intel_engine_cs.c 44.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28 29 30
#include "i915_drv.h"
#include "intel_ringbuffer.h"
#include "intel_lrc.h"

31 32 33 34 35 36 37 38 39
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

40
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
41 42
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
43
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
44
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
45 46 47

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

48
struct engine_class_info {
49
	const char *name;
50 51
	int (*init_legacy)(struct intel_engine_cs *engine);
	int (*init_execlists)(struct intel_engine_cs *engine);
52 53

	u8 uabi_class;
54 55 56 57 58 59 60
};

static const struct engine_class_info intel_engine_classes[] = {
	[RENDER_CLASS] = {
		.name = "rcs",
		.init_execlists = logical_render_ring_init,
		.init_legacy = intel_init_render_ring_buffer,
61
		.uabi_class = I915_ENGINE_CLASS_RENDER,
62 63 64 65 66
	},
	[COPY_ENGINE_CLASS] = {
		.name = "bcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_blt_ring_buffer,
67
		.uabi_class = I915_ENGINE_CLASS_COPY,
68 69 70 71 72
	},
	[VIDEO_DECODE_CLASS] = {
		.name = "vcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_bsd_ring_buffer,
73
		.uabi_class = I915_ENGINE_CLASS_VIDEO,
74 75 76 77 78
	},
	[VIDEO_ENHANCEMENT_CLASS] = {
		.name = "vecs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_vebox_ring_buffer,
79
		.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
80 81 82
	},
};

83
#define MAX_MMIO_BASES 3
84
struct engine_info {
85
	unsigned int hw_id;
86
	unsigned int uabi_id;
87 88
	u8 class;
	u8 instance;
89 90 91 92 93
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
94 95 96
};

static const struct engine_info intel_engines[] = {
97
	[RCS] = {
98
		.hw_id = RCS_HW,
99
		.uabi_id = I915_EXEC_RENDER,
100 101
		.class = RENDER_CLASS,
		.instance = 0,
102 103 104
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
105 106
	},
	[BCS] = {
107
		.hw_id = BCS_HW,
108
		.uabi_id = I915_EXEC_BLT,
109 110
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
111 112 113
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
114 115
	},
	[VCS] = {
116
		.hw_id = VCS_HW,
117
		.uabi_id = I915_EXEC_BSD,
118 119
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
120 121 122 123 124
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
125 126
	},
	[VCS2] = {
127
		.hw_id = VCS2_HW,
128
		.uabi_id = I915_EXEC_BSD,
129 130
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
131 132 133 134
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
135
	},
136 137 138 139 140
	[VCS3] = {
		.hw_id = VCS3_HW,
		.uabi_id = I915_EXEC_BSD,
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
141 142 143
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
144 145 146 147 148 149
	},
	[VCS4] = {
		.hw_id = VCS4_HW,
		.uabi_id = I915_EXEC_BSD,
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
150 151 152
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
153
	},
154
	[VECS] = {
155
		.hw_id = VECS_HW,
156
		.uabi_id = I915_EXEC_VEBOX,
157 158
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
159 160 161 162
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
163
	},
164 165 166 167 168
	[VECS2] = {
		.hw_id = VECS2_HW,
		.uabi_id = I915_EXEC_VEBOX,
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
169 170 171
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
172
	},
173 174
};

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/**
 * ___intel_engine_context_size() - return the size of the context for an engine
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
static u32
__intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
201
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
202 203
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
204
		case 10:
O
Oscar Mateo 已提交
205
			return GEN10_LR_CONTEXT_RENDER_SIZE;
206 207 208
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
209
			return GEN8_LR_CONTEXT_RENDER_SIZE;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
		case 4:
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
232
		/* fall through */
233 234 235 236 237 238 239 240 241
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

257 258 259 260 261 262 263
static void __sprint_engine_name(char *name, const struct engine_info *info)
{
	WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u",
			 intel_engine_classes[info->class].name,
			 info->instance) >= INTEL_ENGINE_CS_MAX_NAME);
}

264
static int
265 266 267 268
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id)
{
	const struct engine_info *info = &intel_engines[id];
269 270
	struct intel_engine_cs *engine;

271 272
	GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));

273 274 275
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

276 277 278 279 280 281 282 283 284
	if (GEM_WARN_ON(info->class > MAX_ENGINE_CLASS))
		return -EINVAL;

	if (GEM_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
		return -EINVAL;

	if (GEM_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
		return -EINVAL;

