intel_engine_cs.c 41.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27
#include "i915_drv.h"
28
#include "i915_vgpu.h"
29 30 31
#include "intel_ringbuffer.h"
#include "intel_lrc.h"

32 33 34 35 36 37 38 39 40
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

41
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
42 43
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
44
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
45
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
46 47 48

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

49
struct engine_class_info {
50
	const char *name;
51 52
	int (*init_legacy)(struct intel_engine_cs *engine);
	int (*init_execlists)(struct intel_engine_cs *engine);
53 54

	u8 uabi_class;
55 56 57 58 59 60 61
};

static const struct engine_class_info intel_engine_classes[] = {
	[RENDER_CLASS] = {
		.name = "rcs",
		.init_execlists = logical_render_ring_init,
		.init_legacy = intel_init_render_ring_buffer,
62
		.uabi_class = I915_ENGINE_CLASS_RENDER,
63 64 65 66 67
	},
	[COPY_ENGINE_CLASS] = {
		.name = "bcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_blt_ring_buffer,
68
		.uabi_class = I915_ENGINE_CLASS_COPY,
69 70 71 72 73
	},
	[VIDEO_DECODE_CLASS] = {
		.name = "vcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_bsd_ring_buffer,
74
		.uabi_class = I915_ENGINE_CLASS_VIDEO,
75 76 77 78 79
	},
	[VIDEO_ENHANCEMENT_CLASS] = {
		.name = "vecs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_vebox_ring_buffer,
80
		.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
81 82 83
	},
};

84
#define MAX_MMIO_BASES 3
85
struct engine_info {
86
	unsigned int hw_id;
87
	unsigned int uabi_id;
88 89
	u8 class;
	u8 instance;
90 91 92 93 94
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
95 96 97
};

static const struct engine_info intel_engines[] = {
98
	[RCS] = {
99
		.hw_id = RCS_HW,
100
		.uabi_id = I915_EXEC_RENDER,
101 102
		.class = RENDER_CLASS,
		.instance = 0,
103 104 105
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
106 107
	},
	[BCS] = {
108
		.hw_id = BCS_HW,
109
		.uabi_id = I915_EXEC_BLT,
110 111
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
112 113 114
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
115 116
	},
	[VCS] = {
117
		.hw_id = VCS_HW,
118
		.uabi_id = I915_EXEC_BSD,
119 120
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
121 122 123 124 125
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
126 127
	},
	[VCS2] = {
128
		.hw_id = VCS2_HW,
129
		.uabi_id = I915_EXEC_BSD,
130 131
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
132 133 134 135
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
136
	},
137 138 139 140 141
	[VCS3] = {
		.hw_id = VCS3_HW,
		.uabi_id = I915_EXEC_BSD,
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
142 143 144
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
145 146 147 148 149 150
	},
	[VCS4] = {
		.hw_id = VCS4_HW,
		.uabi_id = I915_EXEC_BSD,
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
151 152 153
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
154
	},
155
	[VECS] = {
156
		.hw_id = VECS_HW,
157
		.uabi_id = I915_EXEC_VEBOX,
158 159
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
160 161 162 163
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
164
	},
165 166 167 168 169
	[VECS2] = {
		.hw_id = VECS2_HW,
		.uabi_id = I915_EXEC_VEBOX,
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
170 171 172
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
173
	},
174 175
};

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/**
 * ___intel_engine_context_size() - return the size of the context for an engine
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
static u32
__intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
202
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
203 204
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
205
		case 10:
O
Oscar Mateo 已提交
206
			return GEN10_LR_CONTEXT_RENDER_SIZE;
207 208 209
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
210
			return GEN8_LR_CONTEXT_RENDER_SIZE;
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
		case 4:
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

257 258 259 260 261 262 263
static void __sprint_engine_name(char *name, const struct engine_info *info)
{
	WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u",
			 intel_engine_classes[info->class].name,
			 info->instance) >= INTEL_ENGINE_CS_MAX_NAME);
}

264
static int
265 266 267 268
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id)
{
	const struct engine_info *info = &intel_engines[id];
269 270
	struct intel_engine_cs *engine;

271 272
	GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));

