lbr.c 31.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6
#include <linux/perf_event.h>
#include <linux/types.h>

#include <asm/perf_event.h>
#include <asm/msr.h>
7
#include <asm/insn.h>
8

9
#include "../perf_event.h"
10 11 12 13 14 15

enum {
	LBR_FORMAT_32		= 0x00,
	LBR_FORMAT_LIP		= 0x01,
	LBR_FORMAT_EIP		= 0x02,
	LBR_FORMAT_EIP_FLAGS	= 0x03,
16
	LBR_FORMAT_EIP_FLAGS2	= 0x04,
17
	LBR_FORMAT_INFO		= 0x05,
18 19
	LBR_FORMAT_TIME		= 0x06,
	LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_TIME,
20 21
};

22
static const enum {
23 24 25 26 27
	LBR_EIP_FLAGS		= 1,
	LBR_TSX			= 2,
} lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
	[LBR_FORMAT_EIP_FLAGS]  = LBR_EIP_FLAGS,
	[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
28 29
};

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * Intel LBR_SELECT bits
 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
 *
 * Hardware branch filter (not available on all CPUs)
 */
#define LBR_KERNEL_BIT		0 /* do not capture at ring0 */
#define LBR_USER_BIT		1 /* do not capture at ring > 0 */
#define LBR_JCC_BIT		2 /* do not capture conditional branches */
#define LBR_REL_CALL_BIT	3 /* do not capture relative calls */
#define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */
#define LBR_RETURN_BIT		5 /* do not capture near returns */
#define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */
#define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */
#define LBR_FAR_BIT		8 /* do not capture far branches */
45
#define LBR_CALL_STACK_BIT	9 /* enable call stack */
46

47 48 49 50 51 52 53
/*
 * Following bit only exists in Linux; we mask it out before writing it to
 * the actual MSR. But it helps the constraint perf code to understand
 * that this is a separate configuration.
 */
#define LBR_NO_INFO_BIT	       63 /* don't read LBR_INFO. */

54 55 56 57 58 59 60 61 62
#define LBR_KERNEL	(1 << LBR_KERNEL_BIT)
#define LBR_USER	(1 << LBR_USER_BIT)
#define LBR_JCC		(1 << LBR_JCC_BIT)
#define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT)
#define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT)
#define LBR_RETURN	(1 << LBR_RETURN_BIT)
#define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT)
#define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT)
#define LBR_FAR		(1 << LBR_FAR_BIT)
63
#define LBR_CALL_STACK	(1 << LBR_CALL_STACK_BIT)
64
#define LBR_NO_INFO	(1ULL << LBR_NO_INFO_BIT)
65 66 67

#define LBR_PLM (LBR_KERNEL | LBR_USER)

68
#define LBR_SEL_MASK	0x3ff	/* valid bits in LBR_SELECT */
69 70 71 72 73 74 75 76 77 78 79 80
#define LBR_NOT_SUPP	-1	/* LBR filter not supported */
#define LBR_IGN		0	/* ignored */

#define LBR_ANY		 \
	(LBR_JCC	|\
	 LBR_REL_CALL	|\
	 LBR_IND_CALL	|\
	 LBR_RETURN	|\
	 LBR_REL_JMP	|\
	 LBR_IND_JMP	|\
	 LBR_FAR)

81 82 83
#define LBR_FROM_FLAG_MISPRED	BIT_ULL(63)
#define LBR_FROM_FLAG_IN_TX	BIT_ULL(62)
#define LBR_FROM_FLAG_ABORT	BIT_ULL(61)
84

85 86
#define LBR_FROM_SIGNEXT_2MSB	(BIT_ULL(60) | BIT_ULL(59))

87 88 89 90 91
/*
 * x86control flow change classification
 * x86control flow changes include branches, interrupts, traps, faults
 */
enum {
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	X86_BR_NONE		= 0,      /* unknown */

	X86_BR_USER		= 1 << 0, /* branch target is user */
	X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */

	X86_BR_CALL		= 1 << 2, /* call */
	X86_BR_RET		= 1 << 3, /* return */
	X86_BR_SYSCALL		= 1 << 4, /* syscall */
	X86_BR_SYSRET		= 1 << 5, /* syscall return */
	X86_BR_INT		= 1 << 6, /* sw interrupt */
	X86_BR_IRET		= 1 << 7, /* return from interrupt */
	X86_BR_JCC		= 1 << 8, /* conditional */
	X86_BR_JMP		= 1 << 9, /* jump */
	X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */
	X86_BR_IND_CALL		= 1 << 11,/* indirect calls */
	X86_BR_ABORT		= 1 << 12,/* transaction abort */
	X86_BR_IN_TX		= 1 << 13,/* in transaction */
	X86_BR_NO_TX		= 1 << 14,/* not in transaction */
110 111
	X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */
	X86_BR_CALL_STACK	= 1 << 16,/* call stack */
112
	X86_BR_IND_JMP		= 1 << 17,/* indirect jump */
J
Jin Yao 已提交
113 114 115

