intel_engine_cs.c 56.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27
#include "i915_drv.h"
28
#include "i915_vgpu.h"
29 30 31
#include "intel_ringbuffer.h"
#include "intel_lrc.h"

32 33 34 35 36 37 38 39 40
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

41
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
42 43
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
44
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
45
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
46 47 48

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

49
struct engine_class_info {
50
	const char *name;
51 52
	int (*init_legacy)(struct intel_engine_cs *engine);
	int (*init_execlists)(struct intel_engine_cs *engine);
53 54

	u8 uabi_class;
55 56 57 58 59 60 61
};

static const struct engine_class_info intel_engine_classes[] = {
	[RENDER_CLASS] = {
		.name = "rcs",
		.init_execlists = logical_render_ring_init,
		.init_legacy = intel_init_render_ring_buffer,
62
		.uabi_class = I915_ENGINE_CLASS_RENDER,
63 64 65 66 67
	},
	[COPY_ENGINE_CLASS] = {
		.name = "bcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_blt_ring_buffer,
68
		.uabi_class = I915_ENGINE_CLASS_COPY,
69 70 71 72 73
	},
	[VIDEO_DECODE_CLASS] = {
		.name = "vcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_bsd_ring_buffer,
74
		.uabi_class = I915_ENGINE_CLASS_VIDEO,
75 76 77 78 79
	},
	[VIDEO_ENHANCEMENT_CLASS] = {
		.name = "vecs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_vebox_ring_buffer,
80
		.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
81 82 83 84
	},
};

struct engine_info {
85
	unsigned int hw_id;
86
	unsigned int uabi_id;
87 88
	u8 class;
	u8 instance;
89 90
	u32 mmio_base;
	unsigned irq_shift;
91 92 93
};

static const struct engine_info intel_engines[] = {
94
	[RCS] = {
95
		.hw_id = RCS_HW,
96
		.uabi_id = I915_EXEC_RENDER,
97 98
		.class = RENDER_CLASS,
		.instance = 0,
99 100 101 102
		.mmio_base = RENDER_RING_BASE,
		.irq_shift = GEN8_RCS_IRQ_SHIFT,
	},
	[BCS] = {
103
		.hw_id = BCS_HW,
104
		.uabi_id = I915_EXEC_BLT,
105 106
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
107 108 109 110
		.mmio_base = BLT_RING_BASE,
		.irq_shift = GEN8_BCS_IRQ_SHIFT,
	},
	[VCS] = {
111
		.hw_id = VCS_HW,
112
		.uabi_id = I915_EXEC_BSD,
113 114
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
115 116 117 118
		.mmio_base = GEN6_BSD_RING_BASE,
		.irq_shift = GEN8_VCS1_IRQ_SHIFT,
	},
	[VCS2] = {
119
		.hw_id = VCS2_HW,
120
		.uabi_id = I915_EXEC_BSD,
121 122
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
123 124 125 126
		.mmio_base = GEN8_BSD2_RING_BASE,
		.irq_shift = GEN8_VCS2_IRQ_SHIFT,
	},
	[VECS] = {
127
		.hw_id = VECS_HW,
128
		.uabi_id = I915_EXEC_VEBOX,
129 130
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
131 132 133 134 135
		.mmio_base = VEBOX_RING_BASE,
		.irq_shift = GEN8_VECS_IRQ_SHIFT,
	},
};

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/**
 * ___intel_engine_context_size() - return the size of the context for an engine
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
static u32
__intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
162
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
163 164
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
165
		case 10:
O
Oscar Mateo 已提交
166
			return GEN10_LR_CONTEXT_RENDER_SIZE;
167 168 169
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
170
			return GEN8_LR_CONTEXT_RENDER_SIZE;
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
		case 4:
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

202
static int
203 204 205 206
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id)
{
	const struct engine_info *info = &intel_engines[id];
207
	const struct engine_class_info *class_info;
208 209
	struct intel_engine_cs *engine;

210 211 212
	GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));
	class_info = &intel_engine_classes[info->class];

213 214 215 216 217 218 219 220 221
	if (GEM_WARN_ON(info->class > MAX_ENGINE_CLASS))
		return -EINVAL;

	if (GEM_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
		return -EINVAL;

	if (GEM_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
		return -EINVAL;

222 223 224 225
	GEM_BUG_ON(dev_priv->engine[id]);
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
226 227 228

	engine->id = id;
	engine->i915 = dev_priv;
229
	WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s%u",
230 231
			 class_info->name, info->instance) >=
		sizeof(engine->name));
232
	engine->hw_id = engine->guc_id = info->hw_id;
233 234
	engine->mmio_base = info->mmio_base;
	engine->irq_shift = info->irq_shift;
235 236
	engine->class = info->class;
	engine->instance = info->instance;
237

238 239 240
	engine->uabi_id = info->uabi_id;
	engine->uabi_class = class_info->uabi_class;

241 242 243 244 245
	engine->context_size = __intel_engine_context_size(dev_priv,
							   engine->class);
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;

246 247 248
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

249 250
	spin_lock_init(&engine->stats.lock);

251 252
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

253
	dev_priv->engine_class[info->class][info->instance] = engine;
254 255
	dev_priv->engine[id] = engine;
	return 0;
256 257 258
}

