dmar.c 34.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (c) 2006, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
17 18 19 20
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21
 *
22
 * This file implements early detection/parsing of Remapping Devices
23 24
 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
 * tables.
25 26
 *
 * These routines are used by both DMA-remapping and Interrupt-remapping
27 28 29 30
 */

#include <linux/pci.h>
#include <linux/dmar.h>
K
Kay, Allen M 已提交
31 32
#include <linux/iova.h>
#include <linux/intel-iommu.h>
33
#include <linux/timer.h>
34 35
#include <linux/irq.h>
#include <linux/interrupt.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38

39
#define PREFIX "DMAR: "
40 41 42 43 44 45 46 47

/* No locks are needed as DMA remapping hardware unit
 * list is constructed at boot time and hotplug of
 * these units are not supported by the architecture.
 */
LIST_HEAD(dmar_drhd_units);

static struct acpi_table_header * __initdata dmar_tbl;
48
static acpi_size dmar_tbl_size;
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
{
	/*
	 * add INCLUDE_ALL at the tail, so scan the list will find it at
	 * the very end.
	 */
	if (drhd->include_all)
		list_add_tail(&drhd->list, &dmar_drhd_units);
	else
		list_add(&drhd->list, &dmar_drhd_units);
}

static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
					   struct pci_dev **dev, u16 segment)
{
	struct pci_bus *bus;
	struct pci_dev *pdev = NULL;
	struct acpi_dmar_pci_path *path;
	int count;

	bus = pci_find_bus(segment, scope->bus);
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (count) {
		if (pdev)
			pci_dev_put(pdev);
		/*
		 * Some BIOSes list non-exist devices in DMAR table, just
		 * ignore it
		 */
		if (!bus) {
			printk(KERN_WARNING
			PREFIX "Device scope bus [%d] not found\n",
			scope->bus);
			break;
		}
		pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
		if (!pdev) {
			printk(KERN_WARNING PREFIX
			"Device scope device [%04x:%02x:%02x.%02x] not found\n",
				segment, bus->number, path->dev, path->fn);
			break;
		}
		path ++;
		count --;
		bus = pdev->subordinate;
	}
	if (!pdev) {
		printk(KERN_WARNING PREFIX
		"Device scope device [%04x:%02x:%02x.%02x] not found\n",
		segment, scope->bus, path->dev, path->fn);
		*dev = NULL;
		return 0;
	}
	if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
			pdev->subordinate) || (scope->entry_type == \
			ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
		pci_dev_put(pdev);
		printk(KERN_WARNING PREFIX
			"Device scope type does not match for %s\n",
			 pci_name(pdev));
		return -EINVAL;
	}
	*dev = pdev;
	return 0;
}

static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
				       struct pci_dev ***devices, u16 segment)
{
	struct acpi_dmar_device_scope *scope;
	void * tmp = start;
	int index;
	int ret;

	*cnt = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			(*cnt)++;
133
		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
134
			printk(KERN_WARNING PREFIX
135 136
			       "Unsupported device scope\n");
		}
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
		start += scope->length;
	}
	if (*cnt == 0)
		return 0;

	*devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
	if (!*devices)
		return -ENOMEM;

	start = tmp;
	index = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
			ret = dmar_parse_one_dev_scope(scope,
				&(*devices)[index], segment);
			if (ret) {
				kfree(*devices);
				return ret;
			}
			index ++;
		}
		start += scope->length;
	}

	return 0;
}

/**
 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 * structure which uniquely represent one DMA remapping hardware unit
 * present in the platform
 */
static int __init
dmar_parse_one_drhd(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct dmar_drhd_unit *dmaru;
	int ret = 0;

178
	drhd = (struct acpi_dmar_hardware_unit *)header;
179 180 181 182
	dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
	if (!dmaru)
		return -ENOMEM;

183
	dmaru->hdr = header;
184
	dmaru->reg_base_addr = drhd->address;
185
	dmaru->segment = drhd->segment;
186 187
	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */

188 189 190 191 192 193 194 195 196
	ret = alloc_iommu(dmaru);
	if (ret) {
		kfree(dmaru);
		return ret;
	}
	dmar_register_drhd_unit(dmaru);
	return 0;
}

197
static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
198 199
{
	struct acpi_dmar_hardware_unit *drhd;
200
	int ret = 0;
201 202 203

	drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;

