dmar.c 31.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (c) 2006, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
17 18 19 20
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21
 *
22
 * This file implements early detection/parsing of Remapping Devices
23 24
 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
 * tables.
25 26
 *
 * These routines are used by both DMA-remapping and Interrupt-remapping
27 28 29 30
 */

#include <linux/pci.h>
#include <linux/dmar.h>
K
Kay, Allen M 已提交
31 32
#include <linux/iova.h>
#include <linux/intel-iommu.h>
33
#include <linux/timer.h>
34 35
#include <linux/irq.h>
#include <linux/interrupt.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38

39
#define PREFIX "DMAR: "
40 41 42 43 44 45 46 47

/* No locks are needed as DMA remapping hardware unit
 * list is constructed at boot time and hotplug of
 * these units are not supported by the architecture.
 */
LIST_HEAD(dmar_drhd_units);

static struct acpi_table_header * __initdata dmar_tbl;
48
static acpi_size dmar_tbl_size;
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
{
	/*
	 * add INCLUDE_ALL at the tail, so scan the list will find it at
	 * the very end.
	 */
	if (drhd->include_all)
		list_add_tail(&drhd->list, &dmar_drhd_units);
	else
		list_add(&drhd->list, &dmar_drhd_units);
}

static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
					   struct pci_dev **dev, u16 segment)
{
	struct pci_bus *bus;
	struct pci_dev *pdev = NULL;
	struct acpi_dmar_pci_path *path;
	int count;

	bus = pci_find_bus(segment, scope->bus);
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (count) {
		if (pdev)
			pci_dev_put(pdev);
		/*
		 * Some BIOSes list non-exist devices in DMAR table, just
		 * ignore it
		 */
		if (!bus) {
			printk(KERN_WARNING
			PREFIX "Device scope bus [%d] not found\n",
			scope->bus);
			break;
		}
		pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
		if (!pdev) {
			printk(KERN_WARNING PREFIX
			"Device scope device [%04x:%02x:%02x.%02x] not found\n",
				segment, bus->number, path->dev, path->fn);
			break;
		}
		path ++;
		count --;
		bus = pdev->subordinate;
	}
	if (!pdev) {
		printk(KERN_WARNING PREFIX
		"Device scope device [%04x:%02x:%02x.%02x] not found\n",
		segment, scope->bus, path->dev, path->fn);
		*dev = NULL;
		return 0;
	}
	if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
			pdev->subordinate) || (scope->entry_type == \
			ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
		pci_dev_put(pdev);
		printk(KERN_WARNING PREFIX
			"Device scope type does not match for %s\n",
			 pci_name(pdev));
		return -EINVAL;
	}
	*dev = pdev;
	return 0;
}

static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
				       struct pci_dev ***devices, u16 segment)
{
	struct acpi_dmar_device_scope *scope;
	void * tmp = start;
	int index;
	int ret;

	*cnt = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			(*cnt)++;
		else
			printk(KERN_WARNING PREFIX
				"Unsupported device scope\n");
		start += scope->length;
	}
	if (*cnt == 0)
		return 0;

	*devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
	if (!*devices)
		return -ENOMEM;

	start = tmp;
	index = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
			ret = dmar_parse_one_dev_scope(scope,
				&(*devices)[index], segment);
			if (ret) {
				kfree(*devices);
				return ret;
			}
			index ++;
		}
		start += scope->length;
	}

	return 0;
}

/**
 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 * structure which uniquely represent one DMA remapping hardware unit
 * present in the platform
 */
static int __init
dmar_parse_one_drhd(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct dmar_drhd_unit *dmaru;
	int ret = 0;

177 178 179 180 181 182 183 184 185 186
	drhd = (struct acpi_dmar_hardware_unit *)header;
	if (!drhd->address) {
		/* Promote an attitude of violence to a BIOS engineer today */
		WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		return -ENODEV;
	}
187 188 189 190
	dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
	if (!dmaru)
		return -ENOMEM;

191
	dmaru->hdr = header;
192
	dmaru->reg_base_addr = drhd->address;
193
	dmaru->segment = drhd->segment;
194 195
	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */

196 197 198 199 200 201 202 203 204
	ret = alloc_iommu(dmaru);
	if (ret) {
		kfree(dmaru);
		return ret;
	}
	dmar_register_drhd_unit(dmaru);
	return 0;
}

205
static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
206 207
{
	struct acpi_dmar_hardware_unit *drhd;
208
	int ret = 0;
209 210 211

	drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;

212 213 214 215
	if (dmaru->include_all)
		return 0;

	ret = dmar_parse_dev_scope((void *)(drhd + 1),
216
				((void *)drhd) + drhd->header.length,
217 218
				&dmaru->devices_cnt, &dmaru->devices,
				drhd->segment);
219
	if (ret) {
220
		list_del(&dmaru->list);
221
		kfree(dmaru);
222
	}
223 224 225
	return ret;
}

226 227 228 229 230 231 232 233 234
#ifdef CONFIG_DMAR
LIST_HEAD(dmar_rmrr_units);

static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
{
	list_add(&rmrr->list, &dmar_rmrr_units);
}


235 236 237 238 239 240 241 242 243 244
static int __init
dmar_parse_one_rmrr(struct acpi_dmar_header *header)
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
		return -ENOMEM;

245
	rmrru->hdr = header;
246 247 248
	rmrr = (struct acpi_dmar_reserved_memory *)header;
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
249 250 251 252 253 254 255 256 257 258 259 260

	dmar_register_rmrr_unit(rmrru);
	return 0;
}

static int __init
rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
{
	struct acpi_dmar_reserved_memory *rmrr;
	int ret;

	rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
261
	ret = dmar_parse_dev_scope((void *)(rmrr + 1),
262
		((void *)rmrr) + rmrr->header.length,
263 264
		&rmrru->devices_cnt, &rmrru->devices, rmrr->segment);

265 266
	if (ret || (rmrru->devices_cnt == 0)) {
		list_del(&rmrru->list);
267
		kfree(rmrru);
268
	}
269 270
	return ret;
}
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

static LIST_HEAD(dmar_atsr_units);

static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
	if (!atsru)
		return -ENOMEM;

	atsru->hdr = hdr;
	atsru->include_all = atsr->flags & 0x1;

	list_add(&atsru->list, &dmar_atsr_units);

	return 0;
}

static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
{
	int rc;
	struct acpi_dmar_atsr *atsr;

	if (atsru->include_all)
		return 0;

	atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
	rc = dmar_parse_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt, &atsru->devices,
				atsr->segment);
	if (rc || !atsru->devices_cnt) {
		list_del(&atsru->list);
		kfree(atsru);
	}

	return rc;
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
	int i;
	struct pci_bus *bus;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment == pci_domain_nr(dev->bus))
			goto found;
	}

	return 0;

found:
	for (bus = dev->bus; bus; bus = bus->parent) {
		struct pci_dev *bridge = bus->self;

		if (!bridge || !bridge->is_pcie ||
		    bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
			return 0;

		if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
			for (i = 0; i < atsru->devices_cnt; i++)
				if (atsru->devices[i] == bridge)
					return 1;
			break;
		}
	}

	if (atsru->include_all)
		return 1;

	return 0;
}
349
#endif
350 351 352 353 354 355

static void __init
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_reserved_memory *rmrr;
356
	struct acpi_dmar_atsr *atsr;
357 358 359

	switch (header->type) {
	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
360 361
		drhd = container_of(header, struct acpi_dmar_hardware_unit,
				    header);
362
		printk (KERN_INFO PREFIX
363 364
			"DRHD base: %#016Lx flags: %#x\n",
			(unsigned long long)drhd->address, drhd->flags);
365 366
		break;
	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
367 368
		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
				    header);
369
		printk (KERN_INFO PREFIX
370
			"RMRR base: %#016Lx end: %#016Lx\n",
F
Fenghua Yu 已提交
371 372
			(unsigned long long)rmrr->base_address,
			(unsigned long long)rmrr->end_address);
373
		break;
374 375 376 377
	case ACPI_DMAR_TYPE_ATSR:
		atsr = container_of(header, struct acpi_dmar_atsr, header);
		printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
		break;
378 379 380
	}
}

