remoteproc_core.c 40.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Remote Processor Framework
 *
 * Copyright (C) 2011 Texas Instruments, Inc.
 * Copyright (C) 2011 Google, Inc.
 *
 * Ohad Ben-Cohen <ohad@wizery.com>
 * Brian Swetland <swetland@google.com>
 * Mark Grosen <mgrosen@ti.com>
 * Fernando Guzman Lugo <fernando.lugo@ti.com>
 * Suman Anna <s-anna@ti.com>
 * Robert Tivy <rtivy@ti.com>
 * Armando Uribe De Leon <x0095078@ti.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#define pr_fmt(fmt)    "%s: " fmt, __func__

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/string.h>
#include <linux/debugfs.h>
#include <linux/remoteproc.h>
#include <linux/iommu.h>
38
#include <linux/idr.h>
39
#include <linux/elf.h>
40
#include <linux/crc32.h>
41 42
#include <linux/virtio_ids.h>
#include <linux/virtio_ring.h>
43
#include <asm/byteorder.h>
44 45 46

#include "remoteproc_internal.h"

47 48 49
static DEFINE_MUTEX(rproc_list_mutex);
static LIST_HEAD(rproc_list);

50
typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
51
				struct resource_table *table, int len);
52 53
typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
				 void *, int offset, int avail);
54

55 56 57
/* Unique indices for remoteproc devices */
static DEFINE_IDA(rproc_dev_index);

58 59 60 61 62 63 64 65 66
static const char * const rproc_crash_names[] = {
	[RPROC_MMUFAULT]	= "mmufault",
};

/* translate rproc_crash_type to string */
static const char *rproc_crash_to_string(enum rproc_crash_type type)
{
	if (type < ARRAY_SIZE(rproc_crash_names))
		return rproc_crash_names[type];
67
	return "unknown";
68 69
}

70 71 72 73 74 75 76 77 78
/*
 * This is the IOMMU fault handler we register with the IOMMU API
 * (when relevant; not all remote processors access memory through
 * an IOMMU).
 *
 * IOMMU core will invoke this handler whenever the remote processor
 * will try to access an unmapped device address.
 */
static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
79
		unsigned long iova, int flags, void *token)
80
{
81 82
	struct rproc *rproc = token;

83 84
	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);

85 86
	rproc_report_crash(rproc, RPROC_MMUFAULT);

87 88
	/*
	 * Let the iommu core know we're not really handling this fault;
89
	 * we just used it as a recovery trigger.
90 91 92 93 94 95 96
	 */
	return -ENOSYS;
}

static int rproc_enable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain;
97
	struct device *dev = rproc->dev.parent;
98 99
	int ret;

100 101
	if (!rproc->has_iommu) {
		dev_dbg(dev, "iommu not present\n");
102
		return 0;
103 104 105 106 107 108 109 110
	}

	domain = iommu_domain_alloc(dev->bus);
	if (!domain) {
		dev_err(dev, "can't alloc iommu domain\n");
		return -ENOMEM;
	}

111
	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

	ret = iommu_attach_device(domain, dev);
	if (ret) {
		dev_err(dev, "can't attach iommu device: %d\n", ret);
		goto free_domain;
	}

	rproc->domain = domain;

	return 0;

free_domain:
	iommu_domain_free(domain);
	return ret;
}

static void rproc_disable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain = rproc->domain;
131
	struct device *dev = rproc->dev.parent;
132 133 134 135 136 137 138 139

	if (!domain)
		return;

	iommu_detach_device(domain, dev);
	iommu_domain_free(domain);
}

140 141 142 143 144 145
/**
 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
 * @rproc: handle of a remote processor
 * @da: remoteproc device address to translate
 * @len: length of the memory region @da is pointing to
 *
146 147
 * Some remote processors will ask us to allocate them physically contiguous
 * memory regions (which we call "carveouts"), and map them to specific
148 149 150
 * device addresses (which are hardcoded in the firmware). They may also have
 * dedicated memory regions internal to the processors, and use them either
 * exclusively or alongside carveouts.
151 152 153 154 155
 *
 * They may then ask us to copy objects into specific device addresses (e.g.
 * code/data sections) or expose us certain symbols in other device address
 * (e.g. their trace buffer).
 *
156 157 158 159 160 161 162
 * This function is a helper function with which we can go over the allocated
 * carveouts and translate specific device addresses to kernel virtual addresses
 * so we can access the referenced memory. This function also allows to perform
 * translations on the internal remoteproc memory regions through a platform
 * implementation specific da_to_va ops, if present.
 *
 * The function returns a valid kernel address on success or NULL on failure.
163 164 165
 *
 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 * but only on kernel direct mapped RAM memory. Instead, we're just using
166 167
 * here the output of the DMA API for the carveouts, which should be more
 * correct.
168
 */
169
void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
170 171 172 173
{
	struct rproc_mem_entry *carveout;
	void *ptr = NULL;

174 175 176 177 178 179
	if (rproc->ops->da_to_va) {
		ptr = rproc->ops->da_to_va(rproc, da, len);
		if (ptr)
			goto out;
	}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	list_for_each_entry(carveout, &rproc->carveouts, node) {
		int offset = da - carveout->da;

		/* try next carveout if da is too small */
		if (offset < 0)
			continue;