204 205 206 207
	if (dmaru->include_all)
		return 0;

	ret = dmar_parse_dev_scope((void *)(drhd + 1),
208
				((void *)drhd) + drhd->header.length,
209 210
				&dmaru->devices_cnt, &dmaru->devices,
				drhd->segment);
211
	if (ret) {
212
		list_del(&dmaru->list);
213
		kfree(dmaru);
214
	}
215 216 217
	return ret;
}

218 219 220 221 222 223 224 225 226
#ifdef CONFIG_DMAR
LIST_HEAD(dmar_rmrr_units);

static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
{
	list_add(&rmrr->list, &dmar_rmrr_units);
}


227 228 229 230 231 232 233 234 235 236
static int __init
dmar_parse_one_rmrr(struct acpi_dmar_header *header)
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
		return -ENOMEM;

237
	rmrru->hdr = header;
238 239 240
	rmrr = (struct acpi_dmar_reserved_memory *)header;
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
241 242 243 244 245 246 247 248 249 250 251 252

	dmar_register_rmrr_unit(rmrru);
	return 0;
}

static int __init
rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
{
	struct acpi_dmar_reserved_memory *rmrr;
	int ret;

	rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
253
	ret = dmar_parse_dev_scope((void *)(rmrr + 1),
254
		((void *)rmrr) + rmrr->header.length,
255 256
		&rmrru->devices_cnt, &rmrru->devices, rmrr->segment);

257 258
	if (ret || (rmrru->devices_cnt == 0)) {
		list_del(&rmrru->list);
259
		kfree(rmrru);
260
	}
261 262
	return ret;
}
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

static LIST_HEAD(dmar_atsr_units);

static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
	if (!atsru)
		return -ENOMEM;

	atsru->hdr = hdr;
	atsru->include_all = atsr->flags & 0x1;

	list_add(&atsru->list, &dmar_atsr_units);

	return 0;
}

static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
{
	int rc;
	struct acpi_dmar_atsr *atsr;

	if (atsru->include_all)
		return 0;

	atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
	rc = dmar_parse_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt, &atsru->devices,
				atsr->segment);
	if (rc || !atsru->devices_cnt) {
		list_del(&atsru->list);
		kfree(atsru);
	}

	return rc;
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
	int i;
	struct pci_bus *bus;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

312 313
	dev = pci_physfn(dev);

314 315 316 317 318 319 320 321 322 323 324 325
	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment == pci_domain_nr(dev->bus))
			goto found;
	}

	return 0;

found:
	for (bus = dev->bus; bus; bus = bus->parent) {
		struct pci_dev *bridge = bus->self;

326
		if (!bridge || !pci_is_pcie(bridge) ||
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
		    bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
			return 0;

		if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
			for (i = 0; i < atsru->devices_cnt; i++)
				if (atsru->devices[i] == bridge)
					return 1;
			break;
		}
	}

	if (atsru->include_all)
		return 1;

	return 0;
}
343
#endif
344

345
#ifdef CONFIG_ACPI_NUMA
346 347 348 349 350 351 352
static int __init
dmar_parse_one_rhsa(struct acpi_dmar_header *header)
{
	struct acpi_dmar_rhsa *rhsa;
	struct dmar_drhd_unit *drhd;

	rhsa = (struct acpi_dmar_rhsa *)header;
353
	for_each_drhd_unit(drhd) {
354 355 356 357 358 359
		if (drhd->reg_base_addr == rhsa->base_address) {
			int node = acpi_map_pxm_to_node(rhsa->proximity_domain);

			if (!node_online(node))
				node = -1;
			drhd->iommu->node = node;
360 361
			return 0;
		}
362
	}
363 364 365 366 367 368 369 370
	WARN_TAINT(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		drhd->reg_base_addr,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
371

372
	return 0;
373
}
374
#endif
375

376 377 378 379 380
static void __init
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_reserved_memory *rmrr;
381
	struct acpi_dmar_atsr *atsr;
382
	struct acpi_dmar_rhsa *rhsa;
383 384 385

	switch (header->type) {
	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
386 387
		drhd = container_of(header, struct acpi_dmar_hardware_unit,
				    header);
388
		printk (KERN_INFO PREFIX
389 390
			"DRHD base: %#016Lx flags: %#x\n",
			(unsigned long long)drhd->address, drhd->flags);
391 392
		break;
	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
393 394
		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
				    header);
395
		printk (KERN_INFO PREFIX
396
			"RMRR base: %#016Lx end: %#016Lx\n",
F
Fenghua Yu 已提交
397 398
			(unsigned long long)rmrr->base_address,
			(unsigned long long)rmrr->end_address);
399
		break;
400 401 402 403
	case ACPI_DMAR_TYPE_ATSR:
		atsr = container_of(header, struct acpi_dmar_atsr, header);
		printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
		break;
404 405 406 407 408 409
	case ACPI_DMAR_HARDWARE_AFFINITY:
		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
		printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
		       (unsigned long long)rhsa->base_address,
		       rhsa->proximity_domain);
		break;
410 411 412
	}
}

