dmar.c 35.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (c) 2006, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
17 18 19 20
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21
 *
22
 * This file implements early detection/parsing of Remapping Devices
23 24
 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
 * tables.
25 26
 *
 * These routines are used by both DMA-remapping and Interrupt-remapping
27 28 29 30
 */

#include <linux/pci.h>
#include <linux/dmar.h>
K
Kay, Allen M 已提交
31 32
#include <linux/iova.h>
#include <linux/intel-iommu.h>
33
#include <linux/timer.h>
34 35
#include <linux/irq.h>
#include <linux/interrupt.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38

39
#define PREFIX "DMAR: "
40 41 42 43 44 45 46 47

/* No locks are needed as DMA remapping hardware unit
 * list is constructed at boot time and hotplug of
 * these units are not supported by the architecture.
 */
LIST_HEAD(dmar_drhd_units);

static struct acpi_table_header * __initdata dmar_tbl;
48
static acpi_size dmar_tbl_size;
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
{
	/*
	 * add INCLUDE_ALL at the tail, so scan the list will find it at
	 * the very end.
	 */
	if (drhd->include_all)
		list_add_tail(&drhd->list, &dmar_drhd_units);
	else
		list_add(&drhd->list, &dmar_drhd_units);
}

static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
					   struct pci_dev **dev, u16 segment)
{
	struct pci_bus *bus;
	struct pci_dev *pdev = NULL;
	struct acpi_dmar_pci_path *path;
	int count;

	bus = pci_find_bus(segment, scope->bus);
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (count) {
		if (pdev)
			pci_dev_put(pdev);
		/*
		 * Some BIOSes list non-exist devices in DMAR table, just
		 * ignore it
		 */
		if (!bus) {
			printk(KERN_WARNING
			PREFIX "Device scope bus [%d] not found\n",
			scope->bus);
			break;
		}
		pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
		if (!pdev) {
			printk(KERN_WARNING PREFIX
			"Device scope device [%04x:%02x:%02x.%02x] not found\n",
				segment, bus->number, path->dev, path->fn);
			break;
		}
		path ++;
		count --;
		bus = pdev->subordinate;
	}
	if (!pdev) {
		printk(KERN_WARNING PREFIX
		"Device scope device [%04x:%02x:%02x.%02x] not found\n",
		segment, scope->bus, path->dev, path->fn);
		*dev = NULL;
		return 0;
	}
	if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
			pdev->subordinate) || (scope->entry_type == \
			ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
		pci_dev_put(pdev);
		printk(KERN_WARNING PREFIX
			"Device scope type does not match for %s\n",
			 pci_name(pdev));
		return -EINVAL;
	}
	*dev = pdev;
	return 0;
}

static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
				       struct pci_dev ***devices, u16 segment)
{
	struct acpi_dmar_device_scope *scope;
	void * tmp = start;
	int index;
	int ret;

	*cnt = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			(*cnt)++;
133
		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
134
			printk(KERN_WARNING PREFIX
135 136
			       "Unsupported device scope\n");
		}
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
		start += scope->length;
	}
	if (*cnt == 0)
		return 0;

	*devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
	if (!*devices)
		return -ENOMEM;

	start = tmp;
	index = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
			ret = dmar_parse_one_dev_scope(scope,
				&(*devices)[index], segment);
			if (ret) {
				kfree(*devices);
				return ret;
			}
			index ++;
		}
		start += scope->length;
	}

	return 0;
}

/**
 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 * structure which uniquely represent one DMA remapping hardware unit
 * present in the platform
 */
static int __init
dmar_parse_one_drhd(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct dmar_drhd_unit *dmaru;
	int ret = 0;

178
	drhd = (struct acpi_dmar_hardware_unit *)header;
179 180 181 182
	dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
	if (!dmaru)
		return -ENOMEM;

183
	dmaru->hdr = header;
184
	dmaru->reg_base_addr = drhd->address;
185
	dmaru->segment = drhd->segment;
186 187
	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */

188 189 190 191 192 193 194 195 196
	ret = alloc_iommu(dmaru);
	if (ret) {
		kfree(dmaru);
		return ret;
	}
	dmar_register_drhd_unit(dmaru);
	return 0;
}

197
static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
198 199
{
	struct acpi_dmar_hardware_unit *drhd;
200
	int ret = 0;
201 202 203

	drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;

204 205 206 207
	if (dmaru->include_all)
		return 0;

	ret = dmar_parse_dev_scope((void *)(drhd + 1),
208
				((void *)drhd) + drhd->header.length,
209 210
				&dmaru->devices_cnt, &dmaru->devices,
				drhd->segment);
211
	if (ret) {
212
		list_del(&dmaru->list);
213
		kfree(dmaru);
214
	}
215 216 217
	return ret;
}