		/* try next carveout if da is too large */
		if (offset + len > carveout->len)
			continue;

		ptr = carveout->va + offset;

		break;
	}

196
out:
197 198
	return ptr;
}
199
EXPORT_SYMBOL(rproc_da_to_va);
200

201
int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
202
{
203
	struct rproc *rproc = rvdev->rproc;
204
	struct device *dev = &rproc->dev;
205
	struct rproc_vring *rvring = &rvdev->vring[i];
206
	struct fw_rsc_vdev *rsc;
207 208 209
	dma_addr_t dma;
	void *va;
	int ret, size, notifyid;
210

211
	/* actual size of vring (in bytes) */
212
	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
213 214 215 216 217

	/*
	 * Allocate non-cacheable memory for the vring. In the future
	 * this call will also configure the IOMMU for us
	 */
218
	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
219
	if (!va) {
220
		dev_err(dev->parent, "dma_alloc_coherent failed\n");
221 222 223
		return -EINVAL;
	}

224 225 226 227 228
	/*
	 * Assign an rproc-wide unique index for this vring
	 * TODO: assign a notifyid for rvdev updates as well
	 * TODO: support predefined notifyids (via resource table)
	 */
T
Tejun Heo 已提交
229
	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
230
	if (ret < 0) {
T
Tejun Heo 已提交
231
		dev_err(dev, "idr_alloc failed: %d\n", ret);
232
		dma_free_coherent(dev->parent, size, va, dma);
233 234
		return ret;
	}
T
Tejun Heo 已提交
235
	notifyid = ret;
236

237 238
	dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
				(unsigned long long)dma, size, notifyid);
239

240 241 242
	rvring->va = va;
	rvring->dma = dma;
	rvring->notifyid = notifyid;
243

244 245 246 247 248 249 250 251 252
	/*
	 * Let the rproc know the notifyid and da of this vring.
	 * Not all platforms use dma_alloc_coherent to automatically
	 * set up the iommu. In this case the device address (da) will
	 * hold the physical address and not the device address.
	 */
	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
	rsc->vring[i].da = dma;
	rsc->vring[i].notifyid = notifyid;
253 254 255
	return 0;
}

256 257
static int
rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
258 259
{
	struct rproc *rproc = rvdev->rproc;
260
	struct device *dev = &rproc->dev;
261 262
	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
	struct rproc_vring *rvring = &rvdev->vring[i];
263

264 265
	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
				i, vring->da, vring->num, vring->align);
266

267 268 269 270 271
	/* make sure reserved bytes are zeroes */
	if (vring->reserved) {
		dev_err(dev, "vring rsc has non zero reserved bytes\n");
		return -EINVAL;
	}
272

273 274 275 276 277
	/* verify queue size and vring alignment are sane */
	if (!vring->num || !vring->align) {
		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
						vring->num, vring->align);
		return -EINVAL;
278
	}
279 280 281 282 283 284 285 286 287 288 289 290

	rvring->len = vring->num;
	rvring->align = vring->align;
	rvring->rvdev = rvdev;

	return 0;
}

void rproc_free_vring(struct rproc_vring *rvring)
{
	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
	struct rproc *rproc = rvring->rvdev->rproc;
291 292
	int idx = rvring->rvdev->vring - rvring;
	struct fw_rsc_vdev *rsc;
293

294
	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
295
	idr_remove(&rproc->notifyids, rvring->notifyid);
296

297 298 299 300
	/* reset resource entry info */
	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
	rsc->vring[idx].da = 0;
	rsc->vring[idx].notifyid = -1;
301 302
}

303
/**
304
 * rproc_handle_vdev() - handle a vdev fw resource
305 306
 * @rproc: the remote processor
 * @rsc: the vring resource descriptor
307
 * @avail: size of available data (for sanity checking the image)
308
 *
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
 * This resource entry requests the host to statically register a virtio
 * device (vdev), and setup everything needed to support it. It contains
 * everything needed to make it possible: the virtio device id, virtio
 * device features, vrings information, virtio config space, etc...
 *
 * Before registering the vdev, the vrings are allocated from non-cacheable
 * physically contiguous memory. Currently we only support two vrings per
 * remote processor (temporary limitation). We might also want to consider
 * doing the vring allocation only later when ->find_vqs() is invoked, and
 * then release them upon ->del_vqs().
 *
 * Note: @da is currently not really handled correctly: we dynamically
 * allocate it using the DMA API, ignoring requested hard coded addresses,
 * and we don't take care of any required IOMMU programming. This is all
 * going to be taken care of when the generic iommu-based DMA API will be
 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 * use RSC_DEVMEM resource entries to map their required @da to the physical
 * address of their base CMA region (ouch, hacky!).
327 328 329
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
330
static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
331
							int offset, int avail)
332
{
333
	struct device *dev = &rproc->dev;
334 335
	struct rproc_vdev *rvdev;
	int i, ret;
336

337 338 339
	/* make sure resource isn't truncated */
	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
			+ rsc->config_len > avail) {
340
		dev_err(dev, "vdev rsc is truncated\n");
341 342 343
		return -EINVAL;
	}

344 345 346
	/* make sure reserved bytes are zeroes */
	if (rsc->reserved[0] || rsc->reserved[1]) {
		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
347 348 349
		return -EINVAL;
	}

350 351 352
	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);

353 354
	/* we currently support only two vrings per rvdev */
	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
355
		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
356 357 358
		return -EINVAL;
	}

359 360 361
	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
	if (!rvdev)
		return -ENOMEM;
362