	X86_BR_TYPE_SAVE	= 1 << 18,/* indicate to save branch type */

116 117 118
};

#define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
119
#define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
120 121 122 123 124 125 126 127 128 129 130

#define X86_BR_ANY       \
	(X86_BR_CALL    |\
	 X86_BR_RET     |\
	 X86_BR_SYSCALL |\
	 X86_BR_SYSRET  |\
	 X86_BR_INT     |\
	 X86_BR_IRET    |\
	 X86_BR_JCC     |\
	 X86_BR_JMP	 |\
	 X86_BR_IRQ	 |\
131
	 X86_BR_ABORT	 |\
132
	 X86_BR_IND_CALL |\
133
	 X86_BR_IND_JMP  |\
134
	 X86_BR_ZERO_CALL)
135 136 137 138 139 140

#define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)

#define X86_BR_ANY_CALL		 \
	(X86_BR_CALL		|\
	 X86_BR_IND_CALL	|\
141
	 X86_BR_ZERO_CALL	|\
142 143 144 145 146 147
	 X86_BR_SYSCALL		|\
	 X86_BR_IRQ		|\
	 X86_BR_INT)

static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);

148 149 150 151 152
/*
 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
 * otherwise it becomes near impossible to get a reliable stack.
 */

153
static void __intel_pmu_lbr_enable(bool pmi)
154
{
155
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
156
	u64 debugctl, lbr_select = 0, orig_debugctl;
157

158 159 160 161 162 163 164
	/*
	 * No need to unfreeze manually, as v4 can do that as part
	 * of the GLOBAL_STATUS ack.
	 */
	if (pmi && x86_pmu.version >= 4)
		return;

165 166 167 168
	/*
	 * No need to reprogram LBR_SELECT in a PMI, as it
	 * did not change.
	 */
169
	if (cpuc->lbr_sel)
170
		lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
171
	if (!pmi && cpuc->lbr_sel)
172
		wrmsrl(MSR_LBR_SELECT, lbr_select);
173 174

	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
175
	orig_debugctl = debugctl;
176 177 178 179 180 181 182 183
	debugctl |= DEBUGCTLMSR_LBR;
	/*
	 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
	 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
	 * may cause superfluous increase/decrease of LBR_TOS.
	 */
	if (!(lbr_select & LBR_CALL_STACK))
		debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
184 185
	if (orig_debugctl != debugctl)
		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
186 187 188 189 190 191 192
}

static void __intel_pmu_lbr_disable(void)
{
	u64 debugctl;

	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
193
	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
}

static void intel_pmu_lbr_reset_32(void)
{
	int i;

	for (i = 0; i < x86_pmu.lbr_nr; i++)
		wrmsrl(x86_pmu.lbr_from + i, 0);
}

static void intel_pmu_lbr_reset_64(void)
{
	int i;

	for (i = 0; i < x86_pmu.lbr_nr; i++) {
		wrmsrl(x86_pmu.lbr_from + i, 0);
		wrmsrl(x86_pmu.lbr_to   + i, 0);
212 213
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
			wrmsrl(MSR_LBR_INFO_0 + i, 0);
214 215 216
	}
}

217
void intel_pmu_lbr_reset(void)
218
{
219 220 221
	if (!x86_pmu.lbr_nr)
		return;

222
	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
223 224 225 226 227
		intel_pmu_lbr_reset_32();
	else
		intel_pmu_lbr_reset_64();
}

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/*
 * TOS = most recently recorded branch
 */
static inline u64 intel_pmu_lbr_tos(void)
{
	u64 tos;

	rdmsrl(x86_pmu.lbr_tos, tos);
	return tos;
}

enum {
	LBR_NONE,
	LBR_VALID,
};

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
/*
 * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
 * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
 * TSX is not supported they have no consistent behavior:
 *
 *   - For wrmsr(), bits 61:62 are considered part of the sign extension.
 *   - For HW updates (branch captures) bits 61:62 are always OFF and are not
 *     part of the sign extension.
 *
 * Therefore, if:
 *
 *   1) LBR has TSX format
 *   2) CPU has no TSX support enabled
 *
 * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
 * value from rdmsr() must be converted to have a 61 bits sign extension,
 * ignoring the TSX flags.
 */
static inline bool lbr_from_signext_quirk_needed(void)
{
	int lbr_format = x86_pmu.intel_cap.lbr_format;
	bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
			   boot_cpu_has(X86_FEATURE_RTM);

	return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX);
}

DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);

