lbr.c 28.8 KB
Newer Older
1 2 3 4 5
#include <linux/perf_event.h>
#include <linux/types.h>

#include <asm/perf_event.h>
#include <asm/msr.h>
6
#include <asm/insn.h>
7

8
#include "../perf_event.h"
9 10 11 12 13 14

enum {
	LBR_FORMAT_32		= 0x00,
	LBR_FORMAT_LIP		= 0x01,
	LBR_FORMAT_EIP		= 0x02,
	LBR_FORMAT_EIP_FLAGS	= 0x03,
15
	LBR_FORMAT_EIP_FLAGS2	= 0x04,
16
	LBR_FORMAT_INFO		= 0x05,
17 18
	LBR_FORMAT_TIME		= 0x06,
	LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_TIME,
19 20 21 22 23 24 25 26
};

static enum {
	LBR_EIP_FLAGS		= 1,
	LBR_TSX			= 2,
} lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
	[LBR_FORMAT_EIP_FLAGS]  = LBR_EIP_FLAGS,
	[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
27 28
};

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * Intel LBR_SELECT bits
 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
 *
 * Hardware branch filter (not available on all CPUs)
 */
#define LBR_KERNEL_BIT		0 /* do not capture at ring0 */
#define LBR_USER_BIT		1 /* do not capture at ring > 0 */
#define LBR_JCC_BIT		2 /* do not capture conditional branches */
#define LBR_REL_CALL_BIT	3 /* do not capture relative calls */
#define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */
#define LBR_RETURN_BIT		5 /* do not capture near returns */
#define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */
#define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */
#define LBR_FAR_BIT		8 /* do not capture far branches */
44
#define LBR_CALL_STACK_BIT	9 /* enable call stack */
45

46 47 48 49 50 51 52
/*
 * Following bit only exists in Linux; we mask it out before writing it to
 * the actual MSR. But it helps the constraint perf code to understand
 * that this is a separate configuration.
 */
#define LBR_NO_INFO_BIT	       63 /* don't read LBR_INFO. */

53 54 55 56 57 58 59 60 61
#define LBR_KERNEL	(1 << LBR_KERNEL_BIT)
#define LBR_USER	(1 << LBR_USER_BIT)
#define LBR_JCC		(1 << LBR_JCC_BIT)
#define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT)
#define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT)
#define LBR_RETURN	(1 << LBR_RETURN_BIT)
#define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT)
#define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT)
#define LBR_FAR		(1 << LBR_FAR_BIT)
62
#define LBR_CALL_STACK	(1 << LBR_CALL_STACK_BIT)
63
#define LBR_NO_INFO	(1ULL << LBR_NO_INFO_BIT)
64 65 66

#define LBR_PLM (LBR_KERNEL | LBR_USER)

67
#define LBR_SEL_MASK	0x3ff	/* valid bits in LBR_SELECT */
68 69 70 71 72 73 74 75 76 77 78 79
#define LBR_NOT_SUPP	-1	/* LBR filter not supported */
#define LBR_IGN		0	/* ignored */

#define LBR_ANY		 \
	(LBR_JCC	|\
	 LBR_REL_CALL	|\
	 LBR_IND_CALL	|\
	 LBR_RETURN	|\
	 LBR_REL_JMP	|\
	 LBR_IND_JMP	|\
	 LBR_FAR)

80 81 82
#define LBR_FROM_FLAG_MISPRED	BIT_ULL(63)
#define LBR_FROM_FLAG_IN_TX	BIT_ULL(62)
#define LBR_FROM_FLAG_ABORT	BIT_ULL(61)
83

84 85
#define LBR_FROM_SIGNEXT_2MSB	(BIT_ULL(60) | BIT_ULL(59))

86 87 88 89 90
/*
 * x86control flow change classification
 * x86control flow changes include branches, interrupts, traps, faults
 */
enum {
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	X86_BR_NONE		= 0,      /* unknown */

	X86_BR_USER		= 1 << 0, /* branch target is user */
	X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */

	X86_BR_CALL		= 1 << 2, /* call */
	X86_BR_RET		= 1 << 3, /* return */
	X86_BR_SYSCALL		= 1 << 4, /* syscall */
	X86_BR_SYSRET		= 1 << 5, /* syscall return */
	X86_BR_INT		= 1 << 6, /* sw interrupt */
	X86_BR_IRET		= 1 << 7, /* return from interrupt */
	X86_BR_JCC		= 1 << 8, /* conditional */
	X86_BR_JMP		= 1 << 9, /* jump */
	X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */
	X86_BR_IND_CALL		= 1 << 11,/* indirect calls */
	X86_BR_ABORT		= 1 << 12,/* transaction abort */
	X86_BR_IN_TX		= 1 << 13,/* in transaction */
	X86_BR_NO_TX		= 1 << 14,/* not in transaction */
109 110
	X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */
	X86_BR_CALL_STACK	= 1 << 16,/* call stack */
111
	X86_BR_IND_JMP		= 1 << 17,/* indirect jump */
112 113 114
};

#define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
115
#define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
116 117 118 119 120 121 122 123 124 125 126

#define X86_BR_ANY       \
	(X86_BR_CALL    |\
	 X86_BR_RET     |\
	 X86_BR_SYSCALL |\
	 X86_BR_SYSRET  |\
	 X86_BR_INT     |\
	 X86_BR_IRET    |\
	 X86_BR_JCC     |\
	 X86_BR_JMP	 |\
	 X86_BR_IRQ	 |\
127
	 X86_BR_ABORT	 |\
128
	 X86_BR_IND_CALL |\
129
	 X86_BR_IND_JMP  |\
130
	 X86_BR_ZERO_CALL)
131 132 133 134 135 136

#define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)

#define X86_BR_ANY_CALL		 \
	(X86_BR_CALL		|\
	 X86_BR_IND_CALL	|\
137
	 X86_BR_ZERO_CALL	|\
138 139 140 141 142 143
	 X86_BR_SYSCALL		|\
	 X86_BR_IRQ		|\
	 X86_BR_INT)

static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);

144 145 146 147 148
/*
 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
 * otherwise it becomes near impossible to get a reliable stack.
 */

149
static void __intel_pmu_lbr_enable(bool pmi)
150
{
151
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
152
	u64 debugctl, lbr_select = 0, orig_debugctl;
153

154 155 156 157 158 159 160
	/*
	 * No need to unfreeze manually, as v4 can do that as part
	 * of the GLOBAL_STATUS ack.
	 */
	if (pmi && x86_pmu.version >= 4)
		return;

161 162 163 164
	/*
	 * No need to reprogram LBR_SELECT in a PMI, as it
	 * did not change.
	 */
165
	if (cpuc->lbr_sel)
166
		lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
167
	if (!pmi && cpuc->lbr_sel)
168
		wrmsrl(MSR_LBR_SELECT, lbr_select);
169 170

	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
171
	orig_debugctl = debugctl;
172 173 174 175 176 177 178 179
	debugctl |= DEBUGCTLMSR_LBR;
	/*
	 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
	 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
	 * may cause superfluous increase/decrease of LBR_TOS.
	 */
	if (!(lbr_select & LBR_CALL_STACK))
		debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
180 181
	if (orig_debugctl != debugctl)
		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
182 183 184 185 186 187 188
}

static void __intel_pmu_lbr_disable(void)
{
	u64 debugctl;

	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
189
	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
}

static void intel_pmu_lbr_reset_32(void)
{
	int i;

	for (i = 0; i < x86_pmu.lbr_nr; i++)
		wrmsrl(x86_pmu.lbr_from + i, 0);
}

static void intel_pmu_lbr_reset_64(void)
{
	int i;

	for (i = 0; i < x86_pmu.lbr_nr; i++) {
		wrmsrl(x86_pmu.lbr_from + i, 0);
		wrmsrl(x86_pmu.lbr_to   + i, 0);
208 209
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
			wrmsrl(MSR_LBR_INFO_0 + i, 0);
210 211 212
	}
}

213
void intel_pmu_lbr_reset(void)
214
{
215 216 217
	if (!x86_pmu.lbr_nr)
		return;

218
	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
219 220 221 222 223
		intel_pmu_lbr_reset_32();
	else
		intel_pmu_lbr_reset_64();
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
/*
 * TOS = most recently recorded branch
 */
static inline u64 intel_pmu_lbr_tos(void)
{
	u64 tos;

	rdmsrl(x86_pmu.lbr_tos, tos);
	return tos;
}

enum {
	LBR_NONE,
	LBR_VALID,
};