/**
259
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
260
 * @dev_priv: i915 device private
261 262 263
 *
 * Return: non-zero if the initialization failed.
 */
264
int intel_engines_init_mmio(struct drm_i915_private *dev_priv)
265
{
266
	struct intel_device_info *device_info = mkwrite_device_info(dev_priv);
267
	const unsigned int ring_mask = INTEL_INFO(dev_priv)->ring_mask;
268 269
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
270
	unsigned int mask = 0;
271
	unsigned int i;
272
	int err;
273

274 275
	WARN_ON(ring_mask == 0);
	WARN_ON(ring_mask &
276 277 278 279 280 281
		GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));

	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
		if (!HAS_ENGINE(dev_priv, i))
			continue;

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
		err = intel_engine_setup(dev_priv, i);
		if (err)
			goto cleanup;

		mask |= ENGINE_MASK(i);
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
	if (WARN_ON(mask != ring_mask))
		device_info->ring_mask = mask;

297 298 299 300 301 302
	/* We always presume we have at least RCS available for later probing */
	if (WARN_ON(!HAS_ENGINE(dev_priv, RCS))) {
		err = -ENODEV;
		goto cleanup;
	}

303 304
	device_info->num_rings = hweight32(mask);

305 306
	i915_check_and_clear_faults(dev_priv);

307 308 309 310 311 312 313 314 315
	return 0;

cleanup:
	for_each_engine(engine, dev_priv, id)
		kfree(engine);
	return err;
}

/**
316
 * intel_engines_init() - init the Engine Command Streamers
317 318 319 320 321 322 323 324
 * @dev_priv: i915 device private
 *
 * Return: non-zero if the initialization failed.
 */
int intel_engines_init(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id, err_id;
325
	int err;
326 327

	for_each_engine(engine, dev_priv, id) {
328 329
		const struct engine_class_info *class_info =
			&intel_engine_classes[engine->class];
330 331
		int (*init)(struct intel_engine_cs *engine);

332
		if (HAS_EXECLISTS(dev_priv))
333
			init = class_info->init_execlists;
334
		else
335
			init = class_info->init_legacy;
336 337 338 339 340 341

		err = -EINVAL;
		err_id = id;

		if (GEM_WARN_ON(!init))
			goto cleanup;
342

343
		err = init(engine);
344
		if (err)
345 346
			goto cleanup;

347
		GEM_BUG_ON(!engine->submit_request);
348 349 350 351 352
	}

	return 0;

cleanup:
353
	for_each_engine(engine, dev_priv, id) {
354
		if (id >= err_id) {
355
			kfree(engine);
356 357
			dev_priv->engine[id] = NULL;
		} else {
358
			dev_priv->gt.cleanup_engine(engine);
359
		}
360
	}
361
	return err;
362 363
}

364
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno)
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
{
	struct drm_i915_private *dev_priv = engine->i915;

	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
		if (HAS_VEBOX(dev_priv))
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
	}

	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
384
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
385

386 387 388 389
	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	intel_engine_wakeup(engine);
390 391

	GEM_BUG_ON(intel_engine_get_seqno(engine) != seqno);
392 393
}

394
static void intel_engine_init_timeline(struct intel_engine_cs *engine)
395
{
396
	engine->timeline = &engine->i915->gt.global_timeline.engine[engine->id];
397 398
}

399 400 401 402 403 404 405 406 407 408
static bool csb_force_mmio(struct drm_i915_private *i915)
{
	/*
	 * IOMMU adds unpredictable latency causing the CSB write (from the
	 * GPU into the HWSP) to only be visible some time after the interrupt
	 * (missed breadcrumb syndrome).
	 */
	if (intel_vtd_active())
		return true;

409 410 411 412
	/* Older GVT emulation depends upon intercepting CSB mmio */
	if (intel_vgpu_active(i915) && !intel_vgpu_has_hwsp_emulation(i915))
		return true;

413 414 415 416 417 418 419 420 421
	return false;
}

static void intel_engine_init_execlist(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	execlists->csb_use_mmio = csb_force_mmio(engine->i915);

422 423 424 425
	execlists->port_mask = 1;
	BUILD_BUG_ON_NOT_POWER_OF_2(execlists_num_ports(execlists));
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

426 427 428 429
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
}

430 431 432 433 434 435 436 437 438 439 440
/**
 * intel_engines_setup_common - setup engine state not requiring hw access
 * @engine: Engine to setup.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
void intel_engine_setup_common(struct intel_engine_cs *engine)
{
441
	intel_engine_init_execlist(engine);
442

443
	intel_engine_init_timeline(engine);
444
	intel_engine_init_hangcheck(engine);
445
	i915_gem_batch_pool_init(engine, &engine->batch_pool);
446 447

	intel_engine_init_cmd_parser(engine);
448 449
}

450 451 452 453 454 455 456 457
int intel_engine_create_scratch(struct intel_engine_cs *engine, int size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	WARN_ON(engine->scratch);

458
	obj = i915_gem_object_create_stolen(engine->i915, size);
459
	if (!obj)
460
		obj = i915_gem_object_create_internal(engine->i915, size);
461 462 463 464 465
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

466
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
467 468 469 470 471 472 473 474 475 476
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 4096, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	engine->scratch = vma;
477 478
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
479 480 481 482 483 484 485 486 487
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

static void intel_engine_cleanup_scratch(struct intel_engine_cs *engine)
{
488
	i915_vma_unpin_and_release(&engine->scratch);
489 490
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (!dev_priv->status_page_dmah)
		return;

