lbr.c 32.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6
#include <linux/perf_event.h>
#include <linux/types.h>

#include <asm/perf_event.h>
#include <asm/msr.h>
7
#include <asm/insn.h>
8

9
#include "../perf_event.h"
10 11 12 13 14 15

enum {
	LBR_FORMAT_32		= 0x00,
	LBR_FORMAT_LIP		= 0x01,
	LBR_FORMAT_EIP		= 0x02,
	LBR_FORMAT_EIP_FLAGS	= 0x03,
16
	LBR_FORMAT_EIP_FLAGS2	= 0x04,
17
	LBR_FORMAT_INFO		= 0x05,
18 19
	LBR_FORMAT_TIME		= 0x06,
	LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_TIME,
20 21
};

22
static const enum {
23 24 25 26 27
	LBR_EIP_FLAGS		= 1,
	LBR_TSX			= 2,
} lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
	[LBR_FORMAT_EIP_FLAGS]  = LBR_EIP_FLAGS,
	[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
28 29
};

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * Intel LBR_SELECT bits
 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
 *
 * Hardware branch filter (not available on all CPUs)
 */
#define LBR_KERNEL_BIT		0 /* do not capture at ring0 */
#define LBR_USER_BIT		1 /* do not capture at ring > 0 */
#define LBR_JCC_BIT		2 /* do not capture conditional branches */
#define LBR_REL_CALL_BIT	3 /* do not capture relative calls */
#define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */
#define LBR_RETURN_BIT		5 /* do not capture near returns */
#define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */
#define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */
#define LBR_FAR_BIT		8 /* do not capture far branches */
45
#define LBR_CALL_STACK_BIT	9 /* enable call stack */
46

47 48 49 50 51 52 53
/*
 * Following bit only exists in Linux; we mask it out before writing it to
 * the actual MSR. But it helps the constraint perf code to understand
 * that this is a separate configuration.
 */
#define LBR_NO_INFO_BIT	       63 /* don't read LBR_INFO. */

54 55 56 57 58 59 60 61 62
#define LBR_KERNEL	(1 << LBR_KERNEL_BIT)
#define LBR_USER	(1 << LBR_USER_BIT)
#define LBR_JCC		(1 << LBR_JCC_BIT)
#define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT)
#define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT)
#define LBR_RETURN	(1 << LBR_RETURN_BIT)
#define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT)
#define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT)
#define LBR_FAR		(1 << LBR_FAR_BIT)
63
#define LBR_CALL_STACK	(1 << LBR_CALL_STACK_BIT)
64
#define LBR_NO_INFO	(1ULL << LBR_NO_INFO_BIT)
65 66 67

#define LBR_PLM (LBR_KERNEL | LBR_USER)

68
#define LBR_SEL_MASK	0x3ff	/* valid bits in LBR_SELECT */
69 70 71 72 73 74 75 76 77 78 79 80
#define LBR_NOT_SUPP	-1	/* LBR filter not supported */
#define LBR_IGN		0	/* ignored */

#define LBR_ANY		 \
	(LBR_JCC	|\
	 LBR_REL_CALL	|\
	 LBR_IND_CALL	|\
	 LBR_RETURN	|\
	 LBR_REL_JMP	|\
	 LBR_IND_JMP	|\
	 LBR_FAR)

81 82 83
#define LBR_FROM_FLAG_MISPRED	BIT_ULL(63)
#define LBR_FROM_FLAG_IN_TX	BIT_ULL(62)
#define LBR_FROM_FLAG_ABORT	BIT_ULL(61)
84

85 86
#define LBR_FROM_SIGNEXT_2MSB	(BIT_ULL(60) | BIT_ULL(59))

87 88 89 90 91
/*
 * x86control flow change classification
 * x86control flow changes include branches, interrupts, traps, faults
 */
enum {
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	X86_BR_NONE		= 0,      /* unknown */

	X86_BR_USER		= 1 << 0, /* branch target is user */
	X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */

	X86_BR_CALL		= 1 << 2, /* call */
	X86_BR_RET		= 1 << 3, /* return */
	X86_BR_SYSCALL		= 1 << 4, /* syscall */
	X86_BR_SYSRET		= 1 << 5, /* syscall return */
	X86_BR_INT		= 1 << 6, /* sw interrupt */
	X86_BR_IRET		= 1 << 7, /* return from interrupt */
	X86_BR_JCC		= 1 << 8, /* conditional */
	X86_BR_JMP		= 1 << 9, /* jump */
	X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */
	X86_BR_IND_CALL		= 1 << 11,/* indirect calls */
	X86_BR_ABORT		= 1 << 12,/* transaction abort */
	X86_BR_IN_TX		= 1 << 13,/* in transaction */
	X86_BR_NO_TX		= 1 << 14,/* not in transaction */
110 111
	X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */
	X86_BR_CALL_STACK	= 1 << 16,/* call stack */
112
	X86_BR_IND_JMP		= 1 << 17,/* indirect jump */
J
Jin Yao 已提交
113 114 115

