the GDB stub */
} CPSRWriteType;

/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
                CPSRWriteType write_type);
P
pbrook 已提交
1127 1128 1129 1130 1131

/* Return the current xPSR value.  */
static inline uint32_t xpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
1132 1133
    ZF = (env->ZF == 0);
    return (env->NF & 0x80000000) | (ZF << 30)
P
pbrook 已提交
1134 1135 1136 1137
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
        | env->v7m.exception;
B
bellard 已提交
1138 1139
}

P
pbrook 已提交
1140 1141 1142
/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
1143 1144
    if (mask & XPSR_NZCV) {
        env->ZF = (~val) & XPSR_Z;
P
pbrook 已提交
1145
        env->NF = val;
P
pbrook 已提交
1146 1147 1148
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
1149 1150 1151 1152 1153 1154 1155
    if (mask & XPSR_Q) {
        env->QF = ((val & XPSR_Q) != 0);
    }
    if (mask & XPSR_T) {
        env->thumb = ((val & XPSR_T) != 0);
    }
    if (mask & XPSR_IT_0_1) {
P
pbrook 已提交
1156 1157 1158
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
1159
    if (mask & XPSR_IT_2_7) {
P
pbrook 已提交
1160 1161 1162
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
1163
    if (mask & XPSR_EXCP) {
1164 1165
        /* Note that this only happens on exception exit */
        write_v7m_exception(env, val & XPSR_EXCP);
P
pbrook 已提交
1166 1167 1168
    }
}

E
Edgar E. Iglesias 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
#define HCR_VM        (1ULL << 0)
#define HCR_SWIO      (1ULL << 1)
#define HCR_PTW       (1ULL << 2)
#define HCR_FMO       (1ULL << 3)
#define HCR_IMO       (1ULL << 4)
#define HCR_AMO       (1ULL << 5)
#define HCR_VF        (1ULL << 6)
#define HCR_VI        (1ULL << 7)
#define HCR_VSE       (1ULL << 8)
#define HCR_FB        (1ULL << 9)
#define HCR_BSU_MASK  (3ULL << 10)
#define HCR_DC        (1ULL << 12)
#define HCR_TWI       (1ULL << 13)
#define HCR_TWE       (1ULL << 14)
#define HCR_TID0      (1ULL << 15)
#define HCR_TID1      (1ULL << 16)
#define HCR_TID2      (1ULL << 17)
#define HCR_TID3      (1ULL << 18)
#define HCR_TSC       (1ULL << 19)
#define HCR_TIDCP     (1ULL << 20)
#define HCR_TACR      (1ULL << 21)
#define HCR_TSW       (1ULL << 22)
#define HCR_TPC       (1ULL << 23)
#define HCR_TPU       (1ULL << 24)
#define HCR_TTLB      (1ULL << 25)
#define HCR_TVM       (1ULL << 26)
#define HCR_TGE       (1ULL << 27)
#define HCR_TDZ       (1ULL << 28)
#define HCR_HCD       (1ULL << 29)
#define HCR_TRVM      (1ULL << 30)
#define HCR_RW        (1ULL << 31)
#define HCR_CD        (1ULL << 32)
#define HCR_ID        (1ULL << 33)
#define HCR_MASK      ((1ULL << 34) - 1)

E
Edgar E. Iglesias 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
#define SCR_NS                (1U << 0)
#define SCR_IRQ               (1U << 1)
#define SCR_FIQ               (1U << 2)
#define SCR_EA                (1U << 3)
#define SCR_FW                (1U << 4)
#define SCR_AW                (1U << 5)
#define SCR_NET               (1U << 6)
#define SCR_SMD               (1U << 7)
#define SCR_HCE               (1U << 8)
#define SCR_SIF               (1U << 9)
#define SCR_RW                (1U << 10)
#define SCR_ST                (1U << 11)
#define SCR_TWI               (1U << 12)
#define SCR_TWE               (1U << 13)
#define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
#define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)

1221 1222 1223 1224
/* Return the current FPSCR value.  */
uint32_t vfp_get_fpscr(CPUARMState *env);
void vfp_set_fpscr(CPUARMState *env, uint32_t val);

1225 1226 1227 1228
/* FPCR, Floating Point Control Register
 * FPSR, Floating Poiht Status Register
 *
 * For A64 the FPSCR is split into two logically distinct registers,
1229 1230 1231 1232 1233
 * FPCR and FPSR. However since they still use non-overlapping bits
 * we store the underlying state in fpscr and just mask on read/write.
 */
#define FPSR_MASK 0xf800009f
#define FPCR_MASK 0x07f79f00
1234 1235 1236 1237 1238

#define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
#define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
#define FPCR_DN     (1 << 25)   /* Default NaN enable bit */

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
static inline uint32_t vfp_get_fpsr(CPUARMState *env)
{
    return vfp_get_fpscr(env) & FPSR_MASK;
}

static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
{
    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
    vfp_set_fpscr(env, new_fpscr);
}

static inline uint32_t vfp_get_fpcr(CPUARMState *env)
{
    return vfp_get_fpscr(env) & FPCR_MASK;
}

static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
{
    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
    vfp_set_fpscr(env, new_fpscr);
}

B
bellard 已提交
1261 1262 1263 1264 1265
enum arm_cpu_mode {
  ARM_CPU_MODE_USR = 0x10,
  ARM_CPU_MODE_FIQ = 0x11,
  ARM_CPU_MODE_IRQ = 0x12,
  ARM_CPU_MODE_SVC = 0x13,
1266
  ARM_CPU_MODE_MON = 0x16,
B
bellard 已提交
1267
  ARM_CPU_MODE_ABT = 0x17,
1268
  ARM_CPU_MODE_HYP = 0x1a,
B
bellard 已提交
1269 1270 1271 1272
  ARM_CPU_MODE_UND = 0x1b,
  ARM_CPU_MODE_SYS = 0x1f
};

P
pbrook 已提交
1273 1274 1275
/* VFP system registers.  */
#define ARM_VFP_FPSID   0
#define ARM_VFP_FPSCR   1
1276
#define ARM_VFP_MVFR2   5
P
pbrook 已提交
1277 1278
#define ARM_VFP_MVFR1   6
#define ARM_VFP_MVFR0   7
P
pbrook 已提交
1279 1280 1281 1282
#define ARM_VFP_FPEXC   8
#define ARM_VFP_FPINST  9
#define ARM_VFP_FPINST2 10

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
/* iwMMXt coprocessor control registers.  */
#define ARM_IWMMXT_wCID		0
#define ARM_IWMMXT_wCon		1
#define ARM_IWMMXT_wCSSF	2
#define ARM_IWMMXT_wCASF	3
#define ARM_IWMMXT_wCGR0	8
#define ARM_IWMMXT_wCGR1	9
#define ARM_IWMMXT_wCGR2	10
#define ARM_IWMMXT_wCGR3	11

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
/* V7M CCR bits */
FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
FIELD(V7M_CCR, USERSETMPEND, 1, 1)
FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
FIELD(V7M_CCR, STKALIGN, 9, 1)
FIELD(V7M_CCR, DC, 16, 1)
FIELD(V7M_CCR, IC, 17, 1)

1303 1304 1305 1306 1307 1308
/* V7M SCR bits */
FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
FIELD(V7M_SCR, SEVONPEND, 4, 1)

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
/* V7M AIRCR bits */
FIELD(V7M_AIRCR, VECTRESET, 0, 1)
FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
FIELD(V7M_AIRCR, PRIS, 14, 1)
FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
FIELD(V7M_AIRCR, VECTKEY, 16, 16)