285 286 287 288
	GEM_BUG_ON(dev_priv->engine[id]);
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
289 290 291

	engine->id = id;
	engine->i915 = dev_priv;
292
	__sprint_engine_name(engine->name, info);
293
	engine->hw_id = engine->guc_id = info->hw_id;
294
	engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases);
295 296
	engine->class = info->class;
	engine->instance = info->instance;
297

298
	engine->uabi_id = info->uabi_id;
299
	engine->uabi_class = intel_engine_classes[info->class].uabi_class;
300

301 302 303 304
	engine->context_size = __intel_engine_context_size(dev_priv,
							   engine->class);
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
305 306
	if (engine->context_size)
		DRIVER_CAPS(dev_priv)->has_logical_contexts = true;
307

308 309 310
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

311
	seqlock_init(&engine->stats.lock);
312

313 314
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

315
	dev_priv->engine_class[info->class][info->instance] = engine;
316 317
	dev_priv->engine[id] = engine;
	return 0;
318 319 320
}

/**
321
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
322
 * @dev_priv: i915 device private
323 324 325
 *
 * Return: non-zero if the initialization failed.
 */
326
int intel_engines_init_mmio(struct drm_i915_private *dev_priv)
327
{
328
	struct intel_device_info *device_info = mkwrite_device_info(dev_priv);
329
	const unsigned int ring_mask = INTEL_INFO(dev_priv)->ring_mask;
330 331
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
332
	unsigned int mask = 0;
333
	unsigned int i;
334
	int err;
335

336 337
	WARN_ON(ring_mask == 0);
	WARN_ON(ring_mask &
338 339 340 341 342 343
		GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));

	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
		if (!HAS_ENGINE(dev_priv, i))
			continue;

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
		err = intel_engine_setup(dev_priv, i);
		if (err)
			goto cleanup;

		mask |= ENGINE_MASK(i);
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
	if (WARN_ON(mask != ring_mask))
		device_info->ring_mask = mask;

359 360 361 362 363 364
	/* We always presume we have at least RCS available for later probing */
	if (WARN_ON(!HAS_ENGINE(dev_priv, RCS))) {
		err = -ENODEV;
		goto cleanup;
	}

365 366
	device_info->num_rings = hweight32(mask);

367 368
	i915_check_and_clear_faults(dev_priv);

369 370 371 372 373 374 375 376 377
	return 0;

cleanup:
	for_each_engine(engine, dev_priv, id)
		kfree(engine);
	return err;
}

/**
378
 * intel_engines_init() - init the Engine Command Streamers
379 380 381 382 383 384 385 386
 * @dev_priv: i915 device private
 *
 * Return: non-zero if the initialization failed.
 */
int intel_engines_init(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id, err_id;
387
	int err;
388 389

	for_each_engine(engine, dev_priv, id) {
390 391
		const struct engine_class_info *class_info =
			&intel_engine_classes[engine->class];
392 393
		int (*init)(struct intel_engine_cs *engine);

394
		if (HAS_EXECLISTS(dev_priv))
395
			init = class_info->init_execlists;
396
		else
397
			init = class_info->init_legacy;
398 399 400 401 402 403

		err = -EINVAL;
		err_id = id;

		if (GEM_WARN_ON(!init))
			goto cleanup;
404

405
		err = init(engine);
406
		if (err)
407 408
			goto cleanup;

409
		GEM_BUG_ON(!engine->submit_request);
410 411 412 413 414
	}

	return 0;

cleanup:
415
	for_each_engine(engine, dev_priv, id) {
416
		if (id >= err_id) {
417
			kfree(engine);
418 419
			dev_priv->engine[id] = NULL;
		} else {
420
			dev_priv->gt.cleanup_engine(engine);
421
		}
422
	}
423
	return err;
424 425
}

426
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno)
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
{
	struct drm_i915_private *dev_priv = engine->i915;

	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
		if (HAS_VEBOX(dev_priv))
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
	}

	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
446
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
447

448 449 450 451
	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	intel_engine_wakeup(engine);
452 453

	GEM_BUG_ON(intel_engine_get_seqno(engine) != seqno);
454 455
}

456 457 458 459 460
static void intel_engine_init_batch_pool(struct intel_engine_cs *engine)
{
	i915_gem_batch_pool_init(&engine->batch_pool, engine);
}

461 462 463 464
static void intel_engine_init_execlist(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

465 466 467 468
	execlists->port_mask = 1;
	BUILD_BUG_ON_NOT_POWER_OF_2(execlists_num_ports(execlists));
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

469
	execlists->queue_priority = INT_MIN;
470
	execlists->queue = RB_ROOT_CACHED;
471 472
}