	X86_BR_TYPE_SAVE	= 1 << 18,/* indicate to save branch type */

116 117 118
};

#define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
119
#define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
120 121 122 123 124 125 126 127 128 129 130

#define X86_BR_ANY       \
	(X86_BR_CALL    |\
	 X86_BR_RET     |\
	 X86_BR_SYSCALL |\
	 X86_BR_SYSRET  |\
	 X86_BR_INT     |\
	 X86_BR_IRET    |\
	 X86_BR_JCC     |\
	 X86_BR_JMP	 |\
	 X86_BR_IRQ	 |\
131
	 X86_BR_ABORT	 |\
132
	 X86_BR_IND_CALL |\
133
	 X86_BR_IND_JMP  |\
134
	 X86_BR_ZERO_CALL)
135 136 137 138 139 140

#define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)

#define X86_BR_ANY_CALL		 \
	(X86_BR_CALL		|\
	 X86_BR_IND_CALL	|\
141
	 X86_BR_ZERO_CALL	|\
142 143 144 145 146 147
	 X86_BR_SYSCALL		|\
	 X86_BR_IRQ		|\
	 X86_BR_INT)

static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);

148 149 150 151 152
/*
 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
 * otherwise it becomes near impossible to get a reliable stack.
 */

153
static void __intel_pmu_lbr_enable(bool pmi)
154
{
155
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
156
	u64 debugctl, lbr_select = 0, orig_debugctl;
157

158 159 160 161 162 163 164
	/*
	 * No need to unfreeze manually, as v4 can do that as part
	 * of the GLOBAL_STATUS ack.
	 */
	if (pmi && x86_pmu.version >= 4)
		return;

165 166 167 168
	/*
	 * No need to reprogram LBR_SELECT in a PMI, as it
	 * did not change.
	 */
169
	if (cpuc->lbr_sel)
170
		lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
171
	if (!pmi && cpuc->lbr_sel)
172
		wrmsrl(MSR_LBR_SELECT, lbr_select);
173 174

	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
175
	orig_debugctl = debugctl;
176 177 178 179 180 181 182 183
	debugctl |= DEBUGCTLMSR_LBR;
	/*
	 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
	 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
	 * may cause superfluous increase/decrease of LBR_TOS.
	 */
	if (!(lbr_select & LBR_CALL_STACK))
		debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
184 185
	if (orig_debugctl != debugctl)
		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
186 187 188 189 190 191 192
}

static void __intel_pmu_lbr_disable(void)
{
	u64 debugctl;

	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
193
	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
}

static void intel_pmu_lbr_reset_32(void)
{
	int i;

	for (i = 0; i < x86_pmu.lbr_nr; i++)
		wrmsrl(x86_pmu.lbr_from + i, 0);
}

static void intel_pmu_lbr_reset_64(void)
{
	int i;

	for (i = 0; i < x86_pmu.lbr_nr; i++) {
		wrmsrl(x86_pmu.lbr_from + i, 0);
		wrmsrl(x86_pmu.lbr_to   + i, 0);
212 213
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
			wrmsrl(MSR_LBR_INFO_0 + i, 0);
214 215 216
	}
}

217
void intel_pmu_lbr_reset(void)
218
{
219 220
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

221 222 223
	if (!x86_pmu.lbr_nr)
		return;

224
	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
225 226 227
		intel_pmu_lbr_reset_32();
	else
		intel_pmu_lbr_reset_64();
228 229 230

	cpuc->last_task_ctx = NULL;
	cpuc->last_log_id = 0;
231 232
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/*
 * TOS = most recently recorded branch
 */
static inline u64 intel_pmu_lbr_tos(void)
{
	u64 tos;

	rdmsrl(x86_pmu.lbr_tos, tos);
	return tos;
}

enum {
	LBR_NONE,
	LBR_VALID,
};

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/*
 * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
 * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
 * TSX is not supported they have no consistent behavior:
 *
 *   - For wrmsr(), bits 61:62 are considered part of the sign extension.
 *   - For HW updates (branch captures) bits 61:62 are always OFF and are not
 *     part of the sign extension.
 *
 * Therefore, if:
 *
 *   1) LBR has TSX format
 *   2) CPU has no TSX support enabled
 *
 * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
 * value from rdmsr() must be converted to have a 61 bits sign extension,
 * ignoring the TSX flags.
 */
static inline bool lbr_from_signext_quirk_needed(void)
{
	int lbr_format = x86_pmu.intel_cap.lbr_format;
	bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
			   boot_cpu_has(X86_FEATURE_RTM);

	return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX);
}

DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);

/* If quirk is enabled, ensure sign extension is 63 bits: */
inline u64 lbr_from_signext_quirk_wr(u64 val)
{
	if (static_branch_unlikely(&lbr_from_quirk_key)) {
		/*
		 * Sign extend into bits 61:62 while preserving bit 63.
		 *
		 * Quirk is enabled when TSX is disabled. Therefore TSX bits
		 * in val are always OFF and must be changed to be sign
		 * extension bits. Since bits 59:60 are guaranteed to be
		 * part of the sign extension bits, we can just copy them
		 * to 61:62.
		 */
		val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
	}
	return val;
}