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
/*
 * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
 * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
 * TSX is not supported they have no consistent behavior:
 *
 *   - For wrmsr(), bits 61:62 are considered part of the sign extension.
 *   - For HW updates (branch captures) bits 61:62 are always OFF and are not
 *     part of the sign extension.
 *
 * Therefore, if:
 *
 *   1) LBR has TSX format
 *   2) CPU has no TSX support enabled
 *
 * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
 * value from rdmsr() must be converted to have a 61 bits sign extension,
 * ignoring the TSX flags.
 */
static inline bool lbr_from_signext_quirk_needed(void)
{
	int lbr_format = x86_pmu.intel_cap.lbr_format;
	bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
			   boot_cpu_has(X86_FEATURE_RTM);

	return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX);
}

DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);

/* If quirk is enabled, ensure sign extension is 63 bits: */
inline u64 lbr_from_signext_quirk_wr(u64 val)
{
	if (static_branch_unlikely(&lbr_from_quirk_key)) {
		/*
		 * Sign extend into bits 61:62 while preserving bit 63.
		 *
		 * Quirk is enabled when TSX is disabled. Therefore TSX bits
		 * in val are always OFF and must be changed to be sign
		 * extension bits. Since bits 59:60 are guaranteed to be
		 * part of the sign extension bits, we can just copy them
		 * to 61:62.
		 */
		val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
	}
	return val;
}

287 288 289 290 291 292 293 294 295 296 297 298 299
static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
{
	int i;
	unsigned lbr_idx, mask;
	u64 tos;

	if (task_ctx->lbr_callstack_users == 0 ||
	    task_ctx->lbr_stack_state == LBR_NONE) {
		intel_pmu_lbr_reset();
		return;
	}

	mask = x86_pmu.lbr_nr - 1;
300
	tos = task_ctx->tos;
301
	for (i = 0; i < tos; i++) {
302 303 304
		lbr_idx = (tos - i) & mask;
		wrmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
		wrmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
305
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
306
			wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
307
	}
308
	wrmsrl(x86_pmu.lbr_tos, tos);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
	task_ctx->lbr_stack_state = LBR_NONE;
}

static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
{
	int i;
	unsigned lbr_idx, mask;
	u64 tos;

	if (task_ctx->lbr_callstack_users == 0) {
		task_ctx->lbr_stack_state = LBR_NONE;
		return;
	}

	mask = x86_pmu.lbr_nr - 1;
	tos = intel_pmu_lbr_tos();
325
	for (i = 0; i < tos; i++) {
326 327 328
		lbr_idx = (tos - i) & mask;
		rdmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
		rdmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
329
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
330
			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
331
	}
332
	task_ctx->tos = tos;
333 334 335
	task_ctx->lbr_stack_state = LBR_VALID;
}

336 337 338
void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
339
	struct x86_perf_task_context *task_ctx;
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
	/*
	 * If LBR callstack feature is enabled and the stack was saved when
	 * the task was scheduled out, restore the stack. Otherwise flush
	 * the LBR stack.
	 */
	task_ctx = ctx ? ctx->task_ctx_data : NULL;
	if (task_ctx) {
		if (sched_in) {
			__intel_pmu_lbr_restore(task_ctx);
			cpuc->lbr_context = ctx;
		} else {
			__intel_pmu_lbr_save(task_ctx);
		}
		return;
	}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
	/*
	 * When sampling the branck stack in system-wide, it may be
	 * necessary to flush the stack on context switch. This happens
	 * when the branch stack does not tag its entries with the pid
	 * of the current task. Otherwise it becomes impossible to
	 * associate a branch entry with a task. This ambiguity is more
	 * likely to appear when the branch stack supports priv level
	 * filtering and the user sets it to monitor only at the user
	 * level (which could be a useful measurement in system-wide
	 * mode). In that case, the risk is high of having a branch
	 * stack with branch from multiple tasks.
 	 */
	if (sched_in) {
		intel_pmu_lbr_reset();
		cpuc->lbr_context = ctx;
	}
}

375 376 377 378 379
static inline bool branch_user_callstack(unsigned br_sel)
{
	return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
}