413 414 415 416 417 418 419 420
/**
 * dmar_table_detect - checks to see if the platform supports DMAR devices
 */
static int __init dmar_table_detect(void)
{
	acpi_status status = AE_OK;

	/* if we could find DMAR table, then there are DMAR devices */
421 422 423
	status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
				(struct acpi_table_header **)&dmar_tbl,
				&dmar_tbl_size);
424 425 426 427 428 429 430 431

	if (ACPI_SUCCESS(status) && !dmar_tbl) {
		printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
		status = AE_NOT_FOUND;
	}

	return (ACPI_SUCCESS(status) ? 1 : 0);
}
432

433 434 435 436 437 438 439 440 441 442
/**
 * parse_dmar_table - parses the DMA reporting table
 */
static int __init
parse_dmar_table(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	int ret = 0;

443 444 445 446 447 448
	/*
	 * Do it again, earlier dmar_tbl mapping could be mapped with
	 * fixed map.
	 */
	dmar_table_detect();

449 450 451 452 453 454
	/*
	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
	 */
	dmar_tbl = tboot_get_dmar_table(dmar_tbl);

455 456 457 458
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar)
		return -ENODEV;

F
Fenghua Yu 已提交
459
	if (dmar->width < PAGE_SHIFT - 1) {
F
Fenghua Yu 已提交
460
		printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
461 462 463 464 465 466 467 468 469
		return -EINVAL;
	}

	printk (KERN_INFO PREFIX "Host address width %d\n",
		dmar->width + 1);

	entry_header = (struct acpi_dmar_header *)(dmar + 1);
	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
470 471 472 473 474 475 476 477
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
			printk(KERN_WARNING PREFIX
				"Invalid 0-length structure\n");
			ret = -EINVAL;
			break;
		}

478 479 480 481 482 483 484
		dmar_table_print_dmar_entry(entry_header);

		switch (entry_header->type) {
		case ACPI_DMAR_TYPE_HARDWARE_UNIT:
			ret = dmar_parse_one_drhd(entry_header);
			break;
		case ACPI_DMAR_TYPE_RESERVED_MEMORY:
485
#ifdef CONFIG_DMAR
486
			ret = dmar_parse_one_rmrr(entry_header);
487 488 489 490 491
#endif
			break;
		case ACPI_DMAR_TYPE_ATSR:
#ifdef CONFIG_DMAR
			ret = dmar_parse_one_atsr(entry_header);
492
#endif
493
			break;
494
		case ACPI_DMAR_HARDWARE_AFFINITY:
495
#ifdef CONFIG_ACPI_NUMA
496
			ret = dmar_parse_one_rhsa(entry_header);
497
#endif
498
			break;
499 500
		default:
			printk(KERN_WARNING PREFIX
501 502
				"Unknown DMAR structure type %d\n",
				entry_header->type);
503 504 505 506 507 508 509 510 511 512 513
			ret = 0; /* for forward compatibility */
			break;
		}
		if (ret)
			break;

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return ret;
}

514
static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
			  struct pci_dev *dev)
{
	int index;

	while (dev) {
		for (index = 0; index < cnt; index++)
			if (dev == devices[index])
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
534 535 536
	struct dmar_drhd_unit *dmaru = NULL;
	struct acpi_dmar_hardware_unit *drhd;

537 538
	dev = pci_physfn(dev);

539 540 541 542 543 544 545 546
	list_for_each_entry(dmaru, &dmar_drhd_units, list) {
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		if (dmaru->include_all &&
		    drhd->segment == pci_domain_nr(dev->bus))
			return dmaru;
547

548 549 550
		if (dmar_pci_device_match(dmaru->devices,
					  dmaru->devices_cnt, dev))
			return dmaru;
551 552 553 554 555
	}

	return NULL;
}

556 557
int __init dmar_dev_scope_init(void)
{
558
	struct dmar_drhd_unit *drhd, *drhd_n;
559 560
	int ret = -ENODEV;

561
	list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
562 563 564 565 566
		ret = dmar_parse_dev(drhd);
		if (ret)
			return ret;
	}