296 297 298
/*
 * If quirk is needed, ensure sign extension is 61 bits:
 */
299
static u64 lbr_from_signext_quirk_rd(u64 val)
300
{
301
	if (static_branch_unlikely(&lbr_from_quirk_key)) {
302 303 304 305 306
		/*
		 * Quirk is on when TSX is not enabled. Therefore TSX
		 * flags must be read as OFF.
		 */
		val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	}
	return val;
}

static inline void wrlbr_from(unsigned int idx, u64 val)
{
	val = lbr_from_signext_quirk_wr(val);
	wrmsrl(x86_pmu.lbr_from + idx, val);
}

static inline void wrlbr_to(unsigned int idx, u64 val)
{
	wrmsrl(x86_pmu.lbr_to + idx, val);
}

static inline u64 rdlbr_from(unsigned int idx)
{
	u64 val;

	rdmsrl(x86_pmu.lbr_from + idx, val);

	return lbr_from_signext_quirk_rd(val);
}

static inline u64 rdlbr_to(unsigned int idx)
{
	u64 val;

335
	rdmsrl(x86_pmu.lbr_to + idx, val);
336

337 338 339
	return val;
}

340 341
static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
{
342
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
343 344 345 346 347 348 349 350 351 352
	int i;
	unsigned lbr_idx, mask;
	u64 tos;

	if (task_ctx->lbr_callstack_users == 0 ||
	    task_ctx->lbr_stack_state == LBR_NONE) {
		intel_pmu_lbr_reset();
		return;
	}

353
	tos = task_ctx->tos;
354 355 356 357 358 359 360 361 362 363 364 365 366
	/*
	 * Does not restore the LBR registers, if
	 * - No one else touched them, and
	 * - Did not enter C6
	 */
	if ((task_ctx == cpuc->last_task_ctx) &&
	    (task_ctx->log_id == cpuc->last_log_id) &&
	    rdlbr_from(tos)) {
		task_ctx->lbr_stack_state = LBR_NONE;
		return;
	}

	mask = x86_pmu.lbr_nr - 1;
367
	for (i = 0; i < task_ctx->valid_lbrs; i++) {
368
		lbr_idx = (tos - i) & mask;
369 370 371
		wrlbr_from(lbr_idx, task_ctx->lbr_from[i]);
		wrlbr_to  (lbr_idx, task_ctx->lbr_to[i]);

372
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
373
			wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
374
	}
375 376 377 378 379 380 381 382 383

	for (; i < x86_pmu.lbr_nr; i++) {
		lbr_idx = (tos - i) & mask;
		wrlbr_from(lbr_idx, 0);
		wrlbr_to(lbr_idx, 0);
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
			wrmsrl(MSR_LBR_INFO_0 + lbr_idx, 0);
	}

384
	wrmsrl(x86_pmu.lbr_tos, tos);
385 386 387 388 389
	task_ctx->lbr_stack_state = LBR_NONE;
}

static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
{
390
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
391
	unsigned lbr_idx, mask;
392
	u64 tos, from;
393
	int i;
394 395 396 397 398 399 400 401

	if (task_ctx->lbr_callstack_users == 0) {
		task_ctx->lbr_stack_state = LBR_NONE;
		return;
	}

	mask = x86_pmu.lbr_nr - 1;
	tos = intel_pmu_lbr_tos();
402
	for (i = 0; i < x86_pmu.lbr_nr; i++) {
403
		lbr_idx = (tos - i) & mask;
404 405 406 407
		from = rdlbr_from(lbr_idx);
		if (!from)
			break;
		task_ctx->lbr_from[i] = from;
408
		task_ctx->lbr_to[i]   = rdlbr_to(lbr_idx);
409
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
410
			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
411
	}
412
	task_ctx->valid_lbrs = i;
413
	task_ctx->tos = tos;
414
	task_ctx->lbr_stack_state = LBR_VALID;
415 416 417

	cpuc->last_task_ctx = task_ctx;
	cpuc->last_log_id = ++task_ctx->log_id;
418 419
}

420 421
void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
{
422
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
423
	struct x86_perf_task_context *task_ctx;
424

425 426 427
	if (!cpuc->lbr_users)
		return;

428 429 430 431 432 433 434
	/*
	 * If LBR callstack feature is enabled and the stack was saved when
	 * the task was scheduled out, restore the stack. Otherwise flush
	 * the LBR stack.
	 */
	task_ctx = ctx ? ctx->task_ctx_data : NULL;
	if (task_ctx) {
435
		if (sched_in)
436
			__intel_pmu_lbr_restore(task_ctx);
437
		else
438 439 440 441
			__intel_pmu_lbr_save(task_ctx);
		return;
	}