	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
	engine->status_page.page_addr = NULL;
}

static void cleanup_status_page(struct intel_engine_cs *engine)
{
	struct i915_vma *vma;
	struct drm_i915_gem_object *obj;

	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;

	obj = vma->obj;

	i915_vma_unpin(vma);
	i915_vma_close(vma);

	i915_gem_object_unpin_map(obj);
	__i915_gem_object_release_unless_active(obj);
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
	void *vaddr;
	int ret;

	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;

	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
557 558
	else
		flags |= PIN_HIGH;
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_unpin;
	}

	engine->status_page.vma = vma;
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
	engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);

	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
	return 0;

err_unpin:
	i915_vma_unpin(vma);
err:
	i915_gem_object_put(obj);
	return ret;
}

static int init_phys_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	GEM_BUG_ON(engine->id != RCS);

	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;

	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);

	return 0;
}

601 602 603 604 605 606 607 608 609 610 611 612 613
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
614
	struct intel_ring *ring;
615 616
	int ret;

617 618
	engine->set_default_submission(engine);

619 620 621 622 623 624 625
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
626 627 628
	ring = engine->context_pin(engine, engine->i915->kernel_context);
	if (IS_ERR(ring))
		return PTR_ERR(ring);
629

630 631 632 633
	/*
	 * Similarly the preempt context must always be available so that
	 * we can interrupt the engine at any time.
	 */
634
	if (engine->i915->preempt_context) {
635 636 637 638 639 640 641 642
		ring = engine->context_pin(engine,
					   engine->i915->preempt_context);
		if (IS_ERR(ring)) {
			ret = PTR_ERR(ring);
			goto err_unpin_kernel;
		}
	}

643 644
	ret = intel_engine_init_breadcrumbs(engine);
	if (ret)
645
		goto err_unpin_preempt;
646

647 648 649 650 651
	if (HWS_NEEDS_PHYSICAL(engine->i915))
		ret = init_phys_status_page(engine);
	else
		ret = init_status_page(engine);
	if (ret)
652
		goto err_breadcrumbs;
653

654
	return 0;
655

656 657
err_breadcrumbs:
	intel_engine_fini_breadcrumbs(engine);
658
err_unpin_preempt:
659
	if (engine->i915->preempt_context)
660 661
		engine->context_unpin(engine, engine->i915->preempt_context);
err_unpin_kernel:
662 663
	engine->context_unpin(engine, engine->i915->kernel_context);
	return ret;
664
}
665 666 667 668 669 670 671 672 673 674

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
675 676
	intel_engine_cleanup_scratch(engine);

677 678 679 680 681
	if (HWS_NEEDS_PHYSICAL(engine->i915))
		cleanup_phys_status_page(engine);
	else
		cleanup_status_page(engine);

682
	intel_engine_fini_breadcrumbs(engine);
683
	intel_engine_cleanup_cmd_parser(engine);
684
	i915_gem_batch_pool_fini(&engine->batch_pool);
685

686 687 688
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

689
	if (engine->i915->preempt_context)
690
		engine->context_unpin(engine, engine->i915->preempt_context);
691
	engine->context_unpin(engine, engine->i915->kernel_context);
692
}
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722

u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 acthd;

	if (INTEL_GEN(dev_priv) >= 8)
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
	else
		acthd = I915_READ(ACTHD);

	return acthd;
}

u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 bbaddr;

	if (INTEL_GEN(dev_priv) >= 8)
		bbaddr = I915_READ64_2x32(RING_BBADDR(engine->mmio_base),
					  RING_BBADDR_UDW(engine->mmio_base));
	else
		bbaddr = I915_READ(RING_BBADDR(engine->mmio_base));

	return bbaddr;
}
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

static inline uint32_t
read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
		  int subslice, i915_reg_t reg)
{
	uint32_t mcr;
	uint32_t ret;
	enum forcewake_domains fw_domains;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg,
						    FW_REG_READ);
	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

	spin_lock_irq(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

	mcr = I915_READ_FW(GEN8_MCR_SELECTOR);
	/*
	 * The HW expects the slice and sublice selectors to be reset to 0
	 * after reading out the registers.
	 */
	WARN_ON_ONCE(mcr & (GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK));
	mcr &= ~(GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK);
	mcr |= GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	ret = I915_READ_FW(reg);

	mcr &= ~(GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK);
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irq(&dev_priv->uncore.lock);

	return ret;
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
	struct drm_i915_private *dev_priv = engine->i915;
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

	switch (INTEL_GEN(dev_priv)) {
	default:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
			instdone->sampler[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		instdone->sampler[0][0] = I915_READ(GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] = I915_READ(GEN7_ROW_INSTDONE);

		break;
	case 6:
	case 5:
	case 4:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id == RCS)
			/* HACK: Using the wrong struct member */
			instdone->slice_common = I915_READ(GEN4_INSTDONE1);
		break;
	case 3:
	case 2:
		instdone->instdone = I915_READ(GEN2_INSTDONE);
		break;
	}
}
827

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
static int wa_add(struct drm_i915_private *dev_priv,
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
}

#define WA_REG(addr, mask, val) do { \
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
		if (r) \
			return r; \
	} while (0)

#define WA_SET_BIT_MASKED(addr, mask) \
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))

#define WA_CLR_BIT_MASKED(addr, mask) \
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))