567 568
#ifdef CONFIG_DMAR
	{
569
		struct dmar_rmrr_unit *rmrr, *rmrr_n;
570 571
		struct dmar_atsr_unit *atsr, *atsr_n;

572
		list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
573 574 575 576
			ret = rmrr_parse_dev(rmrr);
			if (ret)
				return ret;
		}
577 578 579 580 581 582

		list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
			ret = atsr_parse_dev(atsr);
			if (ret)
				return ret;
		}
583
	}
584
#endif
585 586 587 588

	return ret;
}

589 590 591

int __init dmar_table_init(void)
{
592
	static int dmar_table_initialized;
F
Fenghua Yu 已提交
593 594
	int ret;

595 596 597 598 599
	if (dmar_table_initialized)
		return 0;

	dmar_table_initialized = 1;

F
Fenghua Yu 已提交
600 601
	ret = parse_dmar_table();
	if (ret) {
602 603
		if (ret != -ENODEV)
			printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
F
Fenghua Yu 已提交
604 605 606
		return ret;
	}

607 608 609 610
	if (list_empty(&dmar_drhd_units)) {
		printk(KERN_INFO PREFIX "No DMAR devices found\n");
		return -ENODEV;
	}
F
Fenghua Yu 已提交
611

612
#ifdef CONFIG_DMAR
613
	if (list_empty(&dmar_rmrr_units))
F
Fenghua Yu 已提交
614
		printk(KERN_INFO PREFIX "No RMRR found\n");
615 616 617

	if (list_empty(&dmar_atsr_units))
		printk(KERN_INFO PREFIX "No ATSR found\n");
618
#endif
F
Fenghua Yu 已提交
619

620 621 622
	return 0;
}

623 624
static void warn_invalid_dmar(u64 addr, const char *message)
{
625 626 627 628 629 630 631 632
	WARN_TAINT_ONCE(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		addr, message,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
633
}
634

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
int __init check_zero_address(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	struct acpi_dmar_hardware_unit *drhd;

	dmar = (struct acpi_table_dmar *)dmar_tbl;
	entry_header = (struct acpi_dmar_header *)(dmar + 1);

	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
			printk(KERN_WARNING PREFIX
				"Invalid 0-length structure\n");
			return 0;
		}

		if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
654 655 656
			void __iomem *addr;
			u64 cap, ecap;

657 658
			drhd = (void *)entry_header;
			if (!drhd->address) {
659
				warn_invalid_dmar(0, "");
660 661 662 663 664 665 666 667 668 669 670 671
				goto failed;
			}

			addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
			if (!addr ) {
				printk("IOMMU: can't validate: %llx\n", drhd->address);
				goto failed;
			}
			cap = dmar_readq(addr + DMAR_CAP_REG);
			ecap = dmar_readq(addr + DMAR_ECAP_REG);
			early_iounmap(addr, VTD_PAGE_SIZE);
			if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
672 673
				warn_invalid_dmar(drhd->address,
						  " returns all ones");
674
				goto failed;
675 676 677 678 679 680
			}
		}

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return 1;
681 682 683 684 685 686

failed:
#ifdef CONFIG_DMAR
	dmar_disabled = 1;
#endif
	return 0;
687 688
}

689 690 691 692
void __init detect_intel_iommu(void)
{
	int ret;

693
	ret = dmar_table_detect();
694 695
	if (ret)
		ret = check_zero_address();
696
	{
697
#ifdef CONFIG_INTR_REMAP
698 699 700 701 702 703 704 705
		struct acpi_table_dmar *dmar;
		/*
		 * for now we will disable dma-remapping when interrupt
		 * remapping is enabled.
		 * When support for queued invalidation for IOTLB invalidation
		 * is added, we will not need this any more.
		 */
		dmar = (struct acpi_table_dmar *) dmar_tbl;
706
		if (ret && cpu_has_x2apic && dmar->flags & 0x1)
707 708 709
			printk(KERN_INFO
			       "Queued invalidation will be enabled to support "
			       "x2apic and Intr-remapping.\n");
710 711
#endif
#ifdef CONFIG_DMAR
712
		if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
713
			iommu_detected = 1;
C
Chris Wright 已提交
714 715 716
			/* Make sure ACS will be enabled */
			pci_request_acs();
		}
717 718 719 720
#endif
#ifdef CONFIG_X86
		if (ret)
			x86_init.iommu.iommu_init = intel_iommu_init;
721
#endif
722
	}
723
	early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
724
	dmar_tbl = NULL;
725 726 727
}