380
void intel_pmu_lbr_enable(struct perf_event *event)
381
{
382
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
383
	struct x86_perf_task_context *task_ctx;
384 385 386 387 388

	if (!x86_pmu.lbr_nr)
		return;

	/*
389 390
	 * Reset the LBR stack if we changed task context to
	 * avoid data leaks.
391
	 */
392
	if (event->ctx->task && cpuc->lbr_context != event->ctx) {
393 394 395
		intel_pmu_lbr_reset();
		cpuc->lbr_context = event->ctx;
	}
396
	cpuc->br_sel = event->hw.branch_reg.reg;
397

398 399 400 401 402 403
	if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
					event->ctx->task_ctx_data) {
		task_ctx = event->ctx->task_ctx_data;
		task_ctx->lbr_callstack_users++;
	}

404
	cpuc->lbr_users++;
405
	perf_sched_cb_inc(event->ctx->pmu);
406 407
}

408
void intel_pmu_lbr_disable(struct perf_event *event)
409
{
410
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
411
	struct x86_perf_task_context *task_ctx;
412 413 414 415

	if (!x86_pmu.lbr_nr)
		return;

416 417 418 419 420 421
	if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
					event->ctx->task_ctx_data) {
		task_ctx = event->ctx->task_ctx_data;
		task_ctx->lbr_callstack_users--;
	}

422
	cpuc->lbr_users--;
423
	WARN_ON_ONCE(cpuc->lbr_users < 0);
424
	perf_sched_cb_dec(event->ctx->pmu);
425

426
	if (cpuc->enabled && !cpuc->lbr_users) {
427
		__intel_pmu_lbr_disable();
428 429 430
		/* avoid stale pointer */
		cpuc->lbr_context = NULL;
	}
431 432
}

433
void intel_pmu_lbr_enable_all(bool pmi)
434
{
435
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
436 437

	if (cpuc->lbr_users)
438
		__intel_pmu_lbr_enable(pmi);
439 440
}

441
void intel_pmu_lbr_disable_all(void)
442
{
443
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
444 445 446 447 448 449 450 451 452 453 454

	if (cpuc->lbr_users)
		__intel_pmu_lbr_disable();
}

static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
{
	unsigned long mask = x86_pmu.lbr_nr - 1;
	u64 tos = intel_pmu_lbr_tos();
	int i;

P
Peter Zijlstra 已提交
455
	for (i = 0; i < x86_pmu.lbr_nr; i++) {
456 457 458 459 460 461 462 463 464 465 466
		unsigned long lbr_idx = (tos - i) & mask;
		union {
			struct {
				u32 from;
				u32 to;
			};
			u64     lbr;
		} msr_lastbranch;

		rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);

467 468 469 470 471
		cpuc->lbr_entries[i].from	= msr_lastbranch.from;
		cpuc->lbr_entries[i].to		= msr_lastbranch.to;
		cpuc->lbr_entries[i].mispred	= 0;
		cpuc->lbr_entries[i].predicted	= 0;
		cpuc->lbr_entries[i].reserved	= 0;
472 473 474 475 476 477 478 479 480 481 482
	}
	cpuc->lbr_stack.nr = i;
}

/*
 * Due to lack of segmentation in Linux the effective address (offset)
 * is the same as the linear address, allowing us to merge the LIP and EIP
 * LBR formats.
 */
static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
{
483
	bool need_info = false;
484
	unsigned long mask = x86_pmu.lbr_nr - 1;
485
	int lbr_format = x86_pmu.intel_cap.lbr_format;
486 487
	u64 tos = intel_pmu_lbr_tos();
	int i;
488
	int out = 0;
489
	int num = x86_pmu.lbr_nr;
490

491 492 493 494 495
	if (cpuc->lbr_sel) {
		need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
		if (cpuc->lbr_sel->config & LBR_CALL_STACK)
			num = tos;
	}
496 497

	for (i = 0; i < num; i++) {
498
		unsigned long lbr_idx = (tos - i) & mask;
499 500
		u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
		int skip = 0;
501
		u16 cycles = 0;
502
		int lbr_flags = lbr_desc[lbr_format];
503 504 505 506

		rdmsrl(x86_pmu.lbr_from + lbr_idx, from);
		rdmsrl(x86_pmu.lbr_to   + lbr_idx, to);

