lbr.c 27.1 KB
Newer Older
1 2 3 4 5
#include <linux/perf_event.h>
#include <linux/types.h>

#include <asm/perf_event.h>
#include <asm/msr.h>
6
#include <asm/insn.h>
7

8
#include "../perf_event.h"
9 10 11 12 13 14

enum {
	LBR_FORMAT_32		= 0x00,
	LBR_FORMAT_LIP		= 0x01,
	LBR_FORMAT_EIP		= 0x02,
	LBR_FORMAT_EIP_FLAGS	= 0x03,
15
	LBR_FORMAT_EIP_FLAGS2	= 0x04,
16
	LBR_FORMAT_INFO		= 0x05,
17 18
	LBR_FORMAT_TIME		= 0x06,
	LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_TIME,
19 20 21 22 23 24 25 26
};

static enum {
	LBR_EIP_FLAGS		= 1,
	LBR_TSX			= 2,
} lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
	[LBR_FORMAT_EIP_FLAGS]  = LBR_EIP_FLAGS,
	[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
27 28
};

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * Intel LBR_SELECT bits
 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
 *
 * Hardware branch filter (not available on all CPUs)
 */
#define LBR_KERNEL_BIT		0 /* do not capture at ring0 */
#define LBR_USER_BIT		1 /* do not capture at ring > 0 */
#define LBR_JCC_BIT		2 /* do not capture conditional branches */
#define LBR_REL_CALL_BIT	3 /* do not capture relative calls */
#define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */
#define LBR_RETURN_BIT		5 /* do not capture near returns */
#define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */
#define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */
#define LBR_FAR_BIT		8 /* do not capture far branches */
44
#define LBR_CALL_STACK_BIT	9 /* enable call stack */
45

46 47 48 49 50 51 52
/*
 * Following bit only exists in Linux; we mask it out before writing it to
 * the actual MSR. But it helps the constraint perf code to understand
 * that this is a separate configuration.
 */
#define LBR_NO_INFO_BIT	       63 /* don't read LBR_INFO. */

53 54 55 56 57 58 59 60 61
#define LBR_KERNEL	(1 << LBR_KERNEL_BIT)
#define LBR_USER	(1 << LBR_USER_BIT)
#define LBR_JCC		(1 << LBR_JCC_BIT)
#define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT)
#define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT)
#define LBR_RETURN	(1 << LBR_RETURN_BIT)
#define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT)
#define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT)
#define LBR_FAR		(1 << LBR_FAR_BIT)
62
#define LBR_CALL_STACK	(1 << LBR_CALL_STACK_BIT)
63
#define LBR_NO_INFO	(1ULL << LBR_NO_INFO_BIT)
64 65 66

#define LBR_PLM (LBR_KERNEL | LBR_USER)

67
#define LBR_SEL_MASK	0x3ff	/* valid bits in LBR_SELECT */
68 69 70 71 72 73 74 75 76 77 78 79 80
#define LBR_NOT_SUPP	-1	/* LBR filter not supported */
#define LBR_IGN		0	/* ignored */

#define LBR_ANY		 \
	(LBR_JCC	|\
	 LBR_REL_CALL	|\
	 LBR_IND_CALL	|\
	 LBR_RETURN	|\
	 LBR_REL_JMP	|\
	 LBR_IND_JMP	|\
	 LBR_FAR)

#define LBR_FROM_FLAG_MISPRED  (1ULL << 63)
81 82
#define LBR_FROM_FLAG_IN_TX    (1ULL << 62)
#define LBR_FROM_FLAG_ABORT    (1ULL << 61)
83

84 85 86 87 88
/*
 * x86control flow change classification
 * x86control flow changes include branches, interrupts, traps, faults
 */
enum {
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
	X86_BR_NONE		= 0,      /* unknown */

	X86_BR_USER		= 1 << 0, /* branch target is user */
	X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */

	X86_BR_CALL		= 1 << 2, /* call */
	X86_BR_RET		= 1 << 3, /* return */
	X86_BR_SYSCALL		= 1 << 4, /* syscall */
	X86_BR_SYSRET		= 1 << 5, /* syscall return */
	X86_BR_INT		= 1 << 6, /* sw interrupt */
	X86_BR_IRET		= 1 << 7, /* return from interrupt */
	X86_BR_JCC		= 1 << 8, /* conditional */
	X86_BR_JMP		= 1 << 9, /* jump */
	X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */
	X86_BR_IND_CALL		= 1 << 11,/* indirect calls */
	X86_BR_ABORT		= 1 << 12,/* transaction abort */
	X86_BR_IN_TX		= 1 << 13,/* in transaction */
	X86_BR_NO_TX		= 1 << 14,/* not in transaction */
107 108
	X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */
	X86_BR_CALL_STACK	= 1 << 16,/* call stack */
109
	X86_BR_IND_JMP		= 1 << 17,/* indirect jump */
110 111 112
};

#define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
113
#define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
114 115 116 117 118 119 120 121 122 123 124

#define X86_BR_ANY       \
	(X86_BR_CALL    |\
	 X86_BR_RET     |\
	 X86_BR_SYSCALL |\
	 X86_BR_SYSRET  |\
	 X86_BR_INT     |\
	 X86_BR_IRET    |\
	 X86_BR_JCC     |\
	 X86_BR_JMP	 |\
	 X86_BR_IRQ	 |\
125
	 X86_BR_ABORT	 |\
126
	 X86_BR_IND_CALL |\
127
	 X86_BR_IND_JMP  |\
128
	 X86_BR_ZERO_CALL)
129 130 131 132 133 134

#define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)

#define X86_BR_ANY_CALL		 \
	(X86_BR_CALL		|\
	 X86_BR_IND_CALL	|\
135
	 X86_BR_ZERO_CALL	|\
136 137 138 139 140 141
	 X86_BR_SYSCALL		|\
	 X86_BR_IRQ		|\
	 X86_BR_INT)

static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);

142 143 144 145 146
/*
 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
 * otherwise it becomes near impossible to get a reliable stack.
 */

147
static void __intel_pmu_lbr_enable(bool pmi)
148
{
149
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
150
	u64 debugctl, lbr_select = 0, orig_debugctl;
151

152 153 154 155 156 157 158
	/*
	 * No need to unfreeze manually, as v4 can do that as part
	 * of the GLOBAL_STATUS ack.
	 */
	if (pmi && x86_pmu.version >= 4)
		return;

159 160 161 162
	/*
	 * No need to reprogram LBR_SELECT in a PMI, as it
	 * did not change.
	 */
163
	if (cpuc->lbr_sel)
164
		lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
165
	if (!pmi && cpuc->lbr_sel)
166
		wrmsrl(MSR_LBR_SELECT, lbr_select);
167 168

	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
169
	orig_debugctl = debugctl;
170 171 172 173 174 175 176 177
	debugctl |= DEBUGCTLMSR_LBR;
	/*
	 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
	 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
	 * may cause superfluous increase/decrease of LBR_TOS.
	 */
	if (!(lbr_select & LBR_CALL_STACK))
		debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
178 179
	if (orig_debugctl != debugctl)
		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
180 181 182 183 184 185 186
}

static void __intel_pmu_lbr_disable(void)
{
	u64 debugctl;

	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
187
	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
}

static void intel_pmu_lbr_reset_32(void)
{
	int i;

	for (i = 0; i < x86_pmu.lbr_nr; i++)
		wrmsrl(x86_pmu.lbr_from + i, 0);
}

static void intel_pmu_lbr_reset_64(void)
{
	int i;

	for (i = 0; i < x86_pmu.lbr_nr; i++) {
		wrmsrl(x86_pmu.lbr_from + i, 0);
		wrmsrl(x86_pmu.lbr_to   + i, 0);
206 207
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
			wrmsrl(MSR_LBR_INFO_0 + i, 0);
208 209 210
	}
}

211
void intel_pmu_lbr_reset(void)
212
{
213 214 215
	if (!x86_pmu.lbr_nr)
		return;