473 474 475 476 477 478 479 480 481 482 483
/**
 * intel_engines_setup_common - setup engine state not requiring hw access
 * @engine: Engine to setup.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
void intel_engine_setup_common(struct intel_engine_cs *engine)
{
484
	i915_timeline_init(engine->i915, &engine->timeline, engine->name);
485
	lockdep_set_subclass(&engine->timeline.lock, TIMELINE_ENGINE);
486

487
	intel_engine_init_execlist(engine);
488
	intel_engine_init_hangcheck(engine);
489
	intel_engine_init_batch_pool(engine);
490
	intel_engine_init_cmd_parser(engine);
491 492
}

493
static void cleanup_status_page(struct intel_engine_cs *engine)
494
{
495 496
	if (HWS_NEEDS_PHYSICAL(engine->i915)) {
		void *addr = fetch_and_zero(&engine->status_page.page_addr);
497

498 499
		__free_page(virt_to_page(addr));
	}
500

501 502
	i915_vma_unpin_and_release(&engine->status_page.vma,
				   I915_VMA_RELEASE_MAP);
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
	void *vaddr;
	int ret;

	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;

523
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
542 543
	else
		flags |= PIN_HIGH;
544
	ret = i915_vma_pin(vma, 0, 0, flags);
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
	if (ret)
		goto err;

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_unpin;
	}

	engine->status_page.vma = vma;
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
	engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
	return 0;

err_unpin:
	i915_vma_unpin(vma);
err:
	i915_gem_object_put(obj);
	return ret;
}

static int init_phys_status_page(struct intel_engine_cs *engine)
{
568
	struct page *page;
569

570 571 572 573 574 575 576
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32 | __GFP_ZERO);
	if (!page)
577 578
		return -ENOMEM;

579
	engine->status_page.page_addr = page_address(page);
580 581 582 583

	return 0;
}

584 585 586 587 588 589
static void __intel_context_unpin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	intel_context_unpin(to_intel_context(ctx, engine));
}

590 591 592 593 594 595 596 597 598 599 600 601 602
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
603 604
	struct drm_i915_private *i915 = engine->i915;
	struct intel_context *ce;
605 606
	int ret;

607 608
	engine->set_default_submission(engine);

609 610 611 612 613 614 615
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
616 617 618
	ce = intel_context_pin(i915->kernel_context, engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);
619

620 621 622 623
	/*
	 * Similarly the preempt context must always be available so that
	 * we can interrupt the engine at any time.
	 */
624 625 626 627
	if (i915->preempt_context) {
		ce = intel_context_pin(i915->preempt_context, engine);
		if (IS_ERR(ce)) {
			ret = PTR_ERR(ce);
628 629 630 631
			goto err_unpin_kernel;
		}
	}

632 633
	ret = intel_engine_init_breadcrumbs(engine);
	if (ret)
634
		goto err_unpin_preempt;
635

636
	if (HWS_NEEDS_PHYSICAL(i915))
637 638 639 640
		ret = init_phys_status_page(engine);
	else
		ret = init_status_page(engine);
	if (ret)
641
		goto err_breadcrumbs;
642

643
	return 0;
644

645 646
err_breadcrumbs:
	intel_engine_fini_breadcrumbs(engine);
647
err_unpin_preempt:
648 649 650
	if (i915->preempt_context)
		__intel_context_unpin(i915->preempt_context, engine);

651
err_unpin_kernel:
652
	__intel_context_unpin(i915->kernel_context, engine);
653
	return ret;
654
}
655 656 657 658 659 660 661 662 663 664

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
665 666
	struct drm_i915_private *i915 = engine->i915;

667
	cleanup_status_page(engine);
668

669
	intel_engine_fini_breadcrumbs(engine);
670
	intel_engine_cleanup_cmd_parser(engine);
671
	i915_gem_batch_pool_fini(&engine->batch_pool);
672

673 674 675
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

676 677 678
	if (i915->preempt_context)
		__intel_context_unpin(i915->preempt_context, engine);
	__intel_context_unpin(i915->kernel_context, engine);
679 680

	i915_timeline_fini(&engine->timeline);
681 682

	intel_wa_list_free(&engine->wa_list);
683
}
684

685
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 acthd;

	if (INTEL_GEN(dev_priv) >= 8)
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
	else
		acthd = I915_READ(ACTHD);

	return acthd;
}

701
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
702 703 704 705 706 707 708 709 710 711 712 713
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 bbaddr;

	if (INTEL_GEN(dev_priv) >= 8)
		bbaddr = I915_READ64_2x32(RING_BBADDR(engine->mmio_base),
					  RING_BBADDR_UDW(engine->mmio_base));
	else
		bbaddr = I915_READ(RING_BBADDR(engine->mmio_base));

	return bbaddr;
}
714

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

	if (INTEL_GEN(dev_priv) < 3)
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