/* If quirk is enabled, ensure sign extension is 63 bits: */
inline u64 lbr_from_signext_quirk_wr(u64 val)
{
	if (static_branch_unlikely(&lbr_from_quirk_key)) {
		/*
		 * Sign extend into bits 61:62 while preserving bit 63.
		 *
		 * Quirk is enabled when TSX is disabled. Therefore TSX bits
		 * in val are always OFF and must be changed to be sign
		 * extension bits. Since bits 59:60 are guaranteed to be
		 * part of the sign extension bits, we can just copy them
		 * to 61:62.
		 */
		val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
	}
	return val;
}

291 292 293
/*
 * If quirk is needed, ensure sign extension is 61 bits:
 */
294
static u64 lbr_from_signext_quirk_rd(u64 val)
295
{
296
	if (static_branch_unlikely(&lbr_from_quirk_key)) {
297 298 299 300 301
		/*
		 * Quirk is on when TSX is not enabled. Therefore TSX
		 * flags must be read as OFF.
		 */
		val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	}
	return val;
}

static inline void wrlbr_from(unsigned int idx, u64 val)
{
	val = lbr_from_signext_quirk_wr(val);
	wrmsrl(x86_pmu.lbr_from + idx, val);
}

static inline void wrlbr_to(unsigned int idx, u64 val)
{
	wrmsrl(x86_pmu.lbr_to + idx, val);
}

static inline u64 rdlbr_from(unsigned int idx)
{
	u64 val;

	rdmsrl(x86_pmu.lbr_from + idx, val);

	return lbr_from_signext_quirk_rd(val);
}

static inline u64 rdlbr_to(unsigned int idx)
{
	u64 val;

330
	rdmsrl(x86_pmu.lbr_to + idx, val);
331

332 333 334
	return val;
}

335 336 337 338 339 340 341 342 343 344 345 346 347
static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
{
	int i;
	unsigned lbr_idx, mask;
	u64 tos;

	if (task_ctx->lbr_callstack_users == 0 ||
	    task_ctx->lbr_stack_state == LBR_NONE) {
		intel_pmu_lbr_reset();
		return;
	}

	mask = x86_pmu.lbr_nr - 1;
348
	tos = task_ctx->tos;
349
	for (i = 0; i < task_ctx->valid_lbrs; i++) {
350
		lbr_idx = (tos - i) & mask;
351 352 353
		wrlbr_from(lbr_idx, task_ctx->lbr_from[i]);
		wrlbr_to  (lbr_idx, task_ctx->lbr_to[i]);

354
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
355
			wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
356
	}
357 358 359 360 361 362 363 364 365

	for (; i < x86_pmu.lbr_nr; i++) {
		lbr_idx = (tos - i) & mask;
		wrlbr_from(lbr_idx, 0);
		wrlbr_to(lbr_idx, 0);
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
			wrmsrl(MSR_LBR_INFO_0 + lbr_idx, 0);
	}

366
	wrmsrl(x86_pmu.lbr_tos, tos);
367 368 369 370 371 372
	task_ctx->lbr_stack_state = LBR_NONE;
}

static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
{
	unsigned lbr_idx, mask;
373
	u64 tos, from;
374
	int i;
375 376 377 378 379 380 381 382

	if (task_ctx->lbr_callstack_users == 0) {
		task_ctx->lbr_stack_state = LBR_NONE;
		return;
	}

	mask = x86_pmu.lbr_nr - 1;
	tos = intel_pmu_lbr_tos();
383
	for (i = 0; i < x86_pmu.lbr_nr; i++) {
384
		lbr_idx = (tos - i) & mask;
385 386 387 388
		from = rdlbr_from(lbr_idx);
		if (!from)
			break;
		task_ctx->lbr_from[i] = from;
389
		task_ctx->lbr_to[i]   = rdlbr_to(lbr_idx);
390
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
391
			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
392
	}
393
	task_ctx->valid_lbrs = i;
394
	task_ctx->tos = tos;
395 396 397
	task_ctx->lbr_stack_state = LBR_VALID;
}

398 399
void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
{
400
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
401
	struct x86_perf_task_context *task_ctx;
402

403 404 405
	if (!cpuc->lbr_users)
		return;

406 407 408 409 410 411 412
	/*
	 * If LBR callstack feature is enabled and the stack was saved when
	 * the task was scheduled out, restore the stack. Otherwise flush
	 * the LBR stack.
	 */
	task_ctx = ctx ? ctx->task_ctx_data : NULL;
	if (task_ctx) {
413
		if (sched_in)
414
			__intel_pmu_lbr_restore(task_ctx);
415
		else
416 417 418 419
			__intel_pmu_lbr_save(task_ctx);
		return;
	}

420
	/*
421 422 423 424 425 426
	 * Since a context switch can flip the address space and LBR entries
	 * are not tagged with an identifier, we need to wipe the LBR, even for
	 * per-cpu events. You simply cannot resolve the branches from the old
	 * address space.
	 */
	if (sched_in)
427 428 429
		intel_pmu_lbr_reset();
}

430 431 432 433 434
static inline bool branch_user_callstack(unsigned br_sel)
{
	return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
}