381 382 383 384 385 386 387 388
/**
 * dmar_table_detect - checks to see if the platform supports DMAR devices
 */
static int __init dmar_table_detect(void)
{
	acpi_status status = AE_OK;

	/* if we could find DMAR table, then there are DMAR devices */
389 390 391
	status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
				(struct acpi_table_header **)&dmar_tbl,
				&dmar_tbl_size);
392 393 394 395 396 397 398 399

	if (ACPI_SUCCESS(status) && !dmar_tbl) {
		printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
		status = AE_NOT_FOUND;
	}

	return (ACPI_SUCCESS(status) ? 1 : 0);
}
400

401 402 403 404 405 406 407 408 409 410
/**
 * parse_dmar_table - parses the DMA reporting table
 */
static int __init
parse_dmar_table(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	int ret = 0;

411 412 413 414 415 416
	/*
	 * Do it again, earlier dmar_tbl mapping could be mapped with
	 * fixed map.
	 */
	dmar_table_detect();

417 418 419 420 421 422
	/*
	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
	 */
	dmar_tbl = tboot_get_dmar_table(dmar_tbl);

423 424 425 426
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar)
		return -ENODEV;

F
Fenghua Yu 已提交
427
	if (dmar->width < PAGE_SHIFT - 1) {
F
Fenghua Yu 已提交
428
		printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
429 430 431 432 433 434 435 436 437
		return -EINVAL;
	}

	printk (KERN_INFO PREFIX "Host address width %d\n",
		dmar->width + 1);

	entry_header = (struct acpi_dmar_header *)(dmar + 1);
	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
438 439 440 441 442 443 444 445
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
			printk(KERN_WARNING PREFIX
				"Invalid 0-length structure\n");
			ret = -EINVAL;
			break;
		}

446 447 448 449 450 451 452
		dmar_table_print_dmar_entry(entry_header);

		switch (entry_header->type) {
		case ACPI_DMAR_TYPE_HARDWARE_UNIT:
			ret = dmar_parse_one_drhd(entry_header);
			break;
		case ACPI_DMAR_TYPE_RESERVED_MEMORY:
453
#ifdef CONFIG_DMAR
454
			ret = dmar_parse_one_rmrr(entry_header);
455 456 457 458 459
#endif
			break;
		case ACPI_DMAR_TYPE_ATSR:
#ifdef CONFIG_DMAR
			ret = dmar_parse_one_atsr(entry_header);
460
#endif
461 462 463
			break;
		default:
			printk(KERN_WARNING PREFIX
464 465
				"Unknown DMAR structure type %d\n",
				entry_header->type);
466 467 468 469 470 471 472 473 474 475 476
			ret = 0; /* for forward compatibility */
			break;
		}
		if (ret)
			break;

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return ret;
}

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
			  struct pci_dev *dev)
{
	int index;

	while (dev) {
		for (index = 0; index < cnt; index++)
			if (dev == devices[index])
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
497 498 499 500 501 502 503 504 505 506 507
	struct dmar_drhd_unit *dmaru = NULL;
	struct acpi_dmar_hardware_unit *drhd;

	list_for_each_entry(dmaru, &dmar_drhd_units, list) {
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		if (dmaru->include_all &&
		    drhd->segment == pci_domain_nr(dev->bus))
			return dmaru;
508

509 510 511
		if (dmar_pci_device_match(dmaru->devices,
					  dmaru->devices_cnt, dev))
			return dmaru;
512 513 514 515 516
	}

	return NULL;
}

517 518
int __init dmar_dev_scope_init(void)
{
519
	struct dmar_drhd_unit *drhd, *drhd_n;
520 521
	int ret = -ENODEV;

522
	list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
523 524 525 526 527
		ret = dmar_parse_dev(drhd);
		if (ret)
			return ret;
	}

528 529
#ifdef CONFIG_DMAR
	{
530
		struct dmar_rmrr_unit *rmrr, *rmrr_n;
531 532
		struct dmar_atsr_unit *atsr, *atsr_n;