728
int alloc_iommu(struct dmar_drhd_unit *drhd)
729
{
730
	struct intel_iommu *iommu;
731 732
	int map_size;
	u32 ver;
733
	static int iommu_allocated = 0;
734
	int agaw = 0;
F
Fenghua Yu 已提交
735
	int msagaw = 0;
736

737
	if (!drhd->reg_base_addr) {
738
		warn_invalid_dmar(0, "");
739 740 741
		return -EINVAL;
	}

742 743
	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
744
		return -ENOMEM;
745 746

	iommu->seq_id = iommu_allocated++;
747
	sprintf (iommu->name, "dmar%d", iommu->seq_id);
748

F
Fenghua Yu 已提交
749
	iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
750 751 752 753 754 755 756
	if (!iommu->reg) {
		printk(KERN_ERR "IOMMU: can't map the region\n");
		goto error;
	}
	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

757
	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
758
		warn_invalid_dmar(drhd->reg_base_addr, " returns all ones");
759 760 761
		goto err_unmap;
	}

762
#ifdef CONFIG_DMAR
W
Weidong Han 已提交
763 764 765
	agaw = iommu_calculate_agaw(iommu);
	if (agaw < 0) {
		printk(KERN_ERR
F
Fenghua Yu 已提交
766 767
		       "Cannot get a valid agaw for iommu (seq_id = %d)\n",
		       iommu->seq_id);
768
		goto err_unmap;
F
Fenghua Yu 已提交
769 770 771 772 773
	}
	msagaw = iommu_calculate_max_sagaw(iommu);
	if (msagaw < 0) {
		printk(KERN_ERR
			"Cannot get a valid max agaw for iommu (seq_id = %d)\n",
W
Weidong Han 已提交
774
			iommu->seq_id);
775
		goto err_unmap;
W
Weidong Han 已提交
776
	}
777
#endif
W
Weidong Han 已提交
778
	iommu->agaw = agaw;
F
Fenghua Yu 已提交
779
	iommu->msagaw = msagaw;
W
Weidong Han 已提交
780

781 782
	iommu->node = -1;

783 784 785
	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
		cap_max_fault_reg_offset(iommu->cap));
F
Fenghua Yu 已提交
786 787
	map_size = VTD_PAGE_ALIGN(map_size);
	if (map_size > VTD_PAGE_SIZE) {
788 789 790 791 792 793 794 795 796
		iounmap(iommu->reg);
		iommu->reg = ioremap(drhd->reg_base_addr, map_size);
		if (!iommu->reg) {
			printk(KERN_ERR "IOMMU: can't map the region\n");
			goto error;
		}
	}

	ver = readl(iommu->reg + DMAR_VER_REG);
Y
Yinghai Lu 已提交
797 798
	pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
		iommu->seq_id,
F
Fenghua Yu 已提交
799 800 801 802
		(unsigned long long)drhd->reg_base_addr,
		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		(unsigned long long)iommu->cap,
		(unsigned long long)iommu->ecap);
803 804 805 806

	spin_lock_init(&iommu->register_lock);

	drhd->iommu = iommu;
807
	return 0;
808 809 810 811

 err_unmap:
	iounmap(iommu->reg);
 error:
812
	kfree(iommu);
813
	return -1;
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
}

void free_iommu(struct intel_iommu *iommu)
{
	if (!iommu)
		return;

#ifdef CONFIG_DMAR
	free_dmar_iommu(iommu);
#endif

	if (iommu->reg)
		iounmap(iommu->reg);
	kfree(iommu);
}
829 830 831 832 833 834

/*
 * Reclaim all the submitted descriptors which have completed its work.
 */
static inline void reclaim_free_desc(struct q_inval *qi)
{
835 836
	while (qi->desc_status[qi->free_tail] == QI_DONE ||
	       qi->desc_status[qi->free_tail] == QI_ABORT) {
837 838 839 840 841 842
		qi->desc_status[qi->free_tail] = QI_FREE;
		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
		qi->free_cnt++;
	}
}

843 844 845
static int qi_check_fault(struct intel_iommu *iommu, int index)
{
	u32 fault;
846
	int head, tail;
847 848 849
	struct q_inval *qi = iommu->qi;
	int wait_index = (index + 1) % QI_LENGTH;

850 851 852
	if (qi->desc_status[wait_index] == QI_ABORT)
		return -EAGAIN;

853 854 855 856 857 858 859 860 861
	fault = readl(iommu->reg + DMAR_FSTS_REG);