273 274 275
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

276 277 278 279 280 281 282 283 284
	if (GEM_WARN_ON(info->class > MAX_ENGINE_CLASS))
		return -EINVAL;

	if (GEM_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
		return -EINVAL;

	if (GEM_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
		return -EINVAL;

285 286 287 288
	GEM_BUG_ON(dev_priv->engine[id]);
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
289 290 291

	engine->id = id;
	engine->i915 = dev_priv;
292
	__sprint_engine_name(engine->name, info);
293
	engine->hw_id = engine->guc_id = info->hw_id;
294
	engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases);
295 296
	engine->class = info->class;
	engine->instance = info->instance;
297

298
	engine->uabi_id = info->uabi_id;
299
	engine->uabi_class = intel_engine_classes[info->class].uabi_class;
300

301 302 303 304 305
	engine->context_size = __intel_engine_context_size(dev_priv,
							   engine->class);
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;

306 307 308
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

309
	seqlock_init(&engine->stats.lock);
310

311 312
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

313
	dev_priv->engine_class[info->class][info->instance] = engine;
314 315
	dev_priv->engine[id] = engine;
	return 0;
316 317 318
}

/**
319
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
320
 * @dev_priv: i915 device private
321 322 323
 *
 * Return: non-zero if the initialization failed.
 */
324
int intel_engines_init_mmio(struct drm_i915_private *dev_priv)
325
{
326
	struct intel_device_info *device_info = mkwrite_device_info(dev_priv);
327
	const unsigned int ring_mask = INTEL_INFO(dev_priv)->ring_mask;
328 329
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
330
	unsigned int mask = 0;
331
	unsigned int i;
332
	int err;
333

334 335
	WARN_ON(ring_mask == 0);
	WARN_ON(ring_mask &
336 337 338 339 340 341
		GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));

	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
		if (!HAS_ENGINE(dev_priv, i))
			continue;

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
		err = intel_engine_setup(dev_priv, i);
		if (err)
			goto cleanup;

		mask |= ENGINE_MASK(i);
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
	if (WARN_ON(mask != ring_mask))
		device_info->ring_mask = mask;

357 358 359 360 361 362
	/* We always presume we have at least RCS available for later probing */
	if (WARN_ON(!HAS_ENGINE(dev_priv, RCS))) {
		err = -ENODEV;
		goto cleanup;
	}

363 364
	device_info->num_rings = hweight32(mask);

365 366
	i915_check_and_clear_faults(dev_priv);

367 368 369 370 371 372 373 374 375
	return 0;

cleanup:
	for_each_engine(engine, dev_priv, id)
		kfree(engine);
	return err;
}

/**
376
 * intel_engines_init() - init the Engine Command Streamers
377 378 379 380 381 382 383 384
 * @dev_priv: i915 device private
 *
 * Return: non-zero if the initialization failed.
 */
int intel_engines_init(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id, err_id;
385
	int err;
386 387

	for_each_engine(engine, dev_priv, id) {
388 389
		const struct engine_class_info *class_info =
			&intel_engine_classes[engine->class];
390 391
		int (*init)(struct intel_engine_cs *engine);

392
		if (HAS_EXECLISTS(dev_priv))
393
			init = class_info->init_execlists;
394
		else
395
			init = class_info->init_legacy;
396 397 398 399 400 401

		err = -EINVAL;
		err_id = id;

		if (GEM_WARN_ON(!init))
			goto cleanup;
402

403
		err = init(engine);
404
		if (err)
405 406
			goto cleanup;

407
		GEM_BUG_ON(!engine->submit_request);
408 409 410 411 412
	}

	return 0;

cleanup:
413
	for_each_engine(engine, dev_priv, id) {
414
		if (id >= err_id) {
415
			kfree(engine);
416 417
			dev_priv->engine[id] = NULL;
		} else {
418
			dev_priv->gt.cleanup_engine(engine);
419
		}
420
	}
421
	return err;
422 423
}

424
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno)
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
{
	struct drm_i915_private *dev_priv = engine->i915;

	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
		if (HAS_VEBOX(dev_priv))
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
	}

	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
444
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
445

446 447 448 449
	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	intel_engine_wakeup(engine);
450 451