435
void intel_pmu_lbr_add(struct perf_event *event)
436
{
437
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
438
	struct x86_perf_task_context *task_ctx;
439 440 441 442

	if (!x86_pmu.lbr_nr)
		return;

443
	cpuc->br_sel = event->hw.branch_reg.reg;
444

445
	if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) {
446 447 448 449
		task_ctx = event->ctx->task_ctx_data;
		task_ctx->lbr_callstack_users++;
	}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	/*
	 * Request pmu::sched_task() callback, which will fire inside the
	 * regular perf event scheduling, so that call will:
	 *
	 *  - restore or wipe; when LBR-callstack,
	 *  - wipe; otherwise,
	 *
	 * when this is from __perf_event_task_sched_in().
	 *
	 * However, if this is from perf_install_in_context(), no such callback
	 * will follow and we'll need to reset the LBR here if this is the
	 * first LBR event.
	 *
	 * The problem is, we cannot tell these cases apart... but we can
	 * exclude the biggest chunk of cases by looking at
	 * event->total_time_running. An event that has accrued runtime cannot
	 * be 'new'. Conversely, a new event can get installed through the
	 * context switch path for the first time.
	 */
469
	perf_sched_cb_inc(event->ctx->pmu);
470 471
	if (!cpuc->lbr_users++ && !event->total_time_running)
		intel_pmu_lbr_reset();
472 473
}

474
void intel_pmu_lbr_del(struct perf_event *event)
475
{
476
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
477
	struct x86_perf_task_context *task_ctx;
478 479 480 481

	if (!x86_pmu.lbr_nr)
		return;

482 483
	if (branch_user_callstack(cpuc->br_sel) &&
	    event->ctx->task_ctx_data) {
484 485 486 487
		task_ctx = event->ctx->task_ctx_data;
		task_ctx->lbr_callstack_users--;
	}

488
	cpuc->lbr_users--;
489
	WARN_ON_ONCE(cpuc->lbr_users < 0);
490
	perf_sched_cb_dec(event->ctx->pmu);
491 492
}

493
void intel_pmu_lbr_enable_all(bool pmi)
494
{
495
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
496 497

	if (cpuc->lbr_users)
498
		__intel_pmu_lbr_enable(pmi);
499 500
}

501
void intel_pmu_lbr_disable_all(void)
502
{
503
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
504 505 506 507 508 509 510 511 512 513 514

	if (cpuc->lbr_users)
		__intel_pmu_lbr_disable();
}

static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
{
	unsigned long mask = x86_pmu.lbr_nr - 1;
	u64 tos = intel_pmu_lbr_tos();
	int i;

P
Peter Zijlstra 已提交
515
	for (i = 0; i < x86_pmu.lbr_nr; i++) {
516 517 518 519 520 521 522 523 524 525 526
		unsigned long lbr_idx = (tos - i) & mask;
		union {
			struct {
				u32 from;
				u32 to;
			};
			u64     lbr;
		} msr_lastbranch;

		rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);

527 528 529 530
		cpuc->lbr_entries[i].from	= msr_lastbranch.from;
		cpuc->lbr_entries[i].to		= msr_lastbranch.to;
		cpuc->lbr_entries[i].mispred	= 0;
		cpuc->lbr_entries[i].predicted	= 0;
531 532 533
		cpuc->lbr_entries[i].in_tx	= 0;
		cpuc->lbr_entries[i].abort	= 0;
		cpuc->lbr_entries[i].cycles	= 0;
J
Jin Yao 已提交
534
		cpuc->lbr_entries[i].type	= 0;
535
		cpuc->lbr_entries[i].reserved	= 0;
536 537 538 539 540 541 542 543 544 545 546
	}
	cpuc->lbr_stack.nr = i;
}

/*
 * Due to lack of segmentation in Linux the effective address (offset)
 * is the same as the linear address, allowing us to merge the LIP and EIP
 * LBR formats.
 */
static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
{
547
	bool need_info = false, call_stack = false;
548
	unsigned long mask = x86_pmu.lbr_nr - 1;
549
	int lbr_format = x86_pmu.intel_cap.lbr_format;
550 551
	u64 tos = intel_pmu_lbr_tos();
	int i;
552
	int out = 0;
553
	int num = x86_pmu.lbr_nr;
554

555 556 557
	if (cpuc->lbr_sel) {
		need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
		if (cpuc->lbr_sel->config & LBR_CALL_STACK)
558
			call_stack = true;
559
	}
560 561

	for (i = 0; i < num; i++) {
562
		unsigned long lbr_idx = (tos - i) & mask;
563 564
		u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
		int skip = 0;
565
		u16 cycles = 0;
566
		int lbr_flags = lbr_desc[lbr_format];
567

