dmar.c 32.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (c) 2006, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
17 18 19 20
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21
 *
22
 * This file implements early detection/parsing of Remapping Devices
23 24
 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
 * tables.
25 26
 *
 * These routines are used by both DMA-remapping and Interrupt-remapping
27 28 29 30
 */

#include <linux/pci.h>
#include <linux/dmar.h>
K
Kay, Allen M 已提交
31 32
#include <linux/iova.h>
#include <linux/intel-iommu.h>
33
#include <linux/timer.h>
34 35
#include <linux/irq.h>
#include <linux/interrupt.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38

39
#define PREFIX "DMAR: "
40 41 42 43 44 45 46 47

/* No locks are needed as DMA remapping hardware unit
 * list is constructed at boot time and hotplug of
 * these units are not supported by the architecture.
 */
LIST_HEAD(dmar_drhd_units);

static struct acpi_table_header * __initdata dmar_tbl;
48
static acpi_size dmar_tbl_size;
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
{
	/*
	 * add INCLUDE_ALL at the tail, so scan the list will find it at
	 * the very end.
	 */
	if (drhd->include_all)
		list_add_tail(&drhd->list, &dmar_drhd_units);
	else
		list_add(&drhd->list, &dmar_drhd_units);
}

static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
					   struct pci_dev **dev, u16 segment)
{
	struct pci_bus *bus;
	struct pci_dev *pdev = NULL;
	struct acpi_dmar_pci_path *path;
	int count;

	bus = pci_find_bus(segment, scope->bus);
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (count) {
		if (pdev)
			pci_dev_put(pdev);
		/*
		 * Some BIOSes list non-exist devices in DMAR table, just
		 * ignore it
		 */
		if (!bus) {
			printk(KERN_WARNING
			PREFIX "Device scope bus [%d] not found\n",
			scope->bus);
			break;
		}
		pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
		if (!pdev) {
			printk(KERN_WARNING PREFIX
			"Device scope device [%04x:%02x:%02x.%02x] not found\n",
				segment, bus->number, path->dev, path->fn);
			break;
		}
		path ++;
		count --;
		bus = pdev->subordinate;
	}
	if (!pdev) {
		printk(KERN_WARNING PREFIX
		"Device scope device [%04x:%02x:%02x.%02x] not found\n",
		segment, scope->bus, path->dev, path->fn);
		*dev = NULL;
		return 0;
	}
	if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
			pdev->subordinate) || (scope->entry_type == \
			ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
		pci_dev_put(pdev);
		printk(KERN_WARNING PREFIX
			"Device scope type does not match for %s\n",
			 pci_name(pdev));
		return -EINVAL;
	}
	*dev = pdev;
	return 0;
}

static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
				       struct pci_dev ***devices, u16 segment)
{
	struct acpi_dmar_device_scope *scope;
	void * tmp = start;
	int index;
	int ret;

	*cnt = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			(*cnt)++;
		else
			printk(KERN_WARNING PREFIX
				"Unsupported device scope\n");
		start += scope->length;
	}
	if (*cnt == 0)
		return 0;

	*devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
	if (!*devices)
		return -ENOMEM;

	start = tmp;
	index = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
			ret = dmar_parse_one_dev_scope(scope,
				&(*devices)[index], segment);
			if (ret) {
				kfree(*devices);
				return ret;
			}
			index ++;
		}
		start += scope->length;
	}

	return 0;
}

/**
 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 * structure which uniquely represent one DMA remapping hardware unit
 * present in the platform
 */
static int __init
dmar_parse_one_drhd(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct dmar_drhd_unit *dmaru;
	int ret = 0;

177 178 179 180 181 182 183 184 185 186
	drhd = (struct acpi_dmar_hardware_unit *)header;
	if (!drhd->address) {
		/* Promote an attitude of violence to a BIOS engineer today */
		WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		return -ENODEV;
	}
187 188 189 190
	dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
	if (!dmaru)
		return -ENOMEM;

191
	dmaru->hdr = header;
192
	dmaru->reg_base_addr = drhd->address;
193
	dmaru->segment = drhd->segment;
194 195
	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */

196 197 198 199 200 201 202 203 204
	ret = alloc_iommu(dmaru);
	if (ret) {
		kfree(dmaru);
		return ret;
	}
	dmar_register_drhd_unit(dmaru);
	return 0;
}

205
static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
206 207
{
	struct acpi_dmar_hardware_unit *drhd;
208
	int ret = 0;
209 210 211

	drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;

212 213 214 215
	if (dmaru->include_all)
		return 0;

	ret = dmar_parse_dev_scope((void *)(drhd + 1),
216
				((void *)drhd) + drhd->header.length,
217 218
				&dmaru->devices_cnt, &dmaru->devices,
				drhd->segment);
219
	if (ret) {
220
		list_del(&dmaru->list);
221
		kfree(dmaru);
222
	}
223 224 225
	return ret;
}

226 227 228 229 230 231 232 233 234
#ifdef CONFIG_DMAR
LIST_HEAD(dmar_rmrr_units);

static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
{
	list_add(&rmrr->list, &dmar_rmrr_units);
}


235 236 237 238 239 240 241 242 243 244
static int __init
dmar_parse_one_rmrr(struct acpi_dmar_header *header)
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
		return -ENOMEM;

245
	rmrru->hdr = header;
246 247 248
	rmrr = (struct acpi_dmar_reserved_memory *)header;
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
249 250 251 252 253 254 255 256 257 258 259 260

	dmar_register_rmrr_unit(rmrru);
	return 0;
}

static int __init
rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
{
	struct acpi_dmar_reserved_memory *rmrr;
	int ret;

	rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
261
	ret = dmar_parse_dev_scope((void *)(rmrr + 1),
262
		((void *)rmrr) + rmrr->header.length,
263 264
		&rmrru->devices_cnt, &rmrru->devices, rmrr->segment);

265 266
	if (ret || (rmrru->devices_cnt == 0)) {
		list_del(&rmrru->list);
267
		kfree(rmrru);
268
	}
269 270
	return ret;
}
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

static LIST_HEAD(dmar_atsr_units);

static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
	if (!atsru)
		return -ENOMEM;

	atsru->hdr = hdr;
	atsru->include_all = atsr->flags & 0x1;

	list_add(&atsru->list, &dmar_atsr_units);

	return 0;
}

static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
{
	int rc;
	struct acpi_dmar_atsr *atsr;

	if (atsru->include_all)
		return 0;

	atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
	rc = dmar_parse_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt, &atsru->devices,
				atsr->segment);
	if (rc || !atsru->devices_cnt) {
		list_del(&atsru->list);
		kfree(atsru);
	}

	return rc;
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
	int i;
	struct pci_bus *bus;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment == pci_domain_nr(dev->bus))
			goto found;
	}

	return 0;

found:
	for (bus = dev->bus; bus; bus = bus->parent) {
		struct pci_dev *bridge = bus->self;

		if (!bridge || !bridge->is_pcie ||
		    bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
			return 0;

		if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
			for (i = 0; i < atsru->devices_cnt; i++)
				if (atsru->devices[i] == bridge)
					return 1;
			break;
		}
	}

	if (atsru->include_all)
		return 1;

	return 0;
}
349
#endif
350

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
static int __init
dmar_parse_one_rhsa(struct acpi_dmar_header *header)
{
	struct acpi_dmar_rhsa *rhsa;
	struct dmar_drhd_unit *drhd;

	rhsa = (struct acpi_dmar_rhsa *)header;
	for_each_drhd_unit(drhd)
		if (drhd->reg_base_addr == rhsa->base_address) {
			int node = acpi_map_pxm_to_node(rhsa->proximity_domain);

			if (!node_online(node))
				node = -1;
			drhd->iommu->node = node;
		return 0;
	}

	return -ENODEV;
}

371 372 373 374 375
static void __init
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_reserved_memory *rmrr;
376
	struct acpi_dmar_atsr *atsr;
377
	struct acpi_dmar_rhsa *rhsa;
378 379 380