	GEM_BUG_ON(intel_engine_get_seqno(engine) != seqno);
452 453
}

454
static void intel_engine_init_timeline(struct intel_engine_cs *engine)
455
{
456 457
	engine->timeline =
		&engine->i915->gt.execution_timeline.engine[engine->id];
458 459
}

460 461 462 463 464
static void intel_engine_init_batch_pool(struct intel_engine_cs *engine)
{
	i915_gem_batch_pool_init(&engine->batch_pool, engine);
}

465 466 467 468 469 470 471 472 473 474
static bool csb_force_mmio(struct drm_i915_private *i915)
{
	/*
	 * IOMMU adds unpredictable latency causing the CSB write (from the
	 * GPU into the HWSP) to only be visible some time after the interrupt
	 * (missed breadcrumb syndrome).
	 */
	if (intel_vtd_active())
		return true;

475 476 477 478
	/* Older GVT emulation depends upon intercepting CSB mmio */
	if (intel_vgpu_active(i915) && !intel_vgpu_has_hwsp_emulation(i915))
		return true;

479 480 481
	if (IS_CANNONLAKE(i915))
		return true;

482 483 484 485 486 487 488 489 490
	return false;
}

static void intel_engine_init_execlist(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	execlists->csb_use_mmio = csb_force_mmio(engine->i915);

491 492 493 494
	execlists->port_mask = 1;
	BUILD_BUG_ON_NOT_POWER_OF_2(execlists_num_ports(execlists));
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

495
	execlists->queue_priority = INT_MIN;
496 497 498 499
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
}

500 501 502 503 504 505 506 507 508 509 510
/**
 * intel_engines_setup_common - setup engine state not requiring hw access
 * @engine: Engine to setup.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
void intel_engine_setup_common(struct intel_engine_cs *engine)
{
511
	intel_engine_init_execlist(engine);
512
	intel_engine_init_timeline(engine);
513
	intel_engine_init_hangcheck(engine);
514
	intel_engine_init_batch_pool(engine);
515
	intel_engine_init_cmd_parser(engine);
516 517
}

518 519 520 521 522 523 524 525
int intel_engine_create_scratch(struct intel_engine_cs *engine, int size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	WARN_ON(engine->scratch);

526
	obj = i915_gem_object_create_stolen(engine->i915, size);
527
	if (!obj)
528
		obj = i915_gem_object_create_internal(engine->i915, size);
529 530 531 532 533
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

534
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 4096, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	engine->scratch = vma;
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

static void intel_engine_cleanup_scratch(struct intel_engine_cs *engine)
{
554
	i915_vma_unpin_and_release(&engine->scratch);
555 556
}

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (!dev_priv->status_page_dmah)
		return;

	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
	engine->status_page.page_addr = NULL;
}

static void cleanup_status_page(struct intel_engine_cs *engine)
{
	struct i915_vma *vma;
	struct drm_i915_gem_object *obj;

	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;

	obj = vma->obj;

	i915_vma_unpin(vma);
	i915_vma_close(vma);

	i915_gem_object_unpin_map(obj);
	__i915_gem_object_release_unless_active(obj);
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
	void *vaddr;
	int ret;

	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;

	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
623 624
	else
		flags |= PIN_HIGH;
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_unpin;
	}

	engine->status_page.vma = vma;
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
	engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
	return 0;

err_unpin:
	i915_vma_unpin(vma);
err:
	i915_gem_object_put(obj);
	return ret;
}

static int init_phys_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	GEM_BUG_ON(engine->id != RCS);

	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;

	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);

	return 0;
}

664 665 666 667 668 669 670 671 672 673 674 675 676
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
677
	struct intel_ring *ring;
678 679
	int ret;

680 681
	engine->set_default_submission(engine);

682 683 684 685 686 687 688
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
689
	ring = intel_context_pin(engine->i915->kernel_context, engine);
690 691
	if (IS_ERR(ring))
		return PTR_ERR(ring);
692

693 694 695 696
	/*
	 * Similarly the preempt context must always be available so that
	 * we can interrupt the engine at any time.
	 */
697
	if (engine->i915->preempt_context) {
698
		ring = intel_context_pin(engine->i915->preempt_context, engine);
699 700 701 702 703 704
		if (IS_ERR(ring)) {
			ret = PTR_ERR(ring);
			goto err_unpin_kernel;
		}
	}