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
/* V7M CFSR bits for MMFSR */
FIELD(V7M_CFSR, IACCVIOL, 0, 1)
FIELD(V7M_CFSR, DACCVIOL, 1, 1)
FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
FIELD(V7M_CFSR, MSTKERR, 4, 1)
FIELD(V7M_CFSR, MLSPERR, 5, 1)
FIELD(V7M_CFSR, MMARVALID, 7, 1)

/* V7M CFSR bits for BFSR */
FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)

/* V7M CFSR bits for UFSR */
FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)

1345 1346 1347 1348 1349
/* V7M CFSR bit masks covering all of the subregister bits */
FIELD(V7M_CFSR, MMFSR, 0, 8)
FIELD(V7M_CFSR, BFSR, 8, 8)
FIELD(V7M_CFSR, UFSR, 16, 16)

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
/* V7M HFSR bits */
FIELD(V7M_HFSR, VECTTBL, 1, 1)
FIELD(V7M_HFSR, FORCED, 30, 1)
FIELD(V7M_HFSR, DEBUGEVT, 31, 1)

/* V7M DFSR bits */
FIELD(V7M_DFSR, HALTED, 0, 1)
FIELD(V7M_DFSR, BKPT, 1, 1)
FIELD(V7M_DFSR, DWTTRAP, 2, 1)
FIELD(V7M_DFSR, VCATCH, 3, 1)
FIELD(V7M_DFSR, EXTERNAL, 4, 1)

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/* V7M SFSR bits */
FIELD(V7M_SFSR, INVEP, 0, 1)
FIELD(V7M_SFSR, INVIS, 1, 1)
FIELD(V7M_SFSR, INVER, 2, 1)
FIELD(V7M_SFSR, AUVIOL, 3, 1)
FIELD(V7M_SFSR, INVTRAN, 4, 1)
FIELD(V7M_SFSR, LSPERR, 5, 1)
FIELD(V7M_SFSR, SFARVALID, 6, 1)
FIELD(V7M_SFSR, LSERR, 7, 1)

1372 1373 1374 1375 1376
/* v7M MPU_CTRL bits */
FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
/* v7M CLIDR bits */
FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
FIELD(V7M_CLIDR, LOUIS, 21, 3)
FIELD(V7M_CLIDR, LOC, 24, 3)
FIELD(V7M_CLIDR, LOUU, 27, 3)
FIELD(V7M_CLIDR, ICB, 30, 2)

FIELD(V7M_CSSELR, IND, 0, 1)
FIELD(V7M_CSSELR, LEVEL, 1, 3)
/* We use the combination of InD and Level to index into cpu->ccsidr[];
 * define a mask for this and check that it doesn't permit running off
 * the end of the array.
 */
FIELD(V7M_CSSELR, INDEX, 0, 4)

QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);

1394 1395 1396 1397
/* If adding a feature bit which corresponds to a Linux ELF
 * HWCAP bit, remember to update the feature-bit-to-hwcap
 * mapping in linux-user/elfload.c:get_elf_hwcap().
 */
P
pbrook 已提交
1398 1399
enum arm_features {
    ARM_FEATURE_VFP,
1400 1401
    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
P
pbrook 已提交
1402
    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
P
pbrook 已提交
1403 1404 1405 1406
    ARM_FEATURE_V6,
    ARM_FEATURE_V6K,
    ARM_FEATURE_V7,
    ARM_FEATURE_THUMB2,
1407
    ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
P
pbrook 已提交
1408
    ARM_FEATURE_VFP3,
P
Paul Brook 已提交
1409
    ARM_FEATURE_VFP_FP16,
P
pbrook 已提交
1410
    ARM_FEATURE_NEON,
1411
    ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
P
pbrook 已提交
1412
    ARM_FEATURE_M, /* Microcontroller profile.  */
1413
    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1414
    ARM_FEATURE_THUMB2EE,
1415 1416 1417
    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
    ARM_FEATURE_V4T,
    ARM_FEATURE_V5,
1418
    ARM_FEATURE_STRONGARM,
1419
    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1420
    ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1421
    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1422
    ARM_FEATURE_GENERIC_TIMER,
1423
    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1424
    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1425 1426 1427
    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
P
Peter Maydell 已提交
1428
    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1429 1430
    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1431
    ARM_FEATURE_V8,
1432
    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1433
    ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1434
    ARM_FEATURE_CBAR, /* has cp15 CBAR */
1435
    ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1436
    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1437
    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1438
    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1439 1440
    ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
    ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1441
    ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1442
    ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1443
    ARM_FEATURE_PMU, /* has PMU support */
1444
    ARM_FEATURE_VBAR, /* has cp15 VBAR */
1445
    ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1446
    ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
1447
    ARM_FEATURE_SVE, /* has Scalable Vector Extension */
1448
    ARM_FEATURE_V8_SHA512, /* implements SHA512 part of v8 Crypto Extensions */
1449
    ARM_FEATURE_V8_SHA3, /* implements SHA3 part of v8 Crypto Extensions */
1450
    ARM_FEATURE_V8_SM3, /* implements SM3 part of v8 Crypto Extensions */
1451
    ARM_FEATURE_V8_SM4, /* implements SM4 part of v8 Crypto Extensions */
1452
    ARM_FEATURE_V8_RDM, /* implements v8.1 simd round multiply */
1453
    ARM_FEATURE_V8_FP16, /* implements v8.2 half-precision float */
1454
    ARM_FEATURE_V8_FCMA, /* has complex number part of v8.3 extensions.  */
P
pbrook 已提交
1455 1456 1457 1458
};

static inline int arm_feature(CPUARMState *env, int feature)
{
1459
    return (env->features & (1ULL << feature)) != 0;
P
pbrook 已提交
1460 1461
}

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
#if !defined(CONFIG_USER_ONLY)
/* Return true if exception levels below EL3 are in secure state,
 * or would be following an exception return to that level.
 * Unlike arm_is_secure() (which is always a question about the
 * _current_ state of the CPU) this doesn't care about the current
 * EL or mode.
 */
static inline bool arm_is_secure_below_el3(CPUARMState *env)
{
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        return !(env->cp15.scr_el3 & SCR_NS);
    } else {
1474
        /* If EL3 is not supported then the secure state is implementation
1475 1476 1477 1478 1479 1480
         * defined, in which case QEMU defaults to non-secure.
         */
        return false;
    }
}

1481 1482
/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
static inline bool arm_is_el3_or_mon(CPUARMState *env)
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
{
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
            /* CPU currently in AArch64 state and EL3 */
            return true;
        } else if (!is_a64(env) &&
                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
            /* CPU currently in AArch32 state and monitor mode */
            return true;
        }
    }
1494 1495 1496 1497 1498 1499 1500 1501 1502
    return false;
}

/* Return true if the processor is in secure state */
static inline bool arm_is_secure(CPUARMState *env)
{
    if (arm_is_el3_or_mon(env)) {
        return true;
    }
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
    return arm_is_secure_below_el3(env);
}

#else
static inline bool arm_is_secure_below_el3(CPUARMState *env)
{
    return false;
}

static inline bool arm_is_secure(CPUARMState *env)
{
    return false;
}
#endif

1518 1519 1520
/* Return true if the specified exception level is running in AArch64 state. */
static inline bool arm_el_is_aa64(CPUARMState *env, int el)
{
1521 1522
    /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
     * and if we're not in EL0 then the state of EL0 isn't well defined.)
1523
     */
1524 1525
    assert(el >= 1 && el <= 3);
    bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1526

