dmar.c 34.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (c) 2006, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
17 18 19 20
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21
 *
22
 * This file implements early detection/parsing of Remapping Devices
23 24
 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
 * tables.
25 26
 *
 * These routines are used by both DMA-remapping and Interrupt-remapping
27 28 29 30
 */

#include <linux/pci.h>
#include <linux/dmar.h>
K
Kay, Allen M 已提交
31 32
#include <linux/iova.h>
#include <linux/intel-iommu.h>
33
#include <linux/timer.h>
34 35
#include <linux/irq.h>
#include <linux/interrupt.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38

39
#define PREFIX "DMAR: "
40 41 42 43 44 45 46 47

/* No locks are needed as DMA remapping hardware unit
 * list is constructed at boot time and hotplug of
 * these units are not supported by the architecture.
 */
LIST_HEAD(dmar_drhd_units);

static struct acpi_table_header * __initdata dmar_tbl;
48
static acpi_size dmar_tbl_size;
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
{
	/*
	 * add INCLUDE_ALL at the tail, so scan the list will find it at
	 * the very end.
	 */
	if (drhd->include_all)
		list_add_tail(&drhd->list, &dmar_drhd_units);
	else
		list_add(&drhd->list, &dmar_drhd_units);
}

static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
					   struct pci_dev **dev, u16 segment)
{
	struct pci_bus *bus;
	struct pci_dev *pdev = NULL;
	struct acpi_dmar_pci_path *path;
	int count;

	bus = pci_find_bus(segment, scope->bus);
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (count) {
		if (pdev)
			pci_dev_put(pdev);
		/*
		 * Some BIOSes list non-exist devices in DMAR table, just
		 * ignore it
		 */
		if (!bus) {
			printk(KERN_WARNING
			PREFIX "Device scope bus [%d] not found\n",
			scope->bus);
			break;
		}
		pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
		if (!pdev) {
			printk(KERN_WARNING PREFIX
			"Device scope device [%04x:%02x:%02x.%02x] not found\n",
				segment, bus->number, path->dev, path->fn);
			break;
		}
		path ++;
		count --;
		bus = pdev->subordinate;
	}
	if (!pdev) {
		printk(KERN_WARNING PREFIX
		"Device scope device [%04x:%02x:%02x.%02x] not found\n",
		segment, scope->bus, path->dev, path->fn);
		*dev = NULL;
		return 0;
	}
	if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
			pdev->subordinate) || (scope->entry_type == \
			ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
		pci_dev_put(pdev);
		printk(KERN_WARNING PREFIX
			"Device scope type does not match for %s\n",
			 pci_name(pdev));
		return -EINVAL;
	}
	*dev = pdev;
	return 0;
}

static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
				       struct pci_dev ***devices, u16 segment)
{
	struct acpi_dmar_device_scope *scope;
	void * tmp = start;
	int index;
	int ret;

	*cnt = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			(*cnt)++;
		else
			printk(KERN_WARNING PREFIX
				"Unsupported device scope\n");
		start += scope->length;
	}
	if (*cnt == 0)
		return 0;

	*devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
	if (!*devices)
		return -ENOMEM;

	start = tmp;
	index = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
			ret = dmar_parse_one_dev_scope(scope,
				&(*devices)[index], segment);
			if (ret) {
				kfree(*devices);
				return ret;
			}
			index ++;
		}
		start += scope->length;
	}

	return 0;
}

/**
 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 * structure which uniquely represent one DMA remapping hardware unit
 * present in the platform
 */
static int __init
dmar_parse_one_drhd(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct dmar_drhd_unit *dmaru;
	int ret = 0;

177
	drhd = (struct acpi_dmar_hardware_unit *)header;
178 179 180 181
	dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
	if (!dmaru)
		return -ENOMEM;

182
	dmaru->hdr = header;
183
	dmaru->reg_base_addr = drhd->address;
184
	dmaru->segment = drhd->segment;
185 186
	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */

187 188 189 190 191 192 193 194 195
	ret = alloc_iommu(dmaru);
	if (ret) {
		kfree(dmaru);
		return ret;
	}
	dmar_register_drhd_unit(dmaru);
	return 0;
}

196
static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
197 198
{
	struct acpi_dmar_hardware_unit *drhd;
199
	int ret = 0;
200 201 202

	drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;

203 204 205 206
	if (dmaru->include_all)
		return 0;

	ret = dmar_parse_dev_scope((void *)(drhd + 1),
207
				((void *)drhd) + drhd->header.length,
208 209
				&dmaru->devices_cnt, &dmaru->devices,
				drhd->segment);
210
	if (ret) {
211
		list_del(&dmaru->list);
212
		kfree(dmaru);
213
	}
214 215 216
	return ret;
}