363
	rvdev->rproc = rproc;
364

365
	/* parse the vrings */
366
	for (i = 0; i < rsc->num_of_vrings; i++) {
367
		ret = rproc_parse_vring(rvdev, rsc, i);
368
		if (ret)
369
			goto free_rvdev;
370
	}
371

372 373
	/* remember the resource offset*/
	rvdev->rsc_offset = offset;
374

375
	list_add_tail(&rvdev->node, &rproc->rvdevs);
376

377 378 379
	/* it is now safe to add the virtio device */
	ret = rproc_add_virtio_dev(rvdev, rsc->id);
	if (ret)
380
		goto remove_rvdev;
381 382

	return 0;
383

384 385
remove_rvdev:
	list_del(&rvdev->node);
386
free_rvdev:
387 388
	kfree(rvdev);
	return ret;
389 390 391 392 393 394
}

/**
 * rproc_handle_trace() - handle a shared trace buffer resource
 * @rproc: the remote processor
 * @rsc: the trace resource descriptor
395
 * @avail: size of available data (for sanity checking the image)
396 397 398 399 400 401 402 403 404 405 406
 *
 * In case the remote processor dumps trace logs into memory,
 * export it via debugfs.
 *
 * Currently, the 'da' member of @rsc should contain the device address
 * where the remote processor is dumping the traces. Later we could also
 * support dynamically allocating this address using the generic
 * DMA API (but currently there isn't a use case for that).
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
407
static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
408
							int offset, int avail)
409 410
{
	struct rproc_mem_entry *trace;
411
	struct device *dev = &rproc->dev;
412 413 414
	void *ptr;
	char name[15];

415
	if (sizeof(*rsc) > avail) {
416
		dev_err(dev, "trace rsc is truncated\n");
417 418 419 420 421 422 423 424 425
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "trace rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

426 427 428 429 430 431 432 433
	/* what's the kernel address of this resource ? */
	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
	if (!ptr) {
		dev_err(dev, "erroneous trace resource entry\n");
		return -EINVAL;
	}

	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
434
	if (!trace)
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
		return -ENOMEM;

	/* set the trace buffer dma properties */
	trace->len = rsc->len;
	trace->va = ptr;

	/* make sure snprintf always null terminates, even if truncating */
	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);

	/* create the debugfs entry */
	trace->priv = rproc_create_trace_file(name, rproc, trace);
	if (!trace->priv) {
		trace->va = NULL;
		kfree(trace);
		return -EINVAL;
	}

	list_add_tail(&trace->node, &rproc->traces);

	rproc->num_traces++;

456
	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
457 458 459 460 461 462 463 464 465
						rsc->da, rsc->len);

	return 0;
}

/**
 * rproc_handle_devmem() - handle devmem resource entry
 * @rproc: remote processor handle
 * @rsc: the devmem resource entry
466
 * @avail: size of available data (for sanity checking the image)
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
 *
 * Remote processors commonly need to access certain on-chip peripherals.
 *
 * Some of these remote processors access memory via an iommu device,
 * and might require us to configure their iommu before they can access
 * the on-chip peripherals they need.
 *
 * This resource entry is a request to map such a peripheral device.
 *
 * These devmem entries will contain the physical address of the device in
 * the 'pa' member. If a specific device address is expected, then 'da' will
 * contain it (currently this is the only use case supported). 'len' will
 * contain the size of the physical region we need to map.
 *
 * Currently we just "trust" those devmem entries to contain valid physical
 * addresses, but this is going to change: we want the implementations to
 * tell us ranges of physical addresses the firmware is allowed to request,
 * and not allow firmwares to request access to physical addresses that
 * are outside those ranges.
 */
487
static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
488
							int offset, int avail)
489 490
{
	struct rproc_mem_entry *mapping;
491
	struct device *dev = &rproc->dev;
492 493 494 495 496 497
	int ret;

	/* no point in handling this resource without a valid iommu domain */
	if (!rproc->domain)
		return -EINVAL;

498
	if (sizeof(*rsc) > avail) {
499
		dev_err(dev, "devmem rsc is truncated\n");
500 501 502 503 504
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
505
		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
506 507 508
		return -EINVAL;
	}

509
	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
510
	if (!mapping)
511 512 513 514
		return -ENOMEM;

	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
	if (ret) {
515
		dev_err(dev, "failed to map devmem: %d\n", ret);
516 517 518 519 520 521 522 523 524 525 526 527 528 529
		goto out;
	}

	/*
	 * We'll need this info later when we'll want to unmap everything
	 * (e.g. on shutdown).
	 *
	 * We can't trust the remote processor not to change the resource
	 * table, so we must maintain this info independently.
	 */
	mapping->da = rsc->da;
	mapping->len = rsc->len;
	list_add_tail(&mapping->node, &rproc->mappings);

530
	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
531 532 533 534 535 536 537 538 539 540 541 542 543
					rsc->pa, rsc->da, rsc->len);

	return 0;

out:
	kfree(mapping);
	return ret;
}

/**
 * rproc_handle_carveout() - handle phys contig memory allocation requests
 * @rproc: rproc handle
 * @rsc: the resource entry
544
 * @avail: size of available data (for image validation)
545 546 547 548 549 550 551 552 553 554 555 556 557
 *
 * This function will handle firmware requests for allocation of physically
 * contiguous memory regions.
 *
 * These request entries should come first in the firmware's resource table,
 * as other firmware entries might request placing other data objects inside
 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 *
 * Allocating memory this way helps utilizing the reserved physical memory
 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 * pressure is important; it may have a substantial impact on performance.
 */
558
static int rproc_handle_carveout(struct rproc *rproc,
559 560 561
						struct fw_rsc_carveout *rsc,
						int offset, int avail)