1527 1528 1529
    /* The highest exception level is always at the maximum supported
     * register width, and then lower levels have a register width controlled
     * by bits in the SCR or HCR registers.
1530
     */
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
    if (el == 3) {
        return aa64;
    }

    if (arm_feature(env, ARM_FEATURE_EL3)) {
        aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
    }

    if (el == 2) {
        return aa64;
    }

    if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
        aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
    }

    return aa64;
1548 1549
}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
/* Function for determing whether guest cp register reads and writes should
 * access the secure or non-secure bank of a cp register.  When EL3 is
 * operating in AArch32 state, the NS-bit determines whether the secure
 * instance of a cp register should be used. When EL3 is AArch64 (or if
 * it doesn't exist at all) then there is no register banking, and all
 * accesses are to the non-secure version.
 */
static inline bool access_secure_reg(CPUARMState *env)
{
    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
                !arm_el_is_aa64(env, 3) &&
                !(env->cp15.scr_el3 & SCR_NS));

    return ret;
}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
/* Macros for accessing a specified CP register bank */
#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)

#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
    do {                                                \
        if (_secure) {                                   \
            (_env)->cp15._regname##_s = (_val);            \
        } else {                                        \
            (_env)->cp15._regname##_ns = (_val);           \
        }                                               \
    } while (0)

/* Macros for automatically accessing a specific CP register bank depending on
 * the current secure state of the system.  These macros are not intended for
 * supporting instruction translation reads/writes as these are dependent
 * solely on the SCR.NS bit and not the mode.
 */
#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
    A32_BANKED_REG_GET((_env), _regname,                \
1586
                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1587 1588 1589

#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
    A32_BANKED_REG_SET((_env), _regname,                                    \
1590
                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1591 1592
                       (_val))

1593
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1594 1595
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure);
P
pbrook 已提交
1596

P
pbrook 已提交
1597
/* Interface between CPU and Interrupt controller.  */
1598 1599 1600 1601 1602 1603 1604 1605
#ifndef CONFIG_USER_ONLY
bool armv7m_nvic_can_take_pending_exception(void *opaque);
#else
static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
{
    return true;
}
#endif
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
/**
 * armv7m_nvic_set_pending: mark the specified exception as pending
 * @opaque: the NVIC
 * @irq: the exception number to mark pending
 * @secure: false for non-banked exceptions or for the nonsecure
 * version of a banked exception, true for the secure version of a banked
 * exception.
 *
 * Marks the specified exception as pending. Note that we will assert()
 * if @secure is true and @irq does not specify one of the fixed set
 * of architecturally banked exceptions.
 */
void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
/**
 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
 * @opaque: the NVIC
 * @irq: the exception number to mark pending
 * @secure: false for non-banked exceptions or for the nonsecure
 * version of a banked exception, true for the secure version of a banked
 * exception.
 *
 * Similar to armv7m_nvic_set_pending(), but specifically for derived
 * exceptions (exceptions generated in the course of trying to take
 * a different exception).
 */
void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
/**
 * armv7m_nvic_get_pending_irq_info: return highest priority pending
 *    exception, and whether it targets Secure state
 * @opaque: the NVIC
 * @pirq: set to pending exception number
 * @ptargets_secure: set to whether pending exception targets Secure
 *
 * This function writes the number of the highest priority pending
 * exception (the one which would be made active by
 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
 * to true if the current highest priority pending exception should
 * be taken to Secure state, false for NS.
 */
void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
                                      bool *ptargets_secure);
1647 1648 1649 1650 1651 1652 1653 1654
/**
 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
 * @opaque: the NVIC
 *
 * Move the current highest priority pending exception from the pending
 * state to the active state, and update v7m.exception to indicate that
 * it is the exception currently being handled.
 */
1655
void armv7m_nvic_acknowledge_irq(void *opaque);
1656 1657 1658 1659
/**
 * armv7m_nvic_complete_irq: complete specified interrupt or exception
 * @opaque: the NVIC
 * @irq: the exception number to complete
1660
 * @secure: true if this exception was secure
1661 1662 1663 1664 1665 1666
 *
 * Returns: -1 if the irq was not active
 *           1 if completing this irq brought us back to base (no active irqs)
 *           0 if there is still an irq active after this one was completed
 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
 */
1667
int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
/**
 * armv7m_nvic_raw_execution_priority: return the raw execution priority
 * @opaque: the NVIC
 *
 * Returns: the raw execution priority as defined by the v8M architecture.
 * This is the execution priority minus the effects of AIRCR.PRIS,
 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
 * (v8M ARM ARM I_PKLD.)
 */
int armv7m_nvic_raw_execution_priority(void *opaque);
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
/**
 * armv7m_nvic_neg_prio_requested: return true if the requested execution
 * priority is negative for the specified security state.
 * @opaque: the NVIC
 * @secure: the security state to test
 * This corresponds to the pseudocode IsReqExecPriNeg().
 */
#ifndef CONFIG_USER_ONLY
bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
#else
static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
{
    return false;
}
#endif
P
pbrook 已提交
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
/* Interface for defining coprocessor registers.
 * Registers are defined in tables of arm_cp_reginfo structs
 * which are passed to define_arm_cp_regs().
 */

/* When looking up a coprocessor register we look for it
 * via an integer which encodes all of:
 *  coprocessor number
 *  Crn, Crm, opc1, opc2 fields
 *  32 or 64 bit register (ie is it accessed via MRC/MCR
 *    or via MRRC/MCRR?)
1705
 *  non-secure/secure bank (AArch32 only)
1706 1707
 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
 * (In this case crn and opc2 should be zero.)
1708 1709 1710 1711 1712 1713 1714
 * For AArch64, there is no 32/64 bit size distinction;
 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
 * and 4 bit CRn and CRm. The encoding patterns are chosen
 * to be easy to convert to and from the KVM encodings, and also
 * so that the hashtable can contain both AArch32 and AArch64
 * registers (to allow for interprocessing where we might run
 * 32 bit code on a 64 bit core).
1715
 */
1716 1717 1718 1719 1720 1721 1722
/* This bit is private to our hashtable cpreg; in KVM register
 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
 * in the upper bits of the 64 bit ID.
 */
#define CP_REG_AA64_SHIFT 28
#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
/* To enable banking of coprocessor registers depending on ns-bit we
 * add a bit to distinguish between secure and non-secure cpregs in the
 * hashtable.
 */
#define CP_REG_NS_SHIFT 29
#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)

#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1733

1734 1735 1736 1737 1738 1739 1740 1741 1742
#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
    (CP_REG_AA64_MASK |                                 \
     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))

1743 1744 1745 1746 1747 1748
/* Convert a full 64 bit KVM register ID to the truncated 32 bit
 * version used as a key for the coprocessor register hashtable
 */
static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
{
    uint32_t cpregid = kvmid;
1749 1750
    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
        cpregid |= CP_REG_AA64_MASK;
1751 1752 1753 1754 1755 1756 1757 1758 1759
    } else {
        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
            cpregid |= (1 << 15);
        }

        /* KVM is always non-secure so add the NS flag on AArch32 register
         * entries.
         */
         cpregid |= 1 << CP_REG_NS_SHIFT;
1760 1761 1762 1763 1764 1765 1766 1767 1768
    }
    return cpregid;
}

/* Convert a truncated 32 bit hashtable key into the full
 * 64 bit KVM register ID.
 */
static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
{
1769 1770 1771 1772 1773
    uint64_t kvmid;

    if (cpregid & CP_REG_AA64_MASK) {
        kvmid = cpregid & ~CP_REG_AA64_MASK;
        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1774
    } else {
1775 1776 1777 1778 1779 1780
        kvmid = cpregid & ~(1 << 15);
        if (cpregid & (1 << 15)) {
            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
        } else {
            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
        }
1781 1782 1783 1784
    }
    return kvmid;
}

