intel_engine_cs.c 41.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27
#include "i915_drv.h"
28
#include "i915_vgpu.h"
29 30 31
#include "intel_ringbuffer.h"
#include "intel_lrc.h"

32 33 34 35 36 37 38 39 40
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

41
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
42 43
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
44
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
45
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
46 47 48

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

49
struct engine_class_info {
50
	const char *name;
51 52
	int (*init_legacy)(struct intel_engine_cs *engine);
	int (*init_execlists)(struct intel_engine_cs *engine);
53 54

	u8 uabi_class;
55 56 57 58 59 60 61
};

static const struct engine_class_info intel_engine_classes[] = {
	[RENDER_CLASS] = {
		.name = "rcs",
		.init_execlists = logical_render_ring_init,
		.init_legacy = intel_init_render_ring_buffer,
62
		.uabi_class = I915_ENGINE_CLASS_RENDER,
63 64 65 66 67
	},
	[COPY_ENGINE_CLASS] = {
		.name = "bcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_blt_ring_buffer,
68
		.uabi_class = I915_ENGINE_CLASS_COPY,
69 70 71 72 73
	},
	[VIDEO_DECODE_CLASS] = {
		.name = "vcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_bsd_ring_buffer,
74
		.uabi_class = I915_ENGINE_CLASS_VIDEO,
75 76 77 78 79
	},
	[VIDEO_ENHANCEMENT_CLASS] = {
		.name = "vecs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_vebox_ring_buffer,
80
		.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
81 82 83
	},
};

84
#define MAX_MMIO_BASES 3
85
struct engine_info {
86
	unsigned int hw_id;
87
	unsigned int uabi_id;
88 89
	u8 class;
	u8 instance;
90 91 92 93 94
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
95 96 97
};

static const struct engine_info intel_engines[] = {
98
	[RCS] = {
99
		.hw_id = RCS_HW,
100
		.uabi_id = I915_EXEC_RENDER,
101 102
		.class = RENDER_CLASS,
		.instance = 0,
103 104 105
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
106 107
	},
	[BCS] = {
108
		.hw_id = BCS_HW,
109
		.uabi_id = I915_EXEC_BLT,
110 111
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
112 113 114
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
115 116
	},
	[VCS] = {
117
		.hw_id = VCS_HW,
118
		.uabi_id = I915_EXEC_BSD,
119 120
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
121 122 123 124 125
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
126 127
	},
	[VCS2] = {
128
		.hw_id = VCS2_HW,
129
		.uabi_id = I915_EXEC_BSD,
130 131
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
132 133 134 135
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
136
	},
137 138 139 140 141
	[VCS3] = {
		.hw_id = VCS3_HW,
		.uabi_id = I915_EXEC_BSD,
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
142 143 144
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
145 146 147 148 149 150
	},
	[VCS4] = {
		.hw_id = VCS4_HW,
		.uabi_id = I915_EXEC_BSD,
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
151 152 153
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
154
	},
155
	[VECS] = {
156
		.hw_id = VECS_HW,
157
		.uabi_id = I915_EXEC_VEBOX,
158 159
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
160 161 162 163
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
164
	},
165 166 167 168 169
	[VECS2] = {
		.hw_id = VECS2_HW,
		.uabi_id = I915_EXEC_VEBOX,
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
170 171 172
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
173
	},
174 175
};

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/**
 * ___intel_engine_context_size() - return the size of the context for an engine
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
static u32
__intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
202
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
203 204
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
205
		case 10:
O
Oscar Mateo 已提交
206
			return GEN10_LR_CONTEXT_RENDER_SIZE;
207 208 209
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
210
			return GEN8_LR_CONTEXT_RENDER_SIZE;
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
		case 4:
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

257 258 259 260 261 262 263
static void __sprint_engine_name(char *name, const struct engine_info *info)
{
	WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u",
			 intel_engine_classes[info->class].name,
			 info->instance) >= INTEL_ENGINE_CS_MAX_NAME);
}

264
static int
265 266 267 268
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id)
{
	const struct engine_info *info = &intel_engines[id];
269 270
	struct intel_engine_cs *engine;