705 706
	ret = intel_engine_init_breadcrumbs(engine);
	if (ret)
707
		goto err_unpin_preempt;
708

709 710 711 712 713
	if (HWS_NEEDS_PHYSICAL(engine->i915))
		ret = init_phys_status_page(engine);
	else
		ret = init_status_page(engine);
	if (ret)
714
		goto err_breadcrumbs;
715

716
	return 0;
717

718 719
err_breadcrumbs:
	intel_engine_fini_breadcrumbs(engine);
720
err_unpin_preempt:
721
	if (engine->i915->preempt_context)
722
		intel_context_unpin(engine->i915->preempt_context, engine);
723
err_unpin_kernel:
724
	intel_context_unpin(engine->i915->kernel_context, engine);
725
	return ret;
726
}
727 728 729 730 731 732 733 734 735 736

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
737 738
	intel_engine_cleanup_scratch(engine);

739 740 741 742 743
	if (HWS_NEEDS_PHYSICAL(engine->i915))
		cleanup_phys_status_page(engine);
	else
		cleanup_status_page(engine);

744
	intel_engine_fini_breadcrumbs(engine);
745
	intel_engine_cleanup_cmd_parser(engine);
746
	i915_gem_batch_pool_fini(&engine->batch_pool);
747

748 749 750
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

751
	if (engine->i915->preempt_context)
752 753
		intel_context_unpin(engine->i915->preempt_context, engine);
	intel_context_unpin(engine->i915->kernel_context, engine);
754
}
755

756
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 acthd;

	if (INTEL_GEN(dev_priv) >= 8)
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
	else
		acthd = I915_READ(ACTHD);

	return acthd;
}

772
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
773 774 775 776 777 778 779 780 781 782 783 784
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 bbaddr;

	if (INTEL_GEN(dev_priv) >= 8)
		bbaddr = I915_READ64_2x32(RING_BBADDR(engine->mmio_base),
					  RING_BBADDR_UDW(engine->mmio_base));
	else
		bbaddr = I915_READ(RING_BBADDR(engine->mmio_base));

	return bbaddr;
}
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

static inline uint32_t
read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
		  int subslice, i915_reg_t reg)
{
801 802
	uint32_t mcr_slice_subslice_mask;
	uint32_t mcr_slice_subslice_select;
803 804 805 806
	uint32_t mcr;
	uint32_t ret;
	enum forcewake_domains fw_domains;

807 808 809 810 811 812 813 814 815 816 817 818
	if (INTEL_GEN(dev_priv) >= 11) {
		mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK |
					  GEN11_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) |
					    GEN11_MCR_SUBSLICE(subslice);
	} else {
		mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK |
					  GEN8_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) |
					    GEN8_MCR_SUBSLICE(subslice);
	}

819 820 821 822 823 824 825 826 827 828 829 830 831 832
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg,
						    FW_REG_READ);
	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

	spin_lock_irq(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

	mcr = I915_READ_FW(GEN8_MCR_SELECTOR);
	/*
	 * The HW expects the slice and sublice selectors to be reset to 0
	 * after reading out the registers.
	 */
833 834 835
	WARN_ON_ONCE(mcr & mcr_slice_subslice_mask);
	mcr &= ~mcr_slice_subslice_mask;
	mcr |= mcr_slice_subslice_select;
836 837 838 839
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	ret = I915_READ_FW(reg);

840
	mcr &= ~mcr_slice_subslice_mask;
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irq(&dev_priv->uncore.lock);

	return ret;
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
	struct drm_i915_private *dev_priv = engine->i915;
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

	switch (INTEL_GEN(dev_priv)) {
	default:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
			instdone->sampler[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		instdone->sampler[0][0] = I915_READ(GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] = I915_READ(GEN7_ROW_INSTDONE);

		break;
	case 6:
	case 5:
	case 4:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id == RCS)
			/* HACK: Using the wrong struct member */
			instdone->slice_common = I915_READ(GEN4_INSTDONE1);
		break;
	case 3:
	case 2:
		instdone->instdone = I915_READ(GEN2_INSTDONE);
		break;
	}
}
903

