lbr.c 30.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6
#include <linux/perf_event.h>
#include <linux/types.h>

#include <asm/perf_event.h>
#include <asm/msr.h>
7
#include <asm/insn.h>
8

9
#include "../perf_event.h"
10 11 12 13 14 15

enum {
	LBR_FORMAT_32		= 0x00,
	LBR_FORMAT_LIP		= 0x01,
	LBR_FORMAT_EIP		= 0x02,
	LBR_FORMAT_EIP_FLAGS	= 0x03,
16
	LBR_FORMAT_EIP_FLAGS2	= 0x04,
17
	LBR_FORMAT_INFO		= 0x05,
18 19
	LBR_FORMAT_TIME		= 0x06,
	LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_TIME,
20 21
};

22
static const enum {
23 24 25 26 27
	LBR_EIP_FLAGS		= 1,
	LBR_TSX			= 2,
} lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
	[LBR_FORMAT_EIP_FLAGS]  = LBR_EIP_FLAGS,
	[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
28 29
};

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * Intel LBR_SELECT bits
 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
 *
 * Hardware branch filter (not available on all CPUs)
 */
#define LBR_KERNEL_BIT		0 /* do not capture at ring0 */
#define LBR_USER_BIT		1 /* do not capture at ring > 0 */
#define LBR_JCC_BIT		2 /* do not capture conditional branches */
#define LBR_REL_CALL_BIT	3 /* do not capture relative calls */
#define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */
#define LBR_RETURN_BIT		5 /* do not capture near returns */
#define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */
#define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */
#define LBR_FAR_BIT		8 /* do not capture far branches */
45
#define LBR_CALL_STACK_BIT	9 /* enable call stack */
46

47 48 49 50 51 52 53
/*
 * Following bit only exists in Linux; we mask it out before writing it to
 * the actual MSR. But it helps the constraint perf code to understand
 * that this is a separate configuration.
 */
#define LBR_NO_INFO_BIT	       63 /* don't read LBR_INFO. */

54 55 56 57 58 59 60 61 62
#define LBR_KERNEL	(1 << LBR_KERNEL_BIT)
#define LBR_USER	(1 << LBR_USER_BIT)
#define LBR_JCC		(1 << LBR_JCC_BIT)
#define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT)
#define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT)
#define LBR_RETURN	(1 << LBR_RETURN_BIT)
#define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT)
#define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT)
#define LBR_FAR		(1 << LBR_FAR_BIT)
63
#define LBR_CALL_STACK	(1 << LBR_CALL_STACK_BIT)
64
#define LBR_NO_INFO	(1ULL << LBR_NO_INFO_BIT)
65 66 67

#define LBR_PLM (LBR_KERNEL | LBR_USER)

68
#define LBR_SEL_MASK	0x3ff	/* valid bits in LBR_SELECT */
69 70 71 72 73 74 75 76 77 78 79 80
#define LBR_NOT_SUPP	-1	/* LBR filter not supported */
#define LBR_IGN		0	/* ignored */

#define LBR_ANY		 \
	(LBR_JCC	|\
	 LBR_REL_CALL	|\
	 LBR_IND_CALL	|\
	 LBR_RETURN	|\
	 LBR_REL_JMP	|\
	 LBR_IND_JMP	|\
	 LBR_FAR)

81 82 83
#define LBR_FROM_FLAG_MISPRED	BIT_ULL(63)
#define LBR_FROM_FLAG_IN_TX	BIT_ULL(62)
#define LBR_FROM_FLAG_ABORT	BIT_ULL(61)
84

85 86
#define LBR_FROM_SIGNEXT_2MSB	(BIT_ULL(60) | BIT_ULL(59))

87 88 89 90 91
/*
 * x86control flow change classification
 * x86control flow changes include branches, interrupts, traps, faults
 */
enum {
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	X86_BR_NONE		= 0,      /* unknown */

	X86_BR_USER		= 1 << 0, /* branch target is user */
	X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */

	X86_BR_CALL		= 1 << 2, /* call */
	X86_BR_RET		= 1 << 3, /* return */
	X86_BR_SYSCALL		= 1 << 4, /* syscall */
	X86_BR_SYSRET		= 1 << 5, /* syscall return */
	X86_BR_INT		= 1 << 6, /* sw interrupt */
	X86_BR_IRET		= 1 << 7, /* return from interrupt */
	X86_BR_JCC		= 1 << 8, /* conditional */
	X86_BR_JMP		= 1 << 9, /* jump */
	X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */
	X86_BR_IND_CALL		= 1 << 11,/* indirect calls */
	X86_BR_ABORT		= 1 << 12,/* transaction abort */
	X86_BR_IN_TX		= 1 << 13,/* in transaction */
	X86_BR_NO_TX		= 1 << 14,/* not in transaction */
110 111
	X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */
	X86_BR_CALL_STACK	= 1 << 16,/* call stack */
112
	X86_BR_IND_JMP		= 1 << 17,/* indirect jump */
J
Jin Yao 已提交
113 114 115