271 272
	GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));

273 274 275
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

276 277 278 279 280 281 282 283 284
	if (GEM_WARN_ON(info->class > MAX_ENGINE_CLASS))
		return -EINVAL;

	if (GEM_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
		return -EINVAL;

	if (GEM_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
		return -EINVAL;

285 286 287 288
	GEM_BUG_ON(dev_priv->engine[id]);
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
289 290 291

	engine->id = id;
	engine->i915 = dev_priv;
292
	__sprint_engine_name(engine->name, info);
293
	engine->hw_id = engine->guc_id = info->hw_id;
294
	engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases);
295 296
	engine->class = info->class;
	engine->instance = info->instance;
297

298
	engine->uabi_id = info->uabi_id;
299
	engine->uabi_class = intel_engine_classes[info->class].uabi_class;
300

301 302 303 304 305
	engine->context_size = __intel_engine_context_size(dev_priv,
							   engine->class);
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;

306 307 308
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

309 310
	spin_lock_init(&engine->stats.lock);

311 312
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

313
	dev_priv->engine_class[info->class][info->instance] = engine;
314 315
	dev_priv->engine[id] = engine;
	return 0;
316 317 318
}

/**
319
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
320
 * @dev_priv: i915 device private
321 322 323
 *
 * Return: non-zero if the initialization failed.
 */
324
int intel_engines_init_mmio(struct drm_i915_private *dev_priv)
325
{
326
	struct intel_device_info *device_info = mkwrite_device_info(dev_priv);
327
	const unsigned int ring_mask = INTEL_INFO(dev_priv)->ring_mask;
328 329
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
330
	unsigned int mask = 0;
331
	unsigned int i;
332
	int err;
333

334 335
	WARN_ON(ring_mask == 0);
	WARN_ON(ring_mask &
336 337 338 339 340 341
		GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));

	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
		if (!HAS_ENGINE(dev_priv, i))
			continue;

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
		err = intel_engine_setup(dev_priv, i);
		if (err)
			goto cleanup;

		mask |= ENGINE_MASK(i);
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
	if (WARN_ON(mask != ring_mask))
		device_info->ring_mask = mask;

357 358 359 360 361 362
	/* We always presume we have at least RCS available for later probing */
	if (WARN_ON(!HAS_ENGINE(dev_priv, RCS))) {
		err = -ENODEV;
		goto cleanup;
	}

363 364
	device_info->num_rings = hweight32(mask);

365 366
	i915_check_and_clear_faults(dev_priv);

367 368 369 370 371 372 373 374 375
	return 0;

cleanup:
	for_each_engine(engine, dev_priv, id)
		kfree(engine);
	return err;
}

/**
376
 * intel_engines_init() - init the Engine Command Streamers
377 378 379 380 381 382 383 384
 * @dev_priv: i915 device private
 *
 * Return: non-zero if the initialization failed.
 */
int intel_engines_init(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id, err_id;
385
	int err;
386 387

	for_each_engine(engine, dev_priv, id) {
388 389
		const struct engine_class_info *class_info =
			&intel_engine_classes[engine->class];
390 391
		int (*init)(struct intel_engine_cs *engine);

392
		if (HAS_EXECLISTS(dev_priv))
393
			init = class_info->init_execlists;
394
		else
395
			init = class_info->init_legacy;
396 397 398 399 400 401

		err = -EINVAL;
		err_id = id;

		if (GEM_WARN_ON(!init))
			goto cleanup;
402

403
		err = init(engine);
404
		if (err)
405 406
			goto cleanup;

407
		GEM_BUG_ON(!engine->submit_request);
408 409 410 411 412
	}

	return 0;

cleanup:
413
	for_each_engine(engine, dev_priv, id) {
414
		if (id >= err_id) {
415
			kfree(engine);
416 417
			dev_priv->engine[id] = NULL;
		} else {
418
			dev_priv->gt.cleanup_engine(engine);
419
		}
420
	}
421
	return err;
422 423
}