217 218 219 220 221 222 223 224 225
#ifdef CONFIG_DMAR
LIST_HEAD(dmar_rmrr_units);

static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
{
	list_add(&rmrr->list, &dmar_rmrr_units);
}


226 227 228 229 230 231 232 233 234 235
static int __init
dmar_parse_one_rmrr(struct acpi_dmar_header *header)
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
		return -ENOMEM;

236
	rmrru->hdr = header;
237 238 239
	rmrr = (struct acpi_dmar_reserved_memory *)header;
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
240 241 242 243 244 245 246 247 248 249 250 251

	dmar_register_rmrr_unit(rmrru);
	return 0;
}

static int __init
rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
{
	struct acpi_dmar_reserved_memory *rmrr;
	int ret;

	rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
252
	ret = dmar_parse_dev_scope((void *)(rmrr + 1),
253
		((void *)rmrr) + rmrr->header.length,
254 255
		&rmrru->devices_cnt, &rmrru->devices, rmrr->segment);

256 257
	if (ret || (rmrru->devices_cnt == 0)) {
		list_del(&rmrru->list);
258
		kfree(rmrru);
259
	}
260 261
	return ret;
}
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

static LIST_HEAD(dmar_atsr_units);

static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
	if (!atsru)
		return -ENOMEM;

	atsru->hdr = hdr;
	atsru->include_all = atsr->flags & 0x1;

	list_add(&atsru->list, &dmar_atsr_units);

	return 0;
}

static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
{
	int rc;
	struct acpi_dmar_atsr *atsr;

	if (atsru->include_all)
		return 0;

	atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
	rc = dmar_parse_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt, &atsru->devices,
				atsr->segment);
	if (rc || !atsru->devices_cnt) {
		list_del(&atsru->list);
		kfree(atsru);
	}

	return rc;
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
	int i;
	struct pci_bus *bus;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment == pci_domain_nr(dev->bus))
			goto found;
	}

	return 0;

found:
	for (bus = dev->bus; bus; bus = bus->parent) {
		struct pci_dev *bridge = bus->self;

323
		if (!bridge || !pci_is_pcie(bridge) ||
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
		    bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
			return 0;

		if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
			for (i = 0; i < atsru->devices_cnt; i++)
				if (atsru->devices[i] == bridge)
					return 1;
			break;
		}
	}

	if (atsru->include_all)
		return 1;

	return 0;
}
340
#endif
341

342
#ifdef CONFIG_ACPI_NUMA
343 344 345 346 347 348 349
static int __init
dmar_parse_one_rhsa(struct acpi_dmar_header *header)
{
	struct acpi_dmar_rhsa *rhsa;
	struct dmar_drhd_unit *drhd;

	rhsa = (struct acpi_dmar_rhsa *)header;
350
	for_each_drhd_unit(drhd) {
351 352 353 354 355 356
		if (drhd->reg_base_addr == rhsa->base_address) {
			int node = acpi_map_pxm_to_node(rhsa->proximity_domain);

			if (!node_online(node))
				node = -1;
			drhd->iommu->node = node;
357 358
			return 0;
		}
359
	}
360 361 362 363 364 365
	WARN(1, "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
	     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
	     drhd->reg_base_addr,
	     dmi_get_system_info(DMI_BIOS_VENDOR),
	     dmi_get_system_info(DMI_BIOS_VERSION),
	     dmi_get_system_info(DMI_PRODUCT_VERSION));
366

367
	return 0;
368
}
369
#endif
370

371 372 373 374 375
static void __init
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_reserved_memory *rmrr;
376
	struct acpi_dmar_atsr *atsr;
377
	struct acpi_dmar_rhsa *rhsa;
378 379 380

	switch (header->type) {
	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
381 382
		drhd = container_of(header, struct acpi_dmar_hardware_unit,
				    header);
383
		printk (KERN_INFO PREFIX
384 385
			"DRHD base: %#016Lx flags: %#x\n",
			(unsigned long long)drhd->address, drhd->flags);
386 387
		break;
	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
388 389
		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
				    header);
390
		printk (KERN_INFO PREFIX
391
			"RMRR base: %#016Lx end: %#016Lx\n",
F
Fenghua Yu 已提交
392 393
			(unsigned long long)rmrr->base_address,
			(unsigned long long)rmrr->end_address);
394
		break;
395 396 397 398
	case ACPI_DMAR_TYPE_ATSR:
		atsr = container_of(header, struct acpi_dmar_atsr, header);
		printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
		break;
399 400 401 402 403 404
	case ACPI_DMAR_HARDWARE_AFFINITY:
		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
		printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
		       (unsigned long long)rhsa->base_address,
		       rhsa->proximity_domain);
		break;
405 406 407
	}
}

