intel_engine_cs.c 45.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28 29 30
#include "i915_drv.h"
#include "intel_ringbuffer.h"
#include "intel_lrc.h"

31 32 33 34 35 36 37 38 39
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

40
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
41 42
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
43
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
44
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
45 46 47

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

48
struct engine_class_info {
49
	const char *name;
50 51
	int (*init_legacy)(struct intel_engine_cs *engine);
	int (*init_execlists)(struct intel_engine_cs *engine);
52 53

	u8 uabi_class;
54 55 56 57 58 59 60
};

static const struct engine_class_info intel_engine_classes[] = {
	[RENDER_CLASS] = {
		.name = "rcs",
		.init_execlists = logical_render_ring_init,
		.init_legacy = intel_init_render_ring_buffer,
61
		.uabi_class = I915_ENGINE_CLASS_RENDER,
62 63 64 65 66
	},
	[COPY_ENGINE_CLASS] = {
		.name = "bcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_blt_ring_buffer,
67
		.uabi_class = I915_ENGINE_CLASS_COPY,
68 69 70 71 72
	},
	[VIDEO_DECODE_CLASS] = {
		.name = "vcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_bsd_ring_buffer,
73
		.uabi_class = I915_ENGINE_CLASS_VIDEO,
74 75 76 77 78
	},
	[VIDEO_ENHANCEMENT_CLASS] = {
		.name = "vecs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_vebox_ring_buffer,
79
		.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
80 81 82
	},
};

83
#define MAX_MMIO_BASES 3
84
struct engine_info {
85
	unsigned int hw_id;
86
	unsigned int uabi_id;
87 88
	u8 class;
	u8 instance;
89 90 91 92 93
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
94 95 96
};

static const struct engine_info intel_engines[] = {
97
	[RCS] = {
98
		.hw_id = RCS_HW,
99
		.uabi_id = I915_EXEC_RENDER,
100 101
		.class = RENDER_CLASS,
		.instance = 0,
102 103 104
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
105 106
	},
	[BCS] = {
107
		.hw_id = BCS_HW,
108
		.uabi_id = I915_EXEC_BLT,
109 110
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
111 112 113
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
114 115
	},
	[VCS] = {
116
		.hw_id = VCS_HW,
117
		.uabi_id = I915_EXEC_BSD,
118 119
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
120 121 122 123 124
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
125 126
	},
	[VCS2] = {
127
		.hw_id = VCS2_HW,
128
		.uabi_id = I915_EXEC_BSD,
129 130
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
131 132 133 134
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
135
	},
136 137 138 139 140
	[VCS3] = {
		.hw_id = VCS3_HW,
		.uabi_id = I915_EXEC_BSD,
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
141 142 143
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
144 145 146 147 148 149
	},
	[VCS4] = {
		.hw_id = VCS4_HW,
		.uabi_id = I915_EXEC_BSD,
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
150 151 152
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
153
	},
154
	[VECS] = {
155
		.hw_id = VECS_HW,
156
		.uabi_id = I915_EXEC_VEBOX,
157 158
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
159 160 161 162
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
163
	},
164 165 166 167 168
	[VECS2] = {
		.hw_id = VECS2_HW,
		.uabi_id = I915_EXEC_VEBOX,
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
169 170 171
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
172
	},
173 174
};

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/**
 * ___intel_engine_context_size() - return the size of the context for an engine
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
static u32
__intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
201
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
202 203
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
204
		case 10:
O
Oscar Mateo 已提交
205
			return GEN10_LR_CONTEXT_RENDER_SIZE;
206 207 208
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
209
			return GEN8_LR_CONTEXT_RENDER_SIZE;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
		case 4:
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
232
		/* fall through */
233 234 235 236 237 238 239 240 241
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

257 258 259 260 261 262 263
static void __sprint_engine_name(char *name, const struct engine_info *info)
{
	WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u",
			 intel_engine_classes[info->class].name,
			 info->instance) >= INTEL_ENGINE_CS_MAX_NAME);
}

264
static int
265 266 267 268
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id)
{
	const struct engine_info *info = &intel_engines[id];
269 270
	struct intel_engine_cs *engine;

271 272
	GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));

273 274 275
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

276 277 278 279 280 281 282 283 284
	if (GEM_WARN_ON(info->class > MAX_ENGINE_CLASS))
		return -EINVAL;

	if (GEM_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
		return -EINVAL;

	if (GEM_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
		return -EINVAL;