#define WA_SET_FIELD_MASKED(addr, mask, value) \
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))

static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_workarounds *wa = &dev_priv->workarounds;
	const uint32_t index = wa->hw_whitelist_count[engine->id];

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

871 872
	I915_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
		   i915_mmio_reg_offset(reg));
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
	wa->hw_whitelist_count[engine->id]++;

	return 0;
}

static int gen8_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);

	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
			  HDC_FORCE_NON_COHERENT);

	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

	return 0;
}

static int bdw_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

	ret = gen8_init_workarounds(engine);
	if (ret)
		return ret;

	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the related UCGTCL1 write in broadwell_init_clock_gating()
	 * to disable EUTC clock gating.
	 */
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);

	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);

	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));

	return 0;
}

static int chv_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

	ret = gen8_init_workarounds(engine);
	if (ret)
		return ret;

	/* WaDisableThreadStallDopClockGating:chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);

	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

	return 0;
}

static int gen9_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

984
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
985 986
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

987
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
988 989 990
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

R
Rodrigo Vivi 已提交
991 992 993 994
	/* WaDisableKillLogic:bxt,skl,kbl */
	if (!IS_COFFEELAKE(dev_priv))
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
			   ECOCHK_DIS_TLB);
995

996 997 998 999 1000 1001 1002 1003 1004 1005
	if (HAS_LLC(dev_priv)) {
		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
		 *
		 * Must match Display Engine. See
		 * WaCompressedResourceDisplayNewHashMode.
		 */
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN9_PBE_COMPRESSED_HASH_SELECTION);
		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
				  GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
1006 1007 1008 1009 1010

		I915_WRITE(MMCD_MISC_CTRL,
			   I915_READ(MMCD_MISC_CTRL) |
			   MMCD_PCLA |
			   MMCD_HOTSPOT_EN);
1011 1012
	}

1013 1014
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
1015 1016 1017 1018 1019
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  FLOW_CONTROL_ENABLE |
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
1020 1021 1022
	if (!IS_COFFEELAKE(dev_priv))
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
1023

1024 1025
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
1026
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
1027
			  GEN9_ENABLE_YV12_BUGFIX |
1028 1029
			  GEN9_ENABLE_GPGPU_PREEMPTION);

1030 1031
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
1032 1033 1034
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));

1035
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
1036 1037 1038
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

1039
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);

	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

1057
	/* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
1058 1059 1060
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

R
Rodrigo Vivi 已提交
1061 1062 1063
	/* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);
1064

1065
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
1066 1067
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
1068
	    IS_COFFEELAKE(dev_priv))
1069 1070 1071
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

1072
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
1073 1074
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

1075 1076 1077 1078 1079 1080 1081 1082 1083
	/* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
	if (IS_GEN9_LP(dev_priv)) {
		u32 val = I915_READ(GEN8_L3SQCREG1);

		val &= ~L3_PRIO_CREDITS_MASK;
		val |= L3_GENERAL_PRIO_CREDITS(62) | L3_HIGH_PRIO_CREDITS(2);
		I915_WRITE(GEN8_L3SQCREG1, val);
	}

1084
	/* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
1085 1086 1087
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	/*
	 * Supporting preemption with fine-granularity requires changes in the
	 * batch buffer programming. Since we can't break old userspace, we
	 * need to set our default preemption level to safe value. Userspace is
	 * still able to use more fine-grained preemption levels, since in
	 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
	 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
	 * not real HW workarounds, but merely a way to start using preemption
	 * while maintaining old contract with userspace.
	 */

	/* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
	WA_CLR_BIT_MASKED(GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);

	/* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
	WA_SET_FIELD_MASKED(GEN8_CS_CHICKEN1, GEN9_PREEMPT_GPGPU_LEVEL_MASK,
			    GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);

1106
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1107 1108 1109 1110
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

1111 1112 1113 1114
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
	I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
		   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	ret = wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1115 1116 1117
	if (ret)
		return ret;

1118
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
	if (ret)
		return ret;

	return 0;
}

static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
		if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

static int skl_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

	/* WaEnableGapsTsvCreditFix:skl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

	/* WaDisableGafsUnitClkGating:skl */
1181 1182
	I915_WRITE(GEN7_UCGCTL4, (I915_READ(GEN7_UCGCTL4) |
				  GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE));
1183 1184 1185

	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
1186 1187 1188
		I915_WRITE(GEN9_GAMT_ECO_REG_RW_IA,
			   (I915_READ(GEN9_GAMT_ECO_REG_RW_IA) |
			    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS));
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211

	/* WaDisableLSQCROPERFforOCL:skl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

	return skl_tune_iz_hashing(engine);
}

static int bxt_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

	/* WaDisablePooledEuLoadBalancingFix:bxt */
1212 1213
	I915_WRITE(FF_SLICE_CS_CHICKEN2,
		   _MASKED_BIT_ENABLE(GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE));
1214 1215

	/* WaToEnableHwFixForPushConstHWBug:bxt */
1216 1217
	WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
			  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1218 1219