408 409 410 411 412 413 414 415
/**
 * dmar_table_detect - checks to see if the platform supports DMAR devices
 */
static int __init dmar_table_detect(void)
{
	acpi_status status = AE_OK;

	/* if we could find DMAR table, then there are DMAR devices */
416 417 418
	status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
				(struct acpi_table_header **)&dmar_tbl,
				&dmar_tbl_size);
419 420 421 422 423 424 425 426

	if (ACPI_SUCCESS(status) && !dmar_tbl) {
		printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
		status = AE_NOT_FOUND;
	}

	return (ACPI_SUCCESS(status) ? 1 : 0);
}
427

428 429 430 431 432 433 434 435 436 437
/**
 * parse_dmar_table - parses the DMA reporting table
 */
static int __init
parse_dmar_table(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	int ret = 0;

438 439 440 441 442 443
	/*
	 * Do it again, earlier dmar_tbl mapping could be mapped with
	 * fixed map.
	 */
	dmar_table_detect();

444 445 446 447 448 449
	/*
	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
	 */
	dmar_tbl = tboot_get_dmar_table(dmar_tbl);

450 451 452 453
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar)
		return -ENODEV;

F
Fenghua Yu 已提交
454
	if (dmar->width < PAGE_SHIFT - 1) {
F
Fenghua Yu 已提交
455
		printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
456 457 458 459 460 461 462 463 464
		return -EINVAL;
	}

	printk (KERN_INFO PREFIX "Host address width %d\n",
		dmar->width + 1);

	entry_header = (struct acpi_dmar_header *)(dmar + 1);
	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
465 466 467 468 469 470 471 472
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
			printk(KERN_WARNING PREFIX
				"Invalid 0-length structure\n");
			ret = -EINVAL;
			break;
		}

473 474 475 476 477 478 479
		dmar_table_print_dmar_entry(entry_header);

		switch (entry_header->type) {
		case ACPI_DMAR_TYPE_HARDWARE_UNIT:
			ret = dmar_parse_one_drhd(entry_header);
			break;
		case ACPI_DMAR_TYPE_RESERVED_MEMORY:
480
#ifdef CONFIG_DMAR
481
			ret = dmar_parse_one_rmrr(entry_header);
482 483 484 485 486
#endif
			break;
		case ACPI_DMAR_TYPE_ATSR:
#ifdef CONFIG_DMAR
			ret = dmar_parse_one_atsr(entry_header);
487
#endif
488
			break;
489
		case ACPI_DMAR_HARDWARE_AFFINITY:
490
#ifdef CONFIG_ACPI_NUMA
491
			ret = dmar_parse_one_rhsa(entry_header);
492
#endif
493
			break;
494 495
		default:
			printk(KERN_WARNING PREFIX
496 497
				"Unknown DMAR structure type %d\n",
				entry_header->type);
498 499 500 501 502 503 504 505 506 507 508
			ret = 0; /* for forward compatibility */
			break;
		}
		if (ret)
			break;

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return ret;
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
			  struct pci_dev *dev)
{
	int index;

	while (dev) {
		for (index = 0; index < cnt; index++)
			if (dev == devices[index])
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
529 530 531 532 533 534 535 536 537 538 539
	struct dmar_drhd_unit *dmaru = NULL;
	struct acpi_dmar_hardware_unit *drhd;

	list_for_each_entry(dmaru, &dmar_drhd_units, list) {
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		if (dmaru->include_all &&
		    drhd->segment == pci_domain_nr(dev->bus))
			return dmaru;
540

541 542 543
		if (dmar_pci_device_match(dmaru->devices,
					  dmaru->devices_cnt, dev))
			return dmaru;
544 545 546 547 548
	}

	return NULL;
}

549 550
int __init dmar_dev_scope_init(void)
{
551
	struct dmar_drhd_unit *drhd, *drhd_n;
552 553
	int ret = -ENODEV;

554
	list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
555 556 557 558 559
		ret = dmar_parse_dev(drhd);
		if (ret)
			return ret;
	}

560 561
#ifdef CONFIG_DMAR
	{
562
		struct dmar_rmrr_unit *rmrr, *rmrr_n;
563 564
		struct dmar_atsr_unit *atsr, *atsr_n;

