i40e_txrx.c 91.0 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
G
Greg Rose 已提交
15 16
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
17 18 19 20 21 22 23 24 25 26
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

M
Mitch Williams 已提交
27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29
#include "i40e.h"
S
Scott Peterson 已提交
30
#include "i40e_trace.h"
31
#include "i40e_prototype.h"
32 33 34 35 36 37 38 39 40 41 42

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

43
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/**
 * i40e_fdir - Generate a Flow Director descriptor based on fdata
 * @tx_ring: Tx ring to send buffer on
 * @fdata: Flow director filter data
 * @add: Indicate if we are adding a rule or deleting one
 *
 **/
static void i40e_fdir(struct i40e_ring *tx_ring,
		      struct i40e_fdir_filter *fdata, bool add)
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	u32 flex_ptype, dtype_cmd;
	u16 i;

	/* grab the next descriptor */
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

75 76 77
	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	/* Use LAN VSI Id if not programmed by user */
	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

	dtype_cmd |= add ?
		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;

	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);

	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);

	if (fdata->cnt_index) {
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
			     ((u32)fdata->cnt_index <<
			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
	}

	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
	fdir_desc->rsvd = cpu_to_le32(0);
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
}

110
#define I40E_FD_CLEAN_DELAY 10
111 112
/**
 * i40e_program_fdir_filter - Program a Flow Director filter
113 114
 * @fdir_data: Packet data that will be filter parameters
 * @raw_packet: the pre-allocated packet buffer for FDir
115
 * @pf: The PF pointer
116 117
 * @add: True for add/update, False for remove
 **/
118 119 120
static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
				    u8 *raw_packet, struct i40e_pf *pf,
				    bool add)
121
{
122
	struct i40e_tx_buffer *tx_buf, *first;
123 124 125 126 127 128 129 130 131
	struct i40e_tx_desc *tx_desc;
	struct i40e_ring *tx_ring;
	struct i40e_vsi *vsi;
	struct device *dev;
	dma_addr_t dma;
	u32 td_cmd = 0;
	u16 i;

	/* find existing FDIR VSI */
132
	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
133 134 135
	if (!vsi)
		return -ENOENT;

136
	tx_ring = vsi->tx_rings[0];
137 138
	dev = tx_ring->dev;

139
	/* we need two descriptors to add/del a filter and we can wait */
140 141 142
	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
		if (!i)
			return -EAGAIN;
143
		msleep_interruptible(1);
144
	}
145

146 147
	dma = dma_map_single(dev, raw_packet,
			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
148 149 150 151
	if (dma_mapping_error(dev, dma))
		goto dma_fail;

	/* grab the next descriptor */
152
	i = tx_ring->next_to_use;
153
	first = &tx_ring->tx_bi[i];
154
	i40e_fdir(tx_ring, fdir_data, add);
155 156

	/* Now program a dummy descriptor */
157 158
	i = tx_ring->next_to_use;
	tx_desc = I40E_TX_DESC(tx_ring, i);
159
	tx_buf = &tx_ring->tx_bi[i];
160

161 162 163
	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;

	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
164

165
	/* record length, and DMA address */
166
	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
167 168
	dma_unmap_addr_set(tx_buf, dma, dma);

169
	tx_desc->buffer_addr = cpu_to_le64(dma);
170
	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
171

172 173 174
	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
	tx_buf->raw_buf = (void *)raw_packet;

175
	tx_desc->cmd_type_offset_bsz =
176
		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
177 178

	/* Force memory writes to complete before letting h/w
179
	 * know there are new descriptors to fetch.
180 181 182
	 */
	wmb();

183
	/* Mark the data descriptor to be watched */
184
	first->next_to_watch = tx_desc;
185

186 187 188 189 190 191 192
	writel(tx_ring->next_to_use, tx_ring->tail);
	return 0;

dma_fail:
	return -1;
}

193 194 195 196 197 198 199 200 201 202 203 204
#define IP_HEADER_OFFSET 14
#define I40E_UDPIP_DUMMY_PACKET_LEN 42
/**
 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
205
				   bool add)
206 207 208 209
{
	struct i40e_pf *pf = vsi->back;
	struct udphdr *udp;
	struct iphdr *ip;
210
	u8 *raw_packet;
211 212 213 214 215
	int ret;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

216 217 218
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
219 220 221 222 223 224
	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

225
	ip->daddr = fd_data->dst_ip;
226
	udp->dest = fd_data->dst_port;
227
	ip->saddr = fd_data->src_ip;
228 229
	udp->source = fd_data->src_port;

230 231 232 233 234 235 236 237
	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

238 239 240 241
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
242 243
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
244 245 246
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
247
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
248 249 250 251 252 253 254 255
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
256
	}
257

258 259 260 261 262
	if (add)
		pf->fd_udp4_filter_cnt++;
	else
		pf->fd_udp4_filter_cnt--;