	/*
	 * If IQE happens, the head points to the descriptor associated
	 * with the error. No new descriptors are fetched until the IQE
	 * is cleared.
	 */
	if (fault & DMA_FSTS_IQE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
862 863 864 865 866
		if ((head >> DMAR_IQ_SHIFT) == index) {
			printk(KERN_ERR "VT-d detected invalid descriptor: "
				"low=%llx, high=%llx\n",
				(unsigned long long)qi->desc[index].low,
				(unsigned long long)qi->desc[index].high);
867 868 869 870 871 872 873 874 875
			memcpy(&qi->desc[index], &qi->desc[wait_index],
					sizeof(struct qi_desc));
			__iommu_flush_cache(iommu, &qi->desc[index],
					sizeof(struct qi_desc));
			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
			return -EINVAL;
		}
	}

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	/*
	 * If ITE happens, all pending wait_desc commands are aborted.
	 * No new descriptors are fetched until the ITE is cleared.
	 */
	if (fault & DMA_FSTS_ITE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
		head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
		head |= 1;
		tail = readl(iommu->reg + DMAR_IQT_REG);
		tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;

		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);

		do {
			if (qi->desc_status[head] == QI_IN_USE)
				qi->desc_status[head] = QI_ABORT;
			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
		} while (head != tail);

		if (qi->desc_status[wait_index] == QI_ABORT)
			return -EAGAIN;
	}

	if (fault & DMA_FSTS_ICE)
		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);

902 903 904
	return 0;
}

905 906 907 908
/*
 * Submit the queued invalidation descriptor to the remapping
 * hardware unit and wait for its completion.
 */
909
int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
910
{
911
	int rc;
912 913 914 915 916 917
	struct q_inval *qi = iommu->qi;
	struct qi_desc *hw, wait_desc;
	int wait_index, index;
	unsigned long flags;

	if (!qi)
918
		return 0;
919 920 921

	hw = qi->desc;

922 923 924
restart:
	rc = 0;

925
	spin_lock_irqsave(&qi->q_lock, flags);
926
	while (qi->free_cnt < 3) {
927
		spin_unlock_irqrestore(&qi->q_lock, flags);
928
		cpu_relax();
929
		spin_lock_irqsave(&qi->q_lock, flags);
930 931 932 933 934 935 936 937 938
	}

	index = qi->free_head;
	wait_index = (index + 1) % QI_LENGTH;

	qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;

	hw[index] = *desc;

939 940
	wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
941 942 943 944 945 946 947 948 949 950 951 952 953 954
	wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);

	hw[wait_index] = wait_desc;

	__iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
	__iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));

	qi->free_head = (qi->free_head + 2) % QI_LENGTH;
	qi->free_cnt -= 2;

	/*
	 * update the HW tail register indicating the presence of
	 * new descriptors.
	 */
955
	writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
956 957

	while (qi->desc_status[wait_index] != QI_DONE) {
958 959 960 961 962 963 964
		/*
		 * We will leave the interrupts disabled, to prevent interrupt
		 * context to queue another cmd while a cmd is already submitted
		 * and waiting for completion on this cpu. This is to avoid
		 * a deadlock where the interrupt context can wait indefinitely
		 * for free slots in the queue.
		 */
965 966
		rc = qi_check_fault(iommu, index);
		if (rc)
967
			break;
968

969 970 971 972
		spin_unlock(&qi->q_lock);
		cpu_relax();
		spin_lock(&qi->q_lock);
	}
973 974

	qi->desc_status[index] = QI_DONE;
975 976

	reclaim_free_desc(qi);
977
	spin_unlock_irqrestore(&qi->q_lock, flags);
978

979 980 981
	if (rc == -EAGAIN)
		goto restart;

982
	return rc;
983 984 985 986 987 988 989 990 991 992 993 994
}

/*
 * Flush the global interrupt entry cache.
 */
void qi_global_iec(struct intel_iommu *iommu)
{
	struct qi_desc desc;

	desc.low = QI_IEC_TYPE;
	desc.high = 0;

995
	/* should never fail */
996 997 998
	qi_submit_sync(&desc, iommu);
}

999 1000
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
		      u64 type)
1001 1002 1003 1004 1005 1006 1007
{
	struct qi_desc desc;

	desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
			| QI_CC_GRAN(type) | QI_CC_TYPE;
	desc.high = 0;