533
		list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
534 535 536 537
			ret = rmrr_parse_dev(rmrr);
			if (ret)
				return ret;
		}
538 539 540 541 542 543

		list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
			ret = atsr_parse_dev(atsr);
			if (ret)
				return ret;
		}
544
	}
545
#endif
546 547 548 549

	return ret;
}

550 551 552

int __init dmar_table_init(void)
{
553
	static int dmar_table_initialized;
F
Fenghua Yu 已提交
554 555
	int ret;

556 557 558 559 560
	if (dmar_table_initialized)
		return 0;

	dmar_table_initialized = 1;

F
Fenghua Yu 已提交
561 562
	ret = parse_dmar_table();
	if (ret) {
563 564
		if (ret != -ENODEV)
			printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
F
Fenghua Yu 已提交
565 566 567
		return ret;
	}

568 569 570 571
	if (list_empty(&dmar_drhd_units)) {
		printk(KERN_INFO PREFIX "No DMAR devices found\n");
		return -ENODEV;
	}
F
Fenghua Yu 已提交
572

573
#ifdef CONFIG_DMAR
574
	if (list_empty(&dmar_rmrr_units))
F
Fenghua Yu 已提交
575
		printk(KERN_INFO PREFIX "No RMRR found\n");
576 577 578

	if (list_empty(&dmar_atsr_units))
		printk(KERN_INFO PREFIX "No ATSR found\n");
579
#endif
F
Fenghua Yu 已提交
580

581 582 583
	return 0;
}

584 585 586 587
void __init detect_intel_iommu(void)
{
	int ret;

588
	ret = dmar_table_detect();
589 590

	{
591
#ifdef CONFIG_INTR_REMAP
592 593 594 595 596 597 598 599
		struct acpi_table_dmar *dmar;
		/*
		 * for now we will disable dma-remapping when interrupt
		 * remapping is enabled.
		 * When support for queued invalidation for IOTLB invalidation
		 * is added, we will not need this any more.
		 */
		dmar = (struct acpi_table_dmar *) dmar_tbl;
600
		if (ret && cpu_has_x2apic && dmar->flags & 0x1)
601 602 603
			printk(KERN_INFO
			       "Queued invalidation will be enabled to support "
			       "x2apic and Intr-remapping.\n");
604 605
#endif
#ifdef CONFIG_DMAR
606 607 608 609
		if (ret && !no_iommu && !iommu_detected && !swiotlb &&
		    !dmar_disabled)
			iommu_detected = 1;
#endif
610
	}
611
	early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
612
	dmar_tbl = NULL;
613 614 615
}


616
int alloc_iommu(struct dmar_drhd_unit *drhd)
617
{
618
	struct intel_iommu *iommu;
619 620
	int map_size;
	u32 ver;
621
	static int iommu_allocated = 0;
622
	int agaw = 0;
F
Fenghua Yu 已提交
623
	int msagaw = 0;
624 625 626

	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
627
		return -ENOMEM;
628 629

	iommu->seq_id = iommu_allocated++;
630
	sprintf (iommu->name, "dmar%d", iommu->seq_id);
631

F
Fenghua Yu 已提交
632
	iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
633 634 635 636 637 638 639
	if (!iommu->reg) {
		printk(KERN_ERR "IOMMU: can't map the region\n");
		goto error;
	}
	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

640 641 642 643 644 645 646 647 648 649 650
	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
		/* Promote an attitude of violence to a BIOS engineer today */
		WARN(1, "Your BIOS is broken; DMAR reported at address %llx returns all ones!\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     drhd->reg_base_addr,
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		goto err_unmap;
	}