	switch (header->type) {
	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
381 382
		drhd = container_of(header, struct acpi_dmar_hardware_unit,
				    header);
383
		printk (KERN_INFO PREFIX
384 385
			"DRHD base: %#016Lx flags: %#x\n",
			(unsigned long long)drhd->address, drhd->flags);
386 387
		break;
	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
388 389
		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
				    header);
390
		printk (KERN_INFO PREFIX
391
			"RMRR base: %#016Lx end: %#016Lx\n",
F
Fenghua Yu 已提交
392 393
			(unsigned long long)rmrr->base_address,
			(unsigned long long)rmrr->end_address);
394
		break;
395 396 397 398
	case ACPI_DMAR_TYPE_ATSR:
		atsr = container_of(header, struct acpi_dmar_atsr, header);
		printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
		break;
399 400 401 402 403 404
	case ACPI_DMAR_HARDWARE_AFFINITY:
		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
		printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
		       (unsigned long long)rhsa->base_address,
		       rhsa->proximity_domain);
		break;
405 406 407
	}
}

408 409 410 411 412 413 414 415
/**
 * dmar_table_detect - checks to see if the platform supports DMAR devices
 */
static int __init dmar_table_detect(void)
{
	acpi_status status = AE_OK;

	/* if we could find DMAR table, then there are DMAR devices */
416 417 418
	status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
				(struct acpi_table_header **)&dmar_tbl,
				&dmar_tbl_size);
419 420 421 422 423 424 425 426

	if (ACPI_SUCCESS(status) && !dmar_tbl) {
		printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
		status = AE_NOT_FOUND;
	}

	return (ACPI_SUCCESS(status) ? 1 : 0);
}
427

428 429 430 431 432 433 434 435 436 437
/**
 * parse_dmar_table - parses the DMA reporting table
 */
static int __init
parse_dmar_table(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	int ret = 0;

438 439 440 441 442 443
	/*
	 * Do it again, earlier dmar_tbl mapping could be mapped with
	 * fixed map.
	 */
	dmar_table_detect();

444 445 446 447 448 449
	/*
	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
	 */
	dmar_tbl = tboot_get_dmar_table(dmar_tbl);

450 451 452 453
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar)
		return -ENODEV;

F
Fenghua Yu 已提交
454
	if (dmar->width < PAGE_SHIFT - 1) {
F
Fenghua Yu 已提交
455
		printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
456 457 458 459 460 461 462 463 464
		return -EINVAL;
	}

	printk (KERN_INFO PREFIX "Host address width %d\n",
		dmar->width + 1);

	entry_header = (struct acpi_dmar_header *)(dmar + 1);
	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
465 466 467 468 469 470 471 472
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
			printk(KERN_WARNING PREFIX
				"Invalid 0-length structure\n");
			ret = -EINVAL;
			break;
		}

473 474 475 476 477 478 479
		dmar_table_print_dmar_entry(entry_header);

		switch (entry_header->type) {
		case ACPI_DMAR_TYPE_HARDWARE_UNIT:
			ret = dmar_parse_one_drhd(entry_header);
			break;
		case ACPI_DMAR_TYPE_RESERVED_MEMORY:
480
#ifdef CONFIG_DMAR
481
			ret = dmar_parse_one_rmrr(entry_header);
482 483 484 485 486
#endif
			break;
		case ACPI_DMAR_TYPE_ATSR:
#ifdef CONFIG_DMAR
			ret = dmar_parse_one_atsr(entry_header);
487
#endif
488
			break;
489
		case ACPI_DMAR_HARDWARE_AFFINITY:
490
			ret = dmar_parse_one_rhsa(entry_header);
491
			break;
492 493
		default:
			printk(KERN_WARNING PREFIX
494 495
				"Unknown DMAR structure type %d\n",
				entry_header->type);
496 497 498 499 500 501 502 503 504 505 506
			ret = 0; /* for forward compatibility */
			break;
		}
		if (ret)
			break;

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return ret;
}

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
			  struct pci_dev *dev)
{
	int index;

	while (dev) {
		for (index = 0; index < cnt; index++)
			if (dev == devices[index])
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
527 528 529 530 531 532 533 534 535 536 537
	struct dmar_drhd_unit *dmaru = NULL;
	struct acpi_dmar_hardware_unit *drhd;

	list_for_each_entry(dmaru, &dmar_drhd_units, list) {
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		if (dmaru->include_all &&
		    drhd->segment == pci_domain_nr(dev->bus))
			return dmaru;
538