216
	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
217 218 219 220 221
		intel_pmu_lbr_reset_32();
	else
		intel_pmu_lbr_reset_64();
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/*
 * TOS = most recently recorded branch
 */
static inline u64 intel_pmu_lbr_tos(void)
{
	u64 tos;

	rdmsrl(x86_pmu.lbr_tos, tos);
	return tos;
}

enum {
	LBR_NONE,
	LBR_VALID,
};

static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
{
	int i;
	unsigned lbr_idx, mask;
	u64 tos;

	if (task_ctx->lbr_callstack_users == 0 ||
	    task_ctx->lbr_stack_state == LBR_NONE) {
		intel_pmu_lbr_reset();
		return;
	}

	mask = x86_pmu.lbr_nr - 1;
251
	tos = task_ctx->tos;
252
	for (i = 0; i < tos; i++) {
253 254 255
		lbr_idx = (tos - i) & mask;
		wrmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
		wrmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
256
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
257
			wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
258
	}
259
	wrmsrl(x86_pmu.lbr_tos, tos);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	task_ctx->lbr_stack_state = LBR_NONE;
}

static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
{
	int i;
	unsigned lbr_idx, mask;
	u64 tos;

	if (task_ctx->lbr_callstack_users == 0) {
		task_ctx->lbr_stack_state = LBR_NONE;
		return;
	}

	mask = x86_pmu.lbr_nr - 1;
	tos = intel_pmu_lbr_tos();
276
	for (i = 0; i < tos; i++) {
277 278 279
		lbr_idx = (tos - i) & mask;
		rdmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
		rdmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
280
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
281
			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
282
	}
283
	task_ctx->tos = tos;
284 285 286
	task_ctx->lbr_stack_state = LBR_VALID;
}

287 288 289
void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
290
	struct x86_perf_task_context *task_ctx;
291

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	/*
	 * If LBR callstack feature is enabled and the stack was saved when
	 * the task was scheduled out, restore the stack. Otherwise flush
	 * the LBR stack.
	 */
	task_ctx = ctx ? ctx->task_ctx_data : NULL;
	if (task_ctx) {
		if (sched_in) {
			__intel_pmu_lbr_restore(task_ctx);
			cpuc->lbr_context = ctx;
		} else {
			__intel_pmu_lbr_save(task_ctx);
		}
		return;
	}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
	/*
	 * When sampling the branck stack in system-wide, it may be
	 * necessary to flush the stack on context switch. This happens
	 * when the branch stack does not tag its entries with the pid
	 * of the current task. Otherwise it becomes impossible to
	 * associate a branch entry with a task. This ambiguity is more
	 * likely to appear when the branch stack supports priv level
	 * filtering and the user sets it to monitor only at the user
	 * level (which could be a useful measurement in system-wide
	 * mode). In that case, the risk is high of having a branch
	 * stack with branch from multiple tasks.
 	 */
	if (sched_in) {
		intel_pmu_lbr_reset();
		cpuc->lbr_context = ctx;
	}
}

326 327 328 329 330
static inline bool branch_user_callstack(unsigned br_sel)
{
	return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
}

331
void intel_pmu_lbr_enable(struct perf_event *event)
332
{
333
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
334
	struct x86_perf_task_context *task_ctx;
335 336 337 338 339

	if (!x86_pmu.lbr_nr)
		return;

	/*
340 341
	 * Reset the LBR stack if we changed task context to
	 * avoid data leaks.
342
	 */
343
	if (event->ctx->task && cpuc->lbr_context != event->ctx) {
344 345 346
		intel_pmu_lbr_reset();
		cpuc->lbr_context = event->ctx;
	}
347
	cpuc->br_sel = event->hw.branch_reg.reg;
348

349 350 351 352 353 354
	if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
					event->ctx->task_ctx_data) {
		task_ctx = event->ctx->task_ctx_data;
		task_ctx->lbr_callstack_users++;
	}