1008
	qi_submit_sync(&desc, iommu);
1009 1010
}

1011 1012
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
		    unsigned int size_order, u64 type)
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
{
	u8 dw = 0, dr = 0;

	struct qi_desc desc;
	int ih = 0;

	if (cap_write_drain(iommu->cap))
		dw = 1;

	if (cap_read_drain(iommu->cap))
		dr = 1;

	desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
	desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
		| QI_IOTLB_AM(size_order);

1030
	qi_submit_sync(&desc, iommu);
1031 1032
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
			u64 addr, unsigned mask)
{
	struct qi_desc desc;

	if (mask) {
		BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
		addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
		desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
	} else
		desc.high = QI_DEV_IOTLB_ADDR(addr);

	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
		qdep = 0;

	desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
		   QI_DIOTLB_TYPE;

	qi_submit_sync(&desc, iommu);
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
/*
 * Disable Queued Invalidation interface.
 */
void dmar_disable_qi(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
	cycles_t start_time = get_cycles();

	if (!ecap_qis(iommu->ecap))
		return;

	spin_lock_irqsave(&iommu->register_lock, flags);

	sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
	if (!(sts & DMA_GSTS_QIES))
		goto end;

	/*
	 * Give a chance to HW to complete the pending invalidation requests.
	 */
	while ((readl(iommu->reg + DMAR_IQT_REG) !=
		readl(iommu->reg + DMAR_IQH_REG)) &&
		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
		cpu_relax();

	iommu->gcmd &= ~DMA_GCMD_QIE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
		      !(sts & DMA_GSTS_QIES), sts);
end:
	spin_unlock_irqrestore(&iommu->register_lock, flags);
}

1089 1090 1091 1092 1093
/*
 * Enable queued invalidation.
 */
static void __dmar_enable_qi(struct intel_iommu *iommu)
{
1094
	u32 sts;
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	unsigned long flags;
	struct q_inval *qi = iommu->qi;

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

	spin_lock_irqsave(&iommu->register_lock, flags);

	/* write zero to the tail reg */
	writel(0, iommu->reg + DMAR_IQT_REG);

	dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));

	iommu->gcmd |= DMA_GCMD_QIE;
1109
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1110 1111 1112 1113 1114 1115 1116

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);

	spin_unlock_irqrestore(&iommu->register_lock, flags);
}

1117 1118 1119 1120 1121 1122 1123 1124
/*
 * Enable Queued Invalidation interface. This is a must to support
 * interrupt-remapping. Also used by DMA-remapping, which replaces
 * register based IOTLB invalidation.
 */
int dmar_enable_qi(struct intel_iommu *iommu)
{
	struct q_inval *qi;
1125
	struct page *desc_page;
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	/*
	 * queued invalidation is already setup and enabled.
	 */
	if (iommu->qi)
		return 0;

1136
	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1137 1138 1139 1140 1141
	if (!iommu->qi)
		return -ENOMEM;

	qi = iommu->qi;

1142 1143 1144

	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (!desc_page) {
1145 1146 1147 1148 1149
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

1150 1151
	qi->desc = page_address(desc_page);

1152
	qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	if (!qi->desc_status) {
		free_page((unsigned long) qi->desc);
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

	spin_lock_init(&qi->q_lock);

1165
	__dmar_enable_qi(iommu);
1166 1167 1168

	return 0;
}
1169 1170 1171

/* iommu interrupt handling. Most stuff are MSI-like. */

1172 1173 1174 1175 1176 1177 1178
enum faulttype {
	DMA_REMAP,
	INTR_REMAP,
	UNKNOWN,
};

static const char *dma_remap_fault_reasons[] =
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
};
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

static const char *intr_remap_fault_reasons[] =
{
	"Detected reserved fields in the decoded interrupt-remapped request",
	"Interrupt index exceeded the interrupt-remapping table size",
	"Present field in the IRTE entry is clear",
	"Error accessing interrupt-remapping table pointed by IRTA_REG",
	"Detected reserved fields in the IRTE entry",
	"Blocked a compatibility format interrupt request",
	"Blocked an interrupt request due to source-id verification failure",
};

1206 1207
#define MAX_FAULT_REASON_IDX 	(ARRAY_SIZE(fault_reason_strings) - 1)

1208
const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1209
{
1210 1211 1212 1213 1214 1215 1216 1217 1218
	if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
				     ARRAY_SIZE(intr_remap_fault_reasons))) {
		*fault_type = INTR_REMAP;
		return intr_remap_fault_reasons[fault_reason - 0x20];
	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
		*fault_type = DMA_REMAP;
		return dma_remap_fault_reasons[fault_reason];
	} else {
		*fault_type = UNKNOWN;
1219
		return "Unknown";
1220
	}
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
}

void dmar_msi_unmask(unsigned int irq)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	/* unmask it */
	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(0, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_mask(unsigned int irq)
{
	unsigned long flag;
	struct intel_iommu *iommu = get_irq_data(irq);