	X86_BR_TYPE_SAVE	= 1 << 18,/* indicate to save branch type */

116 117 118
};

#define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
119
#define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
120 121 122 123 124 125 126 127 128 129 130

#define X86_BR_ANY       \
	(X86_BR_CALL    |\
	 X86_BR_RET     |\
	 X86_BR_SYSCALL |\
	 X86_BR_SYSRET  |\
	 X86_BR_INT     |\
	 X86_BR_IRET    |\
	 X86_BR_JCC     |\
	 X86_BR_JMP	 |\
	 X86_BR_IRQ	 |\
131
	 X86_BR_ABORT	 |\
132
	 X86_BR_IND_CALL |\
133
	 X86_BR_IND_JMP  |\
134
	 X86_BR_ZERO_CALL)
135 136 137 138 139 140

#define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)

#define X86_BR_ANY_CALL		 \
	(X86_BR_CALL		|\
	 X86_BR_IND_CALL	|\
141
	 X86_BR_ZERO_CALL	|\
142 143 144 145 146 147
	 X86_BR_SYSCALL		|\
	 X86_BR_IRQ		|\
	 X86_BR_INT)

static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);

148 149 150 151 152
/*
 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
 * otherwise it becomes near impossible to get a reliable stack.
 */

153
static void __intel_pmu_lbr_enable(bool pmi)
154
{
155
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
156
	u64 debugctl, lbr_select = 0, orig_debugctl;
157

158 159 160 161 162 163 164
	/*
	 * No need to unfreeze manually, as v4 can do that as part
	 * of the GLOBAL_STATUS ack.
	 */
	if (pmi && x86_pmu.version >= 4)
		return;

165 166 167 168
	/*
	 * No need to reprogram LBR_SELECT in a PMI, as it
	 * did not change.
	 */
169
	if (cpuc->lbr_sel)
170
		lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
171
	if (!pmi && cpuc->lbr_sel)
172
		wrmsrl(MSR_LBR_SELECT, lbr_select);
173 174

	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
175
	orig_debugctl = debugctl;
176 177 178 179 180 181 182 183
	debugctl |= DEBUGCTLMSR_LBR;
	/*
	 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
	 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
	 * may cause superfluous increase/decrease of LBR_TOS.
	 */
	if (!(lbr_select & LBR_CALL_STACK))
		debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
184 185
	if (orig_debugctl != debugctl)
		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
186 187 188 189 190 191 192
}

static void __intel_pmu_lbr_disable(void)
{
	u64 debugctl;

	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
193
	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
}

static void intel_pmu_lbr_reset_32(void)
{
	int i;

	for (i = 0; i < x86_pmu.lbr_nr; i++)
		wrmsrl(x86_pmu.lbr_from + i, 0);
}

static void intel_pmu_lbr_reset_64(void)
{
	int i;

	for (i = 0; i < x86_pmu.lbr_nr; i++) {
		wrmsrl(x86_pmu.lbr_from + i, 0);
		wrmsrl(x86_pmu.lbr_to   + i, 0);
212 213
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
			wrmsrl(MSR_LBR_INFO_0 + i, 0);
214 215 216
	}
}

217
void intel_pmu_lbr_reset(void)
218
{
219 220 221
	if (!x86_pmu.lbr_nr)
		return;

222
	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
223 224 225 226 227
		intel_pmu_lbr_reset_32();
	else
		intel_pmu_lbr_reset_64();
}

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/*
 * TOS = most recently recorded branch
 */
static inline u64 intel_pmu_lbr_tos(void)
{
	u64 tos;

	rdmsrl(x86_pmu.lbr_tos, tos);
	return tos;
}

enum {
	LBR_NONE,
	LBR_VALID,
};

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
/*
 * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
 * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
 * TSX is not supported they have no consistent behavior:
 *
 *   - For wrmsr(), bits 61:62 are considered part of the sign extension.
 *   - For HW updates (branch captures) bits 61:62 are always OFF and are not
 *     part of the sign extension.
 *
 * Therefore, if:
 *
 *   1) LBR has TSX format
 *   2) CPU has no TSX support enabled
 *
 * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
 * value from rdmsr() must be converted to have a 61 bits sign extension,
 * ignoring the TSX flags.
 */
static inline bool lbr_from_signext_quirk_needed(void)
{
	int lbr_format = x86_pmu.intel_cap.lbr_format;
	bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
			   boot_cpu_has(X86_FEATURE_RTM);

	return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX);
}

DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);