285 286 287 288
	GEM_BUG_ON(dev_priv->engine[id]);
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
289 290 291

	engine->id = id;
	engine->i915 = dev_priv;
292
	__sprint_engine_name(engine->name, info);
293
	engine->hw_id = engine->guc_id = info->hw_id;
294
	engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases);
295 296
	engine->class = info->class;
	engine->instance = info->instance;
297

298
	engine->uabi_id = info->uabi_id;
299
	engine->uabi_class = intel_engine_classes[info->class].uabi_class;
300

301 302 303 304
	engine->context_size = __intel_engine_context_size(dev_priv,
							   engine->class);
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
305 306
	if (engine->context_size)
		DRIVER_CAPS(dev_priv)->has_logical_contexts = true;
307

308 309 310
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

311
	seqlock_init(&engine->stats.lock);
312

313 314
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

315
	dev_priv->engine_class[info->class][info->instance] = engine;
316 317
	dev_priv->engine[id] = engine;
	return 0;
318 319 320
}

/**
321
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
322
 * @dev_priv: i915 device private
323 324 325
 *
 * Return: non-zero if the initialization failed.
 */
326
int intel_engines_init_mmio(struct drm_i915_private *dev_priv)
327
{
328
	struct intel_device_info *device_info = mkwrite_device_info(dev_priv);
329
	const unsigned int ring_mask = INTEL_INFO(dev_priv)->ring_mask;
330 331
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
332
	unsigned int mask = 0;
333
	unsigned int i;
334
	int err;
335

336 337
	WARN_ON(ring_mask == 0);
	WARN_ON(ring_mask &
338 339 340 341 342 343
		GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));

	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
		if (!HAS_ENGINE(dev_priv, i))
			continue;

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
		err = intel_engine_setup(dev_priv, i);
		if (err)
			goto cleanup;

		mask |= ENGINE_MASK(i);
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
	if (WARN_ON(mask != ring_mask))
		device_info->ring_mask = mask;

359 360 361 362 363 364
	/* We always presume we have at least RCS available for later probing */
	if (WARN_ON(!HAS_ENGINE(dev_priv, RCS))) {
		err = -ENODEV;
		goto cleanup;
	}

365 366
	device_info->num_rings = hweight32(mask);

367 368
	i915_check_and_clear_faults(dev_priv);

369 370 371 372 373 374 375 376 377
	return 0;

cleanup:
	for_each_engine(engine, dev_priv, id)
		kfree(engine);
	return err;
}

/**
378
 * intel_engines_init() - init the Engine Command Streamers
379 380 381 382 383 384 385 386
 * @dev_priv: i915 device private
 *
 * Return: non-zero if the initialization failed.
 */
int intel_engines_init(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id, err_id;
387
	int err;
388 389

	for_each_engine(engine, dev_priv, id) {
390 391
		const struct engine_class_info *class_info =
			&intel_engine_classes[engine->class];
392 393
		int (*init)(struct intel_engine_cs *engine);

394
		if (HAS_EXECLISTS(dev_priv))
395
			init = class_info->init_execlists;
396
		else
397
			init = class_info->init_legacy;
398 399 400 401 402 403

		err = -EINVAL;
		err_id = id;

		if (GEM_WARN_ON(!init))
			goto cleanup;
404

405
		err = init(engine);
406
		if (err)
407 408
			goto cleanup;

409
		GEM_BUG_ON(!engine->submit_request);
410 411 412 413 414
	}

	return 0;

cleanup:
415
	for_each_engine(engine, dev_priv, id) {
416
		if (id >= err_id) {
417
			kfree(engine);
418 419
			dev_priv->engine[id] = NULL;
		} else {
420
			dev_priv->gt.cleanup_engine(engine);
421
		}
422
	}
423
	return err;
424 425
}

426
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno)
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
{
	struct drm_i915_private *dev_priv = engine->i915;

	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
		if (HAS_VEBOX(dev_priv))
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
	}

	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
446
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
447

448 449 450 451
	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	intel_engine_wakeup(engine);
452 453

	GEM_BUG_ON(intel_engine_get_seqno(engine) != seqno);
454 455
}

456 457 458 459 460
static void intel_engine_init_batch_pool(struct intel_engine_cs *engine)
{
	i915_gem_batch_pool_init(&engine->batch_pool, engine);
}

461 462 463 464
static void intel_engine_init_execlist(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

465 466 467 468
	execlists->port_mask = 1;
	BUILD_BUG_ON_NOT_POWER_OF_2(execlists_num_ports(execlists));
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

469
	execlists->queue_priority = INT_MIN;
470 471 472 473
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
}

474 475 476 477 478 479 480 481 482 483 484
/**
 * intel_engines_setup_common - setup engine state not requiring hw access
 * @engine: Engine to setup.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
void intel_engine_setup_common(struct intel_engine_cs *engine)
{
485 486
	i915_timeline_init(engine->i915, &engine->timeline, engine->name);