539 540 541
		if (dmar_pci_device_match(dmaru->devices,
					  dmaru->devices_cnt, dev))
			return dmaru;
542 543 544 545 546
	}

	return NULL;
}

547 548
int __init dmar_dev_scope_init(void)
{
549
	struct dmar_drhd_unit *drhd, *drhd_n;
550 551
	int ret = -ENODEV;

552
	list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
553 554 555 556 557
		ret = dmar_parse_dev(drhd);
		if (ret)
			return ret;
	}

558 559
#ifdef CONFIG_DMAR
	{
560
		struct dmar_rmrr_unit *rmrr, *rmrr_n;
561 562
		struct dmar_atsr_unit *atsr, *atsr_n;

563
		list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
564 565 566 567
			ret = rmrr_parse_dev(rmrr);
			if (ret)
				return ret;
		}
568 569 570 571 572 573

		list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
			ret = atsr_parse_dev(atsr);
			if (ret)
				return ret;
		}
574
	}
575
#endif
576 577 578 579

	return ret;
}

580 581 582

int __init dmar_table_init(void)
{
583
	static int dmar_table_initialized;
F
Fenghua Yu 已提交
584 585
	int ret;

586 587 588 589 590
	if (dmar_table_initialized)
		return 0;

	dmar_table_initialized = 1;

F
Fenghua Yu 已提交
591 592
	ret = parse_dmar_table();
	if (ret) {
593 594
		if (ret != -ENODEV)
			printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
F
Fenghua Yu 已提交
595 596 597
		return ret;
	}

598 599 600 601
	if (list_empty(&dmar_drhd_units)) {
		printk(KERN_INFO PREFIX "No DMAR devices found\n");
		return -ENODEV;
	}
F
Fenghua Yu 已提交
602

603
#ifdef CONFIG_DMAR
604
	if (list_empty(&dmar_rmrr_units))
F
Fenghua Yu 已提交
605
		printk(KERN_INFO PREFIX "No RMRR found\n");
606 607 608

	if (list_empty(&dmar_atsr_units))
		printk(KERN_INFO PREFIX "No ATSR found\n");
609
#endif
F
Fenghua Yu 已提交
610

611 612 613
	return 0;
}

614 615 616 617
void __init detect_intel_iommu(void)
{
	int ret;

618
	ret = dmar_table_detect();
619 620

	{
621
#ifdef CONFIG_INTR_REMAP
622 623 624 625 626 627 628 629
		struct acpi_table_dmar *dmar;
		/*
		 * for now we will disable dma-remapping when interrupt
		 * remapping is enabled.
		 * When support for queued invalidation for IOTLB invalidation
		 * is added, we will not need this any more.
		 */
		dmar = (struct acpi_table_dmar *) dmar_tbl;
630
		if (ret && cpu_has_x2apic && dmar->flags & 0x1)
631 632 633
			printk(KERN_INFO
			       "Queued invalidation will be enabled to support "
			       "x2apic and Intr-remapping.\n");
634 635
#endif
#ifdef CONFIG_DMAR
636 637 638 639
		if (ret && !no_iommu && !iommu_detected && !swiotlb &&
		    !dmar_disabled)
			iommu_detected = 1;
#endif
640
	}
641
	early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
642
	dmar_tbl = NULL;
643 644 645
}


646
int alloc_iommu(struct dmar_drhd_unit *drhd)
647
{
648
	struct intel_iommu *iommu;
649 650
	int map_size;
	u32 ver;
651
	static int iommu_allocated = 0;
652
	int agaw = 0;
F
Fenghua Yu 已提交
653
	int msagaw = 0;
654 655 656

	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
657
		return -ENOMEM;
658 659

	iommu->seq_id = iommu_allocated++;
660
	sprintf (iommu->name, "dmar%d", iommu->seq_id);
661

F
Fenghua Yu 已提交
662
	iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
663 664 665 666 667 668 669
	if (!iommu->reg) {
		printk(KERN_ERR "IOMMU: can't map the region\n");
		goto error;
	}
	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

670 671 672 673 674 675 676 677 678 679 680
	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
		/* Promote an attitude of violence to a BIOS engineer today */
		WARN(1, "Your BIOS is broken; DMAR reported at address %llx returns all ones!\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     drhd->reg_base_addr,
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		goto err_unmap;
	}