565
		list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
566 567 568 569
			ret = rmrr_parse_dev(rmrr);
			if (ret)
				return ret;
		}
570 571 572 573 574 575

		list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
			ret = atsr_parse_dev(atsr);
			if (ret)
				return ret;
		}
576
	}
577
#endif
578 579 580 581

	return ret;
}

582 583 584

int __init dmar_table_init(void)
{
585
	static int dmar_table_initialized;
F
Fenghua Yu 已提交
586 587
	int ret;

588 589 590 591 592
	if (dmar_table_initialized)
		return 0;

	dmar_table_initialized = 1;

F
Fenghua Yu 已提交
593 594
	ret = parse_dmar_table();
	if (ret) {
595 596
		if (ret != -ENODEV)
			printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
F
Fenghua Yu 已提交
597 598 599
		return ret;
	}

600 601 602 603
	if (list_empty(&dmar_drhd_units)) {
		printk(KERN_INFO PREFIX "No DMAR devices found\n");
		return -ENODEV;
	}
F
Fenghua Yu 已提交
604

605
#ifdef CONFIG_DMAR
606
	if (list_empty(&dmar_rmrr_units))
F
Fenghua Yu 已提交
607
		printk(KERN_INFO PREFIX "No RMRR found\n");
608 609 610

	if (list_empty(&dmar_atsr_units))
		printk(KERN_INFO PREFIX "No ATSR found\n");
611
#endif
F
Fenghua Yu 已提交
612

613 614 615
	return 0;
}

616 617
static int bios_warned;

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
int __init check_zero_address(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	struct acpi_dmar_hardware_unit *drhd;

	dmar = (struct acpi_table_dmar *)dmar_tbl;
	entry_header = (struct acpi_dmar_header *)(dmar + 1);

	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
			printk(KERN_WARNING PREFIX
				"Invalid 0-length structure\n");
			return 0;
		}

		if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
637 638 639
			void __iomem *addr;
			u64 cap, ecap;

640 641 642 643 644 645 646 647
			drhd = (void *)entry_header;
			if (!drhd->address) {
				/* Promote an attitude of violence to a BIOS engineer today */
				WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
				     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
				     dmi_get_system_info(DMI_BIOS_VENDOR),
				     dmi_get_system_info(DMI_BIOS_VERSION),
				     dmi_get_system_info(DMI_PRODUCT_VERSION));
648
				bios_warned = 1;
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
				goto failed;
			}

			addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
			if (!addr ) {
				printk("IOMMU: can't validate: %llx\n", drhd->address);
				goto failed;
			}
			cap = dmar_readq(addr + DMAR_CAP_REG);
			ecap = dmar_readq(addr + DMAR_ECAP_REG);
			early_iounmap(addr, VTD_PAGE_SIZE);
			if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
				/* Promote an attitude of violence to a BIOS engineer today */
				WARN(1, "Your BIOS is broken; DMAR reported at address %llx returns all ones!\n"
				     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
				      drhd->address,
				      dmi_get_system_info(DMI_BIOS_VENDOR),
				      dmi_get_system_info(DMI_BIOS_VERSION),
				      dmi_get_system_info(DMI_PRODUCT_VERSION));
668
				bios_warned = 1;
669
				goto failed;
670 671 672 673 674 675
			}
		}

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return 1;
676 677 678 679 680 681

failed:
#ifdef CONFIG_DMAR
	dmar_disabled = 1;
#endif
	return 0;
682 683
}

684 685 686 687
void __init detect_intel_iommu(void)
{
	int ret;

688
	ret = dmar_table_detect();
689 690
	if (ret)
		ret = check_zero_address();
691
	{
692
#ifdef CONFIG_INTR_REMAP
693 694 695 696 697 698 699 700
		struct acpi_table_dmar *dmar;
		/*
		 * for now we will disable dma-remapping when interrupt
		 * remapping is enabled.
		 * When support for queued invalidation for IOTLB invalidation
		 * is added, we will not need this any more.
		 */
		dmar = (struct acpi_table_dmar *) dmar_tbl;
701
		if (ret && cpu_has_x2apic && dmar->flags & 0x1)
702 703 704
			printk(KERN_INFO
			       "Queued invalidation will be enabled to support "
			       "x2apic and Intr-remapping.\n");
705 706
#endif
#ifdef CONFIG_DMAR
707
		if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
708
			iommu_detected = 1;
C
Chris Wright 已提交
709 710 711
			/* Make sure ACS will be enabled */
			pci_request_acs();
		}
712 713 714 715
#endif
#ifdef CONFIG_X86
		if (ret)
			x86_init.iommu.iommu_init = intel_iommu_init;
716
#endif
717
	}
718
	early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
719
	dmar_tbl = NULL;
720 721 722
}