218 219 220 221 222 223 224 225 226
#ifdef CONFIG_DMAR
LIST_HEAD(dmar_rmrr_units);

static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
{
	list_add(&rmrr->list, &dmar_rmrr_units);
}


227 228 229 230 231 232 233 234 235 236
static int __init
dmar_parse_one_rmrr(struct acpi_dmar_header *header)
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
		return -ENOMEM;

237
	rmrru->hdr = header;
238 239 240
	rmrr = (struct acpi_dmar_reserved_memory *)header;
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
241 242 243 244 245 246 247 248 249 250 251 252

	dmar_register_rmrr_unit(rmrru);
	return 0;
}

static int __init
rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
{
	struct acpi_dmar_reserved_memory *rmrr;
	int ret;

	rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
253
	ret = dmar_parse_dev_scope((void *)(rmrr + 1),
254
		((void *)rmrr) + rmrr->header.length,
255 256
		&rmrru->devices_cnt, &rmrru->devices, rmrr->segment);

257 258
	if (ret || (rmrru->devices_cnt == 0)) {
		list_del(&rmrru->list);
259
		kfree(rmrru);
260
	}
261 262
	return ret;
}
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

static LIST_HEAD(dmar_atsr_units);

static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
	if (!atsru)
		return -ENOMEM;

	atsru->hdr = hdr;
	atsru->include_all = atsr->flags & 0x1;

	list_add(&atsru->list, &dmar_atsr_units);

	return 0;
}

static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
{
	int rc;
	struct acpi_dmar_atsr *atsr;

	if (atsru->include_all)
		return 0;

	atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
	rc = dmar_parse_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt, &atsru->devices,
				atsr->segment);
	if (rc || !atsru->devices_cnt) {
		list_del(&atsru->list);
		kfree(atsru);
	}

	return rc;
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
	int i;
	struct pci_bus *bus;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment == pci_domain_nr(dev->bus))
			goto found;
	}

	return 0;

found:
	for (bus = dev->bus; bus; bus = bus->parent) {
		struct pci_dev *bridge = bus->self;

324
		if (!bridge || !pci_is_pcie(bridge) ||
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
		    bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
			return 0;

		if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
			for (i = 0; i < atsru->devices_cnt; i++)
				if (atsru->devices[i] == bridge)
					return 1;
			break;
		}
	}

	if (atsru->include_all)
		return 1;

	return 0;
}
341
#endif
342

343
#ifdef CONFIG_ACPI_NUMA
344 345 346 347 348 349 350
static int __init
dmar_parse_one_rhsa(struct acpi_dmar_header *header)
{
	struct acpi_dmar_rhsa *rhsa;
	struct dmar_drhd_unit *drhd;

	rhsa = (struct acpi_dmar_rhsa *)header;
351
	for_each_drhd_unit(drhd) {
352 353 354 355 356 357
		if (drhd->reg_base_addr == rhsa->base_address) {
			int node = acpi_map_pxm_to_node(rhsa->proximity_domain);

			if (!node_online(node))
				node = -1;
			drhd->iommu->node = node;
358 359
			return 0;
		}
360
	}
361 362 363 364 365 366
	WARN(1, "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
	     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
	     drhd->reg_base_addr,
	     dmi_get_system_info(DMI_BIOS_VENDOR),
	     dmi_get_system_info(DMI_BIOS_VERSION),
	     dmi_get_system_info(DMI_PRODUCT_VERSION));
367

368
	return 0;
369
}
370
#endif
371

372 373 374 375 376
static void __init
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_reserved_memory *rmrr;
377
	struct acpi_dmar_atsr *atsr;
378
	struct acpi_dmar_rhsa *rhsa;
379 380 381

	switch (header->type) {
	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
382 383
		drhd = container_of(header, struct acpi_dmar_hardware_unit,
				    header);
384
		printk (KERN_INFO PREFIX
385 386
			"DRHD base: %#016Lx flags: %#x\n",
			(unsigned long long)drhd->address, drhd->flags);
387 388
		break;
	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
389 390
		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
				    header);
391
		printk (KERN_INFO PREFIX
392
			"RMRR base: %#016Lx end: %#016Lx\n",
F
Fenghua Yu 已提交
393 394
			(unsigned long long)rmrr->base_address,
			(unsigned long long)rmrr->end_address);
395
		break;
396 397 398 399
	case ACPI_DMAR_TYPE_ATSR:
		atsr = container_of(header, struct acpi_dmar_atsr, header);
		printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
		break;
400 401 402 403 404 405
	case ACPI_DMAR_HARDWARE_AFFINITY:
		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
		printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
		       (unsigned long long)rhsa->base_address,
		       rhsa->proximity_domain);
		break;
406 407 408
	}
}