	/* WaInPlaceDecompressionHang:bxt */
1220 1221 1222
	I915_WRITE(GEN9_GAMT_ECO_REG_RW_IA,
		   (I915_READ(GEN9_GAMT_ECO_REG_RW_IA) |
		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS));
1223 1224 1225 1226

	return 0;
}

1227 1228 1229 1230 1231
static int cnl_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1232
	/* WaDisableI2mCycleOnWRPort:cnl (pre-prod) */
1233
	if (IS_CNL_REVID(dev_priv, CNL_REVID_B0, CNL_REVID_B0))
1234 1235 1236
		I915_WRITE(GAMT_CHKN_BIT_REG,
			   (I915_READ(GAMT_CHKN_BIT_REG) |
			    GAMT_CHKN_DISABLE_I2M_CYCLE_ON_WR_PORT));
1237

1238 1239 1240 1241
	/* WaForceContextSaveRestoreNonCoherent:cnl */
	WA_SET_BIT_MASKED(CNL_HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT);

1242 1243 1244 1245
	/* WaThrottleEUPerfToAvoidTDBackPressure:cnl(pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_B0, CNL_REVID_B0))
		WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, THROTTLE_12_5);

1246 1247 1248 1249
	/* WaDisableReplayBufferBankArbitrationOptimization:cnl */
	WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
			  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1250 1251 1252 1253 1254
	/* WaDisableEnhancedSBEVertexCaching:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, 0, CNL_REVID_B0))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE);

1255
	/* WaInPlaceDecompressionHang:cnl */
1256 1257 1258
	I915_WRITE(GEN9_GAMT_ECO_REG_RW_IA,
		   (I915_READ(GEN9_GAMT_ECO_REG_RW_IA) |
		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS));
1259

1260
	/* WaPushConstantDereferenceHoldDisable:cnl */
1261
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2, PUSH_CONSTANT_DEREF_DISABLE);
1262

1263 1264 1265
	/* FtrEnableFastAnisoL1BankingFix: cnl */
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3, CNL_FAST_ANISO_L1_BANKING_FIX);

1266 1267 1268 1269 1270 1271 1272
	/* WaDisable3DMidCmdPreemption:cnl */
	WA_CLR_BIT_MASKED(GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);

	/* WaDisableGPGPUMidCmdPreemption:cnl */
	WA_SET_FIELD_MASKED(GEN8_CS_CHICKEN1, GEN9_PREEMPT_GPGPU_LEVEL_MASK,
			    GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);

1273
	/* WaEnablePreemptionGranularityControlByUMD:cnl */
1274 1275
	I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
		   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1276 1277 1278 1279
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
	if (ret)
		return ret;

1280 1281 1282
	/* WaDisableEarlyEOT:cnl */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, DISABLE_EARLY_EOT);

1283 1284 1285
	return 0;
}

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1301 1302 1303
		I915_WRITE(GAMT_CHKN_BIT_REG,
			   (I915_READ(GAMT_CHKN_BIT_REG) |
			    GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING));
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

	/* WaToEnableHwFixForPushConstHWBug:kbl */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

	/* WaDisableGafsUnitClkGating:kbl */
1316 1317
	I915_WRITE(GEN7_UCGCTL4, (I915_READ(GEN7_UCGCTL4) |
				  GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE));
1318 1319 1320 1321 1322 1323 1324

	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

	/* WaInPlaceDecompressionHang:kbl */
1325 1326 1327
	I915_WRITE(GEN9_GAMT_ECO_REG_RW_IA,
		   (I915_READ(GEN9_GAMT_ECO_REG_RW_IA) |
		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS));
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345

	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

	return 0;
}

static int glk_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1346 1347 1348 1349 1350
	/* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
	ret = wa_ring_whitelist_reg(engine, GEN9_SLICE_COMMON_ECO_CHICKEN1);
	if (ret)
		return ret;

1351 1352 1353 1354 1355 1356 1357
	/* WaToEnableHwFixForPushConstHWBug:glk */
	WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
			  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

	return 0;
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
static int cfl_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

	/* WaEnableGapsTsvCreditFix:cfl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

	/* WaToEnableHwFixForPushConstHWBug:cfl */
	WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
			  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

	/* WaDisableGafsUnitClkGating:cfl */
1376 1377
	I915_WRITE(GEN7_UCGCTL4, (I915_READ(GEN7_UCGCTL4) |
				  GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE));
1378 1379 1380 1381 1382 1383 1384

	/* WaDisableSbeCacheDispatchPortSharing:cfl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

	/* WaInPlaceDecompressionHang:cfl */
1385 1386 1387
	I915_WRITE(GEN9_GAMT_ECO_REG_RW_IA,
		   (I915_READ(GEN9_GAMT_ECO_REG_RW_IA) |
		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS));
1388 1389 1390 1391

	return 0;
}

1392 1393 1394
int init_workarounds_ring(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
1395
	int err;
1396

1397 1398
	if (GEM_WARN_ON(engine->id != RCS))
		return -EINVAL;
1399 1400

	dev_priv->workarounds.count = 0;
1401
	dev_priv->workarounds.hw_whitelist_count[engine->id] = 0;
1402 1403

	if (IS_BROADWELL(dev_priv))
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
		err = bdw_init_workarounds(engine);
	else if (IS_CHERRYVIEW(dev_priv))
		err = chv_init_workarounds(engine);
	else if (IS_SKYLAKE(dev_priv))
		err =  skl_init_workarounds(engine);
	else if (IS_BROXTON(dev_priv))
		err = bxt_init_workarounds(engine);
	else if (IS_KABYLAKE(dev_priv))
		err = kbl_init_workarounds(engine);
	else if (IS_GEMINILAKE(dev_priv))
		err =  glk_init_workarounds(engine);
1415 1416
	else if (IS_COFFEELAKE(dev_priv))
		err = cfl_init_workarounds(engine);
1417 1418
	else if (IS_CANNONLAKE(dev_priv))
		err = cnl_init_workarounds(engine);
1419 1420 1421 1422
	else
		err = 0;
	if (err)
		return err;
1423