442
	/*
443 444 445 446 447 448
	 * Since a context switch can flip the address space and LBR entries
	 * are not tagged with an identifier, we need to wipe the LBR, even for
	 * per-cpu events. You simply cannot resolve the branches from the old
	 * address space.
	 */
	if (sched_in)
449 450 451
		intel_pmu_lbr_reset();
}

452 453 454 455 456
static inline bool branch_user_callstack(unsigned br_sel)
{
	return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
}

457
void intel_pmu_lbr_add(struct perf_event *event)
458
{
459
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
460
	struct x86_perf_task_context *task_ctx;
461 462 463 464

	if (!x86_pmu.lbr_nr)
		return;

465
	cpuc->br_sel = event->hw.branch_reg.reg;
466

467
	if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) {
468 469 470 471
		task_ctx = event->ctx->task_ctx_data;
		task_ctx->lbr_callstack_users++;
	}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	/*
	 * Request pmu::sched_task() callback, which will fire inside the
	 * regular perf event scheduling, so that call will:
	 *
	 *  - restore or wipe; when LBR-callstack,
	 *  - wipe; otherwise,
	 *
	 * when this is from __perf_event_task_sched_in().
	 *
	 * However, if this is from perf_install_in_context(), no such callback
	 * will follow and we'll need to reset the LBR here if this is the
	 * first LBR event.
	 *
	 * The problem is, we cannot tell these cases apart... but we can
	 * exclude the biggest chunk of cases by looking at
	 * event->total_time_running. An event that has accrued runtime cannot
	 * be 'new'. Conversely, a new event can get installed through the
	 * context switch path for the first time.
	 */
491
	perf_sched_cb_inc(event->ctx->pmu);
492 493
	if (!cpuc->lbr_users++ && !event->total_time_running)
		intel_pmu_lbr_reset();
494 495
}

496
void intel_pmu_lbr_del(struct perf_event *event)
497
{
498
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
499
	struct x86_perf_task_context *task_ctx;
500 501 502 503

	if (!x86_pmu.lbr_nr)
		return;

504 505
	if (branch_user_callstack(cpuc->br_sel) &&
	    event->ctx->task_ctx_data) {
506 507 508 509
		task_ctx = event->ctx->task_ctx_data;
		task_ctx->lbr_callstack_users--;
	}

510
	cpuc->lbr_users--;
511
	WARN_ON_ONCE(cpuc->lbr_users < 0);
512
	perf_sched_cb_dec(event->ctx->pmu);
513 514
}

515
void intel_pmu_lbr_enable_all(bool pmi)
516
{
517
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
518 519

	if (cpuc->lbr_users)
520
		__intel_pmu_lbr_enable(pmi);
521 522
}

523
void intel_pmu_lbr_disable_all(void)
524
{
525
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
526 527 528 529 530 531 532 533 534 535 536

	if (cpuc->lbr_users)
		__intel_pmu_lbr_disable();
}

static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
{
	unsigned long mask = x86_pmu.lbr_nr - 1;
	u64 tos = intel_pmu_lbr_tos();
	int i;

P
Peter Zijlstra 已提交
537
	for (i = 0; i < x86_pmu.lbr_nr; i++) {
538 539 540 541 542 543 544 545 546 547 548
		unsigned long lbr_idx = (tos - i) & mask;
		union {
			struct {
				u32 from;
				u32 to;
			};
			u64     lbr;
		} msr_lastbranch;

		rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);

549 550 551 552
		cpuc->lbr_entries[i].from	= msr_lastbranch.from;
		cpuc->lbr_entries[i].to		= msr_lastbranch.to;
		cpuc->lbr_entries[i].mispred	= 0;
		cpuc->lbr_entries[i].predicted	= 0;
553 554 555
		cpuc->lbr_entries[i].in_tx	= 0;
		cpuc->lbr_entries[i].abort	= 0;
		cpuc->lbr_entries[i].cycles	= 0;
J
Jin Yao 已提交
556
		cpuc->lbr_entries[i].type	= 0;
557
		cpuc->lbr_entries[i].reserved	= 0;
558 559 560 561 562 563 564 565 566 567 568
	}
	cpuc->lbr_stack.nr = i;
}

/*
 * Due to lack of segmentation in Linux the effective address (offset)
 * is the same as the linear address, allowing us to merge the LIP and EIP
 * LBR formats.
 */
static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
{
569
	bool need_info = false, call_stack = false;
570
	unsigned long mask = x86_pmu.lbr_nr - 1;
571
	int lbr_format = x86_pmu.intel_cap.lbr_format;
572 573
	u64 tos = intel_pmu_lbr_tos();
	int i;
574
	int out = 0;
575
	int num = x86_pmu.lbr_nr;
576

577 578 579
	if (cpuc->lbr_sel) {
		need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
		if (cpuc->lbr_sel->config & LBR_CALL_STACK)
580
			call_stack = true;
581
	}
582 583

	for (i = 0; i < num; i++) {
584
		unsigned long lbr_idx = (tos - i) & mask;
585 586
		u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
		int skip = 0;
587
		u16 cycles = 0;
588
		int lbr_flags = lbr_desc[lbr_format];
589