723
int alloc_iommu(struct dmar_drhd_unit *drhd)
724
{
725
	struct intel_iommu *iommu;
726 727
	int map_size;
	u32 ver;
728
	static int iommu_allocated = 0;
729
	int agaw = 0;
F
Fenghua Yu 已提交
730
	int msagaw = 0;
731

732 733 734 735 736 737 738 739 740 741 742 743
	if (!drhd->reg_base_addr) {
		if (!bios_warned) {
			WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
			     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			     dmi_get_system_info(DMI_BIOS_VENDOR),
			     dmi_get_system_info(DMI_BIOS_VERSION),
			     dmi_get_system_info(DMI_PRODUCT_VERSION));
			bios_warned = 1;
		}
		return -EINVAL;
	}

744 745
	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
746
		return -ENOMEM;
747 748

	iommu->seq_id = iommu_allocated++;
749
	sprintf (iommu->name, "dmar%d", iommu->seq_id);
750

F
Fenghua Yu 已提交
751
	iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
752 753 754 755 756 757 758
	if (!iommu->reg) {
		printk(KERN_ERR "IOMMU: can't map the region\n");
		goto error;
	}
	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

759
	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
760 761 762 763 764 765 766 767 768 769
		if (!bios_warned) {
			/* Promote an attitude of violence to a BIOS engineer today */
			WARN(1, "Your BIOS is broken; DMAR reported at address %llx returns all ones!\n"
			     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			     drhd->reg_base_addr,
			     dmi_get_system_info(DMI_BIOS_VENDOR),
			     dmi_get_system_info(DMI_BIOS_VERSION),
			     dmi_get_system_info(DMI_PRODUCT_VERSION));
			bios_warned = 1;
		}
770 771 772
		goto err_unmap;
	}

773
#ifdef CONFIG_DMAR
W
Weidong Han 已提交
774 775 776
	agaw = iommu_calculate_agaw(iommu);
	if (agaw < 0) {
		printk(KERN_ERR
F
Fenghua Yu 已提交
777 778
		       "Cannot get a valid agaw for iommu (seq_id = %d)\n",
		       iommu->seq_id);
779
		goto err_unmap;
F
Fenghua Yu 已提交
780 781 782 783 784
	}
	msagaw = iommu_calculate_max_sagaw(iommu);
	if (msagaw < 0) {
		printk(KERN_ERR
			"Cannot get a valid max agaw for iommu (seq_id = %d)\n",
W
Weidong Han 已提交
785
			iommu->seq_id);
786
		goto err_unmap;
W
Weidong Han 已提交
787
	}
788
#endif
W
Weidong Han 已提交
789
	iommu->agaw = agaw;
F
Fenghua Yu 已提交
790
	iommu->msagaw = msagaw;
W
Weidong Han 已提交
791

792 793
	iommu->node = -1;

794 795 796
	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
		cap_max_fault_reg_offset(iommu->cap));
F
Fenghua Yu 已提交
797 798
	map_size = VTD_PAGE_ALIGN(map_size);
	if (map_size > VTD_PAGE_SIZE) {
799 800 801 802 803 804 805 806 807
		iounmap(iommu->reg);
		iommu->reg = ioremap(drhd->reg_base_addr, map_size);
		if (!iommu->reg) {
			printk(KERN_ERR "IOMMU: can't map the region\n");
			goto error;
		}
	}

	ver = readl(iommu->reg + DMAR_VER_REG);
808
	pr_info("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
F
Fenghua Yu 已提交
809 810 811 812
		(unsigned long long)drhd->reg_base_addr,
		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		(unsigned long long)iommu->cap,
		(unsigned long long)iommu->ecap);
813 814 815 816

	spin_lock_init(&iommu->register_lock);

	drhd->iommu = iommu;
817
	return 0;
818 819 820 821

 err_unmap:
	iounmap(iommu->reg);
 error:
822
	kfree(iommu);
823
	return -1;
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
}

void free_iommu(struct intel_iommu *iommu)
{
	if (!iommu)
		return;

#ifdef CONFIG_DMAR
	free_dmar_iommu(iommu);
#endif

	if (iommu->reg)
		iounmap(iommu->reg);
	kfree(iommu);
}
839 840 841 842 843 844

/*
 * Reclaim all the submitted descriptors which have completed its work.
 */
static inline void reclaim_free_desc(struct q_inval *qi)
{
845 846
	while (qi->desc_status[qi->free_tail] == QI_DONE ||
	       qi->desc_status[qi->free_tail] == QI_ABORT) {
847 848 849 850 851 852
		qi->desc_status[qi->free_tail] = QI_FREE;
		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
		qi->free_cnt++;
	}
}