1424 1425
	DRM_DEBUG_DRIVER("%s: Number of context specific w/a: %d\n",
			 engine->name, dev_priv->workarounds.count);
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	return 0;
}

int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
{
	struct i915_workarounds *w = &req->i915->workarounds;
	u32 *cs;
	int ret, i;

	if (w->count == 0)
		return 0;

	ret = req->engine->emit_flush(req, EMIT_BARRIER);
	if (ret)
		return ret;

	cs = intel_ring_begin(req, (w->count * 2 + 2));
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = MI_LOAD_REGISTER_IMM(w->count);
	for (i = 0; i < w->count; i++) {
		*cs++ = i915_mmio_reg_offset(w->reg[i].addr);
		*cs++ = w->reg[i].value;
	}
	*cs++ = MI_NOOP;

	intel_ring_advance(req, cs);

	ret = req->engine->emit_flush(req, EMIT_BARRIER);
	if (ret)
		return ret;

	return 0;
}

1462 1463 1464 1465 1466 1467 1468
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	bool idle = true;

	intel_runtime_pm_get(dev_priv);

1469 1470 1471 1472 1473
	/* First check that no commands are left in the ring */
	if ((I915_READ_HEAD(engine) & HEAD_ADDR) !=
	    (I915_READ_TAIL(engine) & TAIL_ADDR))
		idle = false;

1474 1475 1476 1477 1478 1479 1480 1481 1482
	/* No bit for gen2, so assume the CS parser is idle */
	if (INTEL_GEN(dev_priv) > 2 && !(I915_READ_MODE(engine) & MODE_IDLE))
		idle = false;

	intel_runtime_pm_put(dev_priv);

	return idle;
}

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

1494 1495 1496 1497
	/* More white lies, if wedged, hw state is inconsistent */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return true;

1498 1499 1500 1501 1502
	/* Any inflight/incomplete requests? */
	if (!i915_seqno_passed(intel_engine_get_seqno(engine),
			       intel_engine_last_submit(engine)))
		return false;

1503 1504 1505
	if (I915_SELFTEST_ONLY(engine->breadcrumbs.mock))
		return true;

1506 1507
	/* Waiting to drain ELSP? */
	if (READ_ONCE(engine->execlists.active))
1508 1509
		return false;

1510
	/* ELSP is empty, but there are ready requests? */
1511
	if (READ_ONCE(engine->execlists.first))
1512 1513
		return false;

1514
	/* Ring stopped? */
1515
	if (!ring_is_idle(engine))
1516 1517 1518 1519 1520
		return false;

	return true;
}

1521 1522 1523 1524 1525
bool intel_engines_are_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1526 1527
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1528 1529 1530 1531 1532
	 * report that it is still busy, even though we have stopped using it.
	 */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return true;

1533 1534 1535 1536 1537 1538 1539 1540
	for_each_engine(engine, dev_priv, id) {
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1541 1542 1543 1544 1545 1546 1547 1548
/**
 * intel_engine_has_kernel_context:
 * @engine: the engine
 *
 * Returns true if the last context to be executed on this engine, or has been
 * executed if the engine is already idle, is the kernel context
 * (#i915.kernel_context).
 */
1549 1550
bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine)
{
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	const struct i915_gem_context * const kernel_context =
		engine->i915->kernel_context;
	struct drm_i915_gem_request *rq;

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

	/*
	 * Check the last context seen by the engine. If active, it will be
	 * the last request that remains in the timeline. When idle, it is
	 * the last executed context as tracked by retirement.
	 */
	rq = __i915_gem_active_peek(&engine->timeline->last_request);
	if (rq)
		return rq->ctx == kernel_context;
	else
		return engine->last_retired_context == kernel_context;
1567 1568
}

1569 1570 1571 1572 1573 1574 1575 1576 1577
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		engine->set_default_submission(engine);
}

1578 1579 1580 1581 1582 1583 1584 1585 1586
/**
 * intel_engines_park: called when the GT is transitioning from busy->idle
 * @i915: the i915 device
 *
 * The GT is now idle and about to go to sleep (maybe never to wake again?).
 * Time for us to tidy and put away our toys (release resources back to the
 * system).
 */
void intel_engines_park(struct drm_i915_private *i915)
1587 1588 1589 1590 1591
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
1592 1593
		/* Flush the residual irq tasklets first. */
		intel_engine_disarm_breadcrumbs(engine);
1594
		tasklet_kill(&engine->execlists.tasklet);
1595

1596 1597 1598 1599 1600
		/*
		 * We are committed now to parking the engines, make sure there
		 * will be no more interrupts arriving later and the engines
		 * are truly idle.
		 */
1601
		if (wait_for(intel_engine_is_idle(engine), 10)) {
1602 1603
			struct drm_printer p = drm_debug_printer(__func__);

1604 1605 1606
			dev_err(i915->drm.dev,
				"%s is not idle before parking\n",
				engine->name);
1607
			intel_engine_dump(engine, &p, NULL);
1608 1609
		}