681
#ifdef CONFIG_DMAR
W
Weidong Han 已提交
682 683 684
	agaw = iommu_calculate_agaw(iommu);
	if (agaw < 0) {
		printk(KERN_ERR
F
Fenghua Yu 已提交
685 686
		       "Cannot get a valid agaw for iommu (seq_id = %d)\n",
		       iommu->seq_id);
687
		goto err_unmap;
F
Fenghua Yu 已提交
688 689 690 691 692
	}
	msagaw = iommu_calculate_max_sagaw(iommu);
	if (msagaw < 0) {
		printk(KERN_ERR
			"Cannot get a valid max agaw for iommu (seq_id = %d)\n",
W
Weidong Han 已提交
693
			iommu->seq_id);
694
		goto err_unmap;
W
Weidong Han 已提交
695
	}
696
#endif
W
Weidong Han 已提交
697
	iommu->agaw = agaw;
F
Fenghua Yu 已提交
698
	iommu->msagaw = msagaw;
W
Weidong Han 已提交
699

700 701
	iommu->node = -1;

702 703 704
	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
		cap_max_fault_reg_offset(iommu->cap));
F
Fenghua Yu 已提交
705 706
	map_size = VTD_PAGE_ALIGN(map_size);
	if (map_size > VTD_PAGE_SIZE) {
707 708 709 710 711 712 713 714 715
		iounmap(iommu->reg);
		iommu->reg = ioremap(drhd->reg_base_addr, map_size);
		if (!iommu->reg) {
			printk(KERN_ERR "IOMMU: can't map the region\n");
			goto error;
		}
	}

	ver = readl(iommu->reg + DMAR_VER_REG);
716
	pr_info("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
F
Fenghua Yu 已提交
717 718 719 720
		(unsigned long long)drhd->reg_base_addr,
		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		(unsigned long long)iommu->cap,
		(unsigned long long)iommu->ecap);
721 722 723 724

	spin_lock_init(&iommu->register_lock);

	drhd->iommu = iommu;
725
	return 0;
726 727 728 729

 err_unmap:
	iounmap(iommu->reg);
 error:
730
	kfree(iommu);
731
	return -1;
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
}

void free_iommu(struct intel_iommu *iommu)
{
	if (!iommu)
		return;

#ifdef CONFIG_DMAR
	free_dmar_iommu(iommu);
#endif

	if (iommu->reg)
		iounmap(iommu->reg);
	kfree(iommu);
}
747 748 749 750 751 752

/*
 * Reclaim all the submitted descriptors which have completed its work.
 */
static inline void reclaim_free_desc(struct q_inval *qi)
{
753 754
	while (qi->desc_status[qi->free_tail] == QI_DONE ||
	       qi->desc_status[qi->free_tail] == QI_ABORT) {
755 756 757 758 759 760
		qi->desc_status[qi->free_tail] = QI_FREE;
		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
		qi->free_cnt++;
	}
}

761 762 763
static int qi_check_fault(struct intel_iommu *iommu, int index)
{
	u32 fault;
764
	int head, tail;
765 766 767
	struct q_inval *qi = iommu->qi;
	int wait_index = (index + 1) % QI_LENGTH;

768 769 770
	if (qi->desc_status[wait_index] == QI_ABORT)
		return -EAGAIN;

771 772 773 774 775 776 777 778 779
	fault = readl(iommu->reg + DMAR_FSTS_REG);

	/*
	 * If IQE happens, the head points to the descriptor associated
	 * with the error. No new descriptors are fetched until the IQE
	 * is cleared.
	 */
	if (fault & DMA_FSTS_IQE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
780 781 782 783 784
		if ((head >> DMAR_IQ_SHIFT) == index) {
			printk(KERN_ERR "VT-d detected invalid descriptor: "
				"low=%llx, high=%llx\n",
				(unsigned long long)qi->desc[index].low,
				(unsigned long long)qi->desc[index].high);
785 786 787 788 789 790 791 792 793
			memcpy(&qi->desc[index], &qi->desc[wait_index],
					sizeof(struct qi_desc));
			__iommu_flush_cache(iommu, &qi->desc[index],
					sizeof(struct qi_desc));
			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
			return -EINVAL;
		}
	}