568 569
		from = rdlbr_from(lbr_idx);
		to   = rdlbr_to(lbr_idx);
570

571 572 573 574 575 576 577
		/*
		 * Read LBR call stack entries
		 * until invalid entry (0s) is detected.
		 */
		if (call_stack && !from)
			break;

578
		if (lbr_format == LBR_FORMAT_INFO && need_info) {
579 580 581 582 583 584 585 586 587
			u64 info;

			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
			mis = !!(info & LBR_INFO_MISPRED);
			pred = !mis;
			in_tx = !!(info & LBR_INFO_IN_TX);
			abort = !!(info & LBR_INFO_ABORT);
			cycles = (info & LBR_INFO_CYCLES);
		}
588 589 590 591 592 593 594 595 596 597

		if (lbr_format == LBR_FORMAT_TIME) {
			mis = !!(from & LBR_FROM_FLAG_MISPRED);
			pred = !mis;
			skip = 1;
			cycles = ((to >> 48) & LBR_INFO_CYCLES);

			to = (u64)((((s64)to) << 16) >> 16);
		}

598
		if (lbr_flags & LBR_EIP_FLAGS) {
599 600
			mis = !!(from & LBR_FROM_FLAG_MISPRED);
			pred = !mis;
601 602 603 604 605 606
			skip = 1;
		}
		if (lbr_flags & LBR_TSX) {
			in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
			abort = !!(from & LBR_FROM_FLAG_ABORT);
			skip = 3;
607
		}
608
		from = (u64)((((s64)from) << skip) >> skip);
609

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
		/*
		 * Some CPUs report duplicated abort records,
		 * with the second entry not having an abort bit set.
		 * Skip them here. This loop runs backwards,
		 * so we need to undo the previous record.
		 * If the abort just happened outside the window
		 * the extra entry cannot be removed.
		 */
		if (abort && x86_pmu.lbr_double_abort && out > 0)
			out--;

		cpuc->lbr_entries[out].from	 = from;
		cpuc->lbr_entries[out].to	 = to;
		cpuc->lbr_entries[out].mispred	 = mis;
		cpuc->lbr_entries[out].predicted = pred;
		cpuc->lbr_entries[out].in_tx	 = in_tx;
		cpuc->lbr_entries[out].abort	 = abort;
627
		cpuc->lbr_entries[out].cycles	 = cycles;
J
Jin Yao 已提交
628
		cpuc->lbr_entries[out].type	 = 0;
629 630
		cpuc->lbr_entries[out].reserved	 = 0;
		out++;
631
	}
632
	cpuc->lbr_stack.nr = out;
633 634
}

635
void intel_pmu_lbr_read(void)
636
{
637
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
638 639 640 641

	if (!cpuc->lbr_users)
		return;

642
	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
643 644 645
		intel_pmu_lbr_read_32(cpuc);
	else
		intel_pmu_lbr_read_64(cpuc);
646 647 648 649 650 651 652 653 654

	intel_pmu_lbr_filter(cpuc);
}

/*
 * SW filter is used:
 * - in case there is no HW filter
 * - in case the HW filter has errata or limitations
 */
655
static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
656 657 658 659 660 661 662
{
	u64 br_type = event->attr.branch_sample_type;
	int mask = 0;

	if (br_type & PERF_SAMPLE_BRANCH_USER)
		mask |= X86_BR_USER;

663
	if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
		mask |= X86_BR_KERNEL;

	/* we ignore BRANCH_HV here */

	if (br_type & PERF_SAMPLE_BRANCH_ANY)
		mask |= X86_BR_ANY;

	if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
		mask |= X86_BR_ANY_CALL;

	if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
		mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;

	if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
		mask |= X86_BR_IND_CALL;
679 680 681 682 683 684 685 686 687 688

	if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
		mask |= X86_BR_ABORT;

	if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
		mask |= X86_BR_IN_TX;

	if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
		mask |= X86_BR_NO_TX;

689 690 691
	if (br_type & PERF_SAMPLE_BRANCH_COND)
		mask |= X86_BR_JCC;

692 693 694 695 696 697 698 699 700
	if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
		if (!x86_pmu_has_lbr_callstack())
			return -EOPNOTSUPP;
		if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
			return -EINVAL;
		mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
			X86_BR_CALL_STACK;
	}

701 702 703
	if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
		mask |= X86_BR_IND_JMP;

704 705
	if (br_type & PERF_SAMPLE_BRANCH_CALL)
		mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
J
Jin Yao 已提交
706 707 708 709

	if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
		mask |= X86_BR_TYPE_SAVE;

710 711 712 713 714
	/*
	 * stash actual user request into reg, it may
	 * be used by fixup code for some CPU
	 */
	event->hw.branch_reg.reg = mask;
715
	return 0;
716 717
}

718 719 720 721 722 723 724 725 726
/*
 * setup the HW LBR filter
 * Used only when available, may not be enough to disambiguate
 * all branches, may need the help of the SW filter
 */
static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
{
	struct hw_perf_event_extra *reg;
	u64 br_type = event->attr.branch_sample_type;
727 728
	u64 mask = 0, v;
	int i;
729