355
	cpuc->lbr_users++;
356
	perf_sched_cb_inc(event->ctx->pmu);
357 358
}

359
void intel_pmu_lbr_disable(struct perf_event *event)
360
{
361
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
362
	struct x86_perf_task_context *task_ctx;
363 364 365 366

	if (!x86_pmu.lbr_nr)
		return;

367 368 369 370 371 372
	if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
					event->ctx->task_ctx_data) {
		task_ctx = event->ctx->task_ctx_data;
		task_ctx->lbr_callstack_users--;
	}

373
	cpuc->lbr_users--;
374
	WARN_ON_ONCE(cpuc->lbr_users < 0);
375
	perf_sched_cb_dec(event->ctx->pmu);
376

377
	if (cpuc->enabled && !cpuc->lbr_users) {
378
		__intel_pmu_lbr_disable();
379 380 381
		/* avoid stale pointer */
		cpuc->lbr_context = NULL;
	}
382 383
}

384
void intel_pmu_lbr_enable_all(bool pmi)
385
{
386
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
387 388

	if (cpuc->lbr_users)
389
		__intel_pmu_lbr_enable(pmi);
390 391
}

392
void intel_pmu_lbr_disable_all(void)
393
{
394
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
395 396 397 398 399 400 401 402 403 404 405

	if (cpuc->lbr_users)
		__intel_pmu_lbr_disable();
}

static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
{
	unsigned long mask = x86_pmu.lbr_nr - 1;
	u64 tos = intel_pmu_lbr_tos();
	int i;

P
Peter Zijlstra 已提交
406
	for (i = 0; i < x86_pmu.lbr_nr; i++) {
407 408 409 410 411 412 413 414 415 416 417
		unsigned long lbr_idx = (tos - i) & mask;
		union {
			struct {
				u32 from;
				u32 to;
			};
			u64     lbr;
		} msr_lastbranch;

		rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);

418 419 420 421 422
		cpuc->lbr_entries[i].from	= msr_lastbranch.from;
		cpuc->lbr_entries[i].to		= msr_lastbranch.to;
		cpuc->lbr_entries[i].mispred	= 0;
		cpuc->lbr_entries[i].predicted	= 0;
		cpuc->lbr_entries[i].reserved	= 0;
423 424 425 426 427 428 429 430 431 432 433
	}
	cpuc->lbr_stack.nr = i;
}

/*
 * Due to lack of segmentation in Linux the effective address (offset)
 * is the same as the linear address, allowing us to merge the LIP and EIP
 * LBR formats.
 */
static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
{
434
	bool need_info = false;
435
	unsigned long mask = x86_pmu.lbr_nr - 1;
436
	int lbr_format = x86_pmu.intel_cap.lbr_format;
437 438
	u64 tos = intel_pmu_lbr_tos();
	int i;
439
	int out = 0;
440
	int num = x86_pmu.lbr_nr;
441

442 443 444 445 446
	if (cpuc->lbr_sel) {
		need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
		if (cpuc->lbr_sel->config & LBR_CALL_STACK)
			num = tos;
	}
447 448

	for (i = 0; i < num; i++) {
449
		unsigned long lbr_idx = (tos - i) & mask;
450 451
		u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
		int skip = 0;
452
		u16 cycles = 0;
453
		int lbr_flags = lbr_desc[lbr_format];
454 455 456 457

		rdmsrl(x86_pmu.lbr_from + lbr_idx, from);
		rdmsrl(x86_pmu.lbr_to   + lbr_idx, to);

458
		if (lbr_format == LBR_FORMAT_INFO && need_info) {
459 460 461 462 463 464 465 466 467
			u64 info;

			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
			mis = !!(info & LBR_INFO_MISPRED);
			pred = !mis;
			in_tx = !!(info & LBR_INFO_IN_TX);
			abort = !!(info & LBR_INFO_ABORT);
			cycles = (info & LBR_INFO_CYCLES);
		}
468 469 470 471 472 473 474 475 476 477

		if (lbr_format == LBR_FORMAT_TIME) {
			mis = !!(from & LBR_FROM_FLAG_MISPRED);
			pred = !mis;
			skip = 1;
			cycles = ((to >> 48) & LBR_INFO_CYCLES);

			to = (u64)((((s64)to) << 16) >> 16);
		}

478
		if (lbr_flags & LBR_EIP_FLAGS) {
479 480
			mis = !!(from & LBR_FROM_FLAG_MISPRED);
			pred = !mis;
481 482 483 484 485 486
			skip = 1;
		}
		if (lbr_flags & LBR_TSX) {
			in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
			abort = !!(from & LBR_FROM_FLAG_ABORT);
			skip = 3;
487
		}
488
		from = (u64)((((s64)from) << skip) >> skip);
489