/* If quirk is enabled, ensure sign extension is 63 bits: */
inline u64 lbr_from_signext_quirk_wr(u64 val)
{
	if (static_branch_unlikely(&lbr_from_quirk_key)) {
		/*
		 * Sign extend into bits 61:62 while preserving bit 63.
		 *
		 * Quirk is enabled when TSX is disabled. Therefore TSX bits
		 * in val are always OFF and must be changed to be sign
		 * extension bits. Since bits 59:60 are guaranteed to be
		 * part of the sign extension bits, we can just copy them
		 * to 61:62.
		 */
		val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
	}
	return val;
}

291 292 293
/*
 * If quirk is needed, ensure sign extension is 61 bits:
 */
294
static u64 lbr_from_signext_quirk_rd(u64 val)
295
{
296
	if (static_branch_unlikely(&lbr_from_quirk_key)) {
297 298 299 300 301
		/*
		 * Quirk is on when TSX is not enabled. Therefore TSX
		 * flags must be read as OFF.
		 */
		val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	}
	return val;
}

static inline void wrlbr_from(unsigned int idx, u64 val)
{
	val = lbr_from_signext_quirk_wr(val);
	wrmsrl(x86_pmu.lbr_from + idx, val);
}

static inline void wrlbr_to(unsigned int idx, u64 val)
{
	wrmsrl(x86_pmu.lbr_to + idx, val);
}

static inline u64 rdlbr_from(unsigned int idx)
{
	u64 val;

	rdmsrl(x86_pmu.lbr_from + idx, val);

	return lbr_from_signext_quirk_rd(val);
}

static inline u64 rdlbr_to(unsigned int idx)
{
	u64 val;

330
	rdmsrl(x86_pmu.lbr_to + idx, val);
331

332 333 334
	return val;
}

335 336 337 338 339 340 341 342 343 344 345 346 347
static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
{
	int i;
	unsigned lbr_idx, mask;
	u64 tos;

	if (task_ctx->lbr_callstack_users == 0 ||
	    task_ctx->lbr_stack_state == LBR_NONE) {
		intel_pmu_lbr_reset();
		return;
	}

	mask = x86_pmu.lbr_nr - 1;
348
	tos = task_ctx->tos;
349
	for (i = 0; i < tos; i++) {
350
		lbr_idx = (tos - i) & mask;
351 352 353
		wrlbr_from(lbr_idx, task_ctx->lbr_from[i]);
		wrlbr_to  (lbr_idx, task_ctx->lbr_to[i]);

354
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
355
			wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
356
	}
357
	wrmsrl(x86_pmu.lbr_tos, tos);
358 359 360 361 362 363
	task_ctx->lbr_stack_state = LBR_NONE;
}

static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
{
	unsigned lbr_idx, mask;
364 365
	u64 tos;
	int i;
366 367 368 369 370 371 372 373

	if (task_ctx->lbr_callstack_users == 0) {
		task_ctx->lbr_stack_state = LBR_NONE;
		return;
	}

	mask = x86_pmu.lbr_nr - 1;
	tos = intel_pmu_lbr_tos();
374
	for (i = 0; i < tos; i++) {
375
		lbr_idx = (tos - i) & mask;
376 377
		task_ctx->lbr_from[i] = rdlbr_from(lbr_idx);
		task_ctx->lbr_to[i]   = rdlbr_to(lbr_idx);
378
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
379
			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
380
	}
381
	task_ctx->tos = tos;
382 383 384
	task_ctx->lbr_stack_state = LBR_VALID;
}

385 386
void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
{
387
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
388
	struct x86_perf_task_context *task_ctx;
389

390 391 392
	if (!cpuc->lbr_users)
		return;

393 394 395 396 397 398 399
	/*
	 * If LBR callstack feature is enabled and the stack was saved when
	 * the task was scheduled out, restore the stack. Otherwise flush
	 * the LBR stack.
	 */
	task_ctx = ctx ? ctx->task_ctx_data : NULL;
	if (task_ctx) {
400
		if (sched_in)
401
			__intel_pmu_lbr_restore(task_ctx);
402
		else
403 404 405 406
			__intel_pmu_lbr_save(task_ctx);
		return;
	}

407
	/*
408 409 410 411 412 413
	 * Since a context switch can flip the address space and LBR entries
	 * are not tagged with an identifier, we need to wipe the LBR, even for
	 * per-cpu events. You simply cannot resolve the branches from the old
	 * address space.
	 */
	if (sched_in)
414 415 416
		intel_pmu_lbr_reset();
}

417 418 419 420 421
static inline bool branch_user_callstack(unsigned br_sel)
{
	return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
}

422
void intel_pmu_lbr_add(struct perf_event *event)
423
{
424
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
425
	struct x86_perf_task_context *task_ctx;
426 427 428 429

	if (!x86_pmu.lbr_nr)
		return;