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
	/*
	 * If ITE happens, all pending wait_desc commands are aborted.
	 * No new descriptors are fetched until the ITE is cleared.
	 */
	if (fault & DMA_FSTS_ITE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
		head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
		head |= 1;
		tail = readl(iommu->reg + DMAR_IQT_REG);
		tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;

		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);

		do {
			if (qi->desc_status[head] == QI_IN_USE)
				qi->desc_status[head] = QI_ABORT;
			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
		} while (head != tail);

		if (qi->desc_status[wait_index] == QI_ABORT)
			return -EAGAIN;
	}

	if (fault & DMA_FSTS_ICE)
		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);

820 821 822
	return 0;
}

823 824 825 826
/*
 * Submit the queued invalidation descriptor to the remapping
 * hardware unit and wait for its completion.
 */
827
int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
828
{
829
	int rc;
830 831 832 833 834 835
	struct q_inval *qi = iommu->qi;
	struct qi_desc *hw, wait_desc;
	int wait_index, index;
	unsigned long flags;

	if (!qi)
836
		return 0;
837 838 839

	hw = qi->desc;

840 841 842
restart:
	rc = 0;

843
	spin_lock_irqsave(&qi->q_lock, flags);
844
	while (qi->free_cnt < 3) {
845
		spin_unlock_irqrestore(&qi->q_lock, flags);
846
		cpu_relax();
847
		spin_lock_irqsave(&qi->q_lock, flags);
848 849 850 851 852 853 854 855 856
	}

	index = qi->free_head;
	wait_index = (index + 1) % QI_LENGTH;

	qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;

	hw[index] = *desc;

857 858
	wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
859 860 861 862 863 864 865 866 867 868 869 870 871 872
	wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);

	hw[wait_index] = wait_desc;

	__iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
	__iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));

	qi->free_head = (qi->free_head + 2) % QI_LENGTH;
	qi->free_cnt -= 2;

	/*
	 * update the HW tail register indicating the presence of
	 * new descriptors.
	 */
873
	writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
874 875

	while (qi->desc_status[wait_index] != QI_DONE) {
876 877 878 879 880 881 882
		/*
		 * We will leave the interrupts disabled, to prevent interrupt
		 * context to queue another cmd while a cmd is already submitted
		 * and waiting for completion on this cpu. This is to avoid
		 * a deadlock where the interrupt context can wait indefinitely
		 * for free slots in the queue.
		 */
883 884
		rc = qi_check_fault(iommu, index);
		if (rc)
885
			break;
886

887 888 889 890
		spin_unlock(&qi->q_lock);
		cpu_relax();
		spin_lock(&qi->q_lock);
	}
891 892

	qi->desc_status[index] = QI_DONE;
893 894

	reclaim_free_desc(qi);
895
	spin_unlock_irqrestore(&qi->q_lock, flags);
896

897 898 899
	if (rc == -EAGAIN)
		goto restart;

900
	return rc;
901 902 903 904 905 906 907 908 909 910 911 912
}

/*
 * Flush the global interrupt entry cache.
 */
void qi_global_iec(struct intel_iommu *iommu)
{
	struct qi_desc desc;

	desc.low = QI_IEC_TYPE;
	desc.high = 0;

913
	/* should never fail */
914 915 916
	qi_submit_sync(&desc, iommu);
}

917 918
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
		      u64 type)
919 920 921 922 923 924 925
{
	struct qi_desc desc;

	desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
			| QI_CC_GRAN(type) | QI_CC_TYPE;
	desc.high = 0;

926
	qi_submit_sync(&desc, iommu);
927 928
}

929 930
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
		    unsigned int size_order, u64 type)
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
{
	u8 dw = 0, dr = 0;

	struct qi_desc desc;
	int ih = 0;

	if (cap_write_drain(iommu->cap))
		dw = 1;

	if (cap_read_drain(iommu->cap))
		dr = 1;

	desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
	desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
		| QI_IOTLB_AM(size_order);

948
	qi_submit_sync(&desc, iommu);
949 950
}

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
			u64 addr, unsigned mask)
{
	struct qi_desc desc;

	if (mask) {
		BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
		addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
		desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
	} else
		desc.high = QI_DEV_IOTLB_ADDR(addr);