424
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno)
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
{
	struct drm_i915_private *dev_priv = engine->i915;

	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
		if (HAS_VEBOX(dev_priv))
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
	}

	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
444
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
445

446 447 448 449
	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	intel_engine_wakeup(engine);
450 451

	GEM_BUG_ON(intel_engine_get_seqno(engine) != seqno);
452 453
}

454
static void intel_engine_init_timeline(struct intel_engine_cs *engine)
455
{
456
	engine->timeline = &engine->i915->gt.global_timeline.engine[engine->id];
457 458
}

459 460 461 462 463
static void intel_engine_init_batch_pool(struct intel_engine_cs *engine)
{
	i915_gem_batch_pool_init(&engine->batch_pool, engine);
}

464 465 466 467 468 469 470 471 472 473
static bool csb_force_mmio(struct drm_i915_private *i915)
{
	/*
	 * IOMMU adds unpredictable latency causing the CSB write (from the
	 * GPU into the HWSP) to only be visible some time after the interrupt
	 * (missed breadcrumb syndrome).
	 */
	if (intel_vtd_active())
		return true;

474 475 476 477
	/* Older GVT emulation depends upon intercepting CSB mmio */
	if (intel_vgpu_active(i915) && !intel_vgpu_has_hwsp_emulation(i915))
		return true;

478 479 480
	if (IS_CANNONLAKE(i915))
		return true;

481 482 483 484 485 486 487 488 489
	return false;
}

static void intel_engine_init_execlist(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	execlists->csb_use_mmio = csb_force_mmio(engine->i915);

490 491 492 493
	execlists->port_mask = 1;
	BUILD_BUG_ON_NOT_POWER_OF_2(execlists_num_ports(execlists));
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

494
	execlists->queue_priority = INT_MIN;
495 496 497 498
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
}

499 500 501 502 503 504 505 506 507 508 509
/**
 * intel_engines_setup_common - setup engine state not requiring hw access
 * @engine: Engine to setup.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
void intel_engine_setup_common(struct intel_engine_cs *engine)
{
510
	intel_engine_init_execlist(engine);
511
	intel_engine_init_timeline(engine);
512
	intel_engine_init_hangcheck(engine);
513
	intel_engine_init_batch_pool(engine);
514
	intel_engine_init_cmd_parser(engine);
515 516
}

517 518 519 520 521 522 523 524
int intel_engine_create_scratch(struct intel_engine_cs *engine, int size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	WARN_ON(engine->scratch);

525
	obj = i915_gem_object_create_stolen(engine->i915, size);
526
	if (!obj)
527
		obj = i915_gem_object_create_internal(engine->i915, size);
528 529 530 531 532
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

533
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
534 535 536 537 538 539 540 541 542 543
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 4096, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	engine->scratch = vma;
544 545
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
546 547 548 549 550 551 552 553 554
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

static void intel_engine_cleanup_scratch(struct intel_engine_cs *engine)
{
555
	i915_vma_unpin_and_release(&engine->scratch);
556 557
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (!dev_priv->status_page_dmah)
		return;

	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
	engine->status_page.page_addr = NULL;
}

static void cleanup_status_page(struct intel_engine_cs *engine)
{
	struct i915_vma *vma;
	struct drm_i915_gem_object *obj;

	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;

	obj = vma->obj;

	i915_vma_unpin(vma);
	i915_vma_close(vma);

	i915_gem_object_unpin_map(obj);
	__i915_gem_object_release_unless_active(obj);
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
	void *vaddr;
	int ret;

	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;

	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
624 625
	else
		flags |= PIN_HIGH;
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_unpin;
	}

	engine->status_page.vma = vma;
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
	engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);

	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
	return 0;

err_unpin:
	i915_vma_unpin(vma);
err:
	i915_gem_object_put(obj);
	return ret;
}

static int init_phys_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	GEM_BUG_ON(engine->id != RCS);

	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;

	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);

	return 0;
}

668 669 670 671 672 673 674 675 676 677 678 679 680
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
681
	struct intel_ring *ring;
682 683
	int ret;

684 685
	engine->set_default_submission(engine);