	I915_WRITE_FW(mode, _MASKED_BIT_ENABLE(STOP_RING));

	err = 0;
	if (__intel_wait_for_register_fw(dev_priv,
					 mode, MODE_IDLE, MODE_IDLE,
					 1000, 0,
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	POSTING_READ_FW(mode);

	return err;
}

744 745 746 747 748 749 750 751 752 753
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	GEM_TRACE("%s\n", engine->name);

	I915_WRITE_FW(RING_MI_MODE(engine->mmio_base),
		      _MASKED_BIT_DISABLE(STOP_RING));
}

754 755 756 757 758 759 760 761 762 763 764
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

765 766 767 768 769 770 771 772 773 774
u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv)
{
	const struct sseu_dev_info *sseu = &(INTEL_INFO(dev_priv)->sseu);
	u32 mcr_s_ss_select;
	u32 slice = fls(sseu->slice_mask);
	u32 subslice = fls(sseu->subslice_mask[slice]);

	if (INTEL_GEN(dev_priv) == 10)
		mcr_s_ss_select = GEN8_MCR_SLICE(slice) |
				  GEN8_MCR_SUBSLICE(subslice);
775 776 777
	else if (INTEL_GEN(dev_priv) >= 11)
		mcr_s_ss_select = GEN11_MCR_SLICE(slice) |
				  GEN11_MCR_SUBSLICE(subslice);
778 779 780 781 782 783
	else
		mcr_s_ss_select = 0;

	return mcr_s_ss_select;
}

784 785 786 787
static inline uint32_t
read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
		  int subslice, i915_reg_t reg)
{
788 789
	uint32_t mcr_slice_subslice_mask;
	uint32_t mcr_slice_subslice_select;
790
	uint32_t default_mcr_s_ss_select;
791 792 793 794
	uint32_t mcr;
	uint32_t ret;
	enum forcewake_domains fw_domains;

795 796 797 798 799 800 801 802 803 804 805 806
	if (INTEL_GEN(dev_priv) >= 11) {
		mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK |
					  GEN11_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) |
					    GEN11_MCR_SUBSLICE(subslice);
	} else {
		mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK |
					  GEN8_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) |
					    GEN8_MCR_SUBSLICE(subslice);
	}

807 808
	default_mcr_s_ss_select = intel_calculate_mcr_s_ss_select(dev_priv);

809 810 811 812 813 814 815 816 817 818
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg,
						    FW_REG_READ);
	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

	spin_lock_irq(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

	mcr = I915_READ_FW(GEN8_MCR_SELECTOR);
819 820 821 822

	WARN_ON_ONCE((mcr & mcr_slice_subslice_mask) !=
		     default_mcr_s_ss_select);

823 824
	mcr &= ~mcr_slice_subslice_mask;
	mcr |= mcr_slice_subslice_select;
825 826 827 828
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	ret = I915_READ_FW(reg);

829
	mcr &= ~mcr_slice_subslice_mask;
830 831
	mcr |= default_mcr_s_ss_select;

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irq(&dev_priv->uncore.lock);

	return ret;
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
	struct drm_i915_private *dev_priv = engine->i915;
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

	switch (INTEL_GEN(dev_priv)) {
	default:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
			instdone->sampler[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		instdone->sampler[0][0] = I915_READ(GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] = I915_READ(GEN7_ROW_INSTDONE);

		break;
	case 6:
	case 5:
	case 4:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id == RCS)
			/* HACK: Using the wrong struct member */
			instdone->slice_common = I915_READ(GEN4_INSTDONE1);
		break;
	case 3:
	case 2:
		instdone->instdone = I915_READ(GEN2_INSTDONE);
		break;
	}
}
894

895 896 897 898 899
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	bool idle = true;

900 901 902
	/* If the whole device is asleep, the engine must be idle */
	if (!intel_runtime_pm_get_if_in_use(dev_priv))
		return true;
903

904 905 906 907 908
	/* First check that no commands are left in the ring */
	if ((I915_READ_HEAD(engine) & HEAD_ADDR) !=
	    (I915_READ_TAIL(engine) & TAIL_ADDR))
		idle = false;

909 910 911 912 913 914 915 916 917
	/* No bit for gen2, so assume the CS parser is idle */
	if (INTEL_GEN(dev_priv) > 2 && !(I915_READ_MODE(engine) & MODE_IDLE))
		idle = false;

	intel_runtime_pm_put(dev_priv);

	return idle;
}

918 919 920 921 922 923 924 925 926 927 928
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