507
		if (lbr_format == LBR_FORMAT_INFO && need_info) {
508 509 510 511 512 513 514 515 516
			u64 info;

			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
			mis = !!(info & LBR_INFO_MISPRED);
			pred = !mis;
			in_tx = !!(info & LBR_INFO_IN_TX);
			abort = !!(info & LBR_INFO_ABORT);
			cycles = (info & LBR_INFO_CYCLES);
		}
517 518 519 520 521 522 523 524 525 526

		if (lbr_format == LBR_FORMAT_TIME) {
			mis = !!(from & LBR_FROM_FLAG_MISPRED);
			pred = !mis;
			skip = 1;
			cycles = ((to >> 48) & LBR_INFO_CYCLES);

			to = (u64)((((s64)to) << 16) >> 16);
		}

527
		if (lbr_flags & LBR_EIP_FLAGS) {
528 529
			mis = !!(from & LBR_FROM_FLAG_MISPRED);
			pred = !mis;
530 531 532 533 534 535
			skip = 1;
		}
		if (lbr_flags & LBR_TSX) {
			in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
			abort = !!(from & LBR_FROM_FLAG_ABORT);
			skip = 3;
536
		}
537
		from = (u64)((((s64)from) << skip) >> skip);
538

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
		/*
		 * Some CPUs report duplicated abort records,
		 * with the second entry not having an abort bit set.
		 * Skip them here. This loop runs backwards,
		 * so we need to undo the previous record.
		 * If the abort just happened outside the window
		 * the extra entry cannot be removed.
		 */
		if (abort && x86_pmu.lbr_double_abort && out > 0)
			out--;

		cpuc->lbr_entries[out].from	 = from;
		cpuc->lbr_entries[out].to	 = to;
		cpuc->lbr_entries[out].mispred	 = mis;
		cpuc->lbr_entries[out].predicted = pred;
		cpuc->lbr_entries[out].in_tx	 = in_tx;
		cpuc->lbr_entries[out].abort	 = abort;
556
		cpuc->lbr_entries[out].cycles	 = cycles;
557 558
		cpuc->lbr_entries[out].reserved	 = 0;
		out++;
559
	}
560
	cpuc->lbr_stack.nr = out;
561 562
}

563
void intel_pmu_lbr_read(void)
564
{
565
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
566 567 568 569

	if (!cpuc->lbr_users)
		return;

570
	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
571 572 573
		intel_pmu_lbr_read_32(cpuc);
	else
		intel_pmu_lbr_read_64(cpuc);
574 575 576 577 578 579 580 581 582

	intel_pmu_lbr_filter(cpuc);
}

/*
 * SW filter is used:
 * - in case there is no HW filter
 * - in case the HW filter has errata or limitations
 */
583
static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
584 585 586 587 588 589 590
{
	u64 br_type = event->attr.branch_sample_type;
	int mask = 0;

	if (br_type & PERF_SAMPLE_BRANCH_USER)
		mask |= X86_BR_USER;

591
	if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
		mask |= X86_BR_KERNEL;

	/* we ignore BRANCH_HV here */

	if (br_type & PERF_SAMPLE_BRANCH_ANY)
		mask |= X86_BR_ANY;

	if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
		mask |= X86_BR_ANY_CALL;

	if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
		mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;

	if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
		mask |= X86_BR_IND_CALL;
607 608 609 610 611 612 613 614 615 616

	if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
		mask |= X86_BR_ABORT;

	if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
		mask |= X86_BR_IN_TX;

	if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
		mask |= X86_BR_NO_TX;

617 618 619
	if (br_type & PERF_SAMPLE_BRANCH_COND)
		mask |= X86_BR_JCC;

620 621 622 623 624 625 626 627 628
	if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
		if (!x86_pmu_has_lbr_callstack())
			return -EOPNOTSUPP;
		if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
			return -EINVAL;
		mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
			X86_BR_CALL_STACK;
	}

629 630 631
	if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
		mask |= X86_BR_IND_JMP;

632 633
	if (br_type & PERF_SAMPLE_BRANCH_CALL)
		mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
634 635 636 637 638
	/*
	 * stash actual user request into reg, it may
	 * be used by fixup code for some CPU
	 */
	event->hw.branch_reg.reg = mask;
639
	return 0;
640 641
}