409 410 411 412 413 414 415 416
/**
 * dmar_table_detect - checks to see if the platform supports DMAR devices
 */
static int __init dmar_table_detect(void)
{
	acpi_status status = AE_OK;

	/* if we could find DMAR table, then there are DMAR devices */
417 418 419
	status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
				(struct acpi_table_header **)&dmar_tbl,
				&dmar_tbl_size);
420 421 422 423 424 425 426 427

	if (ACPI_SUCCESS(status) && !dmar_tbl) {
		printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
		status = AE_NOT_FOUND;
	}

	return (ACPI_SUCCESS(status) ? 1 : 0);
}
428

429 430 431 432 433 434 435 436 437 438
/**
 * parse_dmar_table - parses the DMA reporting table
 */
static int __init
parse_dmar_table(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	int ret = 0;

439 440 441 442 443 444
	/*
	 * Do it again, earlier dmar_tbl mapping could be mapped with
	 * fixed map.
	 */
	dmar_table_detect();

445 446 447 448 449 450
	/*
	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
	 */
	dmar_tbl = tboot_get_dmar_table(dmar_tbl);

451 452 453 454
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar)
		return -ENODEV;

F
Fenghua Yu 已提交
455
	if (dmar->width < PAGE_SHIFT - 1) {
F
Fenghua Yu 已提交
456
		printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
457 458 459 460 461 462 463 464 465
		return -EINVAL;
	}

	printk (KERN_INFO PREFIX "Host address width %d\n",
		dmar->width + 1);

	entry_header = (struct acpi_dmar_header *)(dmar + 1);
	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
466 467 468 469 470 471 472 473
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
			printk(KERN_WARNING PREFIX
				"Invalid 0-length structure\n");
			ret = -EINVAL;
			break;
		}

474 475 476 477 478 479 480
		dmar_table_print_dmar_entry(entry_header);

		switch (entry_header->type) {
		case ACPI_DMAR_TYPE_HARDWARE_UNIT:
			ret = dmar_parse_one_drhd(entry_header);
			break;
		case ACPI_DMAR_TYPE_RESERVED_MEMORY:
481
#ifdef CONFIG_DMAR
482
			ret = dmar_parse_one_rmrr(entry_header);
483 484 485 486 487
#endif
			break;
		case ACPI_DMAR_TYPE_ATSR:
#ifdef CONFIG_DMAR
			ret = dmar_parse_one_atsr(entry_header);
488
#endif
489
			break;
490
		case ACPI_DMAR_HARDWARE_AFFINITY:
491
#ifdef CONFIG_ACPI_NUMA
492
			ret = dmar_parse_one_rhsa(entry_header);
493
#endif
494
			break;
495 496
		default:
			printk(KERN_WARNING PREFIX
497 498
				"Unknown DMAR structure type %d\n",
				entry_header->type);
499 500 501 502 503 504 505 506 507 508 509
			ret = 0; /* for forward compatibility */
			break;
		}
		if (ret)
			break;

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return ret;
}

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
			  struct pci_dev *dev)
{
	int index;

	while (dev) {
		for (index = 0; index < cnt; index++)
			if (dev == devices[index])
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
530 531 532 533 534 535 536 537 538 539 540
	struct dmar_drhd_unit *dmaru = NULL;
	struct acpi_dmar_hardware_unit *drhd;

	list_for_each_entry(dmaru, &dmar_drhd_units, list) {
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		if (dmaru->include_all &&
		    drhd->segment == pci_domain_nr(dev->bus))
			return dmaru;
541

542 543 544
		if (dmar_pci_device_match(dmaru->devices,
					  dmaru->devices_cnt, dev))
			return dmaru;
545 546 547 548 549
	}

	return NULL;
}

550 551
int __init dmar_dev_scope_init(void)
{
552
	struct dmar_drhd_unit *drhd, *drhd_n;
553 554
	int ret = -ENODEV;

555
	list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
556 557 558 559 560
		ret = dmar_parse_dev(drhd);
		if (ret)
			return ret;
	}

561 562
#ifdef CONFIG_DMAR
	{
563
		struct dmar_rmrr_unit *rmrr, *rmrr_n;
564 565
		struct dmar_atsr_unit *atsr, *atsr_n;