686 687 688 689 690 691 692
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
693 694 695
	ring = engine->context_pin(engine, engine->i915->kernel_context);
	if (IS_ERR(ring))
		return PTR_ERR(ring);
696

697 698 699 700
	/*
	 * Similarly the preempt context must always be available so that
	 * we can interrupt the engine at any time.
	 */
701
	if (engine->i915->preempt_context) {
702 703 704 705 706 707 708 709
		ring = engine->context_pin(engine,
					   engine->i915->preempt_context);
		if (IS_ERR(ring)) {
			ret = PTR_ERR(ring);
			goto err_unpin_kernel;
		}
	}

710 711
	ret = intel_engine_init_breadcrumbs(engine);
	if (ret)
712
		goto err_unpin_preempt;
713

714 715 716 717 718
	if (HWS_NEEDS_PHYSICAL(engine->i915))
		ret = init_phys_status_page(engine);
	else
		ret = init_status_page(engine);
	if (ret)
719
		goto err_breadcrumbs;
720

721
	return 0;
722

723 724
err_breadcrumbs:
	intel_engine_fini_breadcrumbs(engine);
725
err_unpin_preempt:
726
	if (engine->i915->preempt_context)
727 728
		engine->context_unpin(engine, engine->i915->preempt_context);
err_unpin_kernel:
729 730
	engine->context_unpin(engine, engine->i915->kernel_context);
	return ret;
731
}
732 733 734 735 736 737 738 739 740 741

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
742 743
	intel_engine_cleanup_scratch(engine);

744 745 746 747 748
	if (HWS_NEEDS_PHYSICAL(engine->i915))
		cleanup_phys_status_page(engine);
	else
		cleanup_status_page(engine);

749
	intel_engine_fini_breadcrumbs(engine);
750
	intel_engine_cleanup_cmd_parser(engine);
751
	i915_gem_batch_pool_fini(&engine->batch_pool);
752

753 754 755
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

756
	if (engine->i915->preempt_context)
757
		engine->context_unpin(engine, engine->i915->preempt_context);
758
	engine->context_unpin(engine, engine->i915->kernel_context);
759
}
760

761
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 acthd;

	if (INTEL_GEN(dev_priv) >= 8)
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
	else
		acthd = I915_READ(ACTHD);

	return acthd;
}

777
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
778 779 780 781 782 783 784 785 786 787 788 789
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 bbaddr;

	if (INTEL_GEN(dev_priv) >= 8)
		bbaddr = I915_READ64_2x32(RING_BBADDR(engine->mmio_base),
					  RING_BBADDR_UDW(engine->mmio_base));
	else
		bbaddr = I915_READ(RING_BBADDR(engine->mmio_base));

	return bbaddr;
}
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805

const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

static inline uint32_t
read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
		  int subslice, i915_reg_t reg)
{
806 807
	uint32_t mcr_slice_subslice_mask;
	uint32_t mcr_slice_subslice_select;
808 809 810 811
	uint32_t mcr;
	uint32_t ret;
	enum forcewake_domains fw_domains;

812 813 814 815 816 817 818 819 820 821 822 823
	if (INTEL_GEN(dev_priv) >= 11) {
		mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK |
					  GEN11_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) |
					    GEN11_MCR_SUBSLICE(subslice);
	} else {
		mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK |
					  GEN8_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) |
					    GEN8_MCR_SUBSLICE(subslice);
	}

824 825 826 827 828 829 830 831 832 833 834 835 836 837
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg,
						    FW_REG_READ);
	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

	spin_lock_irq(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

	mcr = I915_READ_FW(GEN8_MCR_SELECTOR);
	/*
	 * The HW expects the slice and sublice selectors to be reset to 0
	 * after reading out the registers.
	 */
838 839 840
	WARN_ON_ONCE(mcr & mcr_slice_subslice_mask);
	mcr &= ~mcr_slice_subslice_mask;
	mcr |= mcr_slice_subslice_select;
841 842 843 844
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	ret = I915_READ_FW(reg);