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
		/*
		 * Some CPUs report duplicated abort records,
		 * with the second entry not having an abort bit set.
		 * Skip them here. This loop runs backwards,
		 * so we need to undo the previous record.
		 * If the abort just happened outside the window
		 * the extra entry cannot be removed.
		 */
		if (abort && x86_pmu.lbr_double_abort && out > 0)
			out--;

		cpuc->lbr_entries[out].from	 = from;
		cpuc->lbr_entries[out].to	 = to;
		cpuc->lbr_entries[out].mispred	 = mis;
		cpuc->lbr_entries[out].predicted = pred;
		cpuc->lbr_entries[out].in_tx	 = in_tx;
		cpuc->lbr_entries[out].abort	 = abort;
507
		cpuc->lbr_entries[out].cycles	 = cycles;
508 509
		cpuc->lbr_entries[out].reserved	 = 0;
		out++;
510
	}
511
	cpuc->lbr_stack.nr = out;
512 513
}

514
void intel_pmu_lbr_read(void)
515
{
516
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
517 518 519 520

	if (!cpuc->lbr_users)
		return;

521
	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
522 523 524
		intel_pmu_lbr_read_32(cpuc);
	else
		intel_pmu_lbr_read_64(cpuc);
525 526 527 528 529 530 531 532 533

	intel_pmu_lbr_filter(cpuc);
}

/*
 * SW filter is used:
 * - in case there is no HW filter
 * - in case the HW filter has errata or limitations
 */
534
static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
535 536 537 538 539 540 541
{
	u64 br_type = event->attr.branch_sample_type;
	int mask = 0;

	if (br_type & PERF_SAMPLE_BRANCH_USER)
		mask |= X86_BR_USER;

542
	if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
		mask |= X86_BR_KERNEL;

	/* we ignore BRANCH_HV here */

	if (br_type & PERF_SAMPLE_BRANCH_ANY)
		mask |= X86_BR_ANY;

	if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
		mask |= X86_BR_ANY_CALL;

	if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
		mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;

	if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
		mask |= X86_BR_IND_CALL;
558 559 560 561 562 563 564 565 566 567

	if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
		mask |= X86_BR_ABORT;

	if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
		mask |= X86_BR_IN_TX;

	if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
		mask |= X86_BR_NO_TX;

568 569 570
	if (br_type & PERF_SAMPLE_BRANCH_COND)
		mask |= X86_BR_JCC;

571 572 573 574 575 576 577 578 579
	if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
		if (!x86_pmu_has_lbr_callstack())
			return -EOPNOTSUPP;
		if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
			return -EINVAL;
		mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
			X86_BR_CALL_STACK;
	}

580 581 582
	if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
		mask |= X86_BR_IND_JMP;

583 584
	if (br_type & PERF_SAMPLE_BRANCH_CALL)
		mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
585 586 587 588 589
	/*
	 * stash actual user request into reg, it may
	 * be used by fixup code for some CPU
	 */
	event->hw.branch_reg.reg = mask;
590
	return 0;
591 592
}

593 594 595 596 597 598 599 600 601
/*
 * setup the HW LBR filter
 * Used only when available, may not be enough to disambiguate
 * all branches, may need the help of the SW filter
 */
static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
{
	struct hw_perf_event_extra *reg;
	u64 br_type = event->attr.branch_sample_type;
602 603
	u64 mask = 0, v;
	int i;
604

605
	for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
606
		if (!(br_type & (1ULL << i)))
607 608
			continue;