853 854 855
static int qi_check_fault(struct intel_iommu *iommu, int index)
{
	u32 fault;
856
	int head, tail;
857 858 859
	struct q_inval *qi = iommu->qi;
	int wait_index = (index + 1) % QI_LENGTH;

860 861 862
	if (qi->desc_status[wait_index] == QI_ABORT)
		return -EAGAIN;

863 864 865 866 867 868 869 870 871
	fault = readl(iommu->reg + DMAR_FSTS_REG);

	/*
	 * If IQE happens, the head points to the descriptor associated
	 * with the error. No new descriptors are fetched until the IQE
	 * is cleared.
	 */
	if (fault & DMA_FSTS_IQE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
872 873 874 875 876
		if ((head >> DMAR_IQ_SHIFT) == index) {
			printk(KERN_ERR "VT-d detected invalid descriptor: "
				"low=%llx, high=%llx\n",
				(unsigned long long)qi->desc[index].low,
				(unsigned long long)qi->desc[index].high);
877 878 879 880 881 882 883 884 885
			memcpy(&qi->desc[index], &qi->desc[wait_index],
					sizeof(struct qi_desc));
			__iommu_flush_cache(iommu, &qi->desc[index],
					sizeof(struct qi_desc));
			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
			return -EINVAL;
		}
	}

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
	/*
	 * If ITE happens, all pending wait_desc commands are aborted.
	 * No new descriptors are fetched until the ITE is cleared.
	 */
	if (fault & DMA_FSTS_ITE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
		head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
		head |= 1;
		tail = readl(iommu->reg + DMAR_IQT_REG);
		tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;

		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);

		do {
			if (qi->desc_status[head] == QI_IN_USE)
				qi->desc_status[head] = QI_ABORT;
			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
		} while (head != tail);

		if (qi->desc_status[wait_index] == QI_ABORT)
			return -EAGAIN;
	}

	if (fault & DMA_FSTS_ICE)
		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);

912 913 914
	return 0;
}

915 916 917 918
/*
 * Submit the queued invalidation descriptor to the remapping
 * hardware unit and wait for its completion.
 */
919
int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
920
{
921
	int rc;
922 923 924 925 926 927
	struct q_inval *qi = iommu->qi;
	struct qi_desc *hw, wait_desc;
	int wait_index, index;
	unsigned long flags;

	if (!qi)
928
		return 0;
929 930 931

	hw = qi->desc;

932 933 934
restart:
	rc = 0;

935
	spin_lock_irqsave(&qi->q_lock, flags);
936
	while (qi->free_cnt < 3) {
937
		spin_unlock_irqrestore(&qi->q_lock, flags);
938
		cpu_relax();
939
		spin_lock_irqsave(&qi->q_lock, flags);
940 941 942 943 944 945 946 947 948
	}

	index = qi->free_head;
	wait_index = (index + 1) % QI_LENGTH;

	qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;

	hw[index] = *desc;

949 950
	wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
951 952 953 954 955 956 957 958 959 960 961 962 963 964
	wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);

	hw[wait_index] = wait_desc;

	__iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
	__iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));

	qi->free_head = (qi->free_head + 2) % QI_LENGTH;
	qi->free_cnt -= 2;

	/*
	 * update the HW tail register indicating the presence of
	 * new descriptors.
	 */
965
	writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
966 967

	while (qi->desc_status[wait_index] != QI_DONE) {
968 969 970 971 972 973 974
		/*
		 * We will leave the interrupts disabled, to prevent interrupt
		 * context to queue another cmd while a cmd is already submitted
		 * and waiting for completion on this cpu. This is to avoid
		 * a deadlock where the interrupt context can wait indefinitely
		 * for free slots in the queue.
		 */
975 976
		rc = qi_check_fault(iommu, index);
		if (rc)
977
			break;
978

979 980 981 982
		spin_unlock(&qi->q_lock);
		cpu_relax();
		spin_lock(&qi->q_lock);
	}
983 984

	qi->desc_status[index] = QI_DONE;
985 986

	reclaim_free_desc(qi);
987
	spin_unlock_irqrestore(&qi->q_lock, flags);
988

989 990 991
	if (rc == -EAGAIN)
		goto restart;

992
	return rc;
993 994 995 996 997 998 999 1000 1001 1002 1003 1004
}

/*
 * Flush the global interrupt entry cache.
 */
void qi_global_iec(struct intel_iommu *iommu)
{
	struct qi_desc desc;

	desc.low = QI_IEC_TYPE;
	desc.high = 0;

1005
	/* should never fail */
1006 1007 1008
	qi_submit_sync(&desc, iommu);
}

1009 1010
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
		      u64 type)
1011 1012 1013 1014 1015 1016 1017
{
	struct qi_desc desc;

	desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
			| QI_CC_GRAN(type) | QI_CC_TYPE;
	desc.high = 0;