730
	for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
731
		if (!(br_type & (1ULL << i)))
732 733
			continue;

734
		v = x86_pmu.lbr_sel_map[i];
735 736 737
		if (v == LBR_NOT_SUPP)
			return -EOPNOTSUPP;

738 739
		if (v != LBR_IGN)
			mask |= v;
740
	}
741

742 743 744
	reg = &event->hw.branch_reg;
	reg->idx = EXTRA_REG_LBR;

745 746 747 748
	/*
	 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
	 * in suppress mode. So LBR_SELECT should be set to
	 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
749 750
	 * But the 10th bit LBR_CALL_STACK does not operate
	 * in suppress mode.
751
	 */
752
	reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
753

754 755 756 757 758
	if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
	    (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
	    (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
		reg->config |= LBR_NO_INFO;

759 760 761 762 763
	return 0;
}

int intel_pmu_setup_lbr_filter(struct perf_event *event)
{
764
	int ret = 0;
765 766 767 768 769 770 771 772

	/*
	 * no LBR on this PMU
	 */
	if (!x86_pmu.lbr_nr)
		return -EOPNOTSUPP;

	/*
773
	 * setup SW LBR filter
774
	 */
775 776 777
	ret = intel_pmu_setup_sw_lbr_filter(event);
	if (ret)
		return ret;
778 779 780 781 782 783 784 785 786 787 788 789

	/*
	 * setup HW LBR filter, if any
	 */
	if (x86_pmu.lbr_sel_map)
		ret = intel_pmu_setup_hw_lbr_filter(event);

	return ret;
}

/*
 * return the type of control flow change at address "from"
790
 * instruction is not necessarily a branch (in case of interrupt).
791 792 793 794 795 796 797 798
 *
 * The branch type returned also includes the priv level of the
 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
 *
 * If a branch type is unknown OR the instruction cannot be
 * decoded (e.g., text page not present), then X86_BR_NONE is
 * returned.
 */
799
static int branch_type(unsigned long from, unsigned long to, int abort)
800 801 802
{
	struct insn insn;
	void *addr;
803
	int bytes_read, bytes_left;
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
	int ret = X86_BR_NONE;
	int ext, to_plm, from_plm;
	u8 buf[MAX_INSN_SIZE];
	int is64 = 0;

	to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
	from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;

	/*
	 * maybe zero if lbr did not fill up after a reset by the time
	 * we get a PMU interrupt
	 */
	if (from == 0 || to == 0)
		return X86_BR_NONE;

819 820 821
	if (abort)
		return X86_BR_ABORT | to_plm;

822 823 824 825 826 827 828 829 830
	if (from_plm == X86_BR_USER) {
		/*
		 * can happen if measuring at the user level only
		 * and we interrupt in a kernel thread, e.g., idle.
		 */
		if (!current->mm)
			return X86_BR_NONE;

		/* may fail if text not present */
831 832 833 834
		bytes_left = copy_from_user_nmi(buf, (void __user *)from,
						MAX_INSN_SIZE);
		bytes_read = MAX_INSN_SIZE - bytes_left;
		if (!bytes_read)
835 836 837
			return X86_BR_NONE;

		addr = buf;
838 839 840 841 842 843 844
	} else {
		/*
		 * The LBR logs any address in the IP, even if the IP just
		 * faulted. This means userspace can control the from address.
		 * Ensure we don't blindy read any address by validating it is
		 * a known text address.
		 */
845
		if (kernel_text_address(from)) {
846
			addr = (void *)from;
847 848 849 850 851 852 853 854 855
			/*
			 * Assume we can get the maximum possible size
			 * when grabbing kernel data.  This is not
			 * _strictly_ true since we could possibly be
			 * executing up next to a memory hole, but
			 * it is very unlikely to be a problem.
			 */
			bytes_read = MAX_INSN_SIZE;
		} else {
856
			return X86_BR_NONE;
857
		}
858
	}
859 860 861 862 863 864 865 866

	/*
	 * decoder needs to know the ABI especially
	 * on 64-bit systems running 32-bit apps
	 */
#ifdef CONFIG_X86_64
	is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
#endif
867
	insn_init(&insn, addr, bytes_read, is64);
868
	insn_get_opcode(&insn);
869 870
	if (!insn.opcode.got)
		return X86_BR_ABORT;
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905