929 930 931 932
	/* More white lies, if wedged, hw state is inconsistent */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return true;

933
	/* Any inflight/incomplete requests? */
934
	if (!intel_engine_signaled(engine, intel_engine_last_submit(engine)))
935 936
		return false;

937 938 939
	if (I915_SELFTEST_ONLY(engine->breadcrumbs.mock))
		return true;

940
	/* Waiting to drain ELSP? */
941
	if (READ_ONCE(engine->execlists.active)) {
942
		struct tasklet_struct *t = &engine->execlists.tasklet;
943

944
		local_bh_disable();
945 946 947 948 949
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
950
		}
951
		local_bh_enable();
952

953 954 955
		/* Otherwise flush the tasklet if it was on another cpu */
		tasklet_unlock_wait(t);

956
		if (READ_ONCE(engine->execlists.active))
957 958
			return false;
	}
959

960
	/* ELSP is empty, but there are ready requests? E.g. after reset */
961
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
962 963
		return false;

964
	/* Ring stopped? */
965
	if (!ring_is_idle(engine))
966 967 968 969 970
		return false;

	return true;
}

971 972 973 974 975
bool intel_engines_are_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

976 977
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
978 979 980 981 982
	 * report that it is still busy, even though we have stopped using it.
	 */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return true;

983 984 985 986 987 988 989 990
	for_each_engine(engine, dev_priv, id) {
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

991 992 993 994 995 996 997 998
/**
 * intel_engine_has_kernel_context:
 * @engine: the engine
 *
 * Returns true if the last context to be executed on this engine, or has been
 * executed if the engine is already idle, is the kernel context
 * (#i915.kernel_context).
 */
999 1000
bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine)
{
1001 1002
	const struct intel_context *kernel_context =
		to_intel_context(engine->i915->kernel_context, engine);
1003
	struct i915_request *rq;
1004 1005 1006 1007 1008 1009 1010 1011

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

	/*
	 * Check the last context seen by the engine. If active, it will be
	 * the last request that remains in the timeline. When idle, it is
	 * the last executed context as tracked by retirement.
	 */
1012
	rq = __i915_gem_active_peek(&engine->timeline.last_request);
1013
	if (rq)
1014
		return rq->hw_context == kernel_context;
1015 1016
	else
		return engine->last_retired_context == kernel_context;
1017 1018
}

1019 1020 1021 1022 1023 1024 1025 1026 1027
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		engine->set_default_submission(engine);
}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
/**
 * intel_engines_sanitize: called after the GPU has lost power
 * @i915: the i915 device
 *
 * Anytime we reset the GPU, either with an explicit GPU reset or through a
 * PCI power cycle, the GPU loses state and we must reset our state tracking
 * to match. Note that calling intel_engines_sanitize() if the GPU has not
 * been reset results in much confusion!
 */
void intel_engines_sanitize(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	GEM_TRACE("\n");

	for_each_engine(engine, i915, id) {
		if (engine->reset.reset)
			engine->reset.reset(engine, NULL);
	}
}

1050 1051 1052 1053 1054 1055 1056 1057 1058
/**
 * intel_engines_park: called when the GT is transitioning from busy->idle
 * @i915: the i915 device
 *
 * The GT is now idle and about to go to sleep (maybe never to wake again?).
 * Time for us to tidy and put away our toys (release resources back to the
 * system).
 */
void intel_engines_park(struct drm_i915_private *i915)
1059 1060 1061 1062 1063
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
1064 1065
		/* Flush the residual irq tasklets first. */
		intel_engine_disarm_breadcrumbs(engine);
1066
		tasklet_kill(&engine->execlists.tasklet);
1067

1068 1069 1070 1071 1072
		/*
		 * We are committed now to parking the engines, make sure there
		 * will be no more interrupts arriving later and the engines
		 * are truly idle.
		 */
1073
		if (wait_for(intel_engine_is_idle(engine), 10)) {
1074 1075
			struct drm_printer p = drm_debug_printer(__func__);

1076 1077 1078
			dev_err(i915->drm.dev,
				"%s is not idle before parking\n",
				engine->name);
1079
			intel_engine_dump(engine, &p, NULL);
1080 1081
		}

1082 1083 1084
		/* Must be reset upon idling, or we may miss the busy wakeup. */
		GEM_BUG_ON(engine->execlists.queue_priority != INT_MIN);

1085 1086 1087
		if (engine->park)
			engine->park(engine);