487
	intel_engine_init_execlist(engine);
488
	intel_engine_init_hangcheck(engine);
489
	intel_engine_init_batch_pool(engine);
490
	intel_engine_init_cmd_parser(engine);
491 492
}

493 494
int intel_engine_create_scratch(struct intel_engine_cs *engine,
				unsigned int size)
495 496 497 498 499 500 501
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	WARN_ON(engine->scratch);

502
	obj = i915_gem_object_create_stolen(engine->i915, size);
503
	if (!obj)
504
		obj = i915_gem_object_create_internal(engine->i915, size);
505 506 507 508 509
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

510
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 4096, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	engine->scratch = vma;
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

528
void intel_engine_cleanup_scratch(struct intel_engine_cs *engine)
529
{
530
	i915_vma_unpin_and_release(&engine->scratch);
531 532
}

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (!dev_priv->status_page_dmah)
		return;

	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
	engine->status_page.page_addr = NULL;
}

static void cleanup_status_page(struct intel_engine_cs *engine)
{
	struct i915_vma *vma;
	struct drm_i915_gem_object *obj;

	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;

	obj = vma->obj;

	i915_vma_unpin(vma);
	i915_vma_close(vma);

	i915_gem_object_unpin_map(obj);
	__i915_gem_object_release_unless_active(obj);
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
	void *vaddr;
	int ret;

	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;

580
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
599 600
	else
		flags |= PIN_HIGH;
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_unpin;
	}

	engine->status_page.vma = vma;
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
	engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
	return 0;

err_unpin:
	i915_vma_unpin(vma);
err:
	i915_gem_object_put(obj);
	return ret;
}

static int init_phys_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	GEM_BUG_ON(engine->id != RCS);

	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;

	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);

	return 0;
}

640 641 642 643 644 645
static void __intel_context_unpin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	intel_context_unpin(to_intel_context(ctx, engine));
}

646 647 648 649 650 651 652 653 654 655 656 657 658
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
659 660
	struct drm_i915_private *i915 = engine->i915;
	struct intel_context *ce;
661 662
	int ret;

663 664
	engine->set_default_submission(engine);

665 666 667 668 669 670 671
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
672 673 674
	ce = intel_context_pin(i915->kernel_context, engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);
675

676 677 678 679
	/*
	 * Similarly the preempt context must always be available so that
	 * we can interrupt the engine at any time.
	 */
680 681 682 683
	if (i915->preempt_context) {
		ce = intel_context_pin(i915->preempt_context, engine);
		if (IS_ERR(ce)) {
			ret = PTR_ERR(ce);
684 685 686 687
			goto err_unpin_kernel;
		}
	}

688 689
	ret = intel_engine_init_breadcrumbs(engine);
	if (ret)
690
		goto err_unpin_preempt;
691

692
	if (HWS_NEEDS_PHYSICAL(i915))
693 694 695 696
		ret = init_phys_status_page(engine);
	else
		ret = init_status_page(engine);
	if (ret)
697
		goto err_breadcrumbs;
698

699
	return 0;
700

701 702
err_breadcrumbs:
	intel_engine_fini_breadcrumbs(engine);
703
err_unpin_preempt:
704 705 706
	if (i915->preempt_context)
		__intel_context_unpin(i915->preempt_context, engine);

707
err_unpin_kernel:
708
	__intel_context_unpin(i915->kernel_context, engine);
709
	return ret;
710
}
711 712 713 714 715 716 717 718 719 720

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
721 722
	struct drm_i915_private *i915 = engine->i915;

723 724
	intel_engine_cleanup_scratch(engine);

725 726 727 728 729
	if (HWS_NEEDS_PHYSICAL(engine->i915))
		cleanup_phys_status_page(engine);
	else
		cleanup_status_page(engine);

730
	intel_engine_fini_breadcrumbs(engine);
731
	intel_engine_cleanup_cmd_parser(engine);
732
	i915_gem_batch_pool_fini(&engine->batch_pool);
733

734 735 736
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

737 738 739
	if (i915->preempt_context)
		__intel_context_unpin(i915->preempt_context, engine);
	__intel_context_unpin(i915->kernel_context, engine);
740 741

	i915_timeline_fini(&engine->timeline);
742
}
743

744
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 acthd;

	if (INTEL_GEN(dev_priv) >= 8)
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
	else
		acthd = I915_READ(ACTHD);

	return acthd;
}

760
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
761 762 763 764 765 766 767 768 769 770 771 772
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 bbaddr;

	if (INTEL_GEN(dev_priv) >= 8)
		bbaddr = I915_READ64_2x32(RING_BBADDR(engine->mmio_base),
					  RING_BBADDR_UDW(engine->mmio_base));
	else
		bbaddr = I915_READ(RING_BBADDR(engine->mmio_base));

	return bbaddr;
}
773

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

	if (INTEL_GEN(dev_priv) < 3)
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