651
#ifdef CONFIG_DMAR
W
Weidong Han 已提交
652 653 654
	agaw = iommu_calculate_agaw(iommu);
	if (agaw < 0) {
		printk(KERN_ERR
F
Fenghua Yu 已提交
655 656
		       "Cannot get a valid agaw for iommu (seq_id = %d)\n",
		       iommu->seq_id);
657
		goto err_unmap;
F
Fenghua Yu 已提交
658 659 660 661 662
	}
	msagaw = iommu_calculate_max_sagaw(iommu);
	if (msagaw < 0) {
		printk(KERN_ERR
			"Cannot get a valid max agaw for iommu (seq_id = %d)\n",
W
Weidong Han 已提交
663
			iommu->seq_id);
664
		goto err_unmap;
W
Weidong Han 已提交
665
	}
666
#endif
W
Weidong Han 已提交
667
	iommu->agaw = agaw;
F
Fenghua Yu 已提交
668
	iommu->msagaw = msagaw;
W
Weidong Han 已提交
669

670 671 672
	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
		cap_max_fault_reg_offset(iommu->cap));
F
Fenghua Yu 已提交
673 674
	map_size = VTD_PAGE_ALIGN(map_size);
	if (map_size > VTD_PAGE_SIZE) {
675 676 677 678 679 680 681 682 683
		iounmap(iommu->reg);
		iommu->reg = ioremap(drhd->reg_base_addr, map_size);
		if (!iommu->reg) {
			printk(KERN_ERR "IOMMU: can't map the region\n");
			goto error;
		}
	}

	ver = readl(iommu->reg + DMAR_VER_REG);
684
	pr_info("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
F
Fenghua Yu 已提交
685 686 687 688
		(unsigned long long)drhd->reg_base_addr,
		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		(unsigned long long)iommu->cap,
		(unsigned long long)iommu->ecap);
689 690 691 692

	spin_lock_init(&iommu->register_lock);

	drhd->iommu = iommu;
693
	return 0;
694 695 696 697

 err_unmap:
	iounmap(iommu->reg);
 error:
698
	kfree(iommu);
699
	return -1;
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
}

void free_iommu(struct intel_iommu *iommu)
{
	if (!iommu)
		return;

#ifdef CONFIG_DMAR
	free_dmar_iommu(iommu);
#endif

	if (iommu->reg)
		iounmap(iommu->reg);
	kfree(iommu);
}
715 716 717 718 719 720

/*
 * Reclaim all the submitted descriptors which have completed its work.
 */
static inline void reclaim_free_desc(struct q_inval *qi)
{
721 722
	while (qi->desc_status[qi->free_tail] == QI_DONE ||
	       qi->desc_status[qi->free_tail] == QI_ABORT) {
723 724 725 726 727 728
		qi->desc_status[qi->free_tail] = QI_FREE;
		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
		qi->free_cnt++;
	}
}

729 730 731
static int qi_check_fault(struct intel_iommu *iommu, int index)
{
	u32 fault;
732
	int head, tail;
733 734 735
	struct q_inval *qi = iommu->qi;
	int wait_index = (index + 1) % QI_LENGTH;

736 737 738
	if (qi->desc_status[wait_index] == QI_ABORT)
		return -EAGAIN;

739 740 741 742 743 744 745 746 747
	fault = readl(iommu->reg + DMAR_FSTS_REG);

	/*
	 * If IQE happens, the head points to the descriptor associated
	 * with the error. No new descriptors are fetched until the IQE
	 * is cleared.
	 */
	if (fault & DMA_FSTS_IQE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
748 749 750 751 752
		if ((head >> DMAR_IQ_SHIFT) == index) {
			printk(KERN_ERR "VT-d detected invalid descriptor: "
				"low=%llx, high=%llx\n",
				(unsigned long long)qi->desc[index].low,
				(unsigned long long)qi->desc[index].high);
753 754 755 756 757 758 759 760 761
			memcpy(&qi->desc[index], &qi->desc[wait_index],
					sizeof(struct qi_desc));
			__iommu_flush_cache(iommu, &qi->desc[index],
					sizeof(struct qi_desc));
			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
			return -EINVAL;
		}
	}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	/*
	 * If ITE happens, all pending wait_desc commands are aborted.
	 * No new descriptors are fetched until the ITE is cleared.
	 */
	if (fault & DMA_FSTS_ITE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
		head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
		head |= 1;
		tail = readl(iommu->reg + DMAR_IQT_REG);
		tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;