642 643 644 645 646 647 648 649 650
/*
 * setup the HW LBR filter
 * Used only when available, may not be enough to disambiguate
 * all branches, may need the help of the SW filter
 */
static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
{
	struct hw_perf_event_extra *reg;
	u64 br_type = event->attr.branch_sample_type;
651 652
	u64 mask = 0, v;
	int i;
653

654
	for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
655
		if (!(br_type & (1ULL << i)))
656 657
			continue;

658
		v = x86_pmu.lbr_sel_map[i];
659 660 661
		if (v == LBR_NOT_SUPP)
			return -EOPNOTSUPP;

662 663
		if (v != LBR_IGN)
			mask |= v;
664
	}
665

666 667 668
	reg = &event->hw.branch_reg;
	reg->idx = EXTRA_REG_LBR;

669 670 671 672
	/*
	 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
	 * in suppress mode. So LBR_SELECT should be set to
	 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
673 674
	 * But the 10th bit LBR_CALL_STACK does not operate
	 * in suppress mode.
675
	 */
676
	reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
677

678 679 680 681 682
	if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
	    (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
	    (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
		reg->config |= LBR_NO_INFO;

683 684 685 686 687
	return 0;
}

int intel_pmu_setup_lbr_filter(struct perf_event *event)
{
688
	int ret = 0;
689 690 691 692 693 694 695 696

	/*
	 * no LBR on this PMU
	 */
	if (!x86_pmu.lbr_nr)
		return -EOPNOTSUPP;

	/*
697
	 * setup SW LBR filter
698
	 */
699 700 701
	ret = intel_pmu_setup_sw_lbr_filter(event);
	if (ret)
		return ret;
702 703 704 705 706 707 708 709 710 711 712 713

	/*
	 * setup HW LBR filter, if any
	 */
	if (x86_pmu.lbr_sel_map)
		ret = intel_pmu_setup_hw_lbr_filter(event);

	return ret;
}

/*
 * return the type of control flow change at address "from"
714
 * instruction is not necessarily a branch (in case of interrupt).
715 716 717 718 719 720 721 722
 *
 * The branch type returned also includes the priv level of the
 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
 *
 * If a branch type is unknown OR the instruction cannot be
 * decoded (e.g., text page not present), then X86_BR_NONE is
 * returned.
 */
723
static int branch_type(unsigned long from, unsigned long to, int abort)
724 725 726
{
	struct insn insn;
	void *addr;
727
	int bytes_read, bytes_left;
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
	int ret = X86_BR_NONE;
	int ext, to_plm, from_plm;
	u8 buf[MAX_INSN_SIZE];
	int is64 = 0;

	to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
	from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;

	/*
	 * maybe zero if lbr did not fill up after a reset by the time
	 * we get a PMU interrupt
	 */
	if (from == 0 || to == 0)
		return X86_BR_NONE;

743 744 745
	if (abort)
		return X86_BR_ABORT | to_plm;

746 747 748 749 750 751 752 753 754
	if (from_plm == X86_BR_USER) {
		/*
		 * can happen if measuring at the user level only
		 * and we interrupt in a kernel thread, e.g., idle.
		 */
		if (!current->mm)
			return X86_BR_NONE;

		/* may fail if text not present */
755 756 757 758
		bytes_left = copy_from_user_nmi(buf, (void __user *)from,
						MAX_INSN_SIZE);
		bytes_read = MAX_INSN_SIZE - bytes_left;
		if (!bytes_read)
759 760 761
			return X86_BR_NONE;

		addr = buf;
762 763 764 765 766 767 768
	} else {
		/*
		 * The LBR logs any address in the IP, even if the IP just
		 * faulted. This means userspace can control the from address.
		 * Ensure we don't blindy read any address by validating it is
		 * a known text address.
		 */
769
		if (kernel_text_address(from)) {
770
			addr = (void *)from;
771 772 773 774 775 776 777 778 779
			/*
			 * Assume we can get the maximum possible size
			 * when grabbing kernel data.  This is not
			 * _strictly_ true since we could possibly be
			 * executing up next to a memory hole, but
			 * it is very unlikely to be a problem.
			 */
			bytes_read = MAX_INSN_SIZE;
		} else {
780
			return X86_BR_NONE;
781
		}
782
	}
783 784 785 786 787 788 789 790