	I915_WRITE_FW(mode, _MASKED_BIT_ENABLE(STOP_RING));

	err = 0;
	if (__intel_wait_for_register_fw(dev_priv,
					 mode, MODE_IDLE, MODE_IDLE,
					 1000, 0,
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	POSTING_READ_FW(mode);

	return err;
}

803 804 805 806 807 808 809 810 811 812 813
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

814 815 816 817 818 819 820 821 822 823
u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv)
{
	const struct sseu_dev_info *sseu = &(INTEL_INFO(dev_priv)->sseu);
	u32 mcr_s_ss_select;
	u32 slice = fls(sseu->slice_mask);
	u32 subslice = fls(sseu->subslice_mask[slice]);

	if (INTEL_GEN(dev_priv) == 10)
		mcr_s_ss_select = GEN8_MCR_SLICE(slice) |
				  GEN8_MCR_SUBSLICE(subslice);
824 825 826
	else if (INTEL_GEN(dev_priv) >= 11)
		mcr_s_ss_select = GEN11_MCR_SLICE(slice) |
				  GEN11_MCR_SUBSLICE(subslice);
827 828 829 830 831 832
	else
		mcr_s_ss_select = 0;

	return mcr_s_ss_select;
}

833 834 835 836
static inline uint32_t
read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
		  int subslice, i915_reg_t reg)
{
837 838
	uint32_t mcr_slice_subslice_mask;
	uint32_t mcr_slice_subslice_select;
839
	uint32_t default_mcr_s_ss_select;
840 841 842 843
	uint32_t mcr;
	uint32_t ret;
	enum forcewake_domains fw_domains;

844 845 846 847 848 849 850 851 852 853 854 855
	if (INTEL_GEN(dev_priv) >= 11) {
		mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK |
					  GEN11_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) |
					    GEN11_MCR_SUBSLICE(subslice);
	} else {
		mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK |
					  GEN8_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) |
					    GEN8_MCR_SUBSLICE(subslice);
	}

856 857
	default_mcr_s_ss_select = intel_calculate_mcr_s_ss_select(dev_priv);

858 859 860 861 862 863 864 865 866 867
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg,
						    FW_REG_READ);
	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

	spin_lock_irq(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

	mcr = I915_READ_FW(GEN8_MCR_SELECTOR);
868 869 870 871

	WARN_ON_ONCE((mcr & mcr_slice_subslice_mask) !=
		     default_mcr_s_ss_select);

872 873
	mcr &= ~mcr_slice_subslice_mask;
	mcr |= mcr_slice_subslice_select;
874 875 876 877
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	ret = I915_READ_FW(reg);

878
	mcr &= ~mcr_slice_subslice_mask;
879 880
	mcr |= default_mcr_s_ss_select;

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irq(&dev_priv->uncore.lock);

	return ret;
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
	struct drm_i915_private *dev_priv = engine->i915;
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

	switch (INTEL_GEN(dev_priv)) {
	default:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
			instdone->sampler[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		instdone->sampler[0][0] = I915_READ(GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] = I915_READ(GEN7_ROW_INSTDONE);

		break;
	case 6:
	case 5:
	case 4:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id == RCS)
			/* HACK: Using the wrong struct member */
			instdone->slice_common = I915_READ(GEN4_INSTDONE1);
		break;
	case 3:
	case 2:
		instdone->instdone = I915_READ(GEN2_INSTDONE);
		break;
	}
}
943

944 945 946 947 948
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	bool idle = true;

949 950 951
	/* If the whole device is asleep, the engine must be idle */
	if (!intel_runtime_pm_get_if_in_use(dev_priv))
		return true;
952

953 954 955 956 957
	/* First check that no commands are left in the ring */
	if ((I915_READ_HEAD(engine) & HEAD_ADDR) !=
	    (I915_READ_TAIL(engine) & TAIL_ADDR))
		idle = false;

958 959 960 961 962 963 964 965 966
	/* No bit for gen2, so assume the CS parser is idle */
	if (INTEL_GEN(dev_priv) > 2 && !(I915_READ_MODE(engine) & MODE_IDLE))
		idle = false;

	intel_runtime_pm_put(dev_priv);

	return idle;
}

967 968 969 970 971 972 973 974 975 976 977
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