1018
	qi_submit_sync(&desc, iommu);
1019 1020
}

1021 1022
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
		    unsigned int size_order, u64 type)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
{
	u8 dw = 0, dr = 0;

	struct qi_desc desc;
	int ih = 0;

	if (cap_write_drain(iommu->cap))
		dw = 1;

	if (cap_read_drain(iommu->cap))
		dr = 1;

	desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
	desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
		| QI_IOTLB_AM(size_order);

1040
	qi_submit_sync(&desc, iommu);
1041 1042
}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
			u64 addr, unsigned mask)
{
	struct qi_desc desc;

	if (mask) {
		BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
		addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
		desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
	} else
		desc.high = QI_DEV_IOTLB_ADDR(addr);

	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
		qdep = 0;

	desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
		   QI_DIOTLB_TYPE;

	qi_submit_sync(&desc, iommu);
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
/*
 * Disable Queued Invalidation interface.
 */
void dmar_disable_qi(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
	cycles_t start_time = get_cycles();

	if (!ecap_qis(iommu->ecap))
		return;

	spin_lock_irqsave(&iommu->register_lock, flags);

	sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
	if (!(sts & DMA_GSTS_QIES))
		goto end;

	/*
	 * Give a chance to HW to complete the pending invalidation requests.
	 */
	while ((readl(iommu->reg + DMAR_IQT_REG) !=
		readl(iommu->reg + DMAR_IQH_REG)) &&
		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
		cpu_relax();

	iommu->gcmd &= ~DMA_GCMD_QIE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
		      !(sts & DMA_GSTS_QIES), sts);
end:
	spin_unlock_irqrestore(&iommu->register_lock, flags);
}

1099 1100 1101 1102 1103
/*
 * Enable queued invalidation.
 */
static void __dmar_enable_qi(struct intel_iommu *iommu)
{
1104
	u32 sts;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	unsigned long flags;
	struct q_inval *qi = iommu->qi;

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

	spin_lock_irqsave(&iommu->register_lock, flags);

	/* write zero to the tail reg */
	writel(0, iommu->reg + DMAR_IQT_REG);

	dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));

	iommu->gcmd |= DMA_GCMD_QIE;
1119
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1120 1121 1122 1123 1124 1125 1126

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);

	spin_unlock_irqrestore(&iommu->register_lock, flags);
}

1127 1128 1129 1130 1131 1132 1133 1134
/*
 * Enable Queued Invalidation interface. This is a must to support
 * interrupt-remapping. Also used by DMA-remapping, which replaces
 * register based IOTLB invalidation.
 */
int dmar_enable_qi(struct intel_iommu *iommu)
{
	struct q_inval *qi;
1135
	struct page *desc_page;
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	/*
	 * queued invalidation is already setup and enabled.
	 */
	if (iommu->qi)
		return 0;

1146
	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1147 1148 1149 1150 1151
	if (!iommu->qi)
		return -ENOMEM;

	qi = iommu->qi;

1152 1153 1154

	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (!desc_page) {
1155 1156 1157 1158 1159
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

1160 1161
	qi->desc = page_address(desc_page);

1162
	qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	if (!qi->desc_status) {
		free_page((unsigned long) qi->desc);
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

	spin_lock_init(&qi->q_lock);

1175
	__dmar_enable_qi(iommu);
1176 1177 1178

	return 0;
}
1179 1180 1181

/* iommu interrupt handling. Most stuff are MSI-like. */

1182 1183 1184 1185 1186 1187 1188
enum faulttype {
	DMA_REMAP,
	INTR_REMAP,
	UNKNOWN,
};

static const char *dma_remap_fault_reasons[] =
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
};
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

static const char *intr_remap_fault_reasons[] =
{
	"Detected reserved fields in the decoded interrupt-remapped request",
	"Interrupt index exceeded the interrupt-remapping table size",
	"Present field in the IRTE entry is clear",
	"Error accessing interrupt-remapping table pointed by IRTA_REG",
	"Detected reserved fields in the IRTE entry",
	"Blocked a compatibility format interrupt request",
	"Blocked an interrupt request due to source-id verification failure",
};

1216 1217
#define MAX_FAULT_REASON_IDX 	(ARRAY_SIZE(fault_reason_strings) - 1)