	/*
	 * decoder needs to know the ABI especially
	 * on 64-bit systems running 32-bit apps
	 */
#ifdef CONFIG_X86_64
	is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
#endif
791
	insn_init(&insn, addr, bytes_read, is64);
792
	insn_get_opcode(&insn);
793 794
	if (!insn.opcode.got)
		return X86_BR_ABORT;
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829

	switch (insn.opcode.bytes[0]) {
	case 0xf:
		switch (insn.opcode.bytes[1]) {
		case 0x05: /* syscall */
		case 0x34: /* sysenter */
			ret = X86_BR_SYSCALL;
			break;
		case 0x07: /* sysret */
		case 0x35: /* sysexit */
			ret = X86_BR_SYSRET;
			break;
		case 0x80 ... 0x8f: /* conditional */
			ret = X86_BR_JCC;
			break;
		default:
			ret = X86_BR_NONE;
		}
		break;
	case 0x70 ... 0x7f: /* conditional */
		ret = X86_BR_JCC;
		break;
	case 0xc2: /* near ret */
	case 0xc3: /* near ret */
	case 0xca: /* far ret */
	case 0xcb: /* far ret */
		ret = X86_BR_RET;
		break;
	case 0xcf: /* iret */
		ret = X86_BR_IRET;
		break;
	case 0xcc ... 0xce: /* int */
		ret = X86_BR_INT;
		break;
	case 0xe8: /* call near rel */
830 831 832 833 834 835
		insn_get_immediate(&insn);
		if (insn.immediate1.value == 0) {
			/* zero length call */
			ret = X86_BR_ZERO_CALL;
			break;
		}
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	case 0x9a: /* call far absolute */
		ret = X86_BR_CALL;
		break;
	case 0xe0 ... 0xe3: /* loop jmp */
		ret = X86_BR_JCC;
		break;
	case 0xe9 ... 0xeb: /* jmp */
		ret = X86_BR_JMP;
		break;
	case 0xff: /* call near absolute, call far absolute ind */
		insn_get_modrm(&insn);
		ext = (insn.modrm.bytes[0] >> 3) & 0x7;
		switch (ext) {
		case 2: /* near ind call */
		case 3: /* far ind call */
			ret = X86_BR_IND_CALL;
			break;
		case 4:
		case 5:
855
			ret = X86_BR_IND_JMP;
856 857 858 859 860
			break;
		}
		break;
	default:
		ret = X86_BR_NONE;
861 862
	}
	/*
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
	 * interrupts, traps, faults (and thus ring transition) may
	 * occur on any instructions. Thus, to classify them correctly,
	 * we need to first look at the from and to priv levels. If they
	 * are different and to is in the kernel, then it indicates
	 * a ring transition. If the from instruction is not a ring
	 * transition instr (syscall, systenter, int), then it means
	 * it was a irq, trap or fault.
	 *
	 * we have no way of detecting kernel to kernel faults.
	 */
	if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
	    && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
		ret = X86_BR_IRQ;

	/*
	 * branch priv level determined by target as
	 * is done by HW when LBR_SELECT is implemented
880
	 */
881 882
	if (ret != X86_BR_NONE)
		ret |= to_plm;
883

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	return ret;
}

/*
 * implement actual branch filter based on user demand.
 * Hardware may not exactly satisfy that request, thus
 * we need to inspect opcodes. Mismatched branches are
 * discarded. Therefore, the number of branches returned
 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
 */
static void
intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
{
	u64 from, to;
	int br_sel = cpuc->br_sel;
	int i, j, type;
	bool compress = false;

	/* if sampling all branches, then nothing to filter */
	if ((br_sel & X86_BR_ALL) == X86_BR_ALL)
		return;

	for (i = 0; i < cpuc->lbr_stack.nr; i++) {

		from = cpuc->lbr_entries[i].from;
		to = cpuc->lbr_entries[i].to;

911 912 913 914 915 916 917
		type = branch_type(from, to, cpuc->lbr_entries[i].abort);
		if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
			if (cpuc->lbr_entries[i].in_tx)
				type |= X86_BR_IN_TX;
			else
				type |= X86_BR_NO_TX;
		}
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940

		/* if type does not correspond, then discard */
		if (type == X86_BR_NONE || (br_sel & type) != type) {
			cpuc->lbr_entries[i].from = 0;
			compress = true;
		}
	}

	if (!compress)
		return;