590 591
		from = rdlbr_from(lbr_idx);
		to   = rdlbr_to(lbr_idx);
592

593 594 595 596 597 598 599
		/*
		 * Read LBR call stack entries
		 * until invalid entry (0s) is detected.
		 */
		if (call_stack && !from)
			break;

600
		if (lbr_format == LBR_FORMAT_INFO && need_info) {
601 602 603 604 605 606 607 608 609
			u64 info;

			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
			mis = !!(info & LBR_INFO_MISPRED);
			pred = !mis;
			in_tx = !!(info & LBR_INFO_IN_TX);
			abort = !!(info & LBR_INFO_ABORT);
			cycles = (info & LBR_INFO_CYCLES);
		}
610 611 612 613 614 615 616 617 618 619

		if (lbr_format == LBR_FORMAT_TIME) {
			mis = !!(from & LBR_FROM_FLAG_MISPRED);
			pred = !mis;
			skip = 1;
			cycles = ((to >> 48) & LBR_INFO_CYCLES);

			to = (u64)((((s64)to) << 16) >> 16);
		}

620
		if (lbr_flags & LBR_EIP_FLAGS) {
621 622
			mis = !!(from & LBR_FROM_FLAG_MISPRED);
			pred = !mis;
623 624 625 626 627 628
			skip = 1;
		}
		if (lbr_flags & LBR_TSX) {
			in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
			abort = !!(from & LBR_FROM_FLAG_ABORT);
			skip = 3;
629
		}
630
		from = (u64)((((s64)from) << skip) >> skip);
631

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
		/*
		 * Some CPUs report duplicated abort records,
		 * with the second entry not having an abort bit set.
		 * Skip them here. This loop runs backwards,
		 * so we need to undo the previous record.
		 * If the abort just happened outside the window
		 * the extra entry cannot be removed.
		 */
		if (abort && x86_pmu.lbr_double_abort && out > 0)
			out--;

		cpuc->lbr_entries[out].from	 = from;
		cpuc->lbr_entries[out].to	 = to;
		cpuc->lbr_entries[out].mispred	 = mis;
		cpuc->lbr_entries[out].predicted = pred;
		cpuc->lbr_entries[out].in_tx	 = in_tx;
		cpuc->lbr_entries[out].abort	 = abort;
649
		cpuc->lbr_entries[out].cycles	 = cycles;
J
Jin Yao 已提交
650
		cpuc->lbr_entries[out].type	 = 0;
651 652
		cpuc->lbr_entries[out].reserved	 = 0;
		out++;
653
	}
654
	cpuc->lbr_stack.nr = out;
655 656
}

657
void intel_pmu_lbr_read(void)
658
{
659
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
660 661 662 663

	if (!cpuc->lbr_users)
		return;

664
	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
665 666 667
		intel_pmu_lbr_read_32(cpuc);
	else
		intel_pmu_lbr_read_64(cpuc);
668 669 670 671 672 673 674 675 676

	intel_pmu_lbr_filter(cpuc);
}

/*
 * SW filter is used:
 * - in case there is no HW filter
 * - in case the HW filter has errata or limitations
 */
677
static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
678 679 680 681 682 683 684
{
	u64 br_type = event->attr.branch_sample_type;
	int mask = 0;

	if (br_type & PERF_SAMPLE_BRANCH_USER)
		mask |= X86_BR_USER;

685
	if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
		mask |= X86_BR_KERNEL;

	/* we ignore BRANCH_HV here */

	if (br_type & PERF_SAMPLE_BRANCH_ANY)
		mask |= X86_BR_ANY;

	if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
		mask |= X86_BR_ANY_CALL;

	if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
		mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;

	if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
		mask |= X86_BR_IND_CALL;
701 702 703 704 705 706 707 708 709 710

	if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
		mask |= X86_BR_ABORT;

	if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
		mask |= X86_BR_IN_TX;

	if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
		mask |= X86_BR_NO_TX;

711 712 713
	if (br_type & PERF_SAMPLE_BRANCH_COND)
		mask |= X86_BR_JCC;

714 715 716 717 718 719 720 721 722
	if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
		if (!x86_pmu_has_lbr_callstack())
			return -EOPNOTSUPP;
		if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
			return -EINVAL;
		mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
			X86_BR_CALL_STACK;
	}

723 724 725
	if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
		mask |= X86_BR_IND_JMP;

726 727
	if (br_type & PERF_SAMPLE_BRANCH_CALL)
		mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
J
Jin Yao 已提交
728 729 730 731

	if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
		mask |= X86_BR_TYPE_SAVE;

732 733 734 735 736
	/*
	 * stash actual user request into reg, it may
	 * be used by fixup code for some CPU
	 */
	event->hw.branch_reg.reg = mask;
737
	return 0;
738 739
}