609
		v = x86_pmu.lbr_sel_map[i];
610 611 612
		if (v == LBR_NOT_SUPP)
			return -EOPNOTSUPP;

613 614
		if (v != LBR_IGN)
			mask |= v;
615
	}
616

617 618 619
	reg = &event->hw.branch_reg;
	reg->idx = EXTRA_REG_LBR;

620 621 622 623
	/*
	 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
	 * in suppress mode. So LBR_SELECT should be set to
	 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
624 625
	 * But the 10th bit LBR_CALL_STACK does not operate
	 * in suppress mode.
626
	 */
627
	reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
628

629 630 631 632 633
	if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
	    (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
	    (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
		reg->config |= LBR_NO_INFO;

634 635 636 637 638
	return 0;
}

int intel_pmu_setup_lbr_filter(struct perf_event *event)
{
639
	int ret = 0;
640 641 642 643 644 645 646 647

	/*
	 * no LBR on this PMU
	 */
	if (!x86_pmu.lbr_nr)
		return -EOPNOTSUPP;

	/*
648
	 * setup SW LBR filter
649
	 */
650 651 652
	ret = intel_pmu_setup_sw_lbr_filter(event);
	if (ret)
		return ret;
653 654 655 656 657 658 659 660 661 662 663 664

	/*
	 * setup HW LBR filter, if any
	 */
	if (x86_pmu.lbr_sel_map)
		ret = intel_pmu_setup_hw_lbr_filter(event);

	return ret;
}

/*
 * return the type of control flow change at address "from"
665
 * instruction is not necessarily a branch (in case of interrupt).
666 667 668 669 670 671 672 673
 *
 * The branch type returned also includes the priv level of the
 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
 *
 * If a branch type is unknown OR the instruction cannot be
 * decoded (e.g., text page not present), then X86_BR_NONE is
 * returned.
 */
674
static int branch_type(unsigned long from, unsigned long to, int abort)
675 676 677
{
	struct insn insn;
	void *addr;
678
	int bytes_read, bytes_left;
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	int ret = X86_BR_NONE;
	int ext, to_plm, from_plm;
	u8 buf[MAX_INSN_SIZE];
	int is64 = 0;

	to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
	from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;

	/*
	 * maybe zero if lbr did not fill up after a reset by the time
	 * we get a PMU interrupt
	 */
	if (from == 0 || to == 0)
		return X86_BR_NONE;

694 695 696
	if (abort)
		return X86_BR_ABORT | to_plm;

697 698 699 700 701 702 703 704 705
	if (from_plm == X86_BR_USER) {
		/*
		 * can happen if measuring at the user level only
		 * and we interrupt in a kernel thread, e.g., idle.
		 */
		if (!current->mm)
			return X86_BR_NONE;

		/* may fail if text not present */
706 707 708 709
		bytes_left = copy_from_user_nmi(buf, (void __user *)from,
						MAX_INSN_SIZE);
		bytes_read = MAX_INSN_SIZE - bytes_left;
		if (!bytes_read)
710 711 712
			return X86_BR_NONE;

		addr = buf;
713 714 715 716 717 718 719
	} else {
		/*
		 * The LBR logs any address in the IP, even if the IP just
		 * faulted. This means userspace can control the from address.
		 * Ensure we don't blindy read any address by validating it is
		 * a known text address.
		 */
720
		if (kernel_text_address(from)) {
721
			addr = (void *)from;
722 723 724 725 726 727 728 729 730
			/*
			 * Assume we can get the maximum possible size
			 * when grabbing kernel data.  This is not
			 * _strictly_ true since we could possibly be
			 * executing up next to a memory hole, but
			 * it is very unlikely to be a problem.
			 */
			bytes_read = MAX_INSN_SIZE;
		} else {
731
			return X86_BR_NONE;
732
		}
733
	}
734 735 736 737 738 739 740 741