1785
/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1786
 * special-behaviour cp reg and bits [11..8] indicate what behaviour
1787 1788 1789 1790 1791 1792 1793 1794
 * it has. Otherwise it is a simple cp reg, where CONST indicates that
 * TCG can assume the value to be constant (ie load at translate time)
 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
 * indicates that the TB should not be ended after a write to this register
 * (the default is that the TB ends after cp writes). OVERRIDE permits
 * a register definition to override a previous definition for the
 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
 * old must have the OVERRIDE bit set.
1795 1796
 * ALIAS indicates that this register is an alias view of some underlying
 * state which is also visible via another register, and that the other
1797 1798
 * register is handling migration and reset; registers marked ALIAS will not be
 * migrated but may have their state set by syncing of register state from KVM.
1799 1800 1801 1802
 * NO_RAW indicates that this register has no underlying state and does not
 * support raw access for state saving/loading; it will not be used for either
 * migration or KVM state synchronization. (Typically this is for "registers"
 * which are actually used as instructions for cache maintenance and so on.)
1803 1804 1805
 * IO indicates that this register does I/O and therefore its accesses
 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
 * registers which implement clocks or timers require this.
1806
 */
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
#define ARM_CP_SPECIAL           0x0001
#define ARM_CP_CONST             0x0002
#define ARM_CP_64BIT             0x0004
#define ARM_CP_SUPPRESS_TB_END   0x0008
#define ARM_CP_OVERRIDE          0x0010
#define ARM_CP_ALIAS             0x0020
#define ARM_CP_IO                0x0040
#define ARM_CP_NO_RAW            0x0080
#define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
#define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
#define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
#define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
#define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
#define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
#define ARM_CP_FPU               0x1000
1822
#define ARM_CP_SVE               0x2000
1823
/* Used only as a terminator for ARMCPRegInfo lists */
1824
#define ARM_CP_SENTINEL          0xffff
1825
/* Mask of only the flag bits in a type field */
1826
#define ARM_CP_FLAG_MASK         0x30ff
1827

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
/* Valid values for ARMCPRegInfo state field, indicating which of
 * the AArch32 and AArch64 execution states this register is visible in.
 * If the reginfo doesn't explicitly specify then it is AArch32 only.
 * If the reginfo is declared to be visible in both states then a second
 * reginfo is synthesised for the AArch32 view of the AArch64 register,
 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
 * Note that we rely on the values of these enums as we iterate through
 * the various states in some places.
 */
enum {
    ARM_CP_STATE_AA32 = 0,
    ARM_CP_STATE_AA64 = 1,
    ARM_CP_STATE_BOTH = 2,
};

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
/* ARM CP register secure state flags.  These flags identify security state
 * attributes for a given CP register entry.
 * The existence of both or neither secure and non-secure flags indicates that
 * the register has both a secure and non-secure hash entry.  A single one of
 * these flags causes the register to only be hashed for the specified
 * security state.
 * Although definitions may have any combination of the S/NS bits, each
 * registered entry will only have one to identify whether the entry is secure
 * or non-secure.
 */
enum {
    ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
    ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
};

1858 1859 1860 1861 1862 1863 1864 1865
/* Return true if cptype is a valid type field. This is used to try to
 * catch errors where the sentinel has been accidentally left off the end
 * of a list of registers.
 */
static inline bool cptype_valid(int cptype)
{
    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
        || ((cptype & ARM_CP_SPECIAL) &&
1866
            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
}

/* Access rights:
 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
 * (ie any of the privileged modes in Secure state, or Monitor mode).
 * If a register is accessible in one privilege level it's always accessible
 * in higher privilege levels too. Since "Secure PL1" also follows this rule
 * (ie anything visible in PL2 is visible in S-PL1, some things are only
 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
 * terminology a little and call this PL3.
1879 1880
 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
 * with the ELx exception levels.
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
 *
 * If access permissions for a register are more complex than can be
 * described with these bits, then use a laxer set of restrictions, and
 * do the more restrictive/complex check inside a helper function.
 */
#define PL3_R 0x80
#define PL3_W 0x40
#define PL2_R (0x20 | PL3_R)
#define PL2_W (0x10 | PL3_W)
#define PL1_R (0x08 | PL2_R)
#define PL1_W (0x04 | PL2_W)
#define PL0_R (0x02 | PL1_R)
#define PL0_W (0x01 | PL1_W)

#define PL3_RW (PL3_R | PL3_W)
#define PL2_RW (PL2_R | PL2_W)
#define PL1_RW (PL1_R | PL1_W)
#define PL0_RW (PL0_R | PL0_W)

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
/* Return the highest implemented Exception Level */
static inline int arm_highest_el(CPUARMState *env)
{
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        return 3;
    }
    if (arm_feature(env, ARM_FEATURE_EL2)) {
        return 2;
    }
    return 1;
}

1912 1913 1914 1915 1916 1917
/* Return true if a v7M CPU is in Handler mode */
static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
{
    return env->v7m.exception != 0;
}

1918 1919 1920 1921
/* Return the current Exception Level (as per ARMv8; note that this differs
 * from the ARMv7 Privilege Level).
 */
static inline int arm_current_el(CPUARMState *env)
1922
{
1923
    if (arm_feature(env, ARM_FEATURE_M)) {
1924 1925
        return arm_v7m_is_handler_mode(env) ||
            !(env->v7m.control[env->v7m.secure] & 1);
1926 1927
    }

1928
    if (is_a64(env)) {
1929 1930 1931
        return extract32(env->pstate, 2, 2);
    }

1932 1933
    switch (env->uncached_cpsr & 0x1f) {
    case ARM_CPU_MODE_USR:
1934
        return 0;
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
    case ARM_CPU_MODE_HYP:
        return 2;
    case ARM_CPU_MODE_MON:
        return 3;
    default:
        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
            /* If EL3 is 32-bit then all secure privileged modes run in
             * EL3
             */
            return 3;
        }

        return 1;
1948 1949 1950 1951 1952
    }
}

typedef struct ARMCPRegInfo ARMCPRegInfo;

1953 1954 1955 1956 1957 1958
typedef enum CPAccessResult {
    /* Access is permitted */
    CP_ACCESS_OK = 0,
    /* Access fails due to a configurable trap or enable which would
     * result in a categorized exception syndrome giving information about
     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1959 1960
     * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
     * PL1 if in EL0, otherwise to the current EL).
1961 1962 1963 1964 1965 1966 1967
     */
    CP_ACCESS_TRAP = 1,
    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
     * Note that this is not a catch-all case -- the set of cases which may
     * result in this failure is specifically defined by the architecture.
     */
    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1968 1969 1970
    /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
    CP_ACCESS_TRAP_EL2 = 3,
    CP_ACCESS_TRAP_EL3 = 4,
1971 1972 1973
    /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
    CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
    CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1974 1975 1976 1977 1978
    /* Access fails and results in an exception syndrome for an FP access,
     * trapped directly to EL2 or EL3
     */
    CP_ACCESS_TRAP_FP_EL2 = 7,
    CP_ACCESS_TRAP_FP_EL3 = 8,
1979 1980
} CPAccessResult;

1981 1982 1983 1984 1985 1986
/* Access functions for coprocessor registers. These cannot fail and
 * may not raise exceptions.
 */
typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
                       uint64_t value);
1987
/* Access permission check functions for coprocessor registers. */
1988 1989 1990
typedef CPAccessResult CPAccessFn(CPUARMState *env,
                                  const ARMCPRegInfo *opaque,
                                  bool isread);
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
/* Hook function for register reset */
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);