562 563
{
	struct rproc_mem_entry *carveout, *mapping;
564
	struct device *dev = &rproc->dev;
565 566 567 568
	dma_addr_t dma;
	void *va;
	int ret;

569
	if (sizeof(*rsc) > avail) {
570
		dev_err(dev, "carveout rsc is truncated\n");
571 572 573 574 575 576 577 578 579 580 581 582
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
			rsc->da, rsc->pa, rsc->len, rsc->flags);

583
	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
584
	if (!carveout)
585
		return -ENOMEM;
586

587
	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
588
	if (!va) {
589
		dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
590 591 592 593
		ret = -ENOMEM;
		goto free_carv;
	}

594 595
	dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
					(unsigned long long)dma, rsc->len);
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

	/*
	 * Ok, this is non-standard.
	 *
	 * Sometimes we can't rely on the generic iommu-based DMA API
	 * to dynamically allocate the device address and then set the IOMMU
	 * tables accordingly, because some remote processors might
	 * _require_ us to use hard coded device addresses that their
	 * firmware was compiled with.
	 *
	 * In this case, we must use the IOMMU API directly and map
	 * the memory to the device address as expected by the remote
	 * processor.
	 *
	 * Obviously such remote processor devices should not be configured
	 * to use the iommu-based DMA API: we expect 'dma' to contain the
	 * physical address in this case.
	 */
	if (rproc->domain) {
615 616 617 618 619 620 621
		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
		if (!mapping) {
			dev_err(dev, "kzalloc mapping failed\n");
			ret = -ENOMEM;
			goto dma_free;
		}

622 623 624 625
		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
								rsc->flags);
		if (ret) {
			dev_err(dev, "iommu_map failed: %d\n", ret);
626
			goto free_mapping;
627 628 629 630 631 632 633 634 635 636 637 638 639
		}

		/*
		 * We'll need this info later when we'll want to unmap
		 * everything (e.g. on shutdown).
		 *
		 * We can't trust the remote processor not to change the
		 * resource table, so we must maintain this info independently.
		 */
		mapping->da = rsc->da;
		mapping->len = rsc->len;
		list_add_tail(&mapping->node, &rproc->mappings);

640 641
		dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
					rsc->da, (unsigned long long)dma);
642 643
	}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
	/*
	 * Some remote processors might need to know the pa
	 * even though they are behind an IOMMU. E.g., OMAP4's
	 * remote M3 processor needs this so it can control
	 * on-chip hardware accelerators that are not behind
	 * the IOMMU, and therefor must know the pa.
	 *
	 * Generally we don't want to expose physical addresses
	 * if we don't have to (remote processors are generally
	 * _not_ trusted), so we might want to do this only for
	 * remote processor that _must_ have this (e.g. OMAP4's
	 * dual M3 subsystem).
	 *
	 * Non-IOMMU processors might also want to have this info.
	 * In this case, the device address and the physical address
	 * are the same.
	 */
	rsc->pa = dma;

663 664 665 666 667 668 669 670 671
	carveout->va = va;
	carveout->len = rsc->len;
	carveout->dma = dma;
	carveout->da = rsc->da;

	list_add_tail(&carveout->node, &rproc->carveouts);

	return 0;

672 673
free_mapping:
	kfree(mapping);
674
dma_free:
675
	dma_free_coherent(dev->parent, rsc->len, va, dma);
676 677 678 679 680
free_carv:
	kfree(carveout);
	return ret;
}

681
static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
682
			      int offset, int avail)
683 684 685 686 687 688 689
{
	/* Summarize the number of notification IDs */
	rproc->max_notifyid += rsc->num_of_vrings;

	return 0;
}

690 691 692 693
/*
 * A lookup table for resource handlers. The indices are defined in
 * enum fw_resource_type.
 */
694
static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
695 696 697
	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
698
	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
699 700
};

701 702 703 704
static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
};

705 706 707 708
static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = {
	[RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
};

709
/* handle firmware resource entries before booting the remote processor */
710
static int rproc_handle_resources(struct rproc *rproc, int len,
711
				  rproc_handle_resource_t handlers[RSC_LAST])
712
{
713
	struct device *dev = &rproc->dev;
714
	rproc_handle_resource_t handler;
715 716
	int ret = 0, i;

717 718 719
	for (i = 0; i < rproc->table_ptr->num; i++) {
		int offset = rproc->table_ptr->offset[i];
		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
720 721 722 723 724 725 726 727
		int avail = len - offset - sizeof(*hdr);
		void *rsc = (void *)hdr + sizeof(*hdr);

		/* make sure table isn't truncated */
		if (avail < 0) {
			dev_err(dev, "rsc table is truncated\n");
			return -EINVAL;
		}
728

729
		dev_dbg(dev, "rsc: type %d\n", hdr->type);
730

731 732
		if (hdr->type >= RSC_LAST) {
			dev_warn(dev, "unsupported resource %d\n", hdr->type);
733
			continue;
734 735
		}

736
		handler = handlers[hdr->type];
737 738 739
		if (!handler)
			continue;