845
	mcr &= ~mcr_slice_subslice_mask;
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irq(&dev_priv->uncore.lock);

	return ret;
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
	struct drm_i915_private *dev_priv = engine->i915;
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

	switch (INTEL_GEN(dev_priv)) {
	default:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
			instdone->sampler[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		instdone->sampler[0][0] = I915_READ(GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] = I915_READ(GEN7_ROW_INSTDONE);

		break;
	case 6:
	case 5:
	case 4:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id == RCS)
			/* HACK: Using the wrong struct member */
			instdone->slice_common = I915_READ(GEN4_INSTDONE1);
		break;
	case 3:
	case 2:
		instdone->instdone = I915_READ(GEN2_INSTDONE);
		break;
	}
}
908

909 910 911 912 913
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	bool idle = true;

914 915 916
	/* If the whole device is asleep, the engine must be idle */
	if (!intel_runtime_pm_get_if_in_use(dev_priv))
		return true;
917

918 919 920 921 922
	/* First check that no commands are left in the ring */
	if ((I915_READ_HEAD(engine) & HEAD_ADDR) !=
	    (I915_READ_TAIL(engine) & TAIL_ADDR))
		idle = false;

923 924 925 926 927 928 929 930 931
	/* No bit for gen2, so assume the CS parser is idle */
	if (INTEL_GEN(dev_priv) > 2 && !(I915_READ_MODE(engine) & MODE_IDLE))
		idle = false;

	intel_runtime_pm_put(dev_priv);

	return idle;
}

932 933 934 935 936 937 938 939 940 941 942
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

943 944 945 946
	/* More white lies, if wedged, hw state is inconsistent */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return true;

947 948 949 950 951
	/* Any inflight/incomplete requests? */
	if (!i915_seqno_passed(intel_engine_get_seqno(engine),
			       intel_engine_last_submit(engine)))
		return false;

952 953 954
	if (I915_SELFTEST_ONLY(engine->breadcrumbs.mock))
		return true;

955 956
	/* Waiting to drain ELSP? */
	if (READ_ONCE(engine->execlists.active))
957 958
		return false;

959
	/* ELSP is empty, but there are ready requests? */
960
	if (READ_ONCE(engine->execlists.first))
961 962
		return false;

963
	/* Ring stopped? */
964
	if (!ring_is_idle(engine))
965 966 967 968 969
		return false;

	return true;
}

970 971 972 973 974
bool intel_engines_are_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

975 976
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
977 978 979 980 981
	 * report that it is still busy, even though we have stopped using it.
	 */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return true;

982 983 984 985 986 987 988 989
	for_each_engine(engine, dev_priv, id) {
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

990 991 992 993 994 995 996 997
/**
 * intel_engine_has_kernel_context:
 * @engine: the engine
 *
 * Returns true if the last context to be executed on this engine, or has been
 * executed if the engine is already idle, is the kernel context
 * (#i915.kernel_context).
 */
998 999
bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine)
{
1000 1001
	const struct i915_gem_context * const kernel_context =
		engine->i915->kernel_context;
1002
	struct i915_request *rq;
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

	/*
	 * Check the last context seen by the engine. If active, it will be
	 * the last request that remains in the timeline. When idle, it is
	 * the last executed context as tracked by retirement.
	 */
	rq = __i915_gem_active_peek(&engine->timeline->last_request);
	if (rq)
		return rq->ctx == kernel_context;
	else
		return engine->last_retired_context == kernel_context;
1016 1017
}

1018 1019 1020 1021 1022 1023 1024 1025 1026
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		engine->set_default_submission(engine);
}

1027 1028 1029 1030 1031 1032 1033 1034 1035
/**
 * intel_engines_park: called when the GT is transitioning from busy->idle
 * @i915: the i915 device
 *
 * The GT is now idle and about to go to sleep (maybe never to wake again?).
 * Time for us to tidy and put away our toys (release resources back to the
 * system).
 */
void intel_engines_park(struct drm_i915_private *i915)
1036 1037 1038 1039 1040
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
1041 1042
		/* Flush the residual irq tasklets first. */
		intel_engine_disarm_breadcrumbs(engine);
1043
		tasklet_kill(&engine->execlists.tasklet);
1044