#define CP_ANY 0xff

/* Definition of an ARM coprocessor register */
struct ARMCPRegInfo {
    /* Name of register (useful mainly for debugging, need not be unique) */
    const char *name;
    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
     * 'wildcard' field -- any value of that field in the MRC/MCR insn
     * will be decoded to this register. The register read and write
     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
     * used by the program, so it is possible to register a wildcard and
     * then behave differently on read/write if necessary.
     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
     * must both be zero.
2009 2010 2011 2012 2013 2014 2015
     * For AArch64-visible registers, opc0 is also used.
     * Since there are no "coprocessors" in AArch64, cp is purely used as a
     * way to distinguish (for KVM's benefit) guest-visible system registers
     * from demuxed ones provided to preserve the "no side effects on
     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
     * visible (to match KVM's encoding); cp==0 will be converted to
     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2016 2017 2018 2019
     */
    uint8_t cp;
    uint8_t crn;
    uint8_t crm;
2020
    uint8_t opc0;
2021 2022
    uint8_t opc1;
    uint8_t opc2;
2023 2024
    /* Execution state in which this register is visible: ARM_CP_STATE_* */
    int state;
2025 2026 2027 2028
    /* Register type: ARM_CP_* bits/values */
    int type;
    /* Access rights: PL*_[RW] */
    int access;
2029 2030
    /* Security state: ARM_CP_SECSTATE_* bits/values */
    int secure;
2031 2032 2033 2034 2035 2036 2037 2038 2039
    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
     * this register was defined: can be used to hand data through to the
     * register read/write functions, since they are passed the ARMCPRegInfo*.
     */
    void *opaque;
    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
     * fieldoffset is non-zero, the reset value of the register.
     */
    uint64_t resetvalue;
2040 2041 2042
    /* Offset of the field in CPUARMState for this register.
     *
     * This is not needed if either:
2043 2044 2045 2046
     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
     *  2. both readfn and writefn are specified
     */
    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

    /* Offsets of the secure and non-secure fields in CPUARMState for the
     * register if it is banked.  These fields are only used during the static
     * registration of a register.  During hashing the bank associated
     * with a given security state is copied to fieldoffset which is used from
     * there on out.
     *
     * It is expected that register definitions use either fieldoffset or
     * bank_fieldoffsets in the definition but not both.  It is also expected
     * that both bank offsets are set when defining a banked register.  This
     * use indicates that a register is banked.
     */
    ptrdiff_t bank_fieldoffsets[2];

2061 2062 2063 2064 2065 2066
    /* Function for making any access checks for this register in addition to
     * those specified by the 'access' permissions bits. If NULL, no extra
     * checks required. The access check is performed at runtime, not at
     * translate time.
     */
    CPAccessFn *accessfn;
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
    /* Function for handling reads of this register. If NULL, then reads
     * will be done by loading from the offset into CPUARMState specified
     * by fieldoffset.
     */
    CPReadFn *readfn;
    /* Function for handling writes of this register. If NULL, then writes
     * will be done by writing to the offset into CPUARMState specified
     * by fieldoffset.
     */
    CPWriteFn *writefn;
2077 2078 2079
    /* Function for doing a "raw" read; used when we need to copy
     * coprocessor state to the kernel for KVM or out for
     * migration. This only needs to be provided if there is also a
2080
     * readfn and it has side effects (for instance clear-on-read bits).
2081 2082 2083 2084 2085
     */
    CPReadFn *raw_readfn;
    /* Function for doing a "raw" write; used when we need to copy KVM
     * kernel coprocessor state into userspace, or for inbound
     * migration. This only needs to be provided if there is also a
2086 2087
     * writefn and it masks out "unwritable" bits or has write-one-to-clear
     * or similar behaviour.
2088 2089
     */
    CPWriteFn *raw_writefn;
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
    /* Function for resetting the register. If NULL, then reset will be done
     * by writing resetvalue to the field specified in fieldoffset. If
     * fieldoffset is 0 then no reset will be done.
     */
    CPResetFn *resetfn;
};

/* Macros which are lvalues for the field in CPUARMState for the
 * ARMCPRegInfo *ri.
 */
#define CPREG_FIELD32(env, ri) \
    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
#define CPREG_FIELD64(env, ri) \
    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))

#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque);
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *regs, void *opaque);
static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
    define_arm_cp_regs_with_opaque(cpu, regs, 0);
}
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
}
2119
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2120 2121

/* CPWriteFn that can be used to implement writes-ignored behaviour */
2122 2123
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value);
2124
/* CPReadFn that can be used for read-as-zero behaviour */
2125
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2126

2127 2128 2129 2130 2131
/* CPResetFn that does nothing, for use if no reset is required even
 * if fieldoffset is non zero.
 */
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);

2132 2133 2134 2135 2136 2137 2138 2139
/* Return true if this reginfo struct's field in the cpu state struct
 * is 64 bits wide.
 */
static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
{
    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
}

2140
static inline bool cp_access_ok(int current_el,
2141 2142
                                const ARMCPRegInfo *ri, int isread)
{
2143
    return (ri->access >> ((current_el * 2) + isread)) & 1;
2144 2145
}

2146 2147 2148
/* Raw read of a coprocessor register (as needed for migration, etc) */
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
/**
 * write_list_to_cpustate
 * @cpu: ARMCPU
 *
 * For each register listed in the ARMCPU cpreg_indexes list, write
 * its value from the cpreg_values list into the ARMCPUState structure.
 * This updates TCG's working data structures from KVM data or
 * from incoming migration state.
 *
 * Returns: true if all register values were updated correctly,
 * false if some register was unknown or could not be written.
 * Note that we do not stop early on failure -- we will attempt
 * writing all registers in the list.
 */
bool write_list_to_cpustate(ARMCPU *cpu);

/**
 * write_cpustate_to_list:
 * @cpu: ARMCPU
 *
 * For each register listed in the ARMCPU cpreg_indexes list, write
 * its value from the ARMCPUState structure into the cpreg_values list.
 * This is used to copy info from TCG's working data structures into
 * KVM or for outbound migration.
 *
 * Returns: true if all register values were read correctly,
 * false if some register was unknown or could not be read.
 * Note that we do not stop early on failure -- we will attempt
 * reading all registers in the list.
 */
bool write_cpustate_to_list(ARMCPU *cpu);

P
pbrook 已提交
2181 2182
#define ARM_CPUID_TI915T      0x54029152
#define ARM_CPUID_TI925T      0x54029252
P
pbrook 已提交
2183

B
bellard 已提交
2184
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
2185
#define TARGET_PAGE_BITS 12
B
bellard 已提交
2186
#else
2187 2188 2189 2190 2191
/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
 * have to support 1K tiny pages.
 */
#define TARGET_PAGE_BITS_VARY
#define TARGET_PAGE_BITS_MIN 10
B
bellard 已提交
2192
#endif
2193

2194 2195 2196 2197 2198 2199 2200
#if defined(TARGET_AARCH64)
#  define TARGET_PHYS_ADDR_SPACE_BITS 48
#  define TARGET_VIRT_ADDR_SPACE_BITS 64
#else
#  define TARGET_PHYS_ADDR_SPACE_BITS 40
#  define TARGET_VIRT_ADDR_SPACE_BITS 32
#endif
2201

2202 2203
static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
                                     unsigned int target_el)
2204 2205
{
    CPUARMState *env = cs->env_ptr;
2206
    unsigned int cur_el = arm_current_el(env);
2207 2208 2209 2210 2211 2212 2213 2214
    bool secure = arm_is_secure(env);
    bool pstate_unmasked;
    int8_t unmasked = 0;

    /* Don't take exceptions if they target a lower EL.
     * This check should catch any exceptions that would not be taken but left
     * pending.
     */
2215 2216 2217
    if (cur_el > target_el) {
        return false;
    }
2218 2219 2220

    switch (excp_idx) {
    case EXCP_FIQ:
2221 2222 2223
        pstate_unmasked = !(env->daif & PSTATE_F);
        break;

2224
    case EXCP_IRQ:
2225 2226 2227
        pstate_unmasked = !(env->daif & PSTATE_I);
        break;