		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);

		do {
			if (qi->desc_status[head] == QI_IN_USE)
				qi->desc_status[head] = QI_ABORT;
			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
		} while (head != tail);

		if (qi->desc_status[wait_index] == QI_ABORT)
			return -EAGAIN;
	}

	if (fault & DMA_FSTS_ICE)
		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);

788 789 790
	return 0;
}

791 792 793 794
/*
 * Submit the queued invalidation descriptor to the remapping
 * hardware unit and wait for its completion.
 */
795
int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
796
{
797
	int rc;
798 799 800 801 802 803
	struct q_inval *qi = iommu->qi;
	struct qi_desc *hw, wait_desc;
	int wait_index, index;
	unsigned long flags;

	if (!qi)
804
		return 0;
805 806 807

	hw = qi->desc;

808 809 810
restart:
	rc = 0;

811
	spin_lock_irqsave(&qi->q_lock, flags);
812
	while (qi->free_cnt < 3) {
813
		spin_unlock_irqrestore(&qi->q_lock, flags);
814
		cpu_relax();
815
		spin_lock_irqsave(&qi->q_lock, flags);
816 817 818 819 820 821 822 823 824
	}

	index = qi->free_head;
	wait_index = (index + 1) % QI_LENGTH;

	qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;

	hw[index] = *desc;

825 826
	wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
827 828 829 830 831 832 833 834 835 836 837 838 839 840
	wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);

	hw[wait_index] = wait_desc;

	__iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
	__iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));

	qi->free_head = (qi->free_head + 2) % QI_LENGTH;
	qi->free_cnt -= 2;

	/*
	 * update the HW tail register indicating the presence of
	 * new descriptors.
	 */
841
	writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
842 843

	while (qi->desc_status[wait_index] != QI_DONE) {
844 845 846 847 848 849 850
		/*
		 * We will leave the interrupts disabled, to prevent interrupt
		 * context to queue another cmd while a cmd is already submitted
		 * and waiting for completion on this cpu. This is to avoid
		 * a deadlock where the interrupt context can wait indefinitely
		 * for free slots in the queue.
		 */
851 852
		rc = qi_check_fault(iommu, index);
		if (rc)
853
			break;
854

855 856 857 858
		spin_unlock(&qi->q_lock);
		cpu_relax();
		spin_lock(&qi->q_lock);
	}
859 860

	qi->desc_status[index] = QI_DONE;
861 862

	reclaim_free_desc(qi);
863
	spin_unlock_irqrestore(&qi->q_lock, flags);
864

865 866 867
	if (rc == -EAGAIN)
		goto restart;

868
	return rc;
869 870 871 872 873 874 875 876 877 878 879 880
}

/*
 * Flush the global interrupt entry cache.
 */
void qi_global_iec(struct intel_iommu *iommu)
{
	struct qi_desc desc;

	desc.low = QI_IEC_TYPE;
	desc.high = 0;

881
	/* should never fail */
882 883 884
	qi_submit_sync(&desc, iommu);
}

885 886
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
		      u64 type)
887 888 889 890 891 892 893
{
	struct qi_desc desc;

	desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
			| QI_CC_GRAN(type) | QI_CC_TYPE;
	desc.high = 0;

894
	qi_submit_sync(&desc, iommu);
895 896
}

897 898
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
		    unsigned int size_order, u64 type)
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
{
	u8 dw = 0, dr = 0;

	struct qi_desc desc;
	int ih = 0;

	if (cap_write_drain(iommu->cap))
		dw = 1;

	if (cap_read_drain(iommu->cap))
		dr = 1;

	desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
	desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
		| QI_IOTLB_AM(size_order);

916
	qi_submit_sync(&desc, iommu);
917 918
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
			u64 addr, unsigned mask)
{
	struct qi_desc desc;

	if (mask) {
		BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
		addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
		desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
	} else
		desc.high = QI_DEV_IOTLB_ADDR(addr);