1045 1046 1047 1048 1049
		/*
		 * We are committed now to parking the engines, make sure there
		 * will be no more interrupts arriving later and the engines
		 * are truly idle.
		 */
1050
		if (wait_for(intel_engine_is_idle(engine), 10)) {
1051 1052
			struct drm_printer p = drm_debug_printer(__func__);

1053 1054 1055
			dev_err(i915->drm.dev,
				"%s is not idle before parking\n",
				engine->name);
1056
			intel_engine_dump(engine, &p, NULL);
1057 1058
		}

1059 1060 1061
		/* Must be reset upon idling, or we may miss the busy wakeup. */
		GEM_BUG_ON(engine->execlists.queue_priority != INT_MIN);

1062 1063 1064 1065
		if (engine->park)
			engine->park(engine);

		i915_gem_batch_pool_fini(&engine->batch_pool);
1066
		engine->execlists.no_priolist = false;
1067 1068 1069
	}
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
/**
 * intel_engines_unpark: called when the GT is transitioning from idle->busy
 * @i915: the i915 device
 *
 * The GT was idle and now about to fire up with some new user requests.
 */
void intel_engines_unpark(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
		if (engine->unpark)
			engine->unpark(engine);
	}
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned int which;

	which = 0;
	for_each_engine(engine, i915, id)
		if (engine->default_state)
			which |= BIT(engine->uabi_class);

	return which;
}

1116
static void print_request(struct drm_printer *m,
1117
			  struct i915_request *rq,
1118 1119
			  const char *prefix)
{
1120 1121
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);

1122
	drm_printf(m, "%s%x%s [%llx:%x] prio=%d @ %dms: %s\n", prefix,
1123
		   rq->global_seqno,
1124
		   i915_request_completed(rq) ? "!" : "",
1125
		   rq->fence.context, rq->fence.seqno,
1126
		   rq->sched.priority,
1127
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1128
		   name);
1129 1130
}

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
		drm_printf(m, "%08zx %s\n", pos, line);

		prev = buf + pos;
		skip = false;
	}
}

1160 1161
static void intel_engine_print_registers(const struct intel_engine_cs *engine,
					 struct drm_printer *m)
1162 1163
{
	struct drm_i915_private *dev_priv = engine->i915;
1164 1165
	const struct intel_engine_execlists * const execlists =
		&engine->execlists;
1166 1167
	u64 addr;

1168 1169 1170 1171 1172 1173
	drm_printf(m, "\tRING_START: 0x%08x\n",
		   I915_READ(RING_START(engine->mmio_base)));
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
		   I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR);
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
		   I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR);
1174
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1175
		   I915_READ(RING_CTL(engine->mmio_base)),
1176 1177 1178 1179 1180 1181
		   I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
			   I915_READ(RING_MI_MODE(engine->mmio_base)),
			   I915_READ(RING_MI_MODE(engine->mmio_base)) & (MODE_IDLE) ? " [idle]" : "");
	}
1182 1183 1184 1185 1186

	if (INTEL_GEN(dev_priv) >= 6) {
		drm_printf(m, "\tRING_IMR: %08x\n", I915_READ_IMR(engine));
	}

1187
	if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
1188 1189 1190 1191 1192 1193 1194 1195
		drm_printf(m, "\tSYNC_0: 0x%08x\n",
			   I915_READ(RING_SYNC_0(engine->mmio_base)));
		drm_printf(m, "\tSYNC_1: 0x%08x\n",
			   I915_READ(RING_SYNC_1(engine->mmio_base)));
		if (HAS_VEBOX(dev_priv))
			drm_printf(m, "\tSYNC_2: 0x%08x\n",
				   I915_READ(RING_SYNC_2(engine->mmio_base)));
	}
1196 1197 1198 1199 1200 1201 1202