2228
    case EXCP_VFIQ:
2229
        if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
2230 2231 2232 2233 2234
            /* VFIQs are only taken when hypervized and non-secure.  */
            return false;
        }
        return !(env->daif & PSTATE_F);
    case EXCP_VIRQ:
2235
        if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
2236 2237 2238
            /* VIRQs are only taken when hypervized and non-secure.  */
            return false;
        }
2239
        return !(env->daif & PSTATE_I);
2240 2241 2242
    default:
        g_assert_not_reached();
    }
2243 2244 2245 2246 2247 2248

    /* Use the target EL, current execution state and SCR/HCR settings to
     * determine whether the corresponding CPSR bit is used to mask the
     * interrupt.
     */
    if ((target_el > cur_el) && (target_el != 1)) {
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
        /* Exceptions targeting a higher EL may not be maskable */
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            /* 64-bit masking rules are simple: exceptions to EL3
             * can't be masked, and exceptions to EL2 can only be
             * masked from Secure state. The HCR and SCR settings
             * don't affect the masking logic, only the interrupt routing.
             */
            if (target_el == 3 || !secure) {
                unmasked = 1;
            }
        } else {
            /* The old 32-bit-only environment has a more complicated
             * masking setup. HCR and SCR bits not only affect interrupt
             * routing but also change the behaviour of masking.
             */
            bool hcr, scr;

            switch (excp_idx) {
            case EXCP_FIQ:
                /* If FIQs are routed to EL3 or EL2 then there are cases where
                 * we override the CPSR.F in determining if the exception is
                 * masked or not. If neither of these are set then we fall back
                 * to the CPSR.F setting otherwise we further assess the state
                 * below.
                 */
                hcr = (env->cp15.hcr_el2 & HCR_FMO);
                scr = (env->cp15.scr_el3 & SCR_FIQ);

                /* When EL3 is 32-bit, the SCR.FW bit controls whether the
                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
                 * when non-secure but only when FIQs are only routed to EL3.
                 */
                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
                break;
            case EXCP_IRQ:
                /* When EL3 execution state is 32-bit, if HCR.IMO is set then
                 * we may override the CPSR.I masking when in non-secure state.
                 * The SCR.IRQ setting has already been taken into consideration
                 * when setting the target EL, so it does not have a further
                 * affect here.
                 */
                hcr = (env->cp15.hcr_el2 & HCR_IMO);
                scr = false;
                break;
            default:
                g_assert_not_reached();
            }

            if ((scr || hcr) && !secure) {
                unmasked = 1;
            }
2301 2302 2303 2304 2305 2306 2307
        }
    }

    /* The PSTATE bits only mask the interrupt if we have not overriden the
     * ability above.
     */
    return unmasked || pstate_unmasked;
2308 2309
}

2310 2311
#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2312
#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2313

2314
#define cpu_signal_handler cpu_arm_signal_handler
J
j_mayer 已提交
2315
#define cpu_list arm_cpu_list
2316

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
/* ARM has the following "translation regimes" (as the ARM ARM calls them):
 *
 * If EL3 is 64-bit:
 *  + NonSecure EL1 & 0 stage 1
 *  + NonSecure EL1 & 0 stage 2
 *  + NonSecure EL2
 *  + Secure EL1 & EL0
 *  + Secure EL3
 * If EL3 is 32-bit:
 *  + NonSecure PL1 & 0 stage 1
 *  + NonSecure PL1 & 0 stage 2
 *  + NonSecure PL2
 *  + Secure PL0 & PL1
 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
 *
 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
 *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
 *     may differ in access permissions even if the VA->PA map is the same
 *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
 *     translation, which means that we have one mmu_idx that deals with two
 *     concatenated translation regimes [this sort of combined s1+2 TLB is
 *     architecturally permitted]
 *  3. we don't need to allocate an mmu_idx to translations that we won't be
 *     handling via the TLB. The only way to do a stage 1 translation without
 *     the immediate stage 2 translation is via the ATS or AT system insns,
 *     which can be slow-pathed and always do a page table walk.
 *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
 *     translation regimes, because they map reasonably well to each other
 *     and they can't both be active at the same time.
 * This gives us the following list of mmu_idx values:
 *
 * NS EL0 (aka NS PL0) stage 1+2
 * NS EL1 (aka NS PL1) stage 1+2
 * NS EL2 (aka NS PL2)
 * S EL3 (aka S PL1)
 * S EL0 (aka S PL0)
 * S EL1 (not used if EL3 is 32 bit)
 * NS EL0+1 stage 2
 *
 * (The last of these is an mmu_idx because we want to be able to use the TLB
 * for the accesses done as part of a stage 1 page table walk, rather than
 * having to walk the stage 2 page table over and over.)
 *
2360 2361 2362 2363 2364 2365 2366 2367
 * R profile CPUs have an MPU, but can use the same set of MMU indexes
 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
 * NS EL2 if we ever model a Cortex-R52).
 *
 * M profile CPUs are rather different as they do not have a true MMU.
 * They have the following different MMU indexes:
 *  User
 *  Privileged
2368 2369
 *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
 *  Privileged, execution priority negative (ditto)
2370 2371 2372
 * If the CPU supports the v8M Security Extension then there are also:
 *  Secure User
 *  Secure Privileged
2373 2374
 *  Secure User, execution priority negative
 *  Secure Privileged, execution priority negative
2375
 *
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
 * are not quite the same -- different CPU types (most notably M profile
 * vs A/R profile) would like to use MMU indexes with different semantics,
 * but since we don't ever need to use all of those in a single CPU we
 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
 * the same for any particular CPU.
 * Variables of type ARMMUIdx are always full values, and the core
 * index values are in variables of type 'int'.
 *
2386 2387 2388 2389 2390 2391 2392
 * Our enumeration includes at the end some entries which are not "true"
 * mmu_idx values in that they don't have corresponding TLBs and are only
 * valid for doing slow path page table walks.
 *
 * The constant names here are patterned after the general style of the names
 * of the AT/ATS operations.
 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2393 2394
 * For M profile we arrange them to have a bit for priv, a bit for negpri
 * and a bit for secure.
2395
 */
2396
#define ARM_MMU_IDX_A 0x10 /* A profile */
2397
#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2398
#define ARM_MMU_IDX_M 0x40 /* M profile */
2399

2400 2401 2402 2403 2404
/* meanings of the bits for M profile mmu idx values */
#define ARM_MMU_IDX_M_PRIV 0x1
#define ARM_MMU_IDX_M_NEGPRI 0x2
#define ARM_MMU_IDX_M_S 0x4

2405 2406 2407
#define ARM_MMU_IDX_TYPE_MASK (~0x7)
#define ARM_MMU_IDX_COREIDX_MASK 0x7

2408
typedef enum ARMMMUIdx {
2409 2410 2411 2412 2413 2414 2415
    ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
    ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
    ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
    ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
    ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
    ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
    ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2416 2417
    ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
    ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2418 2419 2420 2421 2422 2423
    ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
    ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
    ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
    ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
    ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
    ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2424 2425 2426
    /* Indexes below here don't have TLBs and are used only for AT system
     * instructions or for the first stage of an S12 page table walk.
     */
2427 2428
    ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
    ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2429 2430
} ARMMMUIdx;

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
/* Bit macros for the core-mmu-index values for each index,
 * for use when calling tlb_flush_by_mmuidx() and friends.
 */
typedef enum ARMMMUIdxBit {
    ARMMMUIdxBit_S12NSE0 = 1 << 0,
    ARMMMUIdxBit_S12NSE1 = 1 << 1,
    ARMMMUIdxBit_S1E2 = 1 << 2,
    ARMMMUIdxBit_S1E3 = 1 << 3,
    ARMMMUIdxBit_S1SE0 = 1 << 4,
    ARMMMUIdxBit_S1SE1 = 1 << 5,
    ARMMMUIdxBit_S2NS = 1 << 6,
2442 2443
    ARMMMUIdxBit_MUser = 1 << 0,
    ARMMMUIdxBit_MPriv = 1 << 1,
2444 2445 2446 2447 2448 2449
    ARMMMUIdxBit_MUserNegPri = 1 << 2,
    ARMMMUIdxBit_MPrivNegPri = 1 << 3,
    ARMMMUIdxBit_MSUser = 1 << 4,
    ARMMMUIdxBit_MSPriv = 1 << 5,
    ARMMMUIdxBit_MSUserNegPri = 1 << 6,
    ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2450 2451
} ARMMMUIdxBit;