1088 1089 1090 1091 1092
		if (engine->pinned_default_state) {
			i915_gem_object_unpin_map(engine->default_state);
			engine->pinned_default_state = NULL;
		}

1093
		i915_gem_batch_pool_fini(&engine->batch_pool);
1094
		engine->execlists.no_priolist = false;
1095 1096 1097
	}
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
/**
 * intel_engines_unpark: called when the GT is transitioning from idle->busy
 * @i915: the i915 device
 *
 * The GT was idle and now about to fire up with some new user requests.
 */
void intel_engines_unpark(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
		void *map;

		/* Pin the default state for fast resets from atomic context. */
		map = NULL;
		if (engine->default_state)
			map = i915_gem_object_pin_map(engine->default_state,
						      I915_MAP_WB);
		if (!IS_ERR_OR_NULL(map))
			engine->pinned_default_state = map;

1120 1121
		if (engine->unpark)
			engine->unpark(engine);
1122 1123

		intel_engine_init_hangcheck(engine);
1124 1125 1126
	}
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
/**
 * intel_engine_lost_context: called when the GPU is reset into unknown state
 * @engine: the engine
 *
 * We have either reset the GPU or otherwise about to lose state tracking of
 * the current GPU logical state (e.g. suspend). On next use, it is therefore
 * imperative that we make no presumptions about the current state and load
 * from scratch.
 */
void intel_engine_lost_context(struct intel_engine_cs *engine)
{
1138
	struct intel_context *ce;
1139 1140 1141

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

1142 1143 1144
	ce = fetch_and_zero(&engine->last_retired_context);
	if (ce)
		intel_context_unpin(ce);
1145 1146
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned int which;

	which = 0;
	for_each_engine(engine, i915, id)
		if (engine->default_state)
			which |= BIT(engine->uabi_class);

	return which;
}

1176 1177 1178
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1179 1180
{
	if (attr->priority == I915_PRIORITY_INVALID)
1181 1182 1183 1184
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1185

1186
	return x;
1187 1188
}

1189
static void print_request(struct drm_printer *m,
1190
			  struct i915_request *rq,
1191 1192
			  const char *prefix)
{
1193
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1194
	char buf[80] = "";
1195 1196 1197
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1198

1199
	drm_printf(m, "%s%x%s [%llx:%x]%s @ %dms: %s\n",
1200
		   prefix,
1201
		   rq->global_seqno,
1202
		   i915_request_completed(rq) ? "!" : "",
1203 1204
		   rq->fence.context, rq->fence.seqno,
		   buf,
1205
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1206
		   name);
1207 1208
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1231
		drm_printf(m, "[%04zx] %s\n", pos, line);
1232 1233 1234 1235 1236 1237

		prev = buf + pos;
		skip = false;
	}
}

1238 1239
static void intel_engine_print_registers(const struct intel_engine_cs *engine,
					 struct drm_printer *m)
1240 1241
{
	struct drm_i915_private *dev_priv = engine->i915;
1242 1243
	const struct intel_engine_execlists * const execlists =
		&engine->execlists;
1244 1245
	u64 addr;

1246 1247
	if (engine->id == RCS && IS_GEN(dev_priv, 4, 7))
		drm_printf(m, "\tCCID: 0x%08x\n", I915_READ(CCID));
1248 1249 1250 1251 1252 1253
	drm_printf(m, "\tRING_START: 0x%08x\n",
		   I915_READ(RING_START(engine->mmio_base)));
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
		   I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR);
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
		   I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR);
1254
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1255
		   I915_READ(RING_CTL(engine->mmio_base)),
1256 1257 1258 1259 1260 1261
		   I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
			   I915_READ(RING_MI_MODE(engine->mmio_base)),
			   I915_READ(RING_MI_MODE(engine->mmio_base)) & (MODE_IDLE) ? " [idle]" : "");
	}
1262 1263 1264 1265 1266

	if (INTEL_GEN(dev_priv) >= 6) {
		drm_printf(m, "\tRING_IMR: %08x\n", I915_READ_IMR(engine));
	}

1267
	if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
1268 1269 1270 1271 1272 1273 1274 1275
		drm_printf(m, "\tSYNC_0: 0x%08x\n",
			   I915_READ(RING_SYNC_0(engine->mmio_base)));
		drm_printf(m, "\tSYNC_1: 0x%08x\n",
			   I915_READ(RING_SYNC_1(engine->mmio_base)));
		if (HAS_VEBOX(dev_priv))
			drm_printf(m, "\tSYNC_2: 0x%08x\n",
				   I915_READ(RING_SYNC_2(engine->mmio_base)));
	}
1276 1277 1278 1279 1280 1281 1282