904 905 906 907 908
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	bool idle = true;

909 910 911
	/* If the whole device is asleep, the engine must be idle */
	if (!intel_runtime_pm_get_if_in_use(dev_priv))
		return true;
912

913 914 915 916 917
	/* First check that no commands are left in the ring */
	if ((I915_READ_HEAD(engine) & HEAD_ADDR) !=
	    (I915_READ_TAIL(engine) & TAIL_ADDR))
		idle = false;

918 919 920 921 922 923 924 925 926
	/* No bit for gen2, so assume the CS parser is idle */
	if (INTEL_GEN(dev_priv) > 2 && !(I915_READ_MODE(engine) & MODE_IDLE))
		idle = false;

	intel_runtime_pm_put(dev_priv);

	return idle;
}

927 928 929 930 931 932 933 934 935 936 937
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

938 939 940 941
	/* More white lies, if wedged, hw state is inconsistent */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return true;

942 943 944 945 946
	/* Any inflight/incomplete requests? */
	if (!i915_seqno_passed(intel_engine_get_seqno(engine),
			       intel_engine_last_submit(engine)))
		return false;

947 948 949
	if (I915_SELFTEST_ONLY(engine->breadcrumbs.mock))
		return true;

950 951
	/* Waiting to drain ELSP? */
	if (READ_ONCE(engine->execlists.active))
952 953
		return false;

954
	/* ELSP is empty, but there are ready requests? */
955
	if (READ_ONCE(engine->execlists.first))
956 957
		return false;

958
	/* Ring stopped? */
959
	if (!ring_is_idle(engine))
960 961 962 963 964
		return false;

	return true;
}

965 966 967 968 969
bool intel_engines_are_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

970 971
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
972 973 974 975 976
	 * report that it is still busy, even though we have stopped using it.
	 */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return true;

977 978 979 980 981 982 983 984
	for_each_engine(engine, dev_priv, id) {
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

985 986 987 988 989 990 991 992
/**
 * intel_engine_has_kernel_context:
 * @engine: the engine
 *
 * Returns true if the last context to be executed on this engine, or has been
 * executed if the engine is already idle, is the kernel context
 * (#i915.kernel_context).
 */
993 994
bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine)
{
995 996
	const struct i915_gem_context * const kernel_context =
		engine->i915->kernel_context;
997
	struct i915_request *rq;
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

	/*
	 * Check the last context seen by the engine. If active, it will be
	 * the last request that remains in the timeline. When idle, it is
	 * the last executed context as tracked by retirement.
	 */
	rq = __i915_gem_active_peek(&engine->timeline->last_request);
	if (rq)
		return rq->ctx == kernel_context;
	else
		return engine->last_retired_context == kernel_context;
1011 1012
}

1013 1014 1015 1016 1017 1018 1019 1020 1021
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		engine->set_default_submission(engine);
}

1022 1023 1024 1025 1026 1027 1028 1029 1030
/**
 * intel_engines_park: called when the GT is transitioning from busy->idle
 * @i915: the i915 device
 *
 * The GT is now idle and about to go to sleep (maybe never to wake again?).
 * Time for us to tidy and put away our toys (release resources back to the
 * system).
 */
void intel_engines_park(struct drm_i915_private *i915)
1031 1032 1033 1034 1035
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
1036 1037
		/* Flush the residual irq tasklets first. */
		intel_engine_disarm_breadcrumbs(engine);
1038
		tasklet_kill(&engine->execlists.tasklet);
1039

1040 1041 1042 1043 1044
		/*
		 * We are committed now to parking the engines, make sure there
		 * will be no more interrupts arriving later and the engines
		 * are truly idle.
		 */
1045
		if (wait_for(intel_engine_is_idle(engine), 10)) {
1046 1047
			struct drm_printer p = drm_debug_printer(__func__);

1048 1049 1050
			dev_err(i915->drm.dev,
				"%s is not idle before parking\n",
				engine->name);
1051
			intel_engine_dump(engine, &p, NULL);
1052 1053
		}

1054 1055 1056
		/* Must be reset upon idling, or we may miss the busy wakeup. */
		GEM_BUG_ON(engine->execlists.queue_priority != INT_MIN);