2452
#define MMU_USER_IDX 0
2453

2454 2455 2456 2457 2458 2459 2460
static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
{
    return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
}

static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
{
2461 2462 2463 2464 2465
    if (arm_feature(env, ARM_FEATURE_M)) {
        return mmu_idx | ARM_MMU_IDX_M;
    } else {
        return mmu_idx | ARM_MMU_IDX_A;
    }
2466 2467
}

2468 2469
/* Return the exception level we're running at if this is our mmu_idx */
static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2470
{
2471 2472 2473
    switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
    case ARM_MMU_IDX_A:
        return mmu_idx & 3;
2474
    case ARM_MMU_IDX_M:
2475
        return mmu_idx & ARM_MMU_IDX_M_PRIV;
2476 2477 2478
    default:
        g_assert_not_reached();
    }
2479 2480
}

2481 2482 2483 2484 2485 2486
/* Return the MMU index for a v7M CPU in the specified security and
 * privilege state
 */
static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
                                                              bool secstate,
                                                              bool priv)
2487
{
2488
    ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2489

2490
    if (priv) {
2491
        mmu_idx |= ARM_MMU_IDX_M_PRIV;
2492 2493 2494
    }

    if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
2495 2496 2497 2498 2499
        mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
    }

    if (secstate) {
        mmu_idx |= ARM_MMU_IDX_M_S;
2500 2501 2502 2503 2504
    }

    return mmu_idx;
}

2505 2506 2507 2508 2509 2510 2511 2512 2513
/* Return the MMU index for a v7M CPU in the specified security state */
static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
                                                     bool secstate)
{
    bool priv = arm_current_el(env) != 0;

    return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
}

2514
/* Determine the current mmu_idx to use for normal loads/stores */
2515
static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2516 2517 2518
{
    int el = arm_current_el(env);

2519
    if (arm_feature(env, ARM_FEATURE_M)) {
2520
        ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
2521

2522 2523 2524
        return arm_to_core_mmu_idx(mmu_idx);
    }

2525
    if (el < 2 && arm_is_secure_below_el3(env)) {
2526
        return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2527 2528
    }
    return el;
2529 2530
}

2531 2532 2533 2534 2535 2536
/* Indexes used when registering address spaces with cpu_address_space_init */
typedef enum ARMASIdx {
    ARMASIdx_NS = 0,
    ARMASIdx_S = 1,
} ARMASIdx;

2537
/* Return the Exception Level targeted by debug exceptions. */
2538 2539
static inline int arm_debug_target_el(CPUARMState *env)
{
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
    bool secure = arm_is_secure(env);
    bool route_to_el2 = false;

    if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
        route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
                       env->cp15.mdcr_el2 & (1 << 8);
    }

    if (route_to_el2) {
        return 2;
    } else if (arm_feature(env, ARM_FEATURE_EL3) &&
               !arm_el_is_aa64(env, 3) && secure) {
        return 3;
    } else {
        return 1;
    }
2556 2557
}

2558 2559 2560 2561 2562 2563 2564 2565
static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
{
    /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
     * CSSELR is RAZ/WI.
     */
    return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
}

2566 2567
static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
{
2568 2569 2570 2571 2572 2573 2574 2575
    if (arm_is_secure(env)) {
        /* MDCR_EL3.SDD disables debug events from Secure state */
        if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
            || arm_current_el(env) == 3) {
            return false;
        }
    }

2576
    if (arm_current_el(env) == arm_debug_target_el(env)) {
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
        if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
            || (env->daif & PSTATE_D)) {
            return false;
        }
    }
    return true;
}

static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
{
2587 2588 2589
    int el = arm_current_el(env);

    if (el == 0 && arm_el_is_aa64(env, 1)) {
2590 2591
        return aa64_generate_debug_exceptions(env);
    }
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622

    if (arm_is_secure(env)) {
        int spd;

        if (el == 0 && (env->cp15.sder & 1)) {
            /* SDER.SUIDEN means debug exceptions from Secure EL0
             * are always enabled. Otherwise they are controlled by
             * SDCR.SPD like those from other Secure ELs.
             */
            return true;
        }

        spd = extract32(env->cp15.mdcr_el3, 14, 2);
        switch (spd) {
        case 1:
            /* SPD == 0b01 is reserved, but behaves as 0b00. */
        case 0:
            /* For 0b00 we return true if external secure invasive debug
             * is enabled. On real hardware this is controlled by external
             * signals to the core. QEMU always permits debug, and behaves
             * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
             */
            return true;
        case 2:
            return false;
        case 3:
            return true;
        }
    }

    return el != 2;
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
}

/* Return true if debugging exceptions are currently enabled.
 * This corresponds to what in ARM ARM pseudocode would be
 *    if UsingAArch32() then
 *        return AArch32.GenerateDebugExceptions()
 *    else
 *        return AArch64.GenerateDebugExceptions()
 * We choose to push the if() down into this function for clarity,
 * since the pseudocode has it at all callsites except for the one in
 * CheckSoftwareStep(), where it is elided because both branches would
 * always return the same value.
 *
 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
 * don't yet implement those exception levels or their associated trap bits.
 */
static inline bool arm_generate_debug_exceptions(CPUARMState *env)
{
    if (env->aarch64) {
        return aa64_generate_debug_exceptions(env);
    } else {
        return aa32_generate_debug_exceptions(env);
    }
}

/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
 * implicitly means this always returns false in pre-v8 CPUs.)
 */
static inline bool arm_singlestep_active(CPUARMState *env)
{
    return extract32(env->cp15.mdscr_el1, 0, 1)
        && arm_el_is_aa64(env, arm_debug_target_el(env))
        && arm_generate_debug_exceptions(env);
}

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
static inline bool arm_sctlr_b(CPUARMState *env)
{
    return
        /* We need not implement SCTLR.ITD in user-mode emulation, so
         * let linux-user ignore the fact that it conflicts with SCTLR_B.
         * This lets people run BE32 binaries with "-cpu any".
         */
#ifndef CONFIG_USER_ONLY
        !arm_feature(env, ARM_FEATURE_V7) &&
#endif
        (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
}

2671 2672 2673 2674 2675 2676 2677
/* Return true if the processor is in big-endian mode. */
static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
{
    int cur_el;

    /* In 32bit endianness is determined by looking at CPSR's E bit */
    if (!is_a64(env)) {
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
        return
#ifdef CONFIG_USER_ONLY
            /* In system mode, BE32 is modelled in line with the
             * architecture (as word-invariant big-endianness), where loads
             * and stores are done little endian but from addresses which
             * are adjusted by XORing with the appropriate constant. So the
             * endianness to use for the raw data access is not affected by
             * SCTLR.B.
             * In user mode, however, we model BE32 as byte-invariant
             * big-endianness (because user-only code cannot tell the
             * difference), and so we need to use a data access endianness
             * that depends on SCTLR.B.
             */
            arm_sctlr_b(env) ||
#endif
                ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
    }

    cur_el = arm_current_el(env);

    if (cur_el == 0) {
        return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
    }

    return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
}

2705
#include "exec/cpu-all.h"
2706

2707 2708
/* Bit usage in the TB flags field: bit 31 indicates whether we are
 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2709 2710
 * We put flags which are shared between 32 and 64 bit mode at the top
 * of the word, and flags which apply to only one mode at the bottom.
2711 2712 2713
 */
#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
#define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2714 2715
#define ARM_TBFLAG_MMUIDX_SHIFT 28
#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2716 2717 2718 2719
#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2720 2721 2722
/* Target EL if we take a floating-point-disabled exception */
#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2723 2724