	switch (insn.opcode.bytes[0]) {
	case 0xf:
		switch (insn.opcode.bytes[1]) {
		case 0x05: /* syscall */
		case 0x34: /* sysenter */
			ret = X86_BR_SYSCALL;
			break;
		case 0x07: /* sysret */
		case 0x35: /* sysexit */
			ret = X86_BR_SYSRET;
			break;
		case 0x80 ... 0x8f: /* conditional */
			ret = X86_BR_JCC;
			break;
		default:
			ret = X86_BR_NONE;
		}
		break;
	case 0x70 ... 0x7f: /* conditional */
		ret = X86_BR_JCC;
		break;
	case 0xc2: /* near ret */
	case 0xc3: /* near ret */
	case 0xca: /* far ret */
	case 0xcb: /* far ret */
		ret = X86_BR_RET;
		break;
	case 0xcf: /* iret */
		ret = X86_BR_IRET;
		break;
	case 0xcc ... 0xce: /* int */
		ret = X86_BR_INT;
		break;
	case 0xe8: /* call near rel */
906 907 908 909 910 911
		insn_get_immediate(&insn);
		if (insn.immediate1.value == 0) {
			/* zero length call */
			ret = X86_BR_ZERO_CALL;
			break;
		}
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
	case 0x9a: /* call far absolute */
		ret = X86_BR_CALL;
		break;
	case 0xe0 ... 0xe3: /* loop jmp */
		ret = X86_BR_JCC;
		break;
	case 0xe9 ... 0xeb: /* jmp */
		ret = X86_BR_JMP;
		break;
	case 0xff: /* call near absolute, call far absolute ind */
		insn_get_modrm(&insn);
		ext = (insn.modrm.bytes[0] >> 3) & 0x7;
		switch (ext) {
		case 2: /* near ind call */
		case 3: /* far ind call */
			ret = X86_BR_IND_CALL;
			break;
		case 4:
		case 5:
931
			ret = X86_BR_IND_JMP;
932 933 934 935 936
			break;
		}
		break;
	default:
		ret = X86_BR_NONE;
937 938
	}
	/*
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
	 * interrupts, traps, faults (and thus ring transition) may
	 * occur on any instructions. Thus, to classify them correctly,
	 * we need to first look at the from and to priv levels. If they
	 * are different and to is in the kernel, then it indicates
	 * a ring transition. If the from instruction is not a ring
	 * transition instr (syscall, systenter, int), then it means
	 * it was a irq, trap or fault.
	 *
	 * we have no way of detecting kernel to kernel faults.
	 */
	if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
	    && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
		ret = X86_BR_IRQ;

	/*
	 * branch priv level determined by target as
	 * is done by HW when LBR_SELECT is implemented
956
	 */
957 958
	if (ret != X86_BR_NONE)
		ret |= to_plm;
959

960 961 962
	return ret;
}

J
Jin Yao 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
#define X86_BR_TYPE_MAP_MAX	16

static int branch_map[X86_BR_TYPE_MAP_MAX] = {
	PERF_BR_CALL,		/* X86_BR_CALL */
	PERF_BR_RET,		/* X86_BR_RET */
	PERF_BR_SYSCALL,	/* X86_BR_SYSCALL */
	PERF_BR_SYSRET,		/* X86_BR_SYSRET */
	PERF_BR_UNKNOWN,	/* X86_BR_INT */
	PERF_BR_UNKNOWN,	/* X86_BR_IRET */
	PERF_BR_COND,		/* X86_BR_JCC */
	PERF_BR_UNCOND,		/* X86_BR_JMP */
	PERF_BR_UNKNOWN,	/* X86_BR_IRQ */
	PERF_BR_IND_CALL,	/* X86_BR_IND_CALL */
	PERF_BR_UNKNOWN,	/* X86_BR_ABORT */
	PERF_BR_UNKNOWN,	/* X86_BR_IN_TX */
	PERF_BR_UNKNOWN,	/* X86_BR_NO_TX */
	PERF_BR_CALL,		/* X86_BR_ZERO_CALL */
	PERF_BR_UNKNOWN,	/* X86_BR_CALL_STACK */
	PERF_BR_IND,		/* X86_BR_IND_JMP */
};

static int
common_branch_type(int type)
{
	int i;

	type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */

	if (type) {
		i = __ffs(type);
		if (i < X86_BR_TYPE_MAP_MAX)
			return branch_map[i];
	}

	return PERF_BR_UNKNOWN;
}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/*
 * implement actual branch filter based on user demand.
 * Hardware may not exactly satisfy that request, thus
 * we need to inspect opcodes. Mismatched branches are
 * discarded. Therefore, the number of branches returned
 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
 */
static void
intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
{
	u64 from, to;
	int br_sel = cpuc->br_sel;
	int i, j, type;
	bool compress = false;

	/* if sampling all branches, then nothing to filter */
J
Jin Yao 已提交
1016 1017
	if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
	    ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
1018 1019 1020 1021 1022 1023 1024
		return;

	for (i = 0; i < cpuc->lbr_stack.nr; i++) {

		from = cpuc->lbr_entries[i].from;
		to = cpuc->lbr_entries[i].to;