	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
		qdep = 0;

	desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
		   QI_DIOTLB_TYPE;

	qi_submit_sync(&desc, iommu);
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
/*
 * Disable Queued Invalidation interface.
 */
void dmar_disable_qi(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
	cycles_t start_time = get_cycles();

	if (!ecap_qis(iommu->ecap))
		return;

	spin_lock_irqsave(&iommu->register_lock, flags);

	sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
	if (!(sts & DMA_GSTS_QIES))
		goto end;

	/*
	 * Give a chance to HW to complete the pending invalidation requests.
	 */
	while ((readl(iommu->reg + DMAR_IQT_REG) !=
		readl(iommu->reg + DMAR_IQH_REG)) &&
		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
		cpu_relax();

	iommu->gcmd &= ~DMA_GCMD_QIE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
		      !(sts & DMA_GSTS_QIES), sts);
end:
	spin_unlock_irqrestore(&iommu->register_lock, flags);
}

975 976 977 978 979
/*
 * Enable queued invalidation.
 */
static void __dmar_enable_qi(struct intel_iommu *iommu)
{
980
	u32 sts;
981 982 983 984 985 986 987 988 989 990 991 992 993 994
	unsigned long flags;
	struct q_inval *qi = iommu->qi;

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

	spin_lock_irqsave(&iommu->register_lock, flags);

	/* write zero to the tail reg */
	writel(0, iommu->reg + DMAR_IQT_REG);

	dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));

	iommu->gcmd |= DMA_GCMD_QIE;
995
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
996 997 998 999 1000 1001 1002

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);

	spin_unlock_irqrestore(&iommu->register_lock, flags);
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
/*
 * Enable Queued Invalidation interface. This is a must to support
 * interrupt-remapping. Also used by DMA-remapping, which replaces
 * register based IOTLB invalidation.
 */
int dmar_enable_qi(struct intel_iommu *iommu)
{
	struct q_inval *qi;

	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	/*
	 * queued invalidation is already setup and enabled.
	 */
	if (iommu->qi)
		return 0;

1021
	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1022 1023 1024 1025 1026
	if (!iommu->qi)
		return -ENOMEM;

	qi = iommu->qi;

1027
	qi->desc = (void *)(get_zeroed_page(GFP_ATOMIC));
1028 1029 1030 1031 1032 1033
	if (!qi->desc) {
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

1034
	qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	if (!qi->desc_status) {
		free_page((unsigned long) qi->desc);
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

	spin_lock_init(&qi->q_lock);

1047
	__dmar_enable_qi(iommu);
1048 1049 1050

	return 0;
}
1051 1052 1053

/* iommu interrupt handling. Most stuff are MSI-like. */

1054 1055 1056 1057 1058 1059 1060
enum faulttype {
	DMA_REMAP,
	INTR_REMAP,
	UNKNOWN,
};

static const char *dma_remap_fault_reasons[] =
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
};
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

static const char *intr_remap_fault_reasons[] =
{
	"Detected reserved fields in the decoded interrupt-remapped request",
	"Interrupt index exceeded the interrupt-remapping table size",
	"Present field in the IRTE entry is clear",
	"Error accessing interrupt-remapping table pointed by IRTA_REG",
	"Detected reserved fields in the IRTE entry",
	"Blocked a compatibility format interrupt request",
	"Blocked an interrupt request due to source-id verification failure",
};

1088 1089
#define MAX_FAULT_REASON_IDX 	(ARRAY_SIZE(fault_reason_strings) - 1)

1090
const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1091
{
1092 1093 1094 1095 1096 1097 1098 1099 1100
	if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
				     ARRAY_SIZE(intr_remap_fault_reasons))) {
		*fault_type = INTR_REMAP;
		return intr_remap_fault_reasons[fault_reason - 0x20];
	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
		*fault_type = DMA_REMAP;
		return dma_remap_fault_reasons[fault_reason];
	} else {
		*fault_type = UNKNOWN;
1101
		return "Unknown";
1102
	}
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
}

void dmar_msi_unmask(unsigned int irq)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	/* unmask it */
	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(0, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_mask(unsigned int irq)
{
	unsigned long flag;
	struct intel_iommu *iommu = get_irq_data(irq);