1057 1058 1059 1060
		if (engine->park)
			engine->park(engine);

		i915_gem_batch_pool_fini(&engine->batch_pool);
1061
		engine->execlists.no_priolist = false;
1062 1063 1064
	}
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
/**
 * intel_engines_unpark: called when the GT is transitioning from idle->busy
 * @i915: the i915 device
 *
 * The GT was idle and now about to fire up with some new user requests.
 */
void intel_engines_unpark(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
		if (engine->unpark)
			engine->unpark(engine);
	}
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned int which;

	which = 0;
	for_each_engine(engine, i915, id)
		if (engine->default_state)
			which |= BIT(engine->uabi_class);

	return which;
}

1111 1112 1113
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1114 1115
{
	if (attr->priority == I915_PRIORITY_INVALID)
1116 1117 1118 1119
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1120

1121
	return x;
1122 1123
}

1124
static void print_request(struct drm_printer *m,
1125
			  struct i915_request *rq,
1126 1127
			  const char *prefix)
{
1128
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1129 1130 1131 1132
	char buf[80];
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1133

1134
	drm_printf(m, "%s%x%s [%llx:%x]%s @ %dms: %s\n",
1135
		   prefix,
1136
		   rq->global_seqno,
1137
		   i915_request_completed(rq) ? "!" : "",
1138 1139
		   rq->fence.context, rq->fence.seqno,
		   buf,
1140
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1141
		   name);
1142 1143
}

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
		drm_printf(m, "%08zx %s\n", pos, line);

		prev = buf + pos;
		skip = false;
	}
}

1173 1174
static void intel_engine_print_registers(const struct intel_engine_cs *engine,
					 struct drm_printer *m)
1175 1176
{
	struct drm_i915_private *dev_priv = engine->i915;
1177 1178
	const struct intel_engine_execlists * const execlists =
		&engine->execlists;
1179 1180
	u64 addr;

1181 1182 1183 1184 1185 1186
	drm_printf(m, "\tRING_START: 0x%08x\n",
		   I915_READ(RING_START(engine->mmio_base)));
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
		   I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR);
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
		   I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR);
1187
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1188
		   I915_READ(RING_CTL(engine->mmio_base)),
1189 1190 1191 1192 1193 1194
		   I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
			   I915_READ(RING_MI_MODE(engine->mmio_base)),
			   I915_READ(RING_MI_MODE(engine->mmio_base)) & (MODE_IDLE) ? " [idle]" : "");
	}
1195 1196 1197 1198 1199

	if (INTEL_GEN(dev_priv) >= 6) {
		drm_printf(m, "\tRING_IMR: %08x\n", I915_READ_IMR(engine));
	}

1200
	if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
1201 1202 1203 1204 1205 1206 1207 1208
		drm_printf(m, "\tSYNC_0: 0x%08x\n",
			   I915_READ(RING_SYNC_0(engine->mmio_base)));
		drm_printf(m, "\tSYNC_1: 0x%08x\n",
			   I915_READ(RING_SYNC_1(engine->mmio_base)));
		if (HAS_VEBOX(dev_priv))
			drm_printf(m, "\tSYNC_2: 0x%08x\n",
				   I915_READ(RING_SYNC_2(engine->mmio_base)));
	}
1209 1210 1211 1212 1213 1214 1215

	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	if (INTEL_GEN(dev_priv) >= 8)
		addr = I915_READ64_2x32(RING_DMA_FADD(engine->mmio_base),
					RING_DMA_FADD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		addr = I915_READ(RING_DMA_FADD(engine->mmio_base));
	else
		addr = I915_READ(DMA_FADD_I8XX);
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
			   I915_READ(RING_IPEIR(engine->mmio_base)));
		drm_printf(m, "\tIPEHR: 0x%08x\n",
			   I915_READ(RING_IPEHR(engine->mmio_base)));
	} else {
		drm_printf(m, "\tIPEIR: 0x%08x\n", I915_READ(IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", I915_READ(IPEHR));
	}
1234