	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	if (INTEL_GEN(dev_priv) >= 8)
		addr = I915_READ64_2x32(RING_DMA_FADD(engine->mmio_base),
					RING_DMA_FADD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		addr = I915_READ(RING_DMA_FADD(engine->mmio_base));
	else
		addr = I915_READ(DMA_FADD_I8XX);
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
			   I915_READ(RING_IPEIR(engine->mmio_base)));
		drm_printf(m, "\tIPEHR: 0x%08x\n",
			   I915_READ(RING_IPEHR(engine->mmio_base)));
	} else {
		drm_printf(m, "\tIPEIR: 0x%08x\n", I915_READ(IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", I915_READ(IPEHR));
	}
1221

1222
	if (HAS_EXECLISTS(dev_priv)) {
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
		const u32 *hws = &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
		u32 ptr, read, write;
		unsigned int idx;

		drm_printf(m, "\tExeclist status: 0x%08x %08x\n",
			   I915_READ(RING_EXECLIST_STATUS_LO(engine)),
			   I915_READ(RING_EXECLIST_STATUS_HI(engine)));

		ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
		read = GEN8_CSB_READ_PTR(ptr);
		write = GEN8_CSB_WRITE_PTR(ptr);
1234
		drm_printf(m, "\tExeclist CSB read %d [%d cached], write %d [%d from hws], interrupt posted? %s, tasklet queued? %s (%s)\n",
1235 1236 1237 1238
			   read, execlists->csb_head,
			   write,
			   intel_read_status_page(engine, intel_hws_csb_write_index(engine->i915)),
			   yesno(test_bit(ENGINE_IRQ_EXECLIST,
1239 1240 1241 1242
					  &engine->irq_posted)),
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
		if (read >= GEN8_CSB_ENTRIES)
			read = 0;
		if (write >= GEN8_CSB_ENTRIES)
			write = 0;
		if (read > write)
			write += GEN8_CSB_ENTRIES;
		while (read < write) {
			idx = ++read % GEN8_CSB_ENTRIES;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x [0x%08x in hwsp], context: %d [%d in hwsp]\n",
				   idx,
				   I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
				   hws[idx * 2],
				   I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)),
				   hws[idx * 2 + 1]);
		}

		rcu_read_lock();
		for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
1261
			struct i915_request *rq;
1262 1263 1264 1265
			unsigned int count;

			rq = port_unpack(&execlists->port[idx], &count);
			if (rq) {
1266 1267
				char hdr[80];

1268 1269 1270 1271
				snprintf(hdr, sizeof(hdr),
					 "\t\tELSP[%d] count=%d, rq: ",
					 idx, count);
				print_request(m, rq, hdr);
1272
			} else {
1273
				drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1274 1275
			}
		}
1276
		drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1277 1278 1279 1280 1281 1282 1283 1284 1285
		rcu_read_unlock();
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE(engine)));
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
			   I915_READ(RING_PP_DIR_DCLV(engine)));
	}
1286 1287 1288 1289 1290 1291 1292 1293 1294
}

void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct intel_breadcrumbs * const b = &engine->breadcrumbs;
	const struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1295
	struct i915_request *rq;
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	struct rb_node *rb;

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

	if (i915_terminally_wedged(&engine->i915->gpu_error))
		drm_printf(m, "*** WEDGED ***\n");

	drm_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms], inflight %d\n",
		   intel_engine_get_seqno(engine),
		   intel_engine_last_submit(engine),
		   engine->hangcheck.seqno,
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp),
		   engine->timeline->inflight_seqnos);
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	rcu_read_lock();

	drm_printf(m, "\tRequests:\n");

	rq = list_first_entry(&engine->timeline->requests,
1324
			      struct i915_request, link);
1325 1326 1327 1328
	if (&rq->link != &engine->timeline->requests)
		print_request(m, rq, "\t\tfirst  ");

	rq = list_last_entry(&engine->timeline->requests,
1329
			     struct i915_request, link);
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	if (&rq->link != &engine->timeline->requests)
		print_request(m, rq, "\t\tlast   ");

	rq = i915_gem_find_active_request(engine);
	if (rq) {
		print_request(m, rq, "\t\tactive ");
		drm_printf(m,
			   "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
			   rq->head, rq->postfix, rq->tail,
			   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
			   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1341
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1342
			   i915_ggtt_offset(rq->ring->vma));
1343
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1344
			   rq->ring->head);
1345
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1346
			   rq->ring->tail);
1347 1348 1349 1350
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	}

	rcu_read_unlock();

	if (intel_runtime_pm_get_if_in_use(engine->i915)) {
		intel_engine_print_registers(engine, m);
		intel_runtime_pm_put(engine->i915);
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1361