	/* mask it */
	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
	writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
	writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
	msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
	msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
		u8 fault_reason, u16 source_id, unsigned long long addr)
{
	const char *reason;
1159
	int fault_type;
1160

1161
	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	if (fault_type == INTR_REMAP)
		printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
		       "fault index %llx\n"
			"INTR-REMAP:[fault reason %02d] %s\n",
			(source_id >> 8), PCI_SLOT(source_id & 0xFF),
			PCI_FUNC(source_id & 0xFF), addr >> 48,
			fault_reason, reason);
	else
		printk(KERN_ERR
		       "DMAR:[%s] Request device [%02x:%02x.%d] "
		       "fault addr %llx \n"
		       "DMAR:[fault reason %02d] %s\n",
		       (type ? "DMA Read" : "DMA Write"),
		       (source_id >> 8), PCI_SLOT(source_id & 0xFF),
		       PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1178 1179 1180 1181
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
1182
irqreturn_t dmar_fault(int irq, void *dev_id)
1183 1184 1185 1186 1187 1188 1189 1190
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1191 1192 1193
	if (fault_status)
		printk(KERN_ERR "DRHD: handling fault status reg %x\n",
		       fault_status);
1194 1195 1196

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
1197
		goto clear_rest;
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
		int type;
		u32 data;

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

		fault_reason = dma_frcd_fault_reason(data);
		type = dma_frcd_type(data);

		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 8);
		source_id = dma_frcd_source_id(data);

		guest_addr = dmar_readq(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN);
		guest_addr = dma_frcd_page_addr(guest_addr);
		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

		spin_unlock_irqrestore(&iommu->register_lock, flag);

		dmar_fault_do_one(iommu, type, fault_reason,
				source_id, guest_addr);

		fault_index++;
1234
		if (fault_index >= cap_num_fault_regs(iommu->cap))
1235 1236 1237
			fault_index = 0;
		spin_lock_irqsave(&iommu->register_lock, flag);
	}
1238 1239
clear_rest:
	/* clear all the other faults */
1240
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1241
	writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1242 1243 1244 1245 1246 1247 1248 1249 1250

	spin_unlock_irqrestore(&iommu->register_lock, flag);
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

1251 1252 1253 1254 1255 1256
	/*
	 * Check if the fault interrupt is already initialized.
	 */
	if (iommu->irq)
		return 0;

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	irq = create_irq();
	if (!irq) {
		printk(KERN_ERR "IOMMU: no free vectors\n");
		return -EINVAL;
	}

	set_irq_data(irq, iommu);
	iommu->irq = irq;

	ret = arch_setup_dmar_msi(irq);
	if (ret) {
		set_irq_data(irq, NULL);
		iommu->irq = 0;
		destroy_irq(irq);
1271
		return ret;
1272 1273 1274 1275 1276 1277 1278
	}

	ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
	if (ret)
		printk(KERN_ERR "IOMMU: can't request irq\n");
	return ret;
}
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

int __init enable_drhd_fault_handling(void)
{
	struct dmar_drhd_unit *drhd;

	/*
	 * Enable fault control interrupt.
	 */
	for_each_drhd_unit(drhd) {
		int ret;
		struct intel_iommu *iommu = drhd->iommu;
		ret = dmar_set_interrupt(iommu);

		if (ret) {
			printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
			       " interrupt, ret %d\n",
			       (unsigned long long)drhd->reg_base_addr, ret);
			return -1;
		}
	}

	return 0;
}
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326

/*
 * Re-enable Queued Invalidation interface.
 */
int dmar_reenable_qi(struct intel_iommu *iommu)
{
	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	if (!iommu->qi)
		return -ENOENT;

	/*
	 * First disable queued invalidation.
	 */
	dmar_disable_qi(iommu);
	/*
	 * Then enable queued invalidation again. Since there is no pending
	 * invalidation requests now, it's safe to re-enable queued
	 * invalidation.
	 */
	__dmar_enable_qi(iommu);

	return 0;
}
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

/*
 * Check interrupt remapping support in DMAR table description.
 */
int dmar_ir_support(void)
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	return dmar->flags & 0x1;
}