1610 1611 1612 1613
		if (engine->park)
			engine->park(engine);

		i915_gem_batch_pool_fini(&engine->batch_pool);
1614
		engine->execlists.no_priolist = false;
1615 1616 1617
	}
}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
/**
 * intel_engines_unpark: called when the GT is transitioning from idle->busy
 * @i915: the i915 device
 *
 * The GT was idle and now about to fire up with some new user requests.
 */
void intel_engines_unpark(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
		if (engine->unpark)
			engine->unpark(engine);
	}
}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned int which;

	which = 0;
	for_each_engine(engine, i915, id)
		if (engine->default_state)
			which |= BIT(engine->uabi_class);

	return which;
}

1664 1665 1666 1667
static void print_request(struct drm_printer *m,
			  struct drm_i915_gem_request *rq,
			  const char *prefix)
{
1668 1669 1670 1671
	drm_printf(m, "%s%x%s [%x:%x] prio=%d @ %dms: %s\n", prefix,
		   rq->global_seqno,
		   i915_gem_request_completed(rq) ? "!" : "",
		   rq->ctx->hw_id, rq->fence.seqno,
1672 1673 1674 1675 1676
		   rq->priotree.priority,
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
		   rq->timeline->common->name);
}

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
		drm_printf(m, "%08zx %s\n", pos, line);

		prev = buf + pos;
		skip = false;
	}
}

1706 1707 1708
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
1709
{
1710 1711 1712
	struct intel_breadcrumbs * const b = &engine->breadcrumbs;
	const struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1713 1714 1715
	struct drm_i915_private *dev_priv = engine->i915;
	struct drm_i915_gem_request *rq;
	struct rb_node *rb;
1716
	char hdr[80];
1717 1718
	u64 addr;

1719 1720 1721 1722 1723 1724 1725 1726
	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1727 1728 1729
	if (i915_terminally_wedged(&engine->i915->gpu_error))
		drm_printf(m, "*** WEDGED ***\n");

1730 1731 1732 1733 1734 1735
	drm_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms], inflight %d\n",
		   intel_engine_get_seqno(engine),
		   intel_engine_last_submit(engine),
		   engine->hangcheck.seqno,
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp),
		   engine->timeline->inflight_seqnos);
1736 1737 1738
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

	rcu_read_lock();

	drm_printf(m, "\tRequests:\n");

	rq = list_first_entry(&engine->timeline->requests,
			      struct drm_i915_gem_request, link);
	if (&rq->link != &engine->timeline->requests)
		print_request(m, rq, "\t\tfirst  ");

	rq = list_last_entry(&engine->timeline->requests,
			     struct drm_i915_gem_request, link);
	if (&rq->link != &engine->timeline->requests)
		print_request(m, rq, "\t\tlast   ");

	rq = i915_gem_find_active_request(engine);
	if (rq) {
		print_request(m, rq, "\t\tactive ");
		drm_printf(m,
			   "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
			   rq->head, rq->postfix, rq->tail,
			   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
			   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
	}

	drm_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
		   I915_READ(RING_START(engine->mmio_base)),
		   rq ? i915_ggtt_offset(rq->ring->vma) : 0);
	drm_printf(m, "\tRING_HEAD:  0x%08x [0x%08x]\n",
		   I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
		   rq ? rq->ring->head : 0);
	drm_printf(m, "\tRING_TAIL:  0x%08x [0x%08x]\n",
		   I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
		   rq ? rq->ring->tail : 0);
1773
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1774
		   I915_READ(RING_CTL(engine->mmio_base)),
1775 1776 1777 1778 1779 1780
		   I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
			   I915_READ(RING_MI_MODE(engine->mmio_base)),
			   I915_READ(RING_MI_MODE(engine->mmio_base)) & (MODE_IDLE) ? " [idle]" : "");
	}
1781
	if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
1782 1783 1784 1785 1786 1787 1788 1789
		drm_printf(m, "\tSYNC_0: 0x%08x\n",
			   I915_READ(RING_SYNC_0(engine->mmio_base)));
		drm_printf(m, "\tSYNC_1: 0x%08x\n",
			   I915_READ(RING_SYNC_1(engine->mmio_base)));
		if (HAS_VEBOX(dev_priv))
			drm_printf(m, "\tSYNC_2: 0x%08x\n",
				   I915_READ(RING_SYNC_2(engine->mmio_base)));
	}
1790 1791 1792 1793 1794 1795 1796 1797 1798

	rcu_read_unlock();

	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	if (INTEL_GEN(dev_priv) >= 8)
		addr = I915_READ64_2x32(RING_DMA_FADD(engine->mmio_base),
					RING_DMA_FADD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		addr = I915_READ(RING_DMA_FADD(engine->mmio_base));
	else
		addr = I915_READ(DMA_FADD_I8XX);
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
			   I915_READ(RING_IPEIR(engine->mmio_base)));
		drm_printf(m, "\tIPEHR: 0x%08x\n",
			   I915_READ(RING_IPEHR(engine->mmio_base)));
	} else {
		drm_printf(m, "\tIPEIR: 0x%08x\n", I915_READ(IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", I915_READ(IPEHR));
	}
1817