1235
	if (HAS_EXECLISTS(dev_priv)) {
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		const u32 *hws = &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
		u32 ptr, read, write;
		unsigned int idx;

		drm_printf(m, "\tExeclist status: 0x%08x %08x\n",
			   I915_READ(RING_EXECLIST_STATUS_LO(engine)),
			   I915_READ(RING_EXECLIST_STATUS_HI(engine)));

		ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
		read = GEN8_CSB_READ_PTR(ptr);
		write = GEN8_CSB_WRITE_PTR(ptr);
1247
		drm_printf(m, "\tExeclist CSB read %d [%d cached], write %d [%d from hws], interrupt posted? %s, tasklet queued? %s (%s)\n",
1248 1249 1250 1251
			   read, execlists->csb_head,
			   write,
			   intel_read_status_page(engine, intel_hws_csb_write_index(engine->i915)),
			   yesno(test_bit(ENGINE_IRQ_EXECLIST,
1252 1253 1254 1255
					  &engine->irq_posted)),
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
		if (read >= GEN8_CSB_ENTRIES)
			read = 0;
		if (write >= GEN8_CSB_ENTRIES)
			write = 0;
		if (read > write)
			write += GEN8_CSB_ENTRIES;
		while (read < write) {
			idx = ++read % GEN8_CSB_ENTRIES;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x [0x%08x in hwsp], context: %d [%d in hwsp]\n",
				   idx,
				   I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
				   hws[idx * 2],
				   I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)),
				   hws[idx * 2 + 1]);
		}

		rcu_read_lock();
		for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
1274
			struct i915_request *rq;
1275 1276 1277 1278
			unsigned int count;

			rq = port_unpack(&execlists->port[idx], &count);
			if (rq) {
1279 1280
				char hdr[80];

1281
				snprintf(hdr, sizeof(hdr),
1282 1283 1284
					 "\t\tELSP[%d] count=%d, ring->start=%08x, rq: ",
					 idx, count,
					 i915_ggtt_offset(rq->ring->vma));
1285
				print_request(m, rq, hdr);
1286
			} else {
1287
				drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1288 1289
			}
		}
1290
		drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1291 1292 1293 1294 1295 1296 1297 1298 1299
		rcu_read_unlock();
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE(engine)));
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
			   I915_READ(RING_PP_DIR_DCLV(engine)));
	}
1300 1301 1302 1303 1304 1305
}

void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
1306
	const int MAX_REQUESTS_TO_SHOW = 8;
1307 1308 1309
	struct intel_breadcrumbs * const b = &engine->breadcrumbs;
	const struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1310
	struct i915_request *rq, *last;
1311
	struct rb_node *rb;
1312
	int count;
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

	if (i915_terminally_wedged(&engine->i915->gpu_error))
		drm_printf(m, "*** WEDGED ***\n");

1325
	drm_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms]\n",
1326 1327 1328
		   intel_engine_get_seqno(engine),
		   intel_engine_last_submit(engine),
		   engine->hangcheck.seqno,
1329
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1330 1331 1332 1333 1334 1335 1336 1337 1338
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	rcu_read_lock();

	drm_printf(m, "\tRequests:\n");

	rq = list_first_entry(&engine->timeline->requests,
1339
			      struct i915_request, link);
1340 1341 1342 1343
	if (&rq->link != &engine->timeline->requests)
		print_request(m, rq, "\t\tfirst  ");

	rq = list_last_entry(&engine->timeline->requests,
1344
			     struct i915_request, link);
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	if (&rq->link != &engine->timeline->requests)
		print_request(m, rq, "\t\tlast   ");

	rq = i915_gem_find_active_request(engine);
	if (rq) {
		print_request(m, rq, "\t\tactive ");
		drm_printf(m,
			   "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
			   rq->head, rq->postfix, rq->tail,
			   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
			   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1356
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1357
			   i915_ggtt_offset(rq->ring->vma));
1358
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1359
			   rq->ring->head);
1360
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1361
			   rq->ring->tail);
1362 1363 1364 1365
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	}

	rcu_read_unlock();

	if (intel_runtime_pm_get_if_in_use(engine->i915)) {
		intel_engine_print_registers(engine, m);
		intel_runtime_pm_put(engine->i915);
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1376