740
		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
741
		if (ret)
742
			break;
743
	}
744 745 746 747 748 749 750 751 752

	return ret;
}

/**
 * rproc_resource_cleanup() - clean up and free all acquired resources
 * @rproc: rproc handle
 *
 * This function will free all resources acquired for @rproc, and it
753
 * is called whenever @rproc either shuts down or fails to boot.
754 755 756 757
 */
static void rproc_resource_cleanup(struct rproc *rproc)
{
	struct rproc_mem_entry *entry, *tmp;
758
	struct device *dev = &rproc->dev;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	/* clean up debugfs trace entries */
	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
		rproc_remove_trace_file(entry->priv);
		rproc->num_traces--;
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up iommu mapping entries */
	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
		size_t unmapped;

		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
		if (unmapped != entry->len) {
			/* nothing much to do besides complaining */
775
			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
776 777 778 779 780 781
								unmapped);
		}

		list_del(&entry->node);
		kfree(entry);
	}
782 783 784

	/* clean up carveout allocations */
	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
785 786
		dma_free_coherent(dev->parent, entry->len, entry->va,
				  entry->dma);
787 788 789
		list_del(&entry->node);
		kfree(entry);
	}
790 791 792 793 794 795 796
}

/*
 * take a firmware and boot a remote processor with it.
 */
static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
{
797
	struct device *dev = &rproc->dev;
798
	const char *name = rproc->firmware;
799
	struct resource_table *table, *loaded_table;
800
	int ret, tablesz;
801

802 803 804
	if (!rproc->table_ptr)
		return -ENOMEM;

805 806 807 808
	ret = rproc_fw_sanity_check(rproc, fw);
	if (ret)
		return ret;

809
	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
810 811 812 813 814 815 816 817 818 819 820

	/*
	 * if enabling an IOMMU isn't relevant for this rproc, this is
	 * just a nop
	 */
	ret = rproc_enable_iommu(rproc);
	if (ret) {
		dev_err(dev, "can't enable iommu: %d\n", ret);
		return ret;
	}

821
	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
822
	ret = -EINVAL;
823

824
	/* look for the resource table */
825
	table = rproc_find_rsc_table(rproc, fw, &tablesz);
826
	if (!table)
827 828
		goto clean_up;

829 830 831 832 833 834
	/* Verify that resource table in loaded fw is unchanged */
	if (rproc->table_csum != crc32(0, table, tablesz)) {
		dev_err(dev, "resource checksum failed, fw changed?\n");
		goto clean_up;
	}

835
	/* handle fw resources which are required to boot rproc */
836
	ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
837 838 839 840 841 842
	if (ret) {
		dev_err(dev, "Failed to process resources: %d\n", ret);
		goto clean_up;
	}

	/* load the ELF segments to memory */
843
	ret = rproc_load_segments(rproc, fw);
844 845 846 847 848
	if (ret) {
		dev_err(dev, "Failed to load program segments: %d\n", ret);
		goto clean_up;
	}

849 850 851 852 853 854 855 856
	/*
	 * The starting device has been given the rproc->cached_table as the
	 * resource table. The address of the vring along with the other
	 * allocated resources (carveouts etc) is stored in cached_table.
	 * In order to pass this information to the remote device we must
	 * copy this information to device memory.
	 */
	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
857 858
	if (!loaded_table) {
		ret = -EINVAL;
859
		goto clean_up;
860
	}
861 862 863

	memcpy(loaded_table, rproc->cached_table, tablesz);

864 865 866 867 868 869 870
	/* power up the remote processor */
	ret = rproc->ops->start(rproc);
	if (ret) {
		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
		goto clean_up;
	}

871 872 873 874 875 876 877
	/*
	 * Update table_ptr so that all subsequent vring allocations and
	 * virtio fields manipulation update the actual loaded resource table
	 * in device memory.
	 */
	rproc->table_ptr = loaded_table;

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
	rproc->state = RPROC_RUNNING;

	dev_info(dev, "remote processor %s is now up\n", rproc->name);

	return 0;

clean_up:
	rproc_resource_cleanup(rproc);
	rproc_disable_iommu(rproc);
	return ret;
}

/*
 * take a firmware and look for virtio devices to register.
 *
 * Note: this function is called asynchronously upon registration of the
 * remote processor (so we must wait until it completes before we try
 * to unregister the device. one other option is just to use kref here,
 * that might be cleaner).
 */
static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
{
	struct rproc *rproc = context;
901 902
	struct resource_table *table;
	int ret, tablesz;
903 904 905 906

	if (rproc_fw_sanity_check(rproc, fw) < 0)
		goto out;

907
	/* look for the resource table */
908
	table = rproc_find_rsc_table(rproc, fw,  &tablesz);
909 910 911
	if (!table)
		goto out;

912 913 914 915 916 917 918 919
	rproc->table_csum = crc32(0, table, tablesz);

	/*
	 * Create a copy of the resource table. When a virtio device starts
	 * and calls vring_new_virtqueue() the address of the allocated vring
	 * will be stored in the cached_table. Before the device is started,
	 * cached_table will be copied into devic memory.
	 */
920
	rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
921 922 923 924 925
	if (!rproc->cached_table)
		goto out;

	rproc->table_ptr = rproc->cached_table;

926 927
	/* count the number of notify-ids */
	rproc->max_notifyid = -1;
928 929
	ret = rproc_handle_resources(rproc, tablesz,
				     rproc_count_vrings_handler);
930
	if (ret)
931 932
		goto out;

933 934 935
	/* look for virtio devices and register them */
	ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);

936
out:
937
	release_firmware(fw);
938
	/* allow rproc_del() contexts, if any, to proceed */
939 940 941
	complete_all(&rproc->firmware_loading_complete);
}