	/*
	 * decoder needs to know the ABI especially
	 * on 64-bit systems running 32-bit apps
	 */
#ifdef CONFIG_X86_64
	is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
#endif
742
	insn_init(&insn, addr, bytes_read, is64);
743
	insn_get_opcode(&insn);
744 745
	if (!insn.opcode.got)
		return X86_BR_ABORT;
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780

	switch (insn.opcode.bytes[0]) {
	case 0xf:
		switch (insn.opcode.bytes[1]) {
		case 0x05: /* syscall */
		case 0x34: /* sysenter */
			ret = X86_BR_SYSCALL;
			break;
		case 0x07: /* sysret */
		case 0x35: /* sysexit */
			ret = X86_BR_SYSRET;
			break;
		case 0x80 ... 0x8f: /* conditional */
			ret = X86_BR_JCC;
			break;
		default:
			ret = X86_BR_NONE;
		}
		break;
	case 0x70 ... 0x7f: /* conditional */
		ret = X86_BR_JCC;
		break;
	case 0xc2: /* near ret */
	case 0xc3: /* near ret */
	case 0xca: /* far ret */
	case 0xcb: /* far ret */
		ret = X86_BR_RET;
		break;
	case 0xcf: /* iret */
		ret = X86_BR_IRET;
		break;
	case 0xcc ... 0xce: /* int */
		ret = X86_BR_INT;
		break;
	case 0xe8: /* call near rel */
781 782 783 784 785 786
		insn_get_immediate(&insn);
		if (insn.immediate1.value == 0) {
			/* zero length call */
			ret = X86_BR_ZERO_CALL;
			break;
		}
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
	case 0x9a: /* call far absolute */
		ret = X86_BR_CALL;
		break;
	case 0xe0 ... 0xe3: /* loop jmp */
		ret = X86_BR_JCC;
		break;
	case 0xe9 ... 0xeb: /* jmp */
		ret = X86_BR_JMP;
		break;
	case 0xff: /* call near absolute, call far absolute ind */
		insn_get_modrm(&insn);
		ext = (insn.modrm.bytes[0] >> 3) & 0x7;
		switch (ext) {
		case 2: /* near ind call */
		case 3: /* far ind call */
			ret = X86_BR_IND_CALL;
			break;
		case 4:
		case 5:
806
			ret = X86_BR_IND_JMP;
807 808 809 810 811
			break;
		}
		break;
	default:
		ret = X86_BR_NONE;
812 813
	}
	/*
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	 * interrupts, traps, faults (and thus ring transition) may
	 * occur on any instructions. Thus, to classify them correctly,
	 * we need to first look at the from and to priv levels. If they
	 * are different and to is in the kernel, then it indicates
	 * a ring transition. If the from instruction is not a ring
	 * transition instr (syscall, systenter, int), then it means
	 * it was a irq, trap or fault.
	 *
	 * we have no way of detecting kernel to kernel faults.
	 */
	if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
	    && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
		ret = X86_BR_IRQ;

	/*
	 * branch priv level determined by target as
	 * is done by HW when LBR_SELECT is implemented
831
	 */
832 833
	if (ret != X86_BR_NONE)
		ret |= to_plm;
834

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	return ret;
}

/*
 * implement actual branch filter based on user demand.
 * Hardware may not exactly satisfy that request, thus
 * we need to inspect opcodes. Mismatched branches are
 * discarded. Therefore, the number of branches returned
 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
 */
static void
intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
{
	u64 from, to;
	int br_sel = cpuc->br_sel;
	int i, j, type;
	bool compress = false;

	/* if sampling all branches, then nothing to filter */
	if ((br_sel & X86_BR_ALL) == X86_BR_ALL)
		return;

	for (i = 0; i < cpuc->lbr_stack.nr; i++) {

		from = cpuc->lbr_entries[i].from;
		to = cpuc->lbr_entries[i].to;

862 863 864 865 866 867 868
		type = branch_type(from, to, cpuc->lbr_entries[i].abort);
		if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
			if (cpuc->lbr_entries[i].in_tx)
				type |= X86_BR_IN_TX;
			else
				type |= X86_BR_NO_TX;
		}
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891

		/* if type does not correspond, then discard */
		if (type == X86_BR_NONE || (br_sel & type) != type) {
			cpuc->lbr_entries[i].from = 0;
			compress = true;
		}
	}

	if (!compress)
		return;