	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	if (INTEL_GEN(dev_priv) >= 8)
		addr = I915_READ64_2x32(RING_DMA_FADD(engine->mmio_base),
					RING_DMA_FADD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		addr = I915_READ(RING_DMA_FADD(engine->mmio_base));
	else
		addr = I915_READ(DMA_FADD_I8XX);
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
			   I915_READ(RING_IPEIR(engine->mmio_base)));
		drm_printf(m, "\tIPEHR: 0x%08x\n",
			   I915_READ(RING_IPEHR(engine->mmio_base)));
	} else {
		drm_printf(m, "\tIPEIR: 0x%08x\n", I915_READ(IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", I915_READ(IPEHR));
	}
1301

1302
	if (HAS_EXECLISTS(dev_priv)) {
1303 1304
		const u32 *hws = &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
		unsigned int idx;
1305
		u8 read, write;
1306 1307 1308 1309 1310

		drm_printf(m, "\tExeclist status: 0x%08x %08x\n",
			   I915_READ(RING_EXECLIST_STATUS_LO(engine)),
			   I915_READ(RING_EXECLIST_STATUS_HI(engine)));

1311 1312 1313 1314 1315 1316
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

		drm_printf(m, "\tExeclist CSB read %d, write %d [mmio:%d], tasklet queued? %s (%s)\n",
			   read, write,
			   GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine))),
1317 1318 1319
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1320 1321 1322 1323 1324 1325 1326 1327
		if (read >= GEN8_CSB_ENTRIES)
			read = 0;
		if (write >= GEN8_CSB_ENTRIES)
			write = 0;
		if (read > write)
			write += GEN8_CSB_ENTRIES;
		while (read < write) {
			idx = ++read % GEN8_CSB_ENTRIES;
1328
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x [mmio:0x%08x], context: %d [mmio:%d]\n",
1329 1330
				   idx,
				   hws[idx * 2],
1331 1332 1333
				   I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
				   hws[idx * 2 + 1],
				   I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
1334 1335 1336 1337
		}

		rcu_read_lock();
		for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
1338
			struct i915_request *rq;
1339 1340 1341 1342
			unsigned int count;

			rq = port_unpack(&execlists->port[idx], &count);
			if (rq) {
1343 1344
				char hdr[80];

1345
				snprintf(hdr, sizeof(hdr),
1346 1347 1348
					 "\t\tELSP[%d] count=%d, ring->start=%08x, rq: ",
					 idx, count,
					 i915_ggtt_offset(rq->ring->vma));
1349
				print_request(m, rq, hdr);
1350
			} else {
1351
				drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1352 1353
			}
		}
1354
		drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1355 1356 1357 1358 1359 1360 1361 1362 1363
		rcu_read_unlock();
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE(engine)));
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
			   I915_READ(RING_PP_DIR_DCLV(engine)));
	}
1364 1365
}

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1399 1400 1401 1402
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
1403
	const int MAX_REQUESTS_TO_SHOW = 8;
1404 1405 1406
	struct intel_breadcrumbs * const b = &engine->breadcrumbs;
	const struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1407
	struct i915_request *rq, *last;
1408
	unsigned long flags;
1409
	struct rb_node *rb;
1410
	int count;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

	if (i915_terminally_wedged(&engine->i915->gpu_error))
		drm_printf(m, "*** WEDGED ***\n");

1423
	drm_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms]\n",
1424 1425 1426
		   intel_engine_get_seqno(engine),
		   intel_engine_last_submit(engine),
		   engine->hangcheck.seqno,
1427
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1428 1429 1430 1431 1432 1433 1434 1435
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	rcu_read_lock();

	drm_printf(m, "\tRequests:\n");

1436
	rq = list_first_entry(&engine->timeline.requests,
1437
			      struct i915_request, link);
1438
	if (&rq->link != &engine->timeline.requests)
1439 1440
		print_request(m, rq, "\t\tfirst  ");

1441
	rq = list_last_entry(&engine->timeline.requests,
1442
			     struct i915_request, link);
1443
	if (&rq->link != &engine->timeline.requests)
1444 1445 1446 1447 1448
		print_request(m, rq, "\t\tlast   ");

	rq = i915_gem_find_active_request(engine);
	if (rq) {
		print_request(m, rq, "\t\tactive ");
1449