1377
	spin_lock_irq(&engine->timeline->lock);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397

	last = NULL;
	count = 0;
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		if (count++ < MAX_REQUESTS_TO_SHOW - 1)
			print_request(m, rq, "\t\tE ");
		else
			last = rq;
	}
	if (last) {
		if (count > MAX_REQUESTS_TO_SHOW) {
			drm_printf(m,
				   "\t\t...skipping %d executing requests...\n",
				   count - MAX_REQUESTS_TO_SHOW);
		}
		print_request(m, last, "\t\tE ");
	}

	last = NULL;
	count = 0;
1398
	drm_printf(m, "\t\tQueue priority: %d\n", execlists->queue_priority);
1399 1400 1401 1402
	for (rb = execlists->first; rb; rb = rb_next(rb)) {
		struct i915_priolist *p =
			rb_entry(rb, typeof(*p), node);

1403 1404 1405 1406 1407 1408
		list_for_each_entry(rq, &p->requests, sched.link) {
			if (count++ < MAX_REQUESTS_TO_SHOW - 1)
				print_request(m, rq, "\t\tQ ");
			else
				last = rq;
		}
1409
	}
1410 1411 1412 1413 1414 1415 1416 1417 1418
	if (last) {
		if (count > MAX_REQUESTS_TO_SHOW) {
			drm_printf(m,
				   "\t\t...skipping %d queued requests...\n",
				   count - MAX_REQUESTS_TO_SHOW);
		}
		print_request(m, last, "\t\tQ ");
	}

1419 1420
	spin_unlock_irq(&engine->timeline->lock);

1421 1422 1423 1424 1425 1426 1427 1428 1429
	spin_lock_irq(&b->rb_lock);
	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
		struct intel_wait *w = rb_entry(rb, typeof(*w), node);

		drm_printf(m, "\t%s [%d] waiting for %x\n",
			   w->tsk->comm, w->tsk->pid, w->seqno);
	}
	spin_unlock_irq(&b->rb_lock);

1430 1431 1432 1433 1434 1435
	drm_printf(m, "IRQ? 0x%lx (breadcrumbs? %s) (execlists? %s)\n",
		   engine->irq_posted,
		   yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
				  &engine->irq_posted)),
		   yesno(test_bit(ENGINE_IRQ_EXECLIST,
				  &engine->irq_posted)));
1436 1437 1438 1439

	drm_printf(m, "HWSP:\n");
	hexdump(m, engine->status_page.page_addr, PAGE_SIZE);

1440
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1441 1442
}

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static u8 user_class_map[] = {
	[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
	[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
	[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
	[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};

struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
	if (class >= ARRAY_SIZE(user_class_map))
		return NULL;

	class = user_class_map[class];

	GEM_BUG_ON(class > MAX_ENGINE_CLASS);

	if (instance > MAX_ENGINE_INSTANCE)
		return NULL;

	return i915->engine_class[class][instance];
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1476
	struct intel_engine_execlists *execlists = &engine->execlists;
1477
	unsigned long flags;
1478
	int err = 0;
1479

1480
	if (!intel_engine_supports_stats(engine))
1481 1482
		return -ENODEV;

1483
	tasklet_disable(&execlists->tasklet);
1484
	write_seqlock_irqsave(&engine->stats.lock, flags);
1485 1486 1487 1488 1489 1490

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1491 1492 1493 1494
	if (engine->stats.enabled++ == 0) {
		const struct execlist_port *port = execlists->port;
		unsigned int num_ports = execlists_num_ports(execlists);

1495
		engine->stats.enabled_at = ktime_get();
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

		/* XXX submission method oblivious? */
		while (num_ports-- && port_isset(port)) {
			engine->stats.active++;
			port++;
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1506

1507
unlock:
1508
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1509
	tasklet_enable(&execlists->tasklet);
1510

1511
	return err;
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1537
	unsigned int seq;
1538 1539
	ktime_t total;

1540 1541 1542 1543
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1558
	if (!intel_engine_supports_stats(engine))
1559 1560
		return;

1561
	write_seqlock_irqsave(&engine->stats.lock, flags);
1562 1563 1564 1565 1566
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1567
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1568 1569
}

1570 1571
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_engine.c"
1572
#include "selftests/intel_engine_cs.c"
1573
#endif