430
	cpuc->br_sel = event->hw.branch_reg.reg;
431

432
	if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) {
433 434 435 436
		task_ctx = event->ctx->task_ctx_data;
		task_ctx->lbr_callstack_users++;
	}

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	/*
	 * Request pmu::sched_task() callback, which will fire inside the
	 * regular perf event scheduling, so that call will:
	 *
	 *  - restore or wipe; when LBR-callstack,
	 *  - wipe; otherwise,
	 *
	 * when this is from __perf_event_task_sched_in().
	 *
	 * However, if this is from perf_install_in_context(), no such callback
	 * will follow and we'll need to reset the LBR here if this is the
	 * first LBR event.
	 *
	 * The problem is, we cannot tell these cases apart... but we can
	 * exclude the biggest chunk of cases by looking at
	 * event->total_time_running. An event that has accrued runtime cannot
	 * be 'new'. Conversely, a new event can get installed through the
	 * context switch path for the first time.
	 */
456
	perf_sched_cb_inc(event->ctx->pmu);
457 458
	if (!cpuc->lbr_users++ && !event->total_time_running)
		intel_pmu_lbr_reset();
459 460
}

461
void intel_pmu_lbr_del(struct perf_event *event)
462
{
463
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
464
	struct x86_perf_task_context *task_ctx;
465 466 467 468

	if (!x86_pmu.lbr_nr)
		return;

469 470
	if (branch_user_callstack(cpuc->br_sel) &&
	    event->ctx->task_ctx_data) {
471 472 473 474
		task_ctx = event->ctx->task_ctx_data;
		task_ctx->lbr_callstack_users--;
	}

475
	cpuc->lbr_users--;
476
	WARN_ON_ONCE(cpuc->lbr_users < 0);
477
	perf_sched_cb_dec(event->ctx->pmu);
478 479
}

480
void intel_pmu_lbr_enable_all(bool pmi)
481
{
482
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
483 484

	if (cpuc->lbr_users)
485
		__intel_pmu_lbr_enable(pmi);
486 487
}

488
void intel_pmu_lbr_disable_all(void)
489
{
490
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
491 492 493 494 495 496 497 498 499 500 501

	if (cpuc->lbr_users)
		__intel_pmu_lbr_disable();
}

static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
{
	unsigned long mask = x86_pmu.lbr_nr - 1;
	u64 tos = intel_pmu_lbr_tos();
	int i;

P
Peter Zijlstra 已提交
502
	for (i = 0; i < x86_pmu.lbr_nr; i++) {
503 504 505 506 507 508 509 510 511 512 513
		unsigned long lbr_idx = (tos - i) & mask;
		union {
			struct {
				u32 from;
				u32 to;
			};
			u64     lbr;
		} msr_lastbranch;

		rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);

514 515 516 517
		cpuc->lbr_entries[i].from	= msr_lastbranch.from;
		cpuc->lbr_entries[i].to		= msr_lastbranch.to;
		cpuc->lbr_entries[i].mispred	= 0;
		cpuc->lbr_entries[i].predicted	= 0;
518 519 520
		cpuc->lbr_entries[i].in_tx	= 0;
		cpuc->lbr_entries[i].abort	= 0;
		cpuc->lbr_entries[i].cycles	= 0;
J
Jin Yao 已提交
521
		cpuc->lbr_entries[i].type	= 0;
522
		cpuc->lbr_entries[i].reserved	= 0;
523 524 525 526 527 528 529 530 531 532 533
	}
	cpuc->lbr_stack.nr = i;
}

/*
 * Due to lack of segmentation in Linux the effective address (offset)
 * is the same as the linear address, allowing us to merge the LIP and EIP
 * LBR formats.
 */
static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
{
534
	bool need_info = false;
535
	unsigned long mask = x86_pmu.lbr_nr - 1;
536
	int lbr_format = x86_pmu.intel_cap.lbr_format;
537 538
	u64 tos = intel_pmu_lbr_tos();
	int i;
539
	int out = 0;
540
	int num = x86_pmu.lbr_nr;
541

542 543 544 545 546
	if (cpuc->lbr_sel) {
		need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
		if (cpuc->lbr_sel->config & LBR_CALL_STACK)
			num = tos;
	}
547 548

	for (i = 0; i < num; i++) {
549
		unsigned long lbr_idx = (tos - i) & mask;
550 551
		u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
		int skip = 0;
552
		u16 cycles = 0;
553
		int lbr_flags = lbr_desc[lbr_format];
554

555 556
		from = rdlbr_from(lbr_idx);
		to   = rdlbr_to(lbr_idx);
557

558
		if (lbr_format == LBR_FORMAT_INFO && need_info) {
559 560 561 562 563 564 565 566 567
			u64 info;