1818
	if (HAS_EXECLISTS(dev_priv)) {
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
		const u32 *hws = &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
		u32 ptr, read, write;
		unsigned int idx;

		drm_printf(m, "\tExeclist status: 0x%08x %08x\n",
			   I915_READ(RING_EXECLIST_STATUS_LO(engine)),
			   I915_READ(RING_EXECLIST_STATUS_HI(engine)));

		ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
		read = GEN8_CSB_READ_PTR(ptr);
		write = GEN8_CSB_WRITE_PTR(ptr);
		drm_printf(m, "\tExeclist CSB read %d [%d cached], write %d [%d from hws], interrupt posted? %s\n",
			   read, execlists->csb_head,
			   write,
			   intel_read_status_page(engine, intel_hws_csb_write_index(engine->i915)),
			   yesno(test_bit(ENGINE_IRQ_EXECLIST,
					  &engine->irq_posted)));
		if (read >= GEN8_CSB_ENTRIES)
			read = 0;
		if (write >= GEN8_CSB_ENTRIES)
			write = 0;
		if (read > write)
			write += GEN8_CSB_ENTRIES;
		while (read < write) {
			idx = ++read % GEN8_CSB_ENTRIES;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x [0x%08x in hwsp], context: %d [%d in hwsp]\n",
				   idx,
				   I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
				   hws[idx * 2],
				   I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)),
				   hws[idx * 2 + 1]);
		}

		rcu_read_lock();
		for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
			unsigned int count;

			rq = port_unpack(&execlists->port[idx], &count);
			if (rq) {
1858 1859 1860 1861
				snprintf(hdr, sizeof(hdr),
					 "\t\tELSP[%d] count=%d, rq: ",
					 idx, count);
				print_request(m, rq, hdr);
1862
			} else {
1863
				drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1864 1865
			}
		}
1866
		drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
		rcu_read_unlock();
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE(engine)));
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
			   I915_READ(RING_PP_DIR_DCLV(engine)));
	}

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	spin_lock_irq(&engine->timeline->lock);
	list_for_each_entry(rq, &engine->timeline->requests, link)
		print_request(m, rq, "\t\tE ");
	for (rb = execlists->first; rb; rb = rb_next(rb)) {
		struct i915_priolist *p =
			rb_entry(rb, typeof(*p), node);

		list_for_each_entry(rq, &p->requests, priotree.link)
			print_request(m, rq, "\t\tQ ");
	}
	spin_unlock_irq(&engine->timeline->lock);

1889 1890 1891 1892 1893 1894 1895 1896 1897
	spin_lock_irq(&b->rb_lock);
	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
		struct intel_wait *w = rb_entry(rb, typeof(*w), node);

		drm_printf(m, "\t%s [%d] waiting for %x\n",
			   w->tsk->comm, w->tsk->pid, w->seqno);
	}
	spin_unlock_irq(&b->rb_lock);

1898 1899 1900 1901
	if (INTEL_GEN(dev_priv) >= 6) {
		drm_printf(m, "\tRING_IMR: %08x\n", I915_READ_IMR(engine));
	}

1902 1903 1904 1905 1906 1907
	drm_printf(m, "IRQ? 0x%lx (breadcrumbs? %s) (execlists? %s)\n",
		   engine->irq_posted,
		   yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
				  &engine->irq_posted)),
		   yesno(test_bit(ENGINE_IRQ_EXECLIST,
				  &engine->irq_posted)));
1908 1909 1910 1911

	drm_printf(m, "HWSP:\n");
	hexdump(m, engine->status_page.page_addr, PAGE_SIZE);

1912
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1913 1914
}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
static u8 user_class_map[] = {
	[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
	[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
	[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
	[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};

struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
	if (class >= ARRAY_SIZE(user_class_map))
		return NULL;

	class = user_class_map[class];

	GEM_BUG_ON(class > MAX_ENGINE_CLASS);

	if (instance > MAX_ENGINE_INSTANCE)
		return NULL;

	return i915->engine_class[class][instance];
}

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1948
	struct intel_engine_execlists *execlists = &engine->execlists;
1949
	unsigned long flags;
1950
	int err = 0;
1951

1952
	if (!intel_engine_supports_stats(engine))
1953 1954
		return -ENODEV;

1955
	tasklet_disable(&execlists->tasklet);
1956
	spin_lock_irqsave(&engine->stats.lock, flags);
1957 1958 1959 1960 1961 1962

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1963 1964 1965 1966
	if (engine->stats.enabled++ == 0) {
		const struct execlist_port *port = execlists->port;
		unsigned int num_ports = execlists_num_ports(execlists);

1967
		engine->stats.enabled_at = ktime_get();
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977

		/* XXX submission method oblivious? */
		while (num_ports-- && port_isset(port)) {
			engine->stats.active++;
			port++;
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1978

1979
unlock:
1980
	spin_unlock_irqrestore(&engine->stats.lock, flags);
1981
	tasklet_enable(&execlists->tasklet);
1982

1983
	return err;
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total;
	unsigned long flags;

	spin_lock_irqsave(&engine->stats.lock, flags);
	total = __intel_engine_get_busy_time(engine);
	spin_unlock_irqrestore(&engine->stats.lock, flags);

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

2029
	if (!intel_engine_supports_stats(engine))
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
		return;

	spin_lock_irqsave(&engine->stats.lock, flags);
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
	spin_unlock_irqrestore(&engine->stats.lock, flags);
}

2041 2042 2043
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_engine.c"
#endif