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
static int rproc_add_virtio_devices(struct rproc *rproc)
{
	int ret;

	/* rproc_del() calls must wait until async loader completes */
	init_completion(&rproc->firmware_loading_complete);

	/*
	 * We must retrieve early virtio configuration info from
	 * the firmware (e.g. whether to register a virtio device,
	 * what virtio features does it support, ...).
	 *
	 * We're initiating an asynchronous firmware loading, so we can
	 * be built-in kernel code, without hanging the boot process.
	 */
	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
				      rproc->firmware, &rproc->dev, GFP_KERNEL,
				      rproc, rproc_fw_config_virtio);
	if (ret < 0) {
		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
		complete_all(&rproc->firmware_loading_complete);
	}

	return ret;
}

/**
 * rproc_trigger_recovery() - recover a remoteproc
 * @rproc: the remote processor
 *
 * The recovery is done by reseting all the virtio devices, that way all the
 * rpmsg drivers will be reseted along with the remote processor making the
 * remoteproc functional again.
 *
 * This function can sleep, so it cannot be called from atomic context.
 */
int rproc_trigger_recovery(struct rproc *rproc)
{
	struct rproc_vdev *rvdev, *rvtmp;

	dev_err(&rproc->dev, "recovering %s\n", rproc->name);

	init_completion(&rproc->crash_comp);

	/* clean up remote vdev entries */
	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
		rproc_remove_virtio_dev(rvdev);

	/* wait until there is no more rproc users */
	wait_for_completion(&rproc->crash_comp);

993 994 995
	/* Free the copy of the resource table */
	kfree(rproc->cached_table);

996 997 998
	return rproc_add_virtio_devices(rproc);
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
/**
 * rproc_crash_handler_work() - handle a crash
 *
 * This function needs to handle everything related to a crash, like cpu
 * registers and stack dump, information to help to debug the fatal error, etc.
 */
static void rproc_crash_handler_work(struct work_struct *work)
{
	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
	struct device *dev = &rproc->dev;

	dev_dbg(dev, "enter %s\n", __func__);

	mutex_lock(&rproc->lock);

	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
		/* handle only the first crash detected */
		mutex_unlock(&rproc->lock);
		return;
	}

	rproc->state = RPROC_CRASHED;
	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
		rproc->name);

	mutex_unlock(&rproc->lock);

1026 1027
	if (!rproc->recovery_disabled)
		rproc_trigger_recovery(rproc);
1028 1029
}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
/**
 * rproc_boot() - boot a remote processor
 * @rproc: handle of a remote processor
 *
 * Boot a remote processor (i.e. load its firmware, power it on, ...).
 *
 * If the remote processor is already powered on, this function immediately
 * returns (successfully).
 *
 * Returns 0 on success, and an appropriate error value otherwise.
 */
int rproc_boot(struct rproc *rproc)
{
	const struct firmware *firmware_p;
	struct device *dev;
	int ret;

	if (!rproc) {
		pr_err("invalid rproc handle\n");
		return -EINVAL;
	}

1052
	dev = &rproc->dev;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return ret;
	}

	/* loading a firmware is required */
	if (!rproc->firmware) {
		dev_err(dev, "%s: no firmware to load\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* prevent underlying implementation from being removed */
1068
	if (!try_module_get(dev->parent->driver->owner)) {
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		dev_err(dev, "%s: can't get owner\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* skip the boot process if rproc is already powered up */
	if (atomic_inc_return(&rproc->power) > 1) {
		ret = 0;
		goto unlock_mutex;
	}

	dev_info(dev, "powering up %s\n", rproc->name);

	/* load firmware */
	ret = request_firmware(&firmware_p, rproc->firmware, dev);
	if (ret < 0) {
		dev_err(dev, "request_firmware failed: %d\n", ret);
		goto downref_rproc;
	}

	ret = rproc_fw_boot(rproc, firmware_p);

	release_firmware(firmware_p);

downref_rproc:
	if (ret) {
1095
		module_put(dev->parent->driver->owner);
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
		atomic_dec(&rproc->power);
	}
unlock_mutex:
	mutex_unlock(&rproc->lock);
	return ret;
}
EXPORT_SYMBOL(rproc_boot);

/**
 * rproc_shutdown() - power off the remote processor
 * @rproc: the remote processor
 *
 * Power off a remote processor (previously booted with rproc_boot()).
 *
 * In case @rproc is still being used by an additional user(s), then
 * this function will just decrement the power refcount and exit,
 * without really powering off the device.
 *
 * Every call to rproc_boot() must (eventually) be accompanied by a call
 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
 *
 * Notes:
 * - we're not decrementing the rproc's refcount, only the power refcount.
 *   which means that the @rproc handle stays valid even after rproc_shutdown()
 *   returns, and users can still use it with a subsequent rproc_boot(), if
 *   needed.
 */
void rproc_shutdown(struct rproc *rproc)
{
1125
	struct device *dev = &rproc->dev;
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	int ret;

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return;
	}

	/* if the remote proc is still needed, bail out */
	if (!atomic_dec_and_test(&rproc->power))
		goto out;

	/* power off the remote processor */
	ret = rproc->ops->stop(rproc);
	if (ret) {
		atomic_inc(&rproc->power);
		dev_err(dev, "can't stop rproc: %d\n", ret);
		goto out;
	}

	/* clean up all acquired resources */
	rproc_resource_cleanup(rproc);

	rproc_disable_iommu(rproc);