1450
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1451
			   i915_ggtt_offset(rq->ring->vma));
1452
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1453
			   rq->ring->head);
1454
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1455
			   rq->ring->tail);
1456 1457 1458 1459
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1460 1461

		print_request_ring(m, rq);
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	}

	rcu_read_unlock();

	if (intel_runtime_pm_get_if_in_use(engine->i915)) {
		intel_engine_print_registers(engine, m);
		intel_runtime_pm_put(engine->i915);
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1472

1473 1474
	local_irq_save(flags);
	spin_lock(&engine->timeline.lock);
1475 1476 1477

	last = NULL;
	count = 0;
1478
	list_for_each_entry(rq, &engine->timeline.requests, link) {
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
		if (count++ < MAX_REQUESTS_TO_SHOW - 1)
			print_request(m, rq, "\t\tE ");
		else
			last = rq;
	}
	if (last) {
		if (count > MAX_REQUESTS_TO_SHOW) {
			drm_printf(m,
				   "\t\t...skipping %d executing requests...\n",
				   count - MAX_REQUESTS_TO_SHOW);
		}
		print_request(m, last, "\t\tE ");
	}

	last = NULL;
	count = 0;
1495
	drm_printf(m, "\t\tQueue priority: %d\n", execlists->queue_priority);
1496
	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
1497 1498 1499
		struct i915_priolist *p =
			rb_entry(rb, typeof(*p), node);

1500 1501 1502 1503 1504 1505
		list_for_each_entry(rq, &p->requests, sched.link) {
			if (count++ < MAX_REQUESTS_TO_SHOW - 1)
				print_request(m, rq, "\t\tQ ");
			else
				last = rq;
		}
1506
	}
1507 1508 1509 1510 1511 1512 1513 1514 1515
	if (last) {
		if (count > MAX_REQUESTS_TO_SHOW) {
			drm_printf(m,
				   "\t\t...skipping %d queued requests...\n",
				   count - MAX_REQUESTS_TO_SHOW);
		}
		print_request(m, last, "\t\tQ ");
	}

1516
	spin_unlock(&engine->timeline.lock);
1517

1518
	spin_lock(&b->rb_lock);
1519 1520 1521 1522 1523 1524
	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
		struct intel_wait *w = rb_entry(rb, typeof(*w), node);

		drm_printf(m, "\t%s [%d] waiting for %x\n",
			   w->tsk->comm, w->tsk->pid, w->seqno);
	}
1525 1526
	spin_unlock(&b->rb_lock);
	local_irq_restore(flags);
1527

C
Chris Wilson 已提交
1528
	drm_printf(m, "IRQ? 0x%lx (breadcrumbs? %s)\n",
1529 1530 1531
		   engine->irq_posted,
		   yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
				  &engine->irq_posted)));
1532 1533 1534 1535

	drm_printf(m, "HWSP:\n");
	hexdump(m, engine->status_page.page_addr, PAGE_SIZE);

1536
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1537 1538
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
static u8 user_class_map[] = {
	[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
	[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
	[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
	[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};

struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
	if (class >= ARRAY_SIZE(user_class_map))
		return NULL;

	class = user_class_map[class];

	GEM_BUG_ON(class > MAX_ENGINE_CLASS);

	if (instance > MAX_ENGINE_INSTANCE)
		return NULL;

	return i915->engine_class[class][instance];
}

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1572
	struct intel_engine_execlists *execlists = &engine->execlists;
1573
	unsigned long flags;
1574
	int err = 0;
1575

1576
	if (!intel_engine_supports_stats(engine))
1577 1578
		return -ENODEV;

1579 1580
	spin_lock_irqsave(&engine->timeline.lock, flags);
	write_seqlock(&engine->stats.lock);
1581 1582 1583 1584 1585 1586

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1587 1588 1589 1590
	if (engine->stats.enabled++ == 0) {
		const struct execlist_port *port = execlists->port;
		unsigned int num_ports = execlists_num_ports(execlists);

1591
		engine->stats.enabled_at = ktime_get();
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601

		/* XXX submission method oblivious? */
		while (num_ports-- && port_isset(port)) {
			engine->stats.active++;
			port++;
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1602

1603
unlock:
1604 1605
	write_sequnlock(&engine->stats.lock);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1606

1607
	return err;
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1633
	unsigned int seq;
1634 1635
	ktime_t total;

1636 1637 1638 1639
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1654
	if (!intel_engine_supports_stats(engine))
1655 1656
		return;

1657
	write_seqlock_irqsave(&engine->stats.lock, flags);
1658 1659 1660 1661 1662
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1663
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1664 1665
}

1666 1667
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_engine.c"
1668
#include "selftests/intel_engine_cs.c"
1669
#endif