566
		list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
567 568 569 570
			ret = rmrr_parse_dev(rmrr);
			if (ret)
				return ret;
		}
571 572 573 574 575 576

		list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
			ret = atsr_parse_dev(atsr);
			if (ret)
				return ret;
		}
577
	}
578
#endif
579 580 581 582

	return ret;
}

583 584 585

int __init dmar_table_init(void)
{
586
	static int dmar_table_initialized;
F
Fenghua Yu 已提交
587 588
	int ret;

589 590 591 592 593
	if (dmar_table_initialized)
		return 0;

	dmar_table_initialized = 1;

F
Fenghua Yu 已提交
594 595
	ret = parse_dmar_table();
	if (ret) {
596 597
		if (ret != -ENODEV)
			printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
F
Fenghua Yu 已提交
598 599 600
		return ret;
	}

601 602 603 604
	if (list_empty(&dmar_drhd_units)) {
		printk(KERN_INFO PREFIX "No DMAR devices found\n");
		return -ENODEV;
	}
F
Fenghua Yu 已提交
605

606
#ifdef CONFIG_DMAR
607
	if (list_empty(&dmar_rmrr_units))
F
Fenghua Yu 已提交
608
		printk(KERN_INFO PREFIX "No RMRR found\n");
609 610 611

	if (list_empty(&dmar_atsr_units))
		printk(KERN_INFO PREFIX "No ATSR found\n");
612
#endif
F
Fenghua Yu 已提交
613

614 615 616
	return 0;
}

617 618
static int bios_warned;

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
int __init check_zero_address(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	struct acpi_dmar_hardware_unit *drhd;

	dmar = (struct acpi_table_dmar *)dmar_tbl;
	entry_header = (struct acpi_dmar_header *)(dmar + 1);

	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
			printk(KERN_WARNING PREFIX
				"Invalid 0-length structure\n");
			return 0;
		}

		if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
638 639 640
			void __iomem *addr;
			u64 cap, ecap;

641 642 643 644 645 646 647 648
			drhd = (void *)entry_header;
			if (!drhd->address) {
				/* Promote an attitude of violence to a BIOS engineer today */
				WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
				     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
				     dmi_get_system_info(DMI_BIOS_VENDOR),
				     dmi_get_system_info(DMI_BIOS_VERSION),
				     dmi_get_system_info(DMI_PRODUCT_VERSION));
649
				bios_warned = 1;
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
				goto failed;
			}

			addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
			if (!addr ) {
				printk("IOMMU: can't validate: %llx\n", drhd->address);
				goto failed;
			}
			cap = dmar_readq(addr + DMAR_CAP_REG);
			ecap = dmar_readq(addr + DMAR_ECAP_REG);
			early_iounmap(addr, VTD_PAGE_SIZE);
			if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
				/* Promote an attitude of violence to a BIOS engineer today */
				WARN(1, "Your BIOS is broken; DMAR reported at address %llx returns all ones!\n"
				     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
				      drhd->address,
				      dmi_get_system_info(DMI_BIOS_VENDOR),
				      dmi_get_system_info(DMI_BIOS_VERSION),
				      dmi_get_system_info(DMI_PRODUCT_VERSION));
669
				bios_warned = 1;
670
				goto failed;
671 672 673 674 675 676
			}
		}

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return 1;
677 678 679 680 681 682

failed:
#ifdef CONFIG_DMAR
	dmar_disabled = 1;
#endif
	return 0;
683 684
}

685 686 687 688
void __init detect_intel_iommu(void)
{
	int ret;

689
	ret = dmar_table_detect();
690 691
	if (ret)
		ret = check_zero_address();
692
	{
693
#ifdef CONFIG_INTR_REMAP
694 695 696 697 698 699 700 701
		struct acpi_table_dmar *dmar;
		/*
		 * for now we will disable dma-remapping when interrupt
		 * remapping is enabled.
		 * When support for queued invalidation for IOTLB invalidation
		 * is added, we will not need this any more.
		 */
		dmar = (struct acpi_table_dmar *) dmar_tbl;
702
		if (ret && cpu_has_x2apic && dmar->flags & 0x1)
703 704 705
			printk(KERN_INFO
			       "Queued invalidation will be enabled to support "
			       "x2apic and Intr-remapping.\n");
706 707
#endif
#ifdef CONFIG_DMAR
708
		if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
709
			iommu_detected = 1;
C
Chris Wright 已提交
710 711 712
			/* Make sure ACS will be enabled */
			pci_request_acs();
		}
713 714 715 716
#endif
#ifdef CONFIG_X86
		if (ret)
			x86_init.iommu.iommu_init = intel_iommu_init;
717
#endif
718
	}
719
	early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
720
	dmar_tbl = NULL;
721 722 723
}