	/* remove all entries with from=0 */
	for (i = 0; i < cpuc->lbr_stack.nr; ) {
		if (!cpuc->lbr_entries[i].from) {
			j = i;
			while (++j < cpuc->lbr_stack.nr)
				cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
			cpuc->lbr_stack.nr--;
			if (!cpuc->lbr_entries[i].from)
				continue;
		}
		i++;
	}
941 942
}

943 944 945
/*
 * Map interface branch filters onto LBR filters
 */
946
static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
947 948 949 950 951 952
	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_REL_JMP
						| LBR_IND_JMP | LBR_FAR,
953 954 955
	/*
	 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
	 */
956
	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
957 958 959 960
	 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
	/*
	 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
	 */
961 962
	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
	[PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
963
	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
964 965
};

966
static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
967 968 969 970 971 972 973 974 975
	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
						| LBR_FAR,
	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
976
	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
977
	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
978 979
};

980
static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
981 982 983 984 985 986 987 988 989 990 991
	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
						| LBR_FAR,
	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
						| LBR_RETURN | LBR_CALL_STACK,
992
	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
993
	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
994 995
};

996
/* core */
997
void __init intel_pmu_lbr_init_core(void)
998 999
{
	x86_pmu.lbr_nr     = 4;
1000 1001 1002
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1003

1004 1005 1006 1007
	/*
	 * SW branch filter usage:
	 * - compensate for lack of HW filter
	 */
1008 1009
}

1010
/* nehalem/westmere */
1011
void __init intel_pmu_lbr_init_nhm(void)
1012 1013
{
	x86_pmu.lbr_nr     = 16;
1014 1015 1016
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1017 1018 1019 1020

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;

1021 1022 1023 1024 1025 1026 1027
	/*
	 * SW branch filter usage:
	 * - workaround LBR_SEL errata (see above)
	 * - support syscall, sysret capture.
	 *   That requires LBR_FAR but that means far
	 *   jmp need to be filtered out
	 */
1028 1029
}

1030
/* sandy bridge */
1031
void __init intel_pmu_lbr_init_snb(void)
1032 1033 1034 1035 1036 1037 1038 1039 1040
{
	x86_pmu.lbr_nr	 = 16;
	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;

1041 1042 1043 1044 1045 1046
	/*
	 * SW branch filter usage:
	 * - support syscall, sysret capture.
	 *   That requires LBR_FAR but that means far
	 *   jmp need to be filtered out
	 */
1047 1048
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
/* haswell */
void intel_pmu_lbr_init_hsw(void)
{
	x86_pmu.lbr_nr	 = 16;
	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1059 1060 1061

	if (lbr_from_signext_quirk_needed())
		static_branch_enable(&lbr_from_quirk_key);
1062 1063
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/* skylake */
__init void intel_pmu_lbr_init_skl(void)
{
	x86_pmu.lbr_nr	 = 32;
	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;

	/*
	 * SW branch filter usage:
	 * - support syscall, sysret capture.
	 *   That requires LBR_FAR but that means far
	 *   jmp need to be filtered out
	 */
}

1083
/* atom */
1084
void __init intel_pmu_lbr_init_atom(void)
1085
{
1086 1087 1088 1089 1090
	/*
	 * only models starting at stepping 10 seems
	 * to have an operational LBR which can freeze
	 * on PMU interrupt
	 */
1091 1092
	if (boot_cpu_data.x86_model == 28
	    && boot_cpu_data.x86_mask < 10) {
1093 1094 1095 1096
		pr_cont("LBR disabled due to erratum");
		return;
	}

1097
	x86_pmu.lbr_nr	   = 8;
1098 1099 1100
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1101

1102 1103 1104 1105
	/*
	 * SW branch filter usage:
	 * - compensate for lack of HW filter
	 */
1106
}
1107

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
/* slm */
void __init intel_pmu_lbr_init_slm(void)
{
	x86_pmu.lbr_nr	   = 8;
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;

	/*
	 * SW branch filter usage:
	 * - compensate for lack of HW filter
	 */
	pr_cont("8-deep LBR, ");
}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
/* Knights Landing */
void intel_pmu_lbr_init_knl(void)
{
	x86_pmu.lbr_nr	   = 8;
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
}