1362 1363 1364
	spin_lock_irq(&engine->timeline->lock);
	list_for_each_entry(rq, &engine->timeline->requests, link)
		print_request(m, rq, "\t\tE ");
1365
	drm_printf(m, "\t\tQueue priority: %d\n", execlists->queue_priority);
1366 1367 1368 1369
	for (rb = execlists->first; rb; rb = rb_next(rb)) {
		struct i915_priolist *p =
			rb_entry(rb, typeof(*p), node);

1370
		list_for_each_entry(rq, &p->requests, sched.link)
1371 1372 1373 1374
			print_request(m, rq, "\t\tQ ");
	}
	spin_unlock_irq(&engine->timeline->lock);

1375 1376 1377 1378 1379 1380 1381 1382 1383
	spin_lock_irq(&b->rb_lock);
	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
		struct intel_wait *w = rb_entry(rb, typeof(*w), node);

		drm_printf(m, "\t%s [%d] waiting for %x\n",
			   w->tsk->comm, w->tsk->pid, w->seqno);
	}
	spin_unlock_irq(&b->rb_lock);

1384 1385 1386 1387 1388 1389
	drm_printf(m, "IRQ? 0x%lx (breadcrumbs? %s) (execlists? %s)\n",
		   engine->irq_posted,
		   yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
				  &engine->irq_posted)),
		   yesno(test_bit(ENGINE_IRQ_EXECLIST,
				  &engine->irq_posted)));
1390 1391 1392 1393

	drm_printf(m, "HWSP:\n");
	hexdump(m, engine->status_page.page_addr, PAGE_SIZE);

1394
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1395 1396
}

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
static u8 user_class_map[] = {
	[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
	[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
	[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
	[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};

struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
	if (class >= ARRAY_SIZE(user_class_map))
		return NULL;

	class = user_class_map[class];

	GEM_BUG_ON(class > MAX_ENGINE_CLASS);

	if (instance > MAX_ENGINE_INSTANCE)
		return NULL;

	return i915->engine_class[class][instance];
}

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1430
	struct intel_engine_execlists *execlists = &engine->execlists;
1431
	unsigned long flags;
1432
	int err = 0;
1433

1434
	if (!intel_engine_supports_stats(engine))
1435 1436
		return -ENODEV;

1437
	tasklet_disable(&execlists->tasklet);
1438
	spin_lock_irqsave(&engine->stats.lock, flags);
1439 1440 1441 1442 1443 1444

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1445 1446 1447 1448
	if (engine->stats.enabled++ == 0) {
		const struct execlist_port *port = execlists->port;
		unsigned int num_ports = execlists_num_ports(execlists);

1449
		engine->stats.enabled_at = ktime_get();
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

		/* XXX submission method oblivious? */
		while (num_ports-- && port_isset(port)) {
			engine->stats.active++;
			port++;
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1460

1461
unlock:
1462
	spin_unlock_irqrestore(&engine->stats.lock, flags);
1463
	tasklet_enable(&execlists->tasklet);
1464

1465
	return err;
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total;
	unsigned long flags;

	spin_lock_irqsave(&engine->stats.lock, flags);
	total = __intel_engine_get_busy_time(engine);
	spin_unlock_irqrestore(&engine->stats.lock, flags);

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1511
	if (!intel_engine_supports_stats(engine))
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
		return;

	spin_lock_irqsave(&engine->stats.lock, flags);
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
	spin_unlock_irqrestore(&engine->stats.lock, flags);
}

1523 1524
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_engine.c"
1525
#include "selftests/intel_engine_cs.c"
1526
#endif