724
int alloc_iommu(struct dmar_drhd_unit *drhd)
725
{
726
	struct intel_iommu *iommu;
727 728
	int map_size;
	u32 ver;
729
	static int iommu_allocated = 0;
730
	int agaw = 0;
F
Fenghua Yu 已提交
731
	int msagaw = 0;
732

733 734 735 736 737 738 739 740 741 742 743 744
	if (!drhd->reg_base_addr) {
		if (!bios_warned) {
			WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
			     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			     dmi_get_system_info(DMI_BIOS_VENDOR),
			     dmi_get_system_info(DMI_BIOS_VERSION),
			     dmi_get_system_info(DMI_PRODUCT_VERSION));
			bios_warned = 1;
		}
		return -EINVAL;
	}

745 746
	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
747
		return -ENOMEM;
748 749

	iommu->seq_id = iommu_allocated++;
750
	sprintf (iommu->name, "dmar%d", iommu->seq_id);
751

F
Fenghua Yu 已提交
752
	iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
753 754 755 756 757 758 759
	if (!iommu->reg) {
		printk(KERN_ERR "IOMMU: can't map the region\n");
		goto error;
	}
	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

760
	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
761 762 763 764 765 766 767 768 769 770
		if (!bios_warned) {
			/* Promote an attitude of violence to a BIOS engineer today */
			WARN(1, "Your BIOS is broken; DMAR reported at address %llx returns all ones!\n"
			     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			     drhd->reg_base_addr,
			     dmi_get_system_info(DMI_BIOS_VENDOR),
			     dmi_get_system_info(DMI_BIOS_VERSION),
			     dmi_get_system_info(DMI_PRODUCT_VERSION));
			bios_warned = 1;
		}
771 772 773
		goto err_unmap;
	}

774
#ifdef CONFIG_DMAR
W
Weidong Han 已提交
775 776 777
	agaw = iommu_calculate_agaw(iommu);
	if (agaw < 0) {
		printk(KERN_ERR
F
Fenghua Yu 已提交
778 779
		       "Cannot get a valid agaw for iommu (seq_id = %d)\n",
		       iommu->seq_id);
780
		goto err_unmap;
F
Fenghua Yu 已提交
781 782 783 784 785
	}
	msagaw = iommu_calculate_max_sagaw(iommu);
	if (msagaw < 0) {
		printk(KERN_ERR
			"Cannot get a valid max agaw for iommu (seq_id = %d)\n",
W
Weidong Han 已提交
786
			iommu->seq_id);
787
		goto err_unmap;
W
Weidong Han 已提交
788
	}
789
#endif
W
Weidong Han 已提交
790
	iommu->agaw = agaw;
F
Fenghua Yu 已提交
791
	iommu->msagaw = msagaw;
W
Weidong Han 已提交
792

793 794
	iommu->node = -1;

795 796 797
	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
		cap_max_fault_reg_offset(iommu->cap));
F
Fenghua Yu 已提交
798 799
	map_size = VTD_PAGE_ALIGN(map_size);
	if (map_size > VTD_PAGE_SIZE) {
800 801 802 803 804 805 806 807 808
		iounmap(iommu->reg);
		iommu->reg = ioremap(drhd->reg_base_addr, map_size);
		if (!iommu->reg) {
			printk(KERN_ERR "IOMMU: can't map the region\n");
			goto error;
		}
	}

	ver = readl(iommu->reg + DMAR_VER_REG);
809
	pr_info("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
F
Fenghua Yu 已提交
810 811 812 813
		(unsigned long long)drhd->reg_base_addr,
		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		(unsigned long long)iommu->cap,
		(unsigned long long)iommu->ecap);
814 815 816 817

	spin_lock_init(&iommu->register_lock);

	drhd->iommu = iommu;
818
	return 0;
819 820 821 822

 err_unmap:
	iounmap(iommu->reg);
 error:
823
	kfree(iommu);
824
	return -1;
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
}

void free_iommu(struct intel_iommu *iommu)
{
	if (!iommu)
		return;

#ifdef CONFIG_DMAR
	free_dmar_iommu(iommu);
#endif

	if (iommu->reg)
		iounmap(iommu->reg);
	kfree(iommu);
}
840 841 842 843 844 845

/*
 * Reclaim all the submitted descriptors which have completed its work.
 */
static inline void reclaim_free_desc(struct q_inval *qi)
{
846 847
	while (qi->desc_status[qi->free_tail] == QI_DONE ||
	       qi->desc_status[qi->free_tail] == QI_ABORT) {
848 849 850 851 852 853
		qi->desc_status[qi->free_tail] = QI_FREE;
		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
		qi->free_cnt++;
	}
}