/* Bit usage when in AArch32 state: */
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
#define ARM_TBFLAG_THUMB_SHIFT      0
#define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
#define ARM_TBFLAG_VECLEN_SHIFT     1
#define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
#define ARM_TBFLAG_VECSTRIDE_SHIFT  4
#define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
#define ARM_TBFLAG_VFPEN_SHIFT      7
#define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
#define ARM_TBFLAG_CONDEXEC_SHIFT   8
#define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2735 2736
#define ARM_TBFLAG_SCTLR_B_SHIFT    16
#define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2737 2738 2739
/* We store the bottom two bits of the CPAR as TB flags and handle
 * checks on the other bits at runtime
 */
2740
#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2741
#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2742 2743 2744 2745
/* Indicates whether cp register reads and writes by guest code should access
 * the secure or nonsecure bank of banked registers; note that this is not
 * the same thing as the current security state of the processor!
 */
2746
#define ARM_TBFLAG_NS_SHIFT         19
2747
#define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2748 2749
#define ARM_TBFLAG_BE_DATA_SHIFT    20
#define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2750 2751 2752
/* For M profile only, Handler (ie not Thread) mode */
#define ARM_TBFLAG_HANDLER_SHIFT    21
#define ARM_TBFLAG_HANDLER_MASK     (1 << ARM_TBFLAG_HANDLER_SHIFT)
2753

2754 2755 2756 2757 2758
/* Bit usage when in AArch64 state */
#define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
#define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
#define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
#define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2759 2760 2761 2762
#define ARM_TBFLAG_SVEEXC_EL_SHIFT  2
#define ARM_TBFLAG_SVEEXC_EL_MASK   (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
#define ARM_TBFLAG_ZCR_LEN_SHIFT    4
#define ARM_TBFLAG_ZCR_LEN_MASK     (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
2763 2764

/* some convenience accessor macros */
2765 2766
#define ARM_TBFLAG_AARCH64_STATE(F) \
    (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2767 2768
#define ARM_TBFLAG_MMUIDX(F) \
    (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2769 2770 2771 2772
#define ARM_TBFLAG_SS_ACTIVE(F) \
    (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_PSTATE_SS(F) \
    (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2773 2774
#define ARM_TBFLAG_FPEXC_EL(F) \
    (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
#define ARM_TBFLAG_THUMB(F) \
    (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
#define ARM_TBFLAG_VECLEN(F) \
    (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
#define ARM_TBFLAG_VECSTRIDE(F) \
    (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
#define ARM_TBFLAG_VFPEN(F) \
    (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
#define ARM_TBFLAG_CONDEXEC(F) \
    (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2785 2786
#define ARM_TBFLAG_SCTLR_B(F) \
    (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2787 2788
#define ARM_TBFLAG_XSCALE_CPAR(F) \
    (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2789 2790
#define ARM_TBFLAG_NS(F) \
    (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2791 2792
#define ARM_TBFLAG_BE_DATA(F) \
    (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2793 2794
#define ARM_TBFLAG_HANDLER(F) \
    (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2795 2796 2797 2798
#define ARM_TBFLAG_TBI0(F) \
    (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
#define ARM_TBFLAG_TBI1(F) \
    (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2799 2800 2801 2802
#define ARM_TBFLAG_SVEEXC_EL(F) \
    (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
#define ARM_TBFLAG_ZCR_LEN(F) \
    (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
2803

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
static inline bool bswap_code(bool sctlr_b)
{
#ifdef CONFIG_USER_ONLY
    /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
     * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
     * would also end up as a mixed-endian mode with BE code, LE data.
     */
    return
#ifdef TARGET_WORDS_BIGENDIAN
        1 ^
#endif
        sctlr_b;
#else
2817 2818
    /* All code access in ARM is little endian, and there are no loaders
     * doing swaps that need to be reversed
2819 2820 2821 2822 2823
     */
    return 0;
#endif
}

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
#ifdef CONFIG_USER_ONLY
static inline bool arm_cpu_bswap_data(CPUARMState *env)
{
    return
#ifdef TARGET_WORDS_BIGENDIAN
       1 ^
#endif
       arm_cpu_data_is_big_endian(env);
}
#endif

2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
#ifndef CONFIG_USER_ONLY
/**
 * arm_regime_tbi0:
 * @env: CPUARMState
 * @mmu_idx: MMU index indicating required translation regime
 *
 * Extracts the TBI0 value from the appropriate TCR for the current EL
 *
 * Returns: the TBI0 value.
 */
uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);

/**
 * arm_regime_tbi1:
 * @env: CPUARMState
 * @mmu_idx: MMU index indicating required translation regime
 *
 * Extracts the TBI1 value from the appropriate TCR for the current EL
 *
 * Returns: the TBI1 value.
 */
uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
#else
/* We can't handle tagged addresses properly in user-only mode */
static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    return 0;
}

static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    return 0;
}
#endif

2870 2871
void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
                          target_ulong *cs_base, uint32_t *flags);
2872

2873 2874 2875 2876 2877 2878
enum {
    QEMU_PSCI_CONDUIT_DISABLED = 0,
    QEMU_PSCI_CONDUIT_SMC = 1,
    QEMU_PSCI_CONDUIT_HVC = 2,
};

2879 2880 2881 2882 2883 2884
#ifndef CONFIG_USER_ONLY
/* Return the address space index to use for a memory access */
static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
{
    return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
}
2885 2886 2887 2888 2889 2890 2891 2892 2893

/* Return the AddressSpace to use for a memory access
 * (which depends on whether the access is S or NS, and whether
 * the board gave us a separate AddressSpace for S accesses).
 */
static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
{
    return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
}
2894 2895
#endif

2896
/**
2897 2898
 * arm_register_pre_el_change_hook:
 * Register a hook function which will be called immediately before this
2899 2900 2901
 * CPU changes exception level or mode. The hook function will be
 * passed a pointer to the ARMCPU and the opaque data pointer passed
 * to this function when the hook was registered.
2902 2903 2904
 *
 * Note that if a pre-change hook is called, any registered post-change hooks
 * are guaranteed to subsequently be called.
2905
 */
2906
void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
2907
                                 void *opaque);
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
/**
 * arm_register_el_change_hook:
 * Register a hook function which will be called immediately after this
 * CPU changes exception level or mode. The hook function will be
 * passed a pointer to the ARMCPU and the opaque data pointer passed
 * to this function when the hook was registered.
 *
 * Note that any registered hooks registered here are guaranteed to be called
 * if pre-change hooks have been.
 */
void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
        *opaque);
2920

2921 2922 2923 2924 2925 2926
/**
 * aa32_vfp_dreg:
 * Return a pointer to the Dn register within env in 32-bit mode.
 */
static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
{
2927
    return &env->vfp.zregs[regno >> 1].d[regno & 1];
2928 2929 2930 2931 2932 2933 2934 2935
}

/**
 * aa32_vfp_qreg:
 * Return a pointer to the Qn register within env in 32-bit mode.
 */
static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
{
2936
    return &env->vfp.zregs[regno].d[0];
2937 2938 2939 2940 2941 2942 2943 2944
}

/**
 * aa64_vfp_qreg:
 * Return a pointer to the Qn register within env in 64-bit mode.
 */
static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
{
2945
    return &env->vfp.zregs[regno].d[0];
2946 2947
}

B
bellard 已提交
2948
#endif