1151 1152 1153
	/* Give the next start a clean resource table */
	rproc->table_ptr = rproc->cached_table;

1154 1155 1156 1157
	/* if in crash state, unlock crash handler */
	if (rproc->state == RPROC_CRASHED)
		complete_all(&rproc->crash_comp);

1158 1159 1160 1161 1162 1163 1164
	rproc->state = RPROC_OFFLINE;

	dev_info(dev, "stopped remote processor %s\n", rproc->name);

out:
	mutex_unlock(&rproc->lock);
	if (!ret)
1165
		module_put(dev->parent->driver->owner);
1166 1167 1168
}
EXPORT_SYMBOL(rproc_shutdown);

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
/**
 * rproc_get_by_phandle() - find a remote processor by phandle
 * @phandle: phandle to the rproc
 *
 * Finds an rproc handle using the remote processor's phandle, and then
 * return a handle to the rproc.
 *
 * This function increments the remote processor's refcount, so always
 * use rproc_put() to decrement it back once rproc isn't needed anymore.
 *
 * Returns the rproc handle on success, and NULL on failure.
 */
1181
#ifdef CONFIG_OF
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
struct rproc *rproc_get_by_phandle(phandle phandle)
{
	struct rproc *rproc = NULL, *r;
	struct device_node *np;

	np = of_find_node_by_phandle(phandle);
	if (!np)
		return NULL;

	mutex_lock(&rproc_list_mutex);
	list_for_each_entry(r, &rproc_list, node) {
		if (r->dev.parent && r->dev.parent->of_node == np) {
			rproc = r;
			get_device(&rproc->dev);
			break;
		}
	}
	mutex_unlock(&rproc_list_mutex);

	of_node_put(np);

	return rproc;
}
1205 1206 1207 1208 1209 1210
#else
struct rproc *rproc_get_by_phandle(phandle phandle)
{
	return NULL;
}
#endif
1211 1212
EXPORT_SYMBOL(rproc_get_by_phandle);

1213
/**
1214
 * rproc_add() - register a remote processor
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
 * @rproc: the remote processor handle to register
 *
 * Registers @rproc with the remoteproc framework, after it has been
 * allocated with rproc_alloc().
 *
 * This is called by the platform-specific rproc implementation, whenever
 * a new remote processor device is probed.
 *
 * Returns 0 on success and an appropriate error code otherwise.
 *
 * Note: this function initiates an asynchronous firmware loading
 * context, which will look for virtio devices supported by the rproc's
 * firmware.
 *
 * If found, those virtio devices will be created and added, so as a result
1230
 * of registering this remote processor, additional virtio drivers might be
1231 1232
 * probed.
 */
1233
int rproc_add(struct rproc *rproc)
1234
{
1235
	struct device *dev = &rproc->dev;
1236
	int ret;
1237

1238 1239 1240
	ret = device_add(dev);
	if (ret < 0)
		return ret;
1241

1242 1243 1244 1245 1246
	/* expose to rproc_get_by_phandle users */
	mutex_lock(&rproc_list_mutex);
	list_add(&rproc->node, &rproc_list);
	mutex_unlock(&rproc_list_mutex);

1247
	dev_info(dev, "%s is available\n", rproc->name);
1248

1249 1250 1251
	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");

1252 1253 1254
	/* create debugfs entries */
	rproc_create_debug_dir(rproc);

1255
	return rproc_add_virtio_devices(rproc);
1256
}
1257
EXPORT_SYMBOL(rproc_add);
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
/**
 * rproc_type_release() - release a remote processor instance
 * @dev: the rproc's device
 *
 * This function should _never_ be called directly.
 *
 * It will be called by the driver core when no one holds a valid pointer
 * to @dev anymore.
 */
static void rproc_type_release(struct device *dev)
{
	struct rproc *rproc = container_of(dev, struct rproc, dev);

1272 1273 1274 1275
	dev_info(&rproc->dev, "releasing %s\n", rproc->name);

	rproc_delete_debug_dir(rproc);

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	idr_destroy(&rproc->notifyids);

	if (rproc->index >= 0)
		ida_simple_remove(&rproc_dev_index, rproc->index);

	kfree(rproc);
}

static struct device_type rproc_type = {
	.name		= "remoteproc",
	.release	= rproc_type_release,
};
1288 1289 1290 1291 1292 1293

/**
 * rproc_alloc() - allocate a remote processor handle
 * @dev: the underlying device
 * @name: name of this remote processor
 * @ops: platform-specific handlers (mainly start/stop)
1294
 * @firmware: name of firmware file to load, can be NULL
1295 1296 1297
 * @len: length of private data needed by the rproc driver (in bytes)
 *
 * Allocates a new remote processor handle, but does not register
1298
 * it yet. if @firmware is NULL, a default name is used.
1299 1300 1301 1302 1303
 *
 * This function should be used by rproc implementations during initialization
 * of the remote processor.
 *
 * After creating an rproc handle using this function, and when ready,
1304
 * implementations should then call rproc_add() to complete
1305 1306 1307 1308 1309
 * the registration of the remote processor.
 *
 * On success the new rproc is returned, and on failure, NULL.
 *
 * Note: _never_ directly deallocate @rproc, even if it was not registered
1310
 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1311 1312 1313 1314 1315 1316
 */
struct rproc *rproc_alloc(struct device *dev, const char *name,
				const struct rproc_ops *ops,
				const char *firmware, int len)
{
	struct rproc *rproc;
1317 1318
	char *p, *template = "rproc-%s-fw";
	int name_len = 0;
1319 1320 1321 1322

	if (!dev || !name || !ops)
		return NULL;