854 855 856
static int qi_check_fault(struct intel_iommu *iommu, int index)
{
	u32 fault;
857
	int head, tail;
858 859 860
	struct q_inval *qi = iommu->qi;
	int wait_index = (index + 1) % QI_LENGTH;

861 862 863
	if (qi->desc_status[wait_index] == QI_ABORT)
		return -EAGAIN;

864 865 866 867 868 869 870 871 872
	fault = readl(iommu->reg + DMAR_FSTS_REG);

	/*
	 * If IQE happens, the head points to the descriptor associated
	 * with the error. No new descriptors are fetched until the IQE
	 * is cleared.
	 */
	if (fault & DMA_FSTS_IQE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
873 874 875 876 877
		if ((head >> DMAR_IQ_SHIFT) == index) {
			printk(KERN_ERR "VT-d detected invalid descriptor: "
				"low=%llx, high=%llx\n",
				(unsigned long long)qi->desc[index].low,
				(unsigned long long)qi->desc[index].high);
878 879 880 881 882 883 884 885 886
			memcpy(&qi->desc[index], &qi->desc[wait_index],
					sizeof(struct qi_desc));
			__iommu_flush_cache(iommu, &qi->desc[index],
					sizeof(struct qi_desc));
			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
			return -EINVAL;
		}
	}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	/*
	 * If ITE happens, all pending wait_desc commands are aborted.
	 * No new descriptors are fetched until the ITE is cleared.
	 */
	if (fault & DMA_FSTS_ITE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
		head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
		head |= 1;
		tail = readl(iommu->reg + DMAR_IQT_REG);
		tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;

		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);

		do {
			if (qi->desc_status[head] == QI_IN_USE)
				qi->desc_status[head] = QI_ABORT;
			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
		} while (head != tail);

		if (qi->desc_status[wait_index] == QI_ABORT)
			return -EAGAIN;
	}

	if (fault & DMA_FSTS_ICE)
		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);

913 914 915
	return 0;
}

916 917 918 919
/*
 * Submit the queued invalidation descriptor to the remapping
 * hardware unit and wait for its completion.
 */
920
int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
921
{
922
	int rc;
923 924 925 926 927 928
	struct q_inval *qi = iommu->qi;
	struct qi_desc *hw, wait_desc;
	int wait_index, index;
	unsigned long flags;

	if (!qi)
929
		return 0;
930 931 932

	hw = qi->desc;

933 934 935
restart:
	rc = 0;

936
	spin_lock_irqsave(&qi->q_lock, flags);
937
	while (qi->free_cnt < 3) {
938
		spin_unlock_irqrestore(&qi->q_lock, flags);
939
		cpu_relax();
940
		spin_lock_irqsave(&qi->q_lock, flags);
941 942 943 944 945 946 947 948 949
	}

	index = qi->free_head;
	wait_index = (index + 1) % QI_LENGTH;

	qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;

	hw[index] = *desc;

950 951
	wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
952 953 954 955 956 957 958 959 960 961 962 963 964 965
	wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);

	hw[wait_index] = wait_desc;

	__iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
	__iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));

	qi->free_head = (qi->free_head + 2) % QI_LENGTH;
	qi->free_cnt -= 2;

	/*
	 * update the HW tail register indicating the presence of
	 * new descriptors.
	 */
966
	writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
967 968

	while (qi->desc_status[wait_index] != QI_DONE) {
969 970 971 972 973 974 975
		/*
		 * We will leave the interrupts disabled, to prevent interrupt
		 * context to queue another cmd while a cmd is already submitted
		 * and waiting for completion on this cpu. This is to avoid
		 * a deadlock where the interrupt context can wait indefinitely
		 * for free slots in the queue.
		 */
976 977
		rc = qi_check_fault(iommu, index);
		if (rc)
978
			break;
979

980 981 982 983
		spin_unlock(&qi->q_lock);
		cpu_relax();
		spin_lock(&qi->q_lock);
	}
984 985

	qi->desc_status[index] = QI_DONE;
986 987

	reclaim_free_desc(qi);
988
	spin_unlock_irqrestore(&qi->q_lock, flags);
989

990 991 992
	if (rc == -EAGAIN)
		goto restart;

993
	return rc;
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
}

/*
 * Flush the global interrupt entry cache.
 */
void qi_global_iec(struct intel_iommu *iommu)
{
	struct qi_desc desc;

	desc.low = QI_IEC_TYPE;
	desc.high = 0;

1006
	/* should never fail */
1007 1008 1009
	qi_submit_sync(&desc, iommu);
}

1010 1011
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
		      u64 type)
1012 1013 1014 1015 1016 1017 1018
{
	struct qi_desc desc;

	desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
			| QI_CC_GRAN(type) | QI_CC_TYPE;
	desc.high = 0;