740 741 742 743 744 745 746 747 748
/*
 * setup the HW LBR filter
 * Used only when available, may not be enough to disambiguate
 * all branches, may need the help of the SW filter
 */
static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
{
	struct hw_perf_event_extra *reg;
	u64 br_type = event->attr.branch_sample_type;
749 750
	u64 mask = 0, v;
	int i;
751

752
	for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
753
		if (!(br_type & (1ULL << i)))
754 755
			continue;

756
		v = x86_pmu.lbr_sel_map[i];
757 758 759
		if (v == LBR_NOT_SUPP)
			return -EOPNOTSUPP;

760 761
		if (v != LBR_IGN)
			mask |= v;
762
	}
763

764 765 766
	reg = &event->hw.branch_reg;
	reg->idx = EXTRA_REG_LBR;

767 768 769 770
	/*
	 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
	 * in suppress mode. So LBR_SELECT should be set to
	 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
771 772
	 * But the 10th bit LBR_CALL_STACK does not operate
	 * in suppress mode.
773
	 */
774
	reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
775

776 777 778 779 780
	if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
	    (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
	    (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
		reg->config |= LBR_NO_INFO;

781 782 783 784 785
	return 0;
}

int intel_pmu_setup_lbr_filter(struct perf_event *event)
{
786
	int ret = 0;
787 788 789 790 791 792 793 794

	/*
	 * no LBR on this PMU
	 */
	if (!x86_pmu.lbr_nr)
		return -EOPNOTSUPP;

	/*
795
	 * setup SW LBR filter
796
	 */
797 798 799
	ret = intel_pmu_setup_sw_lbr_filter(event);
	if (ret)
		return ret;
800 801 802 803 804 805 806 807 808 809 810 811

	/*
	 * setup HW LBR filter, if any
	 */
	if (x86_pmu.lbr_sel_map)
		ret = intel_pmu_setup_hw_lbr_filter(event);

	return ret;
}

/*
 * return the type of control flow change at address "from"
812
 * instruction is not necessarily a branch (in case of interrupt).
813 814 815 816 817 818 819 820
 *
 * The branch type returned also includes the priv level of the
 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
 *
 * If a branch type is unknown OR the instruction cannot be
 * decoded (e.g., text page not present), then X86_BR_NONE is
 * returned.
 */
821
static int branch_type(unsigned long from, unsigned long to, int abort)
822 823 824
{
	struct insn insn;
	void *addr;
825
	int bytes_read, bytes_left;
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
	int ret = X86_BR_NONE;
	int ext, to_plm, from_plm;
	u8 buf[MAX_INSN_SIZE];
	int is64 = 0;

	to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
	from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;

	/*
	 * maybe zero if lbr did not fill up after a reset by the time
	 * we get a PMU interrupt
	 */
	if (from == 0 || to == 0)
		return X86_BR_NONE;

841 842 843
	if (abort)
		return X86_BR_ABORT | to_plm;

844 845 846 847 848 849 850 851 852
	if (from_plm == X86_BR_USER) {
		/*
		 * can happen if measuring at the user level only
		 * and we interrupt in a kernel thread, e.g., idle.
		 */
		if (!current->mm)
			return X86_BR_NONE;

		/* may fail if text not present */
853 854 855 856
		bytes_left = copy_from_user_nmi(buf, (void __user *)from,
						MAX_INSN_SIZE);
		bytes_read = MAX_INSN_SIZE - bytes_left;
		if (!bytes_read)
857 858 859
			return X86_BR_NONE;

		addr = buf;
860 861 862 863 864 865 866
	} else {
		/*
		 * The LBR logs any address in the IP, even if the IP just
		 * faulted. This means userspace can control the from address.
		 * Ensure we don't blindy read any address by validating it is
		 * a known text address.
		 */
867
		if (kernel_text_address(from)) {
868
			addr = (void *)from;
869 870 871 872 873 874 875 876 877
			/*
			 * Assume we can get the maximum possible size
			 * when grabbing kernel data.  This is not
			 * _strictly_ true since we could possibly be
			 * executing up next to a memory hole, but
			 * it is very unlikely to be a problem.
			 */
			bytes_read = MAX_INSN_SIZE;
		} else {
878
			return X86_BR_NONE;
879
		}
880
	}
881 882 883 884 885 886 887 888