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	if (!firmware)
		/*
		 * Make room for default firmware name (minus %s plus '\0').
		 * If the caller didn't pass in a firmware name then
		 * construct a default name.  We're already glomming 'len'
		 * bytes onto the end of the struct rproc allocation, so do
		 * a few more for the default firmware name (but only if
		 * the caller doesn't pass one).
		 */
		name_len = strlen(name) + strlen(template) - 2 + 1;

	rproc = kzalloc(sizeof(struct rproc) + len + name_len, GFP_KERNEL);
1335
	if (!rproc)
1336 1337
		return NULL;

1338 1339 1340 1341 1342 1343 1344 1345
	if (!firmware) {
		p = (char *)rproc + sizeof(struct rproc) + len;
		snprintf(p, name_len, template, name);
	} else {
		p = (char *)firmware;
	}

	rproc->firmware = p;
1346 1347 1348 1349
	rproc->name = name;
	rproc->ops = ops;
	rproc->priv = &rproc[1];

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	device_initialize(&rproc->dev);
	rproc->dev.parent = dev;
	rproc->dev.type = &rproc_type;

	/* Assign a unique device index and name */
	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
	if (rproc->index < 0) {
		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
		put_device(&rproc->dev);
		return NULL;
	}

	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);

1364 1365
	atomic_set(&rproc->power, 0);

1366 1367
	/* Set ELF as the default fw_ops handler */
	rproc->fw_ops = &rproc_elf_fw_ops;
1368 1369 1370

	mutex_init(&rproc->lock);

1371 1372
	idr_init(&rproc->notifyids);

1373 1374 1375
	INIT_LIST_HEAD(&rproc->carveouts);
	INIT_LIST_HEAD(&rproc->mappings);
	INIT_LIST_HEAD(&rproc->traces);
1376
	INIT_LIST_HEAD(&rproc->rvdevs);
1377

1378
	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1379
	init_completion(&rproc->crash_comp);
1380

1381 1382 1383 1384 1385 1386 1387
	rproc->state = RPROC_OFFLINE;

	return rproc;
}
EXPORT_SYMBOL(rproc_alloc);

/**
1388
 * rproc_put() - unroll rproc_alloc()
1389 1390
 * @rproc: the remote processor handle
 *
1391
 * This function decrements the rproc dev refcount.
1392
 *
1393 1394
 * If no one holds any reference to rproc anymore, then its refcount would
 * now drop to zero, and it would be freed.
1395
 */
1396
void rproc_put(struct rproc *rproc)
1397
{
1398
	put_device(&rproc->dev);
1399
}
1400
EXPORT_SYMBOL(rproc_put);
1401 1402

/**
1403
 * rproc_del() - unregister a remote processor
1404 1405 1406 1407
 * @rproc: rproc handle to unregister
 *
 * This function should be called when the platform specific rproc
 * implementation decides to remove the rproc device. it should
1408
 * _only_ be called if a previous invocation of rproc_add()
1409 1410
 * has completed successfully.
 *
1411
 * After rproc_del() returns, @rproc isn't freed yet, because
1412
 * of the outstanding reference created by rproc_alloc. To decrement that
1413
 * one last refcount, one still needs to call rproc_put().
1414 1415 1416
 *
 * Returns 0 on success and -EINVAL if @rproc isn't valid.
 */
1417
int rproc_del(struct rproc *rproc)
1418
{
1419
	struct rproc_vdev *rvdev, *tmp;
1420

1421 1422 1423 1424 1425 1426
	if (!rproc)
		return -EINVAL;

	/* if rproc is just being registered, wait */
	wait_for_completion(&rproc->firmware_loading_complete);

1427
	/* clean up remote vdev entries */
1428
	list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1429
		rproc_remove_virtio_dev(rvdev);
1430

1431 1432 1433
	/* Free the copy of the resource table */
	kfree(rproc->cached_table);

1434 1435 1436 1437 1438
	/* the rproc is downref'ed as soon as it's removed from the klist */
	mutex_lock(&rproc_list_mutex);
	list_del(&rproc->node);
	mutex_unlock(&rproc_list_mutex);

1439
	device_del(&rproc->dev);
1440 1441 1442

	return 0;
}
1443
EXPORT_SYMBOL(rproc_del);
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
/**
 * rproc_report_crash() - rproc crash reporter function
 * @rproc: remote processor
 * @type: crash type
 *
 * This function must be called every time a crash is detected by the low-level
 * drivers implementing a specific remoteproc. This should not be called from a
 * non-remoteproc driver.
 *
 * This function can be called from atomic/interrupt context.
 */
void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
{
	if (!rproc) {
		pr_err("NULL rproc pointer\n");
		return;
	}

	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
		rproc->name, rproc_crash_to_string(type));

	/* create a new task to handle the error */
	schedule_work(&rproc->crash_handler);
}
EXPORT_SYMBOL(rproc_report_crash);

1471 1472 1473
static int __init remoteproc_init(void)
{
	rproc_init_debugfs();
1474

1475 1476 1477 1478 1479 1480
	return 0;
}
module_init(remoteproc_init);

static void __exit remoteproc_exit(void)
{
1481 1482
	ida_destroy(&rproc_dev_index);

1483 1484 1485 1486 1487 1488
	rproc_exit_debugfs();
}
module_exit(remoteproc_exit);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Generic Remote Processor Framework");