978 979 980 981
	/* More white lies, if wedged, hw state is inconsistent */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return true;

982 983 984 985 986
	/* Any inflight/incomplete requests? */
	if (!i915_seqno_passed(intel_engine_get_seqno(engine),
			       intel_engine_last_submit(engine)))
		return false;

987 988 989
	if (I915_SELFTEST_ONLY(engine->breadcrumbs.mock))
		return true;

990
	/* Waiting to drain ELSP? */
991 992 993
	if (READ_ONCE(engine->execlists.active)) {
		struct intel_engine_execlists *execlists = &engine->execlists;

994
		local_bh_disable();
995 996 997 998
		if (tasklet_trylock(&execlists->tasklet)) {
			execlists->tasklet.func(execlists->tasklet.data);
			tasklet_unlock(&execlists->tasklet);
		}
999
		local_bh_enable();
1000 1001 1002 1003

		if (READ_ONCE(execlists->active))
			return false;
	}
1004

1005
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1006
	if (READ_ONCE(engine->execlists.first))
1007 1008
		return false;

1009
	/* Ring stopped? */
1010
	if (!ring_is_idle(engine))
1011 1012 1013 1014 1015
		return false;

	return true;
}

1016 1017 1018 1019 1020
bool intel_engines_are_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1021 1022
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1023 1024 1025 1026 1027
	 * report that it is still busy, even though we have stopped using it.
	 */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return true;

1028 1029 1030 1031 1032 1033 1034 1035
	for_each_engine(engine, dev_priv, id) {
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1036 1037 1038 1039 1040 1041 1042 1043
/**
 * intel_engine_has_kernel_context:
 * @engine: the engine
 *
 * Returns true if the last context to be executed on this engine, or has been
 * executed if the engine is already idle, is the kernel context
 * (#i915.kernel_context).
 */
1044 1045
bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine)
{
1046 1047
	const struct intel_context *kernel_context =
		to_intel_context(engine->i915->kernel_context, engine);
1048
	struct i915_request *rq;
1049 1050 1051 1052 1053 1054 1055 1056

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

	/*
	 * Check the last context seen by the engine. If active, it will be
	 * the last request that remains in the timeline. When idle, it is
	 * the last executed context as tracked by retirement.
	 */
1057
	rq = __i915_gem_active_peek(&engine->timeline.last_request);
1058
	if (rq)
1059
		return rq->hw_context == kernel_context;
1060 1061
	else
		return engine->last_retired_context == kernel_context;
1062 1063
}

1064 1065 1066 1067 1068 1069 1070 1071 1072
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		engine->set_default_submission(engine);
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
/**
 * intel_engines_sanitize: called after the GPU has lost power
 * @i915: the i915 device
 *
 * Anytime we reset the GPU, either with an explicit GPU reset or through a
 * PCI power cycle, the GPU loses state and we must reset our state tracking
 * to match. Note that calling intel_engines_sanitize() if the GPU has not
 * been reset results in much confusion!
 */
void intel_engines_sanitize(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	GEM_TRACE("\n");

	for_each_engine(engine, i915, id) {
		if (engine->reset.reset)
			engine->reset.reset(engine, NULL);
	}
}

1095 1096 1097 1098 1099 1100 1101 1102 1103
/**
 * intel_engines_park: called when the GT is transitioning from busy->idle
 * @i915: the i915 device
 *
 * The GT is now idle and about to go to sleep (maybe never to wake again?).
 * Time for us to tidy and put away our toys (release resources back to the
 * system).
 */
void intel_engines_park(struct drm_i915_private *i915)
1104 1105 1106 1107 1108
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
1109 1110
		/* Flush the residual irq tasklets first. */
		intel_engine_disarm_breadcrumbs(engine);
1111
		tasklet_kill(&engine->execlists.tasklet);
1112

1113 1114 1115 1116 1117
		/*
		 * We are committed now to parking the engines, make sure there
		 * will be no more interrupts arriving later and the engines
		 * are truly idle.
		 */
1118
		if (wait_for(intel_engine_is_idle(engine), 10)) {
1119 1120
			struct drm_printer p = drm_debug_printer(__func__);

1121 1122 1123
			dev_err(i915->drm.dev,
				"%s is not idle before parking\n",
				engine->name);
1124
			intel_engine_dump(engine, &p, NULL);
1125 1126
		}

1127 1128 1129
		/* Must be reset upon idling, or we may miss the busy wakeup. */
		GEM_BUG_ON(engine->execlists.queue_priority != INT_MIN);

1130 1131 1132
		if (engine->park)
			engine->park(engine);