	/*
	 * decoder needs to know the ABI especially
	 * on 64-bit systems running 32-bit apps
	 */
#ifdef CONFIG_X86_64
	is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
#endif
889
	insn_init(&insn, addr, bytes_read, is64);
890
	insn_get_opcode(&insn);
891 892
	if (!insn.opcode.got)
		return X86_BR_ABORT;
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927

	switch (insn.opcode.bytes[0]) {
	case 0xf:
		switch (insn.opcode.bytes[1]) {
		case 0x05: /* syscall */
		case 0x34: /* sysenter */
			ret = X86_BR_SYSCALL;
			break;
		case 0x07: /* sysret */
		case 0x35: /* sysexit */
			ret = X86_BR_SYSRET;
			break;
		case 0x80 ... 0x8f: /* conditional */
			ret = X86_BR_JCC;
			break;
		default:
			ret = X86_BR_NONE;
		}
		break;
	case 0x70 ... 0x7f: /* conditional */
		ret = X86_BR_JCC;
		break;
	case 0xc2: /* near ret */
	case 0xc3: /* near ret */
	case 0xca: /* far ret */
	case 0xcb: /* far ret */
		ret = X86_BR_RET;
		break;
	case 0xcf: /* iret */
		ret = X86_BR_IRET;
		break;
	case 0xcc ... 0xce: /* int */
		ret = X86_BR_INT;
		break;
	case 0xe8: /* call near rel */
928 929 930 931 932 933
		insn_get_immediate(&insn);
		if (insn.immediate1.value == 0) {
			/* zero length call */
			ret = X86_BR_ZERO_CALL;
			break;
		}
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	case 0x9a: /* call far absolute */
		ret = X86_BR_CALL;
		break;
	case 0xe0 ... 0xe3: /* loop jmp */
		ret = X86_BR_JCC;
		break;
	case 0xe9 ... 0xeb: /* jmp */
		ret = X86_BR_JMP;
		break;
	case 0xff: /* call near absolute, call far absolute ind */
		insn_get_modrm(&insn);
		ext = (insn.modrm.bytes[0] >> 3) & 0x7;
		switch (ext) {
		case 2: /* near ind call */
		case 3: /* far ind call */
			ret = X86_BR_IND_CALL;
			break;
		case 4:
		case 5:
953
			ret = X86_BR_IND_JMP;
954 955 956 957 958
			break;
		}
		break;
	default:
		ret = X86_BR_NONE;
959 960
	}
	/*
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
	 * interrupts, traps, faults (and thus ring transition) may
	 * occur on any instructions. Thus, to classify them correctly,
	 * we need to first look at the from and to priv levels. If they
	 * are different and to is in the kernel, then it indicates
	 * a ring transition. If the from instruction is not a ring
	 * transition instr (syscall, systenter, int), then it means
	 * it was a irq, trap or fault.
	 *
	 * we have no way of detecting kernel to kernel faults.
	 */
	if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
	    && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
		ret = X86_BR_IRQ;

	/*
	 * branch priv level determined by target as
	 * is done by HW when LBR_SELECT is implemented
978
	 */
979 980
	if (ret != X86_BR_NONE)
		ret |= to_plm;
981

982 983 984
	return ret;
}

J
Jin Yao 已提交
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
#define X86_BR_TYPE_MAP_MAX	16

static int branch_map[X86_BR_TYPE_MAP_MAX] = {
	PERF_BR_CALL,		/* X86_BR_CALL */
	PERF_BR_RET,		/* X86_BR_RET */
	PERF_BR_SYSCALL,	/* X86_BR_SYSCALL */
	PERF_BR_SYSRET,		/* X86_BR_SYSRET */
	PERF_BR_UNKNOWN,	/* X86_BR_INT */
	PERF_BR_UNKNOWN,	/* X86_BR_IRET */
	PERF_BR_COND,		/* X86_BR_JCC */
	PERF_BR_UNCOND,		/* X86_BR_JMP */
	PERF_BR_UNKNOWN,	/* X86_BR_IRQ */
	PERF_BR_IND_CALL,	/* X86_BR_IND_CALL */
	PERF_BR_UNKNOWN,	/* X86_BR_ABORT */
	PERF_BR_UNKNOWN,	/* X86_BR_IN_TX */
	PERF_BR_UNKNOWN,	/* X86_BR_NO_TX */
	PERF_BR_CALL,		/* X86_BR_ZERO_CALL */
	PERF_BR_UNKNOWN,	/* X86_BR_CALL_STACK */
	PERF_BR_IND,		/* X86_BR_IND_JMP */
};

static int
common_branch_type(int type)
{
	int i;

	type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */

	if (type) {
		i = __ffs(type);
		if (i < X86_BR_TYPE_MAP_MAX)
			return branch_map[i];
	}

	return PERF_BR_UNKNOWN;
}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/*
 * implement actual branch filter based on user demand.
 * Hardware may not exactly satisfy that request, thus
 * we need to inspect opcodes. Mismatched branches are
 * discarded. Therefore, the number of branches returned
 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
 */
static void
intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
{
	u64 from, to;
	int br_sel = cpuc->br_sel;
	int i, j, type;
	bool compress = false;

	/* if sampling all branches, then nothing to filter */
J
Jin Yao 已提交
1038 1039
	if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
	    ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
1040 1041 1042 1043 1044 1045 1046
		return;

	for (i = 0; i < cpuc->lbr_stack.nr; i++) {

		from = cpuc->lbr_entries[i].from;
		to = cpuc->lbr_entries[i].to;