	/* mask it */
	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
	writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
	writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
	msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
	msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
		u8 fault_reason, u16 source_id, unsigned long long addr)
{
	const char *reason;
1277
	int fault_type;
1278

1279
	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1280

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	if (fault_type == INTR_REMAP)
		printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
		       "fault index %llx\n"
			"INTR-REMAP:[fault reason %02d] %s\n",
			(source_id >> 8), PCI_SLOT(source_id & 0xFF),
			PCI_FUNC(source_id & 0xFF), addr >> 48,
			fault_reason, reason);
	else
		printk(KERN_ERR
		       "DMAR:[%s] Request device [%02x:%02x.%d] "
		       "fault addr %llx \n"
		       "DMAR:[fault reason %02d] %s\n",
		       (type ? "DMA Read" : "DMA Write"),
		       (source_id >> 8), PCI_SLOT(source_id & 0xFF),
		       PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1296 1297 1298 1299
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
1300
irqreturn_t dmar_fault(int irq, void *dev_id)
1301 1302 1303 1304 1305 1306 1307 1308
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1309 1310 1311
	if (fault_status)
		printk(KERN_ERR "DRHD: handling fault status reg %x\n",
		       fault_status);
1312 1313 1314

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
1315
		goto clear_rest;
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
		int type;
		u32 data;

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

		fault_reason = dma_frcd_fault_reason(data);
		type = dma_frcd_type(data);

		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 8);
		source_id = dma_frcd_source_id(data);

		guest_addr = dmar_readq(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN);
		guest_addr = dma_frcd_page_addr(guest_addr);
		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

		spin_unlock_irqrestore(&iommu->register_lock, flag);

		dmar_fault_do_one(iommu, type, fault_reason,
				source_id, guest_addr);

		fault_index++;
1352
		if (fault_index >= cap_num_fault_regs(iommu->cap))
1353 1354 1355
			fault_index = 0;
		spin_lock_irqsave(&iommu->register_lock, flag);
	}
1356 1357
clear_rest:
	/* clear all the other faults */
1358
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1359
	writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1360 1361 1362 1363 1364 1365 1366 1367 1368

	spin_unlock_irqrestore(&iommu->register_lock, flag);
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

1369 1370 1371 1372 1373 1374
	/*
	 * Check if the fault interrupt is already initialized.
	 */
	if (iommu->irq)
		return 0;

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	irq = create_irq();
	if (!irq) {
		printk(KERN_ERR "IOMMU: no free vectors\n");
		return -EINVAL;
	}

	set_irq_data(irq, iommu);
	iommu->irq = irq;

	ret = arch_setup_dmar_msi(irq);
	if (ret) {
		set_irq_data(irq, NULL);
		iommu->irq = 0;
		destroy_irq(irq);
1389
		return ret;
1390 1391 1392 1393 1394 1395 1396
	}

	ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
	if (ret)
		printk(KERN_ERR "IOMMU: can't request irq\n");
	return ret;
}
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419

int __init enable_drhd_fault_handling(void)
{
	struct dmar_drhd_unit *drhd;

	/*
	 * Enable fault control interrupt.
	 */
	for_each_drhd_unit(drhd) {
		int ret;
		struct intel_iommu *iommu = drhd->iommu;
		ret = dmar_set_interrupt(iommu);

		if (ret) {
			printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
			       " interrupt, ret %d\n",
			       (unsigned long long)drhd->reg_base_addr, ret);
			return -1;
		}
	}

	return 0;
}
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444

/*
 * Re-enable Queued Invalidation interface.
 */
int dmar_reenable_qi(struct intel_iommu *iommu)
{
	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	if (!iommu->qi)
		return -ENOENT;

	/*
	 * First disable queued invalidation.
	 */
	dmar_disable_qi(iommu);
	/*
	 * Then enable queued invalidation again. Since there is no pending
	 * invalidation requests now, it's safe to re-enable queued
	 * invalidation.
	 */
	__dmar_enable_qi(iommu);

	return 0;
}
1445 1446 1447 1448

/*
 * Check interrupt remapping support in DMAR table description.
 */
1449
int __init dmar_ir_support(void)
1450 1451 1452
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
1453 1454
	if (!dmar)
		return 0;
1455 1456
	return dmar->flags & 0x1;
}