1133 1134 1135 1136 1137
		if (engine->pinned_default_state) {
			i915_gem_object_unpin_map(engine->default_state);
			engine->pinned_default_state = NULL;
		}

1138
		i915_gem_batch_pool_fini(&engine->batch_pool);
1139
		engine->execlists.no_priolist = false;
1140 1141 1142
	}
}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/**
 * intel_engines_unpark: called when the GT is transitioning from idle->busy
 * @i915: the i915 device
 *
 * The GT was idle and now about to fire up with some new user requests.
 */
void intel_engines_unpark(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
		void *map;

		/* Pin the default state for fast resets from atomic context. */
		map = NULL;
		if (engine->default_state)
			map = i915_gem_object_pin_map(engine->default_state,
						      I915_MAP_WB);
		if (!IS_ERR_OR_NULL(map))
			engine->pinned_default_state = map;

1165 1166
		if (engine->unpark)
			engine->unpark(engine);
1167 1168

		intel_engine_init_hangcheck(engine);
1169 1170 1171
	}
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
/**
 * intel_engine_lost_context: called when the GPU is reset into unknown state
 * @engine: the engine
 *
 * We have either reset the GPU or otherwise about to lose state tracking of
 * the current GPU logical state (e.g. suspend). On next use, it is therefore
 * imperative that we make no presumptions about the current state and load
 * from scratch.
 */
void intel_engine_lost_context(struct intel_engine_cs *engine)
{
1183
	struct intel_context *ce;
1184 1185 1186

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

1187 1188 1189
	ce = fetch_and_zero(&engine->last_retired_context);
	if (ce)
		intel_context_unpin(ce);
1190 1191
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned int which;

	which = 0;
	for_each_engine(engine, i915, id)
		if (engine->default_state)
			which |= BIT(engine->uabi_class);

	return which;
}

1221 1222 1223
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1224 1225
{
	if (attr->priority == I915_PRIORITY_INVALID)
1226 1227 1228 1229
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1230

1231
	return x;
1232 1233
}

1234
static void print_request(struct drm_printer *m,
1235
			  struct i915_request *rq,
1236 1237
			  const char *prefix)
{
1238
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1239
	char buf[80] = "";
1240 1241 1242
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1243

1244
	drm_printf(m, "%s%x%s [%llx:%x]%s @ %dms: %s\n",
1245
		   prefix,
1246
		   rq->global_seqno,
1247
		   i915_request_completed(rq) ? "!" : "",
1248 1249
		   rq->fence.context, rq->fence.seqno,
		   buf,
1250
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1251
		   name);
1252 1253
}

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1276
		drm_printf(m, "[%04zx] %s\n", pos, line);
1277 1278 1279 1280 1281 1282

		prev = buf + pos;
		skip = false;
	}
}

1283 1284
static void intel_engine_print_registers(const struct intel_engine_cs *engine,
					 struct drm_printer *m)
1285 1286
{
	struct drm_i915_private *dev_priv = engine->i915;
1287 1288
	const struct intel_engine_execlists * const execlists =
		&engine->execlists;
1289 1290
	u64 addr;

1291 1292
	if (engine->id == RCS && IS_GEN(dev_priv, 4, 7))
		drm_printf(m, "\tCCID: 0x%08x\n", I915_READ(CCID));
1293 1294 1295 1296 1297 1298
	drm_printf(m, "\tRING_START: 0x%08x\n",
		   I915_READ(RING_START(engine->mmio_base)));
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
		   I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR);
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
		   I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR);
1299
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1300
		   I915_READ(RING_CTL(engine->mmio_base)),
1301 1302 1303 1304 1305 1306
		   I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
			   I915_READ(RING_MI_MODE(engine->mmio_base)),
			   I915_READ(RING_MI_MODE(engine->mmio_base)) & (MODE_IDLE) ? " [idle]" : "");
	}
1307 1308 1309 1310 1311

	if (INTEL_GEN(dev_priv) >= 6) {
		drm_printf(m, "\tRING_IMR: %08x\n", I915_READ_IMR(engine));
	}

1312
	if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
1313 1314 1315 1316 1317 1318 1319 1320
		drm_printf(m, "\tSYNC_0: 0x%08x\n",
			   I915_READ(RING_SYNC_0(engine->mmio_base)));
		drm_printf(m, "\tSYNC_1: 0x%08x\n",
			   I915_READ(RING_SYNC_1(engine->mmio_base)));
		if (HAS_VEBOX(dev_priv))
			drm_printf(m, "\tSYNC_2: 0x%08x\n",
				   I915_READ(RING_SYNC_2(engine->mmio_base)));
	}
1321 1322 1323 1324 1325 1326 1327