1019
	qi_submit_sync(&desc, iommu);
1020 1021
}

1022 1023
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
		    unsigned int size_order, u64 type)
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
{
	u8 dw = 0, dr = 0;

	struct qi_desc desc;
	int ih = 0;

	if (cap_write_drain(iommu->cap))
		dw = 1;

	if (cap_read_drain(iommu->cap))
		dr = 1;

	desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
	desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
		| QI_IOTLB_AM(size_order);

1041
	qi_submit_sync(&desc, iommu);
1042 1043
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
			u64 addr, unsigned mask)
{
	struct qi_desc desc;

	if (mask) {
		BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
		addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
		desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
	} else
		desc.high = QI_DEV_IOTLB_ADDR(addr);

	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
		qdep = 0;

	desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
		   QI_DIOTLB_TYPE;

	qi_submit_sync(&desc, iommu);
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
/*
 * Disable Queued Invalidation interface.
 */
void dmar_disable_qi(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
	cycles_t start_time = get_cycles();

	if (!ecap_qis(iommu->ecap))
		return;

	spin_lock_irqsave(&iommu->register_lock, flags);

	sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
	if (!(sts & DMA_GSTS_QIES))
		goto end;

	/*
	 * Give a chance to HW to complete the pending invalidation requests.
	 */
	while ((readl(iommu->reg + DMAR_IQT_REG) !=
		readl(iommu->reg + DMAR_IQH_REG)) &&
		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
		cpu_relax();

	iommu->gcmd &= ~DMA_GCMD_QIE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
		      !(sts & DMA_GSTS_QIES), sts);
end:
	spin_unlock_irqrestore(&iommu->register_lock, flags);
}

1100 1101 1102 1103 1104
/*
 * Enable queued invalidation.
 */
static void __dmar_enable_qi(struct intel_iommu *iommu)
{
1105
	u32 sts;
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	unsigned long flags;
	struct q_inval *qi = iommu->qi;

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

	spin_lock_irqsave(&iommu->register_lock, flags);

	/* write zero to the tail reg */
	writel(0, iommu->reg + DMAR_IQT_REG);

	dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));

	iommu->gcmd |= DMA_GCMD_QIE;
1120
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1121 1122 1123 1124 1125 1126 1127

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);

	spin_unlock_irqrestore(&iommu->register_lock, flags);
}

1128 1129 1130 1131 1132 1133 1134 1135
/*
 * Enable Queued Invalidation interface. This is a must to support
 * interrupt-remapping. Also used by DMA-remapping, which replaces
 * register based IOTLB invalidation.
 */
int dmar_enable_qi(struct intel_iommu *iommu)
{
	struct q_inval *qi;
1136
	struct page *desc_page;
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	/*
	 * queued invalidation is already setup and enabled.
	 */
	if (iommu->qi)
		return 0;

1147
	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1148 1149 1150 1151 1152
	if (!iommu->qi)
		return -ENOMEM;

	qi = iommu->qi;

1153 1154 1155

	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (!desc_page) {
1156 1157 1158 1159 1160
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

1161 1162
	qi->desc = page_address(desc_page);

1163
	qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	if (!qi->desc_status) {
		free_page((unsigned long) qi->desc);
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

	spin_lock_init(&qi->q_lock);

1176
	__dmar_enable_qi(iommu);
1177 1178 1179

	return 0;
}
1180 1181 1182

/* iommu interrupt handling. Most stuff are MSI-like. */

1183 1184 1185 1186 1187 1188 1189
enum faulttype {
	DMA_REMAP,
	INTR_REMAP,
	UNKNOWN,
};

static const char *dma_remap_fault_reasons[] =
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
};
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216

static const char *intr_remap_fault_reasons[] =
{
	"Detected reserved fields in the decoded interrupt-remapped request",
	"Interrupt index exceeded the interrupt-remapping table size",
	"Present field in the IRTE entry is clear",
	"Error accessing interrupt-remapping table pointed by IRTA_REG",
	"Detected reserved fields in the IRTE entry",
	"Blocked a compatibility format interrupt request",
	"Blocked an interrupt request due to source-id verification failure",
};

1217 1218
#define MAX_FAULT_REASON_IDX 	(ARRAY_SIZE(fault_reason_strings) - 1)