	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
		qdep = 0;

	desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
		   QI_DIOTLB_TYPE;

	qi_submit_sync(&desc, iommu);
}

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
/*
 * Disable Queued Invalidation interface.
 */
void dmar_disable_qi(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
	cycles_t start_time = get_cycles();

	if (!ecap_qis(iommu->ecap))
		return;

	spin_lock_irqsave(&iommu->register_lock, flags);

	sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
	if (!(sts & DMA_GSTS_QIES))
		goto end;

	/*
	 * Give a chance to HW to complete the pending invalidation requests.
	 */
	while ((readl(iommu->reg + DMAR_IQT_REG) !=
		readl(iommu->reg + DMAR_IQH_REG)) &&
		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
		cpu_relax();

	iommu->gcmd &= ~DMA_GCMD_QIE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
		      !(sts & DMA_GSTS_QIES), sts);
end:
	spin_unlock_irqrestore(&iommu->register_lock, flags);
}

1007 1008 1009 1010 1011
/*
 * Enable queued invalidation.
 */
static void __dmar_enable_qi(struct intel_iommu *iommu)
{
1012
	u32 sts;
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	unsigned long flags;
	struct q_inval *qi = iommu->qi;

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

	spin_lock_irqsave(&iommu->register_lock, flags);

	/* write zero to the tail reg */
	writel(0, iommu->reg + DMAR_IQT_REG);

	dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));

	iommu->gcmd |= DMA_GCMD_QIE;
1027
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1028 1029 1030 1031 1032 1033 1034

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);

	spin_unlock_irqrestore(&iommu->register_lock, flags);
}

1035 1036 1037 1038 1039 1040 1041 1042
/*
 * Enable Queued Invalidation interface. This is a must to support
 * interrupt-remapping. Also used by DMA-remapping, which replaces
 * register based IOTLB invalidation.
 */
int dmar_enable_qi(struct intel_iommu *iommu)
{
	struct q_inval *qi;
1043
	struct page *desc_page;
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	/*
	 * queued invalidation is already setup and enabled.
	 */
	if (iommu->qi)
		return 0;

1054
	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1055 1056 1057 1058 1059
	if (!iommu->qi)
		return -ENOMEM;

	qi = iommu->qi;

1060 1061 1062

	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (!desc_page) {
1063 1064 1065 1066 1067
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

1068 1069
	qi->desc = page_address(desc_page);

1070
	qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	if (!qi->desc_status) {
		free_page((unsigned long) qi->desc);
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

	spin_lock_init(&qi->q_lock);

1083
	__dmar_enable_qi(iommu);
1084 1085 1086

	return 0;
}
1087 1088 1089

/* iommu interrupt handling. Most stuff are MSI-like. */

1090 1091 1092 1093 1094 1095 1096
enum faulttype {
	DMA_REMAP,
	INTR_REMAP,
	UNKNOWN,
};

static const char *dma_remap_fault_reasons[] =
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
};
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

static const char *intr_remap_fault_reasons[] =
{
	"Detected reserved fields in the decoded interrupt-remapped request",
	"Interrupt index exceeded the interrupt-remapping table size",
	"Present field in the IRTE entry is clear",
	"Error accessing interrupt-remapping table pointed by IRTA_REG",
	"Detected reserved fields in the IRTE entry",
	"Blocked a compatibility format interrupt request",
	"Blocked an interrupt request due to source-id verification failure",
};

1124 1125
#define MAX_FAULT_REASON_IDX 	(ARRAY_SIZE(fault_reason_strings) - 1)

1126
const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1127
{
1128 1129 1130 1131 1132 1133 1134 1135 1136
	if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
				     ARRAY_SIZE(intr_remap_fault_reasons))) {
		*fault_type = INTR_REMAP;
		return intr_remap_fault_reasons[fault_reason - 0x20];
	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
		*fault_type = DMA_REMAP;
		return dma_remap_fault_reasons[fault_reason];
	} else {
		*fault_type = UNKNOWN;
1137
		return "Unknown";
1138
	}
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
}

void dmar_msi_unmask(unsigned int irq)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	/* unmask it */
	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(0, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_mask(unsigned int irq)
{
	unsigned long flag;
	struct intel_iommu *iommu = get_irq_data(irq);