	/* remove all entries with from=0 */
	for (i = 0; i < cpuc->lbr_stack.nr; ) {
		if (!cpuc->lbr_entries[i].from) {
			j = i;
			while (++j < cpuc->lbr_stack.nr)
				cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
			cpuc->lbr_stack.nr--;
			if (!cpuc->lbr_entries[i].from)
				continue;
		}
		i++;
	}
892 893
}

894 895 896
/*
 * Map interface branch filters onto LBR filters
 */
897
static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
898 899 900 901 902 903
	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_REL_JMP
						| LBR_IND_JMP | LBR_FAR,
904 905 906
	/*
	 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
	 */
907
	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
908 909 910 911
	 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
	/*
	 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
	 */
912 913
	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
	[PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
914
	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
915 916
};

917
static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
918 919 920 921 922 923 924 925 926
	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
						| LBR_FAR,
	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
927
	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
928
	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
929 930
};

931
static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
932 933 934 935 936 937 938 939 940 941 942
	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
						| LBR_FAR,
	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
						| LBR_RETURN | LBR_CALL_STACK,
943
	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
944
	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
945 946
};

947
/* core */
948
void __init intel_pmu_lbr_init_core(void)
949 950
{
	x86_pmu.lbr_nr     = 4;
951 952 953
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
954

955 956 957 958
	/*
	 * SW branch filter usage:
	 * - compensate for lack of HW filter
	 */
959 960
}

961
/* nehalem/westmere */
962
void __init intel_pmu_lbr_init_nhm(void)
963 964
{
	x86_pmu.lbr_nr     = 16;
965 966 967
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
968 969 970 971

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;

972 973 974 975 976 977 978
	/*
	 * SW branch filter usage:
	 * - workaround LBR_SEL errata (see above)
	 * - support syscall, sysret capture.
	 *   That requires LBR_FAR but that means far
	 *   jmp need to be filtered out
	 */
979 980
}

981
/* sandy bridge */
982
void __init intel_pmu_lbr_init_snb(void)
983 984 985 986 987 988 989 990 991
{
	x86_pmu.lbr_nr	 = 16;
	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;

992 993 994 995 996 997
	/*
	 * SW branch filter usage:
	 * - support syscall, sysret capture.
	 *   That requires LBR_FAR but that means far
	 *   jmp need to be filtered out
	 */
998 999
}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
/* haswell */
void intel_pmu_lbr_init_hsw(void)
{
	x86_pmu.lbr_nr	 = 16;
	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/* skylake */
__init void intel_pmu_lbr_init_skl(void)
{
	x86_pmu.lbr_nr	 = 32;
	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;

	/*
	 * SW branch filter usage:
	 * - support syscall, sysret capture.
	 *   That requires LBR_FAR but that means far
	 *   jmp need to be filtered out
	 */
}

1031
/* atom */
1032
void __init intel_pmu_lbr_init_atom(void)
1033
{
1034 1035 1036 1037 1038
	/*
	 * only models starting at stepping 10 seems
	 * to have an operational LBR which can freeze
	 * on PMU interrupt
	 */
1039 1040
	if (boot_cpu_data.x86_model == 28
	    && boot_cpu_data.x86_mask < 10) {
1041 1042 1043 1044
		pr_cont("LBR disabled due to erratum");
		return;
	}

1045
	x86_pmu.lbr_nr	   = 8;
1046 1047 1048
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1049

1050 1051 1052 1053
	/*
	 * SW branch filter usage:
	 * - compensate for lack of HW filter
	 */
1054
}
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
/* slm */
void __init intel_pmu_lbr_init_slm(void)
{
	x86_pmu.lbr_nr	   = 8;
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;

	/*
	 * SW branch filter usage:
	 * - compensate for lack of HW filter
	 */
	pr_cont("8-deep LBR, ");
}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
/* Knights Landing */
void intel_pmu_lbr_init_knl(void)
{
	x86_pmu.lbr_nr	   = 8;
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
}