			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
			mis = !!(info & LBR_INFO_MISPRED);
			pred = !mis;
			in_tx = !!(info & LBR_INFO_IN_TX);
			abort = !!(info & LBR_INFO_ABORT);
			cycles = (info & LBR_INFO_CYCLES);
		}
568 569 570 571 572 573 574 575 576 577

		if (lbr_format == LBR_FORMAT_TIME) {
			mis = !!(from & LBR_FROM_FLAG_MISPRED);
			pred = !mis;
			skip = 1;
			cycles = ((to >> 48) & LBR_INFO_CYCLES);

			to = (u64)((((s64)to) << 16) >> 16);
		}

578
		if (lbr_flags & LBR_EIP_FLAGS) {
579 580
			mis = !!(from & LBR_FROM_FLAG_MISPRED);
			pred = !mis;
581 582 583 584 585 586
			skip = 1;
		}
		if (lbr_flags & LBR_TSX) {
			in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
			abort = !!(from & LBR_FROM_FLAG_ABORT);
			skip = 3;
587
		}
588
		from = (u64)((((s64)from) << skip) >> skip);
589

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
		/*
		 * Some CPUs report duplicated abort records,
		 * with the second entry not having an abort bit set.
		 * Skip them here. This loop runs backwards,
		 * so we need to undo the previous record.
		 * If the abort just happened outside the window
		 * the extra entry cannot be removed.
		 */
		if (abort && x86_pmu.lbr_double_abort && out > 0)
			out--;

		cpuc->lbr_entries[out].from	 = from;
		cpuc->lbr_entries[out].to	 = to;
		cpuc->lbr_entries[out].mispred	 = mis;
		cpuc->lbr_entries[out].predicted = pred;
		cpuc->lbr_entries[out].in_tx	 = in_tx;
		cpuc->lbr_entries[out].abort	 = abort;
607
		cpuc->lbr_entries[out].cycles	 = cycles;
J
Jin Yao 已提交
608
		cpuc->lbr_entries[out].type	 = 0;
609 610
		cpuc->lbr_entries[out].reserved	 = 0;
		out++;
611
	}
612
	cpuc->lbr_stack.nr = out;
613 614
}

615
void intel_pmu_lbr_read(void)
616
{
617
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
618 619 620 621

	if (!cpuc->lbr_users)
		return;

622
	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
623 624 625
		intel_pmu_lbr_read_32(cpuc);
	else
		intel_pmu_lbr_read_64(cpuc);
626 627 628 629 630 631 632 633 634

	intel_pmu_lbr_filter(cpuc);
}

/*
 * SW filter is used:
 * - in case there is no HW filter
 * - in case the HW filter has errata or limitations
 */
635
static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
636 637 638 639 640 641 642
{
	u64 br_type = event->attr.branch_sample_type;
	int mask = 0;

	if (br_type & PERF_SAMPLE_BRANCH_USER)
		mask |= X86_BR_USER;

643
	if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
		mask |= X86_BR_KERNEL;

	/* we ignore BRANCH_HV here */

	if (br_type & PERF_SAMPLE_BRANCH_ANY)
		mask |= X86_BR_ANY;

	if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
		mask |= X86_BR_ANY_CALL;

	if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
		mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;

	if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
		mask |= X86_BR_IND_CALL;
659 660 661 662 663 664 665 666 667 668

	if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
		mask |= X86_BR_ABORT;

	if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
		mask |= X86_BR_IN_TX;

	if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
		mask |= X86_BR_NO_TX;

669 670 671
	if (br_type & PERF_SAMPLE_BRANCH_COND)
		mask |= X86_BR_JCC;

672 673 674 675 676 677 678 679 680
	if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
		if (!x86_pmu_has_lbr_callstack())
			return -EOPNOTSUPP;
		if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
			return -EINVAL;
		mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
			X86_BR_CALL_STACK;
	}

681 682 683
	if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
		mask |= X86_BR_IND_JMP;

684 685
	if (br_type & PERF_SAMPLE_BRANCH_CALL)
		mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
J
Jin Yao 已提交
686 687 688 689

	if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
		mask |= X86_BR_TYPE_SAVE;

690 691 692 693 694
	/*
	 * stash actual user request into reg, it may
	 * be used by fixup code for some CPU
	 */
	event->hw.branch_reg.reg = mask;
695
	return 0;
696 697
}

698 699 700 701 702 703 704 705 706
/*
 * setup the HW LBR filter
 * Used only when available, may not be enough to disambiguate
 * all branches, may need the help of the SW filter
 */
static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
{
	struct hw_perf_event_extra *reg;
	u64 br_type = event->attr.branch_sample_type;
707 708
	u64 mask = 0, v;
	int i;
709

710
	for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
711
		if (!(br_type & (1ULL << i)))
712 713
			continue;