1047 1048 1049 1050 1051 1052 1053
		type = branch_type(from, to, cpuc->lbr_entries[i].abort);
		if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
			if (cpuc->lbr_entries[i].in_tx)
				type |= X86_BR_IN_TX;
			else
				type |= X86_BR_NO_TX;
		}
1054 1055 1056 1057 1058 1059

		/* if type does not correspond, then discard */
		if (type == X86_BR_NONE || (br_sel & type) != type) {
			cpuc->lbr_entries[i].from = 0;
			compress = true;
		}
J
Jin Yao 已提交
1060 1061 1062

		if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
			cpuc->lbr_entries[i].type = common_branch_type(type);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	}

	if (!compress)
		return;

	/* remove all entries with from=0 */
	for (i = 0; i < cpuc->lbr_stack.nr; ) {
		if (!cpuc->lbr_entries[i].from) {
			j = i;
			while (++j < cpuc->lbr_stack.nr)
				cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
			cpuc->lbr_stack.nr--;
			if (!cpuc->lbr_entries[i].from)
				continue;
		}
		i++;
	}
1080 1081
}

1082 1083 1084
/*
 * Map interface branch filters onto LBR filters
 */
1085
static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1086 1087 1088 1089 1090 1091
	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_REL_JMP
						| LBR_IND_JMP | LBR_FAR,
1092 1093 1094
	/*
	 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
	 */
1095
	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1096 1097 1098 1099
	 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
	/*
	 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
	 */
1100 1101
	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
	[PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
1102
	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1103 1104
};

1105
static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1106 1107 1108 1109 1110 1111 1112 1113 1114
	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
						| LBR_FAR,
	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
1115
	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1116
	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1117 1118
};

1119
static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
						| LBR_FAR,
	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
						| LBR_RETURN | LBR_CALL_STACK,
1131
	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1132
	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1133 1134
};

1135
/* core */
1136
void __init intel_pmu_lbr_init_core(void)
1137 1138
{
	x86_pmu.lbr_nr     = 4;
1139 1140 1141
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1142

1143 1144 1145 1146
	/*
	 * SW branch filter usage:
	 * - compensate for lack of HW filter
	 */
1147 1148
}

1149
/* nehalem/westmere */
1150
void __init intel_pmu_lbr_init_nhm(void)
1151 1152
{
	x86_pmu.lbr_nr     = 16;
1153 1154 1155
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1156 1157 1158 1159

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;

1160 1161 1162 1163 1164 1165 1166
	/*
	 * SW branch filter usage:
	 * - workaround LBR_SEL errata (see above)
	 * - support syscall, sysret capture.
	 *   That requires LBR_FAR but that means far
	 *   jmp need to be filtered out
	 */
1167 1168
}

1169
/* sandy bridge */
1170
void __init intel_pmu_lbr_init_snb(void)
1171 1172 1173 1174 1175 1176 1177 1178 1179
{
	x86_pmu.lbr_nr	 = 16;
	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;

1180 1181 1182 1183 1184 1185
	/*
	 * SW branch filter usage:
	 * - support syscall, sysret capture.
	 *   That requires LBR_FAR but that means far
	 *   jmp need to be filtered out
	 */
1186 1187
}

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
/* haswell */
void intel_pmu_lbr_init_hsw(void)
{
	x86_pmu.lbr_nr	 = 16;
	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1198 1199 1200

	if (lbr_from_signext_quirk_needed())
		static_branch_enable(&lbr_from_quirk_key);
1201 1202
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
/* skylake */
__init void intel_pmu_lbr_init_skl(void)
{
	x86_pmu.lbr_nr	 = 32;
	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;

	/*
	 * SW branch filter usage:
	 * - support syscall, sysret capture.
	 *   That requires LBR_FAR but that means far
	 *   jmp need to be filtered out
	 */
}

1222
/* atom */
1223
void __init intel_pmu_lbr_init_atom(void)
1224
{
1225 1226 1227 1228 1229
	/*
	 * only models starting at stepping 10 seems
	 * to have an operational LBR which can freeze
	 * on PMU interrupt
	 */
1230
	if (boot_cpu_data.x86_model == 28
1231
	    && boot_cpu_data.x86_stepping < 10) {
1232 1233 1234 1235
		pr_cont("LBR disabled due to erratum");
		return;
	}

1236
	x86_pmu.lbr_nr	   = 8;
1237 1238 1239
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1240

1241 1242 1243 1244
	/*
	 * SW branch filter usage:
	 * - compensate for lack of HW filter
	 */
1245
}
1246

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
/* slm */
void __init intel_pmu_lbr_init_slm(void)
{
	x86_pmu.lbr_nr	   = 8;
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;

	/*
	 * SW branch filter usage:
	 * - compensate for lack of HW filter
	 */
	pr_cont("8-deep LBR, ");
}

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
/* Knights Landing */
void intel_pmu_lbr_init_knl(void)
{
	x86_pmu.lbr_nr	   = 8;
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1275 1276 1277 1278

	/* Knights Landing does have MISPREDICT bit */
	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
		x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;
1279
}