	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	if (INTEL_GEN(dev_priv) >= 8)
		addr = I915_READ64_2x32(RING_DMA_FADD(engine->mmio_base),
					RING_DMA_FADD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		addr = I915_READ(RING_DMA_FADD(engine->mmio_base));
	else
		addr = I915_READ(DMA_FADD_I8XX);
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
			   I915_READ(RING_IPEIR(engine->mmio_base)));
		drm_printf(m, "\tIPEHR: 0x%08x\n",
			   I915_READ(RING_IPEHR(engine->mmio_base)));
	} else {
		drm_printf(m, "\tIPEIR: 0x%08x\n", I915_READ(IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", I915_READ(IPEHR));
	}
1346

1347
	if (HAS_EXECLISTS(dev_priv)) {
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
		const u32 *hws = &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
		u32 ptr, read, write;
		unsigned int idx;

		drm_printf(m, "\tExeclist status: 0x%08x %08x\n",
			   I915_READ(RING_EXECLIST_STATUS_LO(engine)),
			   I915_READ(RING_EXECLIST_STATUS_HI(engine)));

		ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
		read = GEN8_CSB_READ_PTR(ptr);
		write = GEN8_CSB_WRITE_PTR(ptr);
C
Chris Wilson 已提交
1359
		drm_printf(m, "\tExeclist CSB read %d [%d cached], write %d [%d from hws], tasklet queued? %s (%s)\n",
1360 1361 1362
			   read, execlists->csb_head,
			   write,
			   intel_read_status_page(engine, intel_hws_csb_write_index(engine->i915)),
1363 1364 1365
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
		if (read >= GEN8_CSB_ENTRIES)
			read = 0;
		if (write >= GEN8_CSB_ENTRIES)
			write = 0;
		if (read > write)
			write += GEN8_CSB_ENTRIES;
		while (read < write) {
			idx = ++read % GEN8_CSB_ENTRIES;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x [0x%08x in hwsp], context: %d [%d in hwsp]\n",
				   idx,
				   I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
				   hws[idx * 2],
				   I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)),
				   hws[idx * 2 + 1]);
		}

		rcu_read_lock();
		for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
1384
			struct i915_request *rq;
1385 1386 1387 1388
			unsigned int count;

			rq = port_unpack(&execlists->port[idx], &count);
			if (rq) {
1389 1390
				char hdr[80];

1391
				snprintf(hdr, sizeof(hdr),
1392 1393 1394
					 "\t\tELSP[%d] count=%d, ring->start=%08x, rq: ",
					 idx, count,
					 i915_ggtt_offset(rq->ring->vma));
1395
				print_request(m, rq, hdr);
1396
			} else {
1397
				drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1398 1399
			}
		}
1400
		drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1401 1402 1403 1404 1405 1406 1407 1408 1409
		rcu_read_unlock();
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE(engine)));
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
			   I915_READ(RING_PP_DIR_DCLV(engine)));
	}
1410 1411
}

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1445 1446 1447 1448
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
1449
	const int MAX_REQUESTS_TO_SHOW = 8;
1450 1451 1452
	struct intel_breadcrumbs * const b = &engine->breadcrumbs;
	const struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1453
	struct i915_request *rq, *last;
1454
	unsigned long flags;
1455
	struct rb_node *rb;
1456
	int count;
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

	if (i915_terminally_wedged(&engine->i915->gpu_error))
		drm_printf(m, "*** WEDGED ***\n");

1469
	drm_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms]\n",
1470 1471 1472
		   intel_engine_get_seqno(engine),
		   intel_engine_last_submit(engine),
		   engine->hangcheck.seqno,
1473
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1474 1475 1476 1477 1478 1479 1480 1481
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	rcu_read_lock();

	drm_printf(m, "\tRequests:\n");

1482
	rq = list_first_entry(&engine->timeline.requests,
1483
			      struct i915_request, link);
1484
	if (&rq->link != &engine->timeline.requests)
1485 1486
		print_request(m, rq, "\t\tfirst  ");

1487
	rq = list_last_entry(&engine->timeline.requests,
1488
			     struct i915_request, link);
1489
	if (&rq->link != &engine->timeline.requests)
1490 1491 1492 1493 1494
		print_request(m, rq, "\t\tlast   ");

	rq = i915_gem_find_active_request(engine);
	if (rq) {
		print_request(m, rq, "\t\tactive ");
1495