1025 1026 1027 1028 1029 1030 1031
		type = branch_type(from, to, cpuc->lbr_entries[i].abort);
		if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
			if (cpuc->lbr_entries[i].in_tx)
				type |= X86_BR_IN_TX;
			else
				type |= X86_BR_NO_TX;
		}
1032 1033 1034 1035 1036 1037

		/* if type does not correspond, then discard */
		if (type == X86_BR_NONE || (br_sel & type) != type) {
			cpuc->lbr_entries[i].from = 0;
			compress = true;
		}
J
Jin Yao 已提交
1038 1039 1040

		if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
			cpuc->lbr_entries[i].type = common_branch_type(type);
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	}

	if (!compress)
		return;

	/* remove all entries with from=0 */
	for (i = 0; i < cpuc->lbr_stack.nr; ) {
		if (!cpuc->lbr_entries[i].from) {
			j = i;
			while (++j < cpuc->lbr_stack.nr)
				cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
			cpuc->lbr_stack.nr--;
			if (!cpuc->lbr_entries[i].from)
				continue;
		}
		i++;
	}
1058 1059
}

1060 1061 1062
/*
 * Map interface branch filters onto LBR filters
 */
1063
static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1064 1065 1066 1067 1068 1069
	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_REL_JMP
						| LBR_IND_JMP | LBR_FAR,
1070 1071 1072
	/*
	 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
	 */
1073
	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1074 1075 1076 1077
	 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
	/*
	 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
	 */
1078 1079
	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
	[PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
1080
	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1081 1082
};

1083
static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1084 1085 1086 1087 1088 1089 1090 1091 1092
	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
						| LBR_FAR,
	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
1093
	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1094
	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1095 1096
};

1097
static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
						| LBR_FAR,
	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
						| LBR_RETURN | LBR_CALL_STACK,
1109
	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1110
	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1111 1112
};

1113
/* core */
1114
void __init intel_pmu_lbr_init_core(void)
1115 1116
{
	x86_pmu.lbr_nr     = 4;
1117 1118 1119
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1120

1121 1122 1123 1124
	/*
	 * SW branch filter usage:
	 * - compensate for lack of HW filter
	 */
1125 1126
}

1127
/* nehalem/westmere */
1128
void __init intel_pmu_lbr_init_nhm(void)
1129 1130
{
	x86_pmu.lbr_nr     = 16;
1131 1132 1133
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1134 1135 1136 1137

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;

1138 1139 1140 1141 1142 1143 1144
	/*
	 * SW branch filter usage:
	 * - workaround LBR_SEL errata (see above)
	 * - support syscall, sysret capture.
	 *   That requires LBR_FAR but that means far
	 *   jmp need to be filtered out
	 */
1145 1146
}

1147
/* sandy bridge */
1148
void __init intel_pmu_lbr_init_snb(void)
1149 1150 1151 1152 1153 1154 1155 1156 1157
{
	x86_pmu.lbr_nr	 = 16;
	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;

1158 1159 1160 1161 1162 1163
	/*
	 * SW branch filter usage:
	 * - support syscall, sysret capture.
	 *   That requires LBR_FAR but that means far
	 *   jmp need to be filtered out
	 */
1164 1165
}

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
/* haswell */
void intel_pmu_lbr_init_hsw(void)
{
	x86_pmu.lbr_nr	 = 16;
	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1176 1177 1178

	if (lbr_from_signext_quirk_needed())
		static_branch_enable(&lbr_from_quirk_key);
1179 1180
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
/* skylake */
__init void intel_pmu_lbr_init_skl(void)
{
	x86_pmu.lbr_nr	 = 32;
	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;

	/*
	 * SW branch filter usage:
	 * - support syscall, sysret capture.
	 *   That requires LBR_FAR but that means far
	 *   jmp need to be filtered out
	 */
}

1200
/* atom */
1201
void __init intel_pmu_lbr_init_atom(void)
1202
{
1203 1204 1205 1206 1207
	/*
	 * only models starting at stepping 10 seems
	 * to have an operational LBR which can freeze
	 * on PMU interrupt
	 */
1208
	if (boot_cpu_data.x86_model == 28
1209
	    && boot_cpu_data.x86_stepping < 10) {
1210 1211 1212 1213
		pr_cont("LBR disabled due to erratum");
		return;
	}

1214
	x86_pmu.lbr_nr	   = 8;
1215 1216 1217
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1218

1219 1220 1221 1222
	/*
	 * SW branch filter usage:
	 * - compensate for lack of HW filter
	 */
1223
}
1224

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
/* slm */
void __init intel_pmu_lbr_init_slm(void)
{
	x86_pmu.lbr_nr	   = 8;
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;

	/*
	 * SW branch filter usage:
	 * - compensate for lack of HW filter
	 */
	pr_cont("8-deep LBR, ");
}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
/* Knights Landing */
void intel_pmu_lbr_init_knl(void)
{
	x86_pmu.lbr_nr	   = 8;
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
}