1219
const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1220
{
1221 1222 1223 1224 1225 1226 1227 1228 1229
	if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
				     ARRAY_SIZE(intr_remap_fault_reasons))) {
		*fault_type = INTR_REMAP;
		return intr_remap_fault_reasons[fault_reason - 0x20];
	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
		*fault_type = DMA_REMAP;
		return dma_remap_fault_reasons[fault_reason];
	} else {
		*fault_type = UNKNOWN;
1230
		return "Unknown";
1231
	}
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
}

void dmar_msi_unmask(unsigned int irq)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	/* unmask it */
	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(0, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_mask(unsigned int irq)
{
	unsigned long flag;
	struct intel_iommu *iommu = get_irq_data(irq);

	/* mask it */
	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
	writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
	writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
	msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
	msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
		u8 fault_reason, u16 source_id, unsigned long long addr)
{
	const char *reason;
1288
	int fault_type;
1289

1290
	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1291

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	if (fault_type == INTR_REMAP)
		printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
		       "fault index %llx\n"
			"INTR-REMAP:[fault reason %02d] %s\n",
			(source_id >> 8), PCI_SLOT(source_id & 0xFF),
			PCI_FUNC(source_id & 0xFF), addr >> 48,
			fault_reason, reason);
	else
		printk(KERN_ERR
		       "DMAR:[%s] Request device [%02x:%02x.%d] "
		       "fault addr %llx \n"
		       "DMAR:[fault reason %02d] %s\n",
		       (type ? "DMA Read" : "DMA Write"),
		       (source_id >> 8), PCI_SLOT(source_id & 0xFF),
		       PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1307 1308 1309 1310
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
1311
irqreturn_t dmar_fault(int irq, void *dev_id)
1312 1313 1314 1315 1316 1317 1318 1319
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1320 1321 1322
	if (fault_status)
		printk(KERN_ERR "DRHD: handling fault status reg %x\n",
		       fault_status);
1323 1324 1325

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
1326
		goto clear_rest;
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
		int type;
		u32 data;

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

		fault_reason = dma_frcd_fault_reason(data);
		type = dma_frcd_type(data);

		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 8);
		source_id = dma_frcd_source_id(data);

		guest_addr = dmar_readq(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN);
		guest_addr = dma_frcd_page_addr(guest_addr);
		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

		spin_unlock_irqrestore(&iommu->register_lock, flag);

		dmar_fault_do_one(iommu, type, fault_reason,
				source_id, guest_addr);

		fault_index++;
1363
		if (fault_index >= cap_num_fault_regs(iommu->cap))
1364 1365 1366
			fault_index = 0;
		spin_lock_irqsave(&iommu->register_lock, flag);
	}
1367 1368
clear_rest:
	/* clear all the other faults */
1369
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1370
	writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1371 1372 1373 1374 1375 1376 1377 1378 1379

	spin_unlock_irqrestore(&iommu->register_lock, flag);
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

1380 1381 1382 1383 1384 1385
	/*
	 * Check if the fault interrupt is already initialized.
	 */
	if (iommu->irq)
		return 0;

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	irq = create_irq();
	if (!irq) {
		printk(KERN_ERR "IOMMU: no free vectors\n");
		return -EINVAL;
	}

	set_irq_data(irq, iommu);
	iommu->irq = irq;

	ret = arch_setup_dmar_msi(irq);
	if (ret) {
		set_irq_data(irq, NULL);
		iommu->irq = 0;
		destroy_irq(irq);
1400
		return ret;
1401 1402 1403 1404 1405 1406 1407
	}

	ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
	if (ret)
		printk(KERN_ERR "IOMMU: can't request irq\n");
	return ret;
}
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

int __init enable_drhd_fault_handling(void)
{
	struct dmar_drhd_unit *drhd;

	/*
	 * Enable fault control interrupt.
	 */
	for_each_drhd_unit(drhd) {
		int ret;
		struct intel_iommu *iommu = drhd->iommu;
		ret = dmar_set_interrupt(iommu);

		if (ret) {
			printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
			       " interrupt, ret %d\n",
			       (unsigned long long)drhd->reg_base_addr, ret);
			return -1;
		}
	}

	return 0;
}
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

/*
 * Re-enable Queued Invalidation interface.
 */
int dmar_reenable_qi(struct intel_iommu *iommu)
{
	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	if (!iommu->qi)
		return -ENOENT;

	/*
	 * First disable queued invalidation.
	 */
	dmar_disable_qi(iommu);
	/*
	 * Then enable queued invalidation again. Since there is no pending
	 * invalidation requests now, it's safe to re-enable queued
	 * invalidation.
	 */
	__dmar_enable_qi(iommu);

	return 0;
}
1456 1457 1458 1459

/*
 * Check interrupt remapping support in DMAR table description.
 */
1460
int __init dmar_ir_support(void)
1461 1462 1463 1464 1465
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	return dmar->flags & 0x1;
}