1496
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1497
			   i915_ggtt_offset(rq->ring->vma));
1498
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1499
			   rq->ring->head);
1500
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1501
			   rq->ring->tail);
1502 1503 1504 1505
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1506 1507

		print_request_ring(m, rq);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	}

	rcu_read_unlock();

	if (intel_runtime_pm_get_if_in_use(engine->i915)) {
		intel_engine_print_registers(engine, m);
		intel_runtime_pm_put(engine->i915);
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1518

1519 1520
	local_irq_save(flags);
	spin_lock(&engine->timeline.lock);
1521 1522 1523

	last = NULL;
	count = 0;
1524
	list_for_each_entry(rq, &engine->timeline.requests, link) {
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
		if (count++ < MAX_REQUESTS_TO_SHOW - 1)
			print_request(m, rq, "\t\tE ");
		else
			last = rq;
	}
	if (last) {
		if (count > MAX_REQUESTS_TO_SHOW) {
			drm_printf(m,
				   "\t\t...skipping %d executing requests...\n",
				   count - MAX_REQUESTS_TO_SHOW);
		}
		print_request(m, last, "\t\tE ");
	}

	last = NULL;
	count = 0;
1541
	drm_printf(m, "\t\tQueue priority: %d\n", execlists->queue_priority);
1542 1543 1544 1545
	for (rb = execlists->first; rb; rb = rb_next(rb)) {
		struct i915_priolist *p =
			rb_entry(rb, typeof(*p), node);

1546 1547 1548 1549 1550 1551
		list_for_each_entry(rq, &p->requests, sched.link) {
			if (count++ < MAX_REQUESTS_TO_SHOW - 1)
				print_request(m, rq, "\t\tQ ");
			else
				last = rq;
		}
1552
	}
1553 1554 1555 1556 1557 1558 1559 1560 1561
	if (last) {
		if (count > MAX_REQUESTS_TO_SHOW) {
			drm_printf(m,
				   "\t\t...skipping %d queued requests...\n",
				   count - MAX_REQUESTS_TO_SHOW);
		}
		print_request(m, last, "\t\tQ ");
	}

1562
	spin_unlock(&engine->timeline.lock);
1563

1564
	spin_lock(&b->rb_lock);
1565 1566 1567 1568 1569 1570
	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
		struct intel_wait *w = rb_entry(rb, typeof(*w), node);

		drm_printf(m, "\t%s [%d] waiting for %x\n",
			   w->tsk->comm, w->tsk->pid, w->seqno);
	}
1571 1572
	spin_unlock(&b->rb_lock);
	local_irq_restore(flags);
1573

C
Chris Wilson 已提交
1574
	drm_printf(m, "IRQ? 0x%lx (breadcrumbs? %s)\n",
1575 1576 1577
		   engine->irq_posted,
		   yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
				  &engine->irq_posted)));
1578 1579 1580 1581

	drm_printf(m, "HWSP:\n");
	hexdump(m, engine->status_page.page_addr, PAGE_SIZE);

1582
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1583 1584
}

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
static u8 user_class_map[] = {
	[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
	[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
	[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
	[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};

struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
	if (class >= ARRAY_SIZE(user_class_map))
		return NULL;

	class = user_class_map[class];

	GEM_BUG_ON(class > MAX_ENGINE_CLASS);

	if (instance > MAX_ENGINE_INSTANCE)
		return NULL;

	return i915->engine_class[class][instance];
}

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1618
	struct intel_engine_execlists *execlists = &engine->execlists;
1619
	unsigned long flags;
1620
	int err = 0;
1621

1622
	if (!intel_engine_supports_stats(engine))
1623 1624
		return -ENODEV;

1625 1626
	spin_lock_irqsave(&engine->timeline.lock, flags);
	write_seqlock(&engine->stats.lock);
1627 1628 1629 1630 1631 1632

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1633 1634 1635 1636
	if (engine->stats.enabled++ == 0) {
		const struct execlist_port *port = execlists->port;
		unsigned int num_ports = execlists_num_ports(execlists);

1637
		engine->stats.enabled_at = ktime_get();
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

		/* XXX submission method oblivious? */
		while (num_ports-- && port_isset(port)) {
			engine->stats.active++;
			port++;
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1648

1649
unlock:
1650 1651
	write_sequnlock(&engine->stats.lock);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1652

1653
	return err;
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1679
	unsigned int seq;
1680 1681
	ktime_t total;

1682 1683 1684 1685
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1700
	if (!intel_engine_supports_stats(engine))
1701 1702
		return;

1703
	write_seqlock_irqsave(&engine->stats.lock, flags);
1704 1705 1706 1707 1708
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1709
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1710 1711
}

1712 1713
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_engine.c"
1714
#include "selftests/intel_engine_cs.c"
1715
#endif