714
		v = x86_pmu.lbr_sel_map[i];
715 716 717
		if (v == LBR_NOT_SUPP)
			return -EOPNOTSUPP;

718 719
		if (v != LBR_IGN)
			mask |= v;
720
	}
721

722 723 724
	reg = &event->hw.branch_reg;
	reg->idx = EXTRA_REG_LBR;

725 726 727 728
	/*
	 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
	 * in suppress mode. So LBR_SELECT should be set to
	 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
729 730
	 * But the 10th bit LBR_CALL_STACK does not operate
	 * in suppress mode.
731
	 */
732
	reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
733

734 735 736 737 738
	if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
	    (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
	    (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
		reg->config |= LBR_NO_INFO;

739 740 741 742 743
	return 0;
}

int intel_pmu_setup_lbr_filter(struct perf_event *event)
{
744
	int ret = 0;
745 746 747 748 749 750 751 752

	/*
	 * no LBR on this PMU
	 */
	if (!x86_pmu.lbr_nr)
		return -EOPNOTSUPP;

	/*
753
	 * setup SW LBR filter
754
	 */
755 756 757
	ret = intel_pmu_setup_sw_lbr_filter(event);
	if (ret)
		return ret;
758 759 760 761 762 763 764 765 766 767 768 769

	/*
	 * setup HW LBR filter, if any
	 */
	if (x86_pmu.lbr_sel_map)
		ret = intel_pmu_setup_hw_lbr_filter(event);

	return ret;
}

/*
 * return the type of control flow change at address "from"
770
 * instruction is not necessarily a branch (in case of interrupt).
771 772 773 774 775 776 777 778
 *
 * The branch type returned also includes the priv level of the
 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
 *
 * If a branch type is unknown OR the instruction cannot be
 * decoded (e.g., text page not present), then X86_BR_NONE is
 * returned.
 */
779
static int branch_type(unsigned long from, unsigned long to, int abort)
780 781 782
{
	struct insn insn;
	void *addr;
783
	int bytes_read, bytes_left;
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
	int ret = X86_BR_NONE;
	int ext, to_plm, from_plm;
	u8 buf[MAX_INSN_SIZE];
	int is64 = 0;

	to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
	from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;

	/*
	 * maybe zero if lbr did not fill up after a reset by the time
	 * we get a PMU interrupt
	 */
	if (from == 0 || to == 0)
		return X86_BR_NONE;

799 800 801
	if (abort)
		return X86_BR_ABORT | to_plm;

802 803 804 805 806 807 808 809 810
	if (from_plm == X86_BR_USER) {
		/*
		 * can happen if measuring at the user level only
		 * and we interrupt in a kernel thread, e.g., idle.
		 */
		if (!current->mm)
			return X86_BR_NONE;

		/* may fail if text not present */
811 812 813 814
		bytes_left = copy_from_user_nmi(buf, (void __user *)from,
						MAX_INSN_SIZE);
		bytes_read = MAX_INSN_SIZE - bytes_left;
		if (!bytes_read)
815 816 817
			return X86_BR_NONE;

		addr = buf;
818 819 820 821 822 823 824
	} else {
		/*
		 * The LBR logs any address in the IP, even if the IP just
		 * faulted. This means userspace can control the from address.
		 * Ensure we don't blindy read any address by validating it is
		 * a known text address.
		 */
825
		if (kernel_text_address(from)) {
826
			addr = (void *)from;
827 828 829 830 831 832 833 834 835
			/*
			 * Assume we can get the maximum possible size
			 * when grabbing kernel data.  This is not
			 * _strictly_ true since we could possibly be
			 * executing up next to a memory hole, but
			 * it is very unlikely to be a problem.
			 */
			bytes_read = MAX_INSN_SIZE;
		} else {
836
			return X86_BR_NONE;
837
		}
838
	}
839 840 841 842 843 844 845 846

	/*
	 * decoder needs to know the ABI especially
	 * on 64-bit systems running 32-bit apps
	 */
#ifdef CONFIG_X86_64
	is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
#endif
847
	insn_init(&insn, addr, bytes_read, is64);
848
	insn_get_opcode(&insn);
849 850
	if (!insn.opcode.got)
		return X86_BR_ABORT;
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885