1218
const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1219
{
1220 1221 1222 1223 1224 1225 1226 1227 1228
	if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
				     ARRAY_SIZE(intr_remap_fault_reasons))) {
		*fault_type = INTR_REMAP;
		return intr_remap_fault_reasons[fault_reason - 0x20];
	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
		*fault_type = DMA_REMAP;
		return dma_remap_fault_reasons[fault_reason];
	} else {
		*fault_type = UNKNOWN;
1229
		return "Unknown";
1230
	}
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
}

void dmar_msi_unmask(unsigned int irq)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	/* unmask it */
	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(0, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_mask(unsigned int irq)
{
	unsigned long flag;
	struct intel_iommu *iommu = get_irq_data(irq);

	/* mask it */
	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
	writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
	writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
	msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
	msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
		u8 fault_reason, u16 source_id, unsigned long long addr)
{
	const char *reason;
1287
	int fault_type;
1288

1289
	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1290

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	if (fault_type == INTR_REMAP)
		printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
		       "fault index %llx\n"
			"INTR-REMAP:[fault reason %02d] %s\n",
			(source_id >> 8), PCI_SLOT(source_id & 0xFF),
			PCI_FUNC(source_id & 0xFF), addr >> 48,
			fault_reason, reason);
	else
		printk(KERN_ERR
		       "DMAR:[%s] Request device [%02x:%02x.%d] "
		       "fault addr %llx \n"
		       "DMAR:[fault reason %02d] %s\n",
		       (type ? "DMA Read" : "DMA Write"),
		       (source_id >> 8), PCI_SLOT(source_id & 0xFF),
		       PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1306 1307 1308 1309
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
1310
irqreturn_t dmar_fault(int irq, void *dev_id)
1311 1312 1313 1314 1315 1316 1317 1318
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1319 1320 1321
	if (fault_status)
		printk(KERN_ERR "DRHD: handling fault status reg %x\n",
		       fault_status);
1322 1323 1324

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
1325
		goto clear_rest;
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
		int type;
		u32 data;

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

		fault_reason = dma_frcd_fault_reason(data);
		type = dma_frcd_type(data);

		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 8);
		source_id = dma_frcd_source_id(data);

		guest_addr = dmar_readq(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN);
		guest_addr = dma_frcd_page_addr(guest_addr);
		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

		spin_unlock_irqrestore(&iommu->register_lock, flag);

		dmar_fault_do_one(iommu, type, fault_reason,
				source_id, guest_addr);

		fault_index++;
1362
		if (fault_index >= cap_num_fault_regs(iommu->cap))
1363 1364 1365
			fault_index = 0;
		spin_lock_irqsave(&iommu->register_lock, flag);
	}
1366 1367
clear_rest:
	/* clear all the other faults */
1368
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1369
	writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1370 1371 1372 1373 1374 1375 1376 1377 1378

	spin_unlock_irqrestore(&iommu->register_lock, flag);
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

1379 1380 1381 1382 1383 1384
	/*
	 * Check if the fault interrupt is already initialized.
	 */
	if (iommu->irq)
		return 0;

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	irq = create_irq();
	if (!irq) {
		printk(KERN_ERR "IOMMU: no free vectors\n");
		return -EINVAL;
	}

	set_irq_data(irq, iommu);
	iommu->irq = irq;

	ret = arch_setup_dmar_msi(irq);
	if (ret) {
		set_irq_data(irq, NULL);
		iommu->irq = 0;
		destroy_irq(irq);
1399
		return ret;
1400 1401 1402 1403 1404 1405 1406
	}

	ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
	if (ret)
		printk(KERN_ERR "IOMMU: can't request irq\n");
	return ret;
}
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429

int __init enable_drhd_fault_handling(void)
{
	struct dmar_drhd_unit *drhd;

	/*
	 * Enable fault control interrupt.
	 */
	for_each_drhd_unit(drhd) {
		int ret;
		struct intel_iommu *iommu = drhd->iommu;
		ret = dmar_set_interrupt(iommu);

		if (ret) {
			printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
			       " interrupt, ret %d\n",
			       (unsigned long long)drhd->reg_base_addr, ret);
			return -1;
		}
	}

	return 0;
}
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

/*
 * Re-enable Queued Invalidation interface.
 */
int dmar_reenable_qi(struct intel_iommu *iommu)
{
	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	if (!iommu->qi)
		return -ENOENT;

	/*
	 * First disable queued invalidation.
	 */
	dmar_disable_qi(iommu);
	/*
	 * Then enable queued invalidation again. Since there is no pending
	 * invalidation requests now, it's safe to re-enable queued
	 * invalidation.
	 */
	__dmar_enable_qi(iommu);

	return 0;
}
1455 1456 1457 1458

/*
 * Check interrupt remapping support in DMAR table description.
 */
1459
int __init dmar_ir_support(void)
1460 1461 1462 1463 1464
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	return dmar->flags & 0x1;
}