	/* mask it */
	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
	writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
	writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
	msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
	msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
		u8 fault_reason, u16 source_id, unsigned long long addr)
{
	const char *reason;
1195
	int fault_type;
1196

1197
	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1198

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	if (fault_type == INTR_REMAP)
		printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
		       "fault index %llx\n"
			"INTR-REMAP:[fault reason %02d] %s\n",
			(source_id >> 8), PCI_SLOT(source_id & 0xFF),
			PCI_FUNC(source_id & 0xFF), addr >> 48,
			fault_reason, reason);
	else
		printk(KERN_ERR
		       "DMAR:[%s] Request device [%02x:%02x.%d] "
		       "fault addr %llx \n"
		       "DMAR:[fault reason %02d] %s\n",
		       (type ? "DMA Read" : "DMA Write"),
		       (source_id >> 8), PCI_SLOT(source_id & 0xFF),
		       PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1214 1215 1216 1217
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
1218
irqreturn_t dmar_fault(int irq, void *dev_id)
1219 1220 1221 1222 1223 1224 1225 1226
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1227 1228 1229
	if (fault_status)
		printk(KERN_ERR "DRHD: handling fault status reg %x\n",
		       fault_status);
1230 1231 1232

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
1233
		goto clear_rest;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
		int type;
		u32 data;

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

		fault_reason = dma_frcd_fault_reason(data);
		type = dma_frcd_type(data);

		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 8);
		source_id = dma_frcd_source_id(data);

		guest_addr = dmar_readq(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN);
		guest_addr = dma_frcd_page_addr(guest_addr);
		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

		spin_unlock_irqrestore(&iommu->register_lock, flag);

		dmar_fault_do_one(iommu, type, fault_reason,
				source_id, guest_addr);

		fault_index++;
1270
		if (fault_index >= cap_num_fault_regs(iommu->cap))
1271 1272 1273
			fault_index = 0;
		spin_lock_irqsave(&iommu->register_lock, flag);
	}
1274 1275
clear_rest:
	/* clear all the other faults */
1276
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1277
	writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1278 1279 1280 1281 1282 1283 1284 1285 1286

	spin_unlock_irqrestore(&iommu->register_lock, flag);
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

1287 1288 1289 1290 1291 1292
	/*
	 * Check if the fault interrupt is already initialized.
	 */
	if (iommu->irq)
		return 0;

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	irq = create_irq();
	if (!irq) {
		printk(KERN_ERR "IOMMU: no free vectors\n");
		return -EINVAL;
	}

	set_irq_data(irq, iommu);
	iommu->irq = irq;

	ret = arch_setup_dmar_msi(irq);
	if (ret) {
		set_irq_data(irq, NULL);
		iommu->irq = 0;
		destroy_irq(irq);
1307
		return ret;
1308 1309 1310 1311 1312 1313 1314
	}

	ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
	if (ret)
		printk(KERN_ERR "IOMMU: can't request irq\n");
	return ret;
}
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

int __init enable_drhd_fault_handling(void)
{
	struct dmar_drhd_unit *drhd;

	/*
	 * Enable fault control interrupt.
	 */
	for_each_drhd_unit(drhd) {
		int ret;
		struct intel_iommu *iommu = drhd->iommu;
		ret = dmar_set_interrupt(iommu);

		if (ret) {
			printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
			       " interrupt, ret %d\n",
			       (unsigned long long)drhd->reg_base_addr, ret);
			return -1;
		}
	}

	return 0;
}
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362

/*
 * Re-enable Queued Invalidation interface.
 */
int dmar_reenable_qi(struct intel_iommu *iommu)
{
	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	if (!iommu->qi)
		return -ENOENT;

	/*
	 * First disable queued invalidation.
	 */
	dmar_disable_qi(iommu);
	/*
	 * Then enable queued invalidation again. Since there is no pending
	 * invalidation requests now, it's safe to re-enable queued
	 * invalidation.
	 */
	__dmar_enable_qi(iommu);

	return 0;
}
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

/*
 * Check interrupt remapping support in DMAR table description.
 */
int dmar_ir_support(void)
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	return dmar->flags & 0x1;
}