	switch (insn.opcode.bytes[0]) {
	case 0xf:
		switch (insn.opcode.bytes[1]) {
		case 0x05: /* syscall */
		case 0x34: /* sysenter */
			ret = X86_BR_SYSCALL;
			break;
		case 0x07: /* sysret */
		case 0x35: /* sysexit */
			ret = X86_BR_SYSRET;
			break;
		case 0x80 ... 0x8f: /* conditional */
			ret = X86_BR_JCC;
			break;
		default:
			ret = X86_BR_NONE;
		}
		break;
	case 0x70 ... 0x7f: /* conditional */
		ret = X86_BR_JCC;
		break;
	case 0xc2: /* near ret */
	case 0xc3: /* near ret */
	case 0xca: /* far ret */
	case 0xcb: /* far ret */
		ret = X86_BR_RET;
		break;
	case 0xcf: /* iret */
		ret = X86_BR_IRET;
		break;
	case 0xcc ... 0xce: /* int */
		ret = X86_BR_INT;
		break;
	case 0xe8: /* call near rel */
886 887 888 889 890 891
		insn_get_immediate(&insn);
		if (insn.immediate1.value == 0) {
			/* zero length call */
			ret = X86_BR_ZERO_CALL;
			break;
		}
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	case 0x9a: /* call far absolute */
		ret = X86_BR_CALL;
		break;
	case 0xe0 ... 0xe3: /* loop jmp */
		ret = X86_BR_JCC;
		break;
	case 0xe9 ... 0xeb: /* jmp */
		ret = X86_BR_JMP;
		break;
	case 0xff: /* call near absolute, call far absolute ind */
		insn_get_modrm(&insn);
		ext = (insn.modrm.bytes[0] >> 3) & 0x7;
		switch (ext) {
		case 2: /* near ind call */
		case 3: /* far ind call */
			ret = X86_BR_IND_CALL;
			break;
		case 4:
		case 5:
911
			ret = X86_BR_IND_JMP;
912 913 914 915 916
			break;
		}
		break;
	default:
		ret = X86_BR_NONE;
917 918
	}
	/*
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
	 * interrupts, traps, faults (and thus ring transition) may
	 * occur on any instructions. Thus, to classify them correctly,
	 * we need to first look at the from and to priv levels. If they
	 * are different and to is in the kernel, then it indicates
	 * a ring transition. If the from instruction is not a ring
	 * transition instr (syscall, systenter, int), then it means
	 * it was a irq, trap or fault.
	 *
	 * we have no way of detecting kernel to kernel faults.
	 */
	if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
	    && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
		ret = X86_BR_IRQ;

	/*
	 * branch priv level determined by target as
	 * is done by HW when LBR_SELECT is implemented
936
	 */
937 938
	if (ret != X86_BR_NONE)
		ret |= to_plm;
939

940 941 942
	return ret;
}

J
Jin Yao 已提交
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
#define X86_BR_TYPE_MAP_MAX	16

static int branch_map[X86_BR_TYPE_MAP_MAX] = {
	PERF_BR_CALL,		/* X86_BR_CALL */
	PERF_BR_RET,		/* X86_BR_RET */
	PERF_BR_SYSCALL,	/* X86_BR_SYSCALL */
	PERF_BR_SYSRET,		/* X86_BR_SYSRET */
	PERF_BR_UNKNOWN,	/* X86_BR_INT */
	PERF_BR_UNKNOWN,	/* X86_BR_IRET */
	PERF_BR_COND,		/* X86_BR_JCC */
	PERF_BR_UNCOND,		/* X86_BR_JMP */
	PERF_BR_UNKNOWN,	/* X86_BR_IRQ */
	PERF_BR_IND_CALL,	/* X86_BR_IND_CALL */
	PERF_BR_UNKNOWN,	/* X86_BR_ABORT */
	PERF_BR_UNKNOWN,	/* X86_BR_IN_TX */
	PERF_BR_UNKNOWN,	/* X86_BR_NO_TX */
	PERF_BR_CALL,		/* X86_BR_ZERO_CALL */
	PERF_BR_UNKNOWN,	/* X86_BR_CALL_STACK */
	PERF_BR_IND,		/* X86_BR_IND_JMP */
};

static int
common_branch_type(int type)
{
	int i;

	type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */

	if (type) {
		i = __ffs(type);
		if (i < X86_BR_TYPE_MAP_MAX)
			return branch_map[i];
	}

	return PERF_BR_UNKNOWN;
}

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
/*
 * implement actual branch filter based on user demand.
 * Hardware may not exactly satisfy that request, thus
 * we need to inspect opcodes. Mismatched branches are
 * discarded. Therefore, the number of branches returned
 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
 */
static void
intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
{
	u64 from, to;
	int br_sel = cpuc->br_sel;
	int i, j, type;
	bool compress = false;

	/* if sampling all branches, then nothing to filter */
J
Jin Yao 已提交
996 997
	if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
	    ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
998 999 1000 1001 1002 1003 1004
		return;

	for (i = 0; i < cpuc->lbr_stack.nr; i++) {

		from = cpuc->lbr_entries[i].from;
		to = cpuc->lbr_entries[i].to;

1005 1006 1007 1008 1009 1010 1011
		type = branch_type(from, to, cpuc->lbr_entries[i].abort);
		if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
			if (cpuc->lbr_entries[i].in_tx)
				type |= X86_BR_IN_TX;
			else
				type |= X86_BR_NO_TX;
		}
1012 1013 1014 1015 1016 1017

		/* if type does not correspond, then discard */
		if (type == X86_BR_NONE || (br_sel & type) != type) {
			cpuc->lbr_entries[i].from = 0;
			compress = true;
		}
J
Jin Yao 已提交
1018 1019 1020

		if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
			cpuc->lbr_entries[i].type = common_branch_type(type);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	}

	if (!compress)
		return;

	/* remove all entries with from=0 */
	for (i = 0; i < cpuc->lbr_stack.nr; ) {
		if (!cpuc->lbr_entries[i].from) {
			j = i;
			while (++j < cpuc->lbr_stack.nr)
				cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
			cpuc->lbr_stack.nr--;
			if (!cpuc->lbr_entries[i].from)
				continue;
		}
		i++;
	}
1038 1039
}

1040 1041 1042
/*
 * Map interface branch filters onto LBR filters
 */
1043
static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1044 1045 1046 1047 1048 1049
	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_REL_JMP
						| LBR_IND_JMP | LBR_FAR,
1050 1051 1052
	/*
	 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
	 */
1053
	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1054 1055 1056 1057
	 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
	/*
	 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
	 */
1058 1059
	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
	[PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
1060
	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1061 1062
};

1063
static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1064 1065 1066 1067 1068 1069 1070 1071 1072
	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
						| LBR_FAR,
	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
1073
	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1074
	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1075 1076
};

1077
static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
						| LBR_FAR,
	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
						| LBR_RETURN | LBR_CALL_STACK,
1089
	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1090
	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1091 1092
};

1093
/* core */
1094
void __init intel_pmu_lbr_init_core(void)
1095 1096
{
	x86_pmu.lbr_nr     = 4;
1097 1098 1099
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1100

1101 1102 1103 1104
	/*
	 * SW branch filter usage:
	 * - compensate for lack of HW filter
	 */
1105 1106
}

1107
/* nehalem/westmere */
1108
void __init intel_pmu_lbr_init_nhm(void)
1109 1110
{
	x86_pmu.lbr_nr     = 16;
1111 1112 1113
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1114 1115 1116 1117

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;

1118 1119 1120 1121 1122 1123 1124
	/*
	 * SW branch filter usage:
	 * - workaround LBR_SEL errata (see above)
	 * - support syscall, sysret capture.
	 *   That requires LBR_FAR but that means far
	 *   jmp need to be filtered out
	 */
1125 1126
}

1127
/* sandy bridge */
1128
void __init intel_pmu_lbr_init_snb(void)
1129 1130 1131 1132 1133 1134 1135 1136 1137
{
	x86_pmu.lbr_nr	 = 16;
	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;

1138 1139 1140 1141 1142 1143
	/*
	 * SW branch filter usage:
	 * - support syscall, sysret capture.
	 *   That requires LBR_FAR but that means far
	 *   jmp need to be filtered out
	 */
1144 1145
}

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/* haswell */
void intel_pmu_lbr_init_hsw(void)
{
	x86_pmu.lbr_nr	 = 16;
	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1156 1157 1158

	if (lbr_from_signext_quirk_needed())
		static_branch_enable(&lbr_from_quirk_key);
1159 1160
}

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
/* skylake */
__init void intel_pmu_lbr_init_skl(void)
{
	x86_pmu.lbr_nr	 = 32;
	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;

	/*
	 * SW branch filter usage:
	 * - support syscall, sysret capture.
	 *   That requires LBR_FAR but that means far
	 *   jmp need to be filtered out
	 */
}

1180
/* atom */
1181
void __init intel_pmu_lbr_init_atom(void)
1182
{
1183 1184 1185 1186 1187
	/*
	 * only models starting at stepping 10 seems
	 * to have an operational LBR which can freeze
	 * on PMU interrupt
	 */
1188 1189
	if (boot_cpu_data.x86_model == 28
	    && boot_cpu_data.x86_mask < 10) {
1190 1191 1192 1193
		pr_cont("LBR disabled due to erratum");
		return;
	}

1194
	x86_pmu.lbr_nr	   = 8;
1195 1196 1197
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1198

1199 1200 1201 1202
	/*
	 * SW branch filter usage:
	 * - compensate for lack of HW filter
	 */
1203
}
1204

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
/* slm */
void __init intel_pmu_lbr_init_slm(void)
{
	x86_pmu.lbr_nr	   = 8;
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;

	/*
	 * SW branch filter usage:
	 * - compensate for lack of HW filter
	 */
	pr_cont("8-deep LBR, ");
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
/* Knights Landing */
void intel_pmu_lbr_init_knl(void)
{
	x86_pmu.lbr_nr	   = 8;
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
}