263
	return 0;
264 265 266 267 268 269 270 271 272 273 274 275 276
}

#define I40E_TCPIP_DUMMY_PACKET_LEN 54
/**
 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
277
				   bool add)
278 279 280 281
{
	struct i40e_pf *pf = vsi->back;
	struct tcphdr *tcp;
	struct iphdr *ip;
282
	u8 *raw_packet;
283 284 285 286 287 288 289
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
		0x0, 0x72, 0, 0, 0, 0};

290 291 292
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
293 294 295 296 297 298
	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

299
	ip->daddr = fd_data->dst_ip;
300
	tcp->dest = fd_data->dst_port;
301
	ip->saddr = fd_data->src_ip;
302 303
	tcp->source = fd_data->src_port;

304 305 306 307 308 309 310 311
	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

312
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
313 314 315
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
316 317
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
318 319 320
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
321
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
322 323 324 325 326 327 328
		if (add)
			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
329 330
	}

331
	if (add) {
332
		pf->fd_tcp4_filter_cnt++;
333 334 335 336 337
		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
		    I40E_DEBUG_FD & pf->hw.debug_mask)
			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
		pf->hw_disabled_flags |= I40E_FLAG_FD_ATR_ENABLED;
	} else {
338 339
		pf->fd_tcp4_filter_cnt--;
		if (pf->fd_tcp4_filter_cnt == 0) {
340 341 342 343 344 345 346
			if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
			    I40E_DEBUG_FD & pf->hw.debug_mask)
				dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
			pf->hw_disabled_flags &= ~I40E_FLAG_FD_ATR_ENABLED;
		}
	}

347
	return 0;
348 349
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
/**
 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
				    struct i40e_fdir_filter *fd_data,
				    bool add)
{
	struct i40e_pf *pf = vsi->back;
	struct sctphdr *sctp;
	struct iphdr *ip;
	u8 *raw_packet;
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

	ip->daddr = fd_data->dst_ip;
	sctp->dest = fd_data->dst_port;
	ip->saddr = fd_data->src_ip;
	sctp->source = fd_data->src_port;

	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
	}

	if (add)
		pf->fd_sctp4_filter_cnt++;
	else
		pf->fd_sctp4_filter_cnt--;

	return 0;
}

424 425 426 427 428 429 430 431 432 433 434 435
#define I40E_IP_DUMMY_PACKET_LEN 34
/**
 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
				  struct i40e_fdir_filter *fd_data,
436
				  bool add)
437 438 439
{
	struct i40e_pf *pf = vsi->back;
	struct iphdr *ip;
440
	u8 *raw_packet;
441 442 443 444 445 446 447 448
	int ret;
	int i;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0};

	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
449 450 451 452 453 454
		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
		if (!raw_packet)
			return -ENOMEM;
		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);

455 456
		ip->saddr = fd_data->src_ip;
		ip->daddr = fd_data->dst_ip;
457 458
		ip->protocol = 0;

459 460 461 462 463 464 465 466
		if (fd_data->flex_filter) {
			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
			__be16 pattern = fd_data->flex_word;
			u16 off = fd_data->flex_offset;

			*((__force __be16 *)(payload + off)) = pattern;
		}

467 468 469 470
		fd_data->pctype = i;
		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
		if (ret) {
			dev_info(&pf->pdev->dev,
471 472
				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
				 fd_data->pctype, fd_data->fd_id, ret);
473 474 475 476 477
			/* The packet buffer wasn't added to the ring so we
			 * need to free it now.
			 */
			kfree(raw_packet);
			return -EOPNOTSUPP;
478
		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
479 480 481 482 483 484 485 486
			if (add)
				dev_info(&pf->pdev->dev,
					 "Filter OK for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
			else
				dev_info(&pf->pdev->dev,
					 "Filter deleted for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
487 488 489
		}
	}

490 491 492 493 494
	if (add)
		pf->fd_ip4_filter_cnt++;
	else
		pf->fd_ip4_filter_cnt--;

495
	return 0;
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
}

/**
 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 * @vsi: pointer to the targeted VSI
 * @cmd: command to get or set RX flow classification rules
 * @add: true adds a filter, false removes it
 *
 **/
int i40e_add_del_fdir(struct i40e_vsi *vsi,
		      struct i40e_fdir_filter *input, bool add)
{
	struct i40e_pf *pf = vsi->back;
	int ret;

	switch (input->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
513
		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
514 515
		break;
	case UDP_V4_FLOW:
516
		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
517
		break;
518 519 520
	case SCTP_V4_FLOW:
		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
		break;
521 522 523
	case IP_USER_FLOW:
		switch (input->ip4_proto) {
		case IPPROTO_TCP:
524
			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
525 526
			break;
		case IPPROTO_UDP:
527
			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
528
			break;
529 530 531
		case IPPROTO_SCTP:
			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
			break;
532
		case IPPROTO_IP:
533
			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
534
			break;
535 536
		default:
			/* We cannot support masking based on protocol */
537 538 539
			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
				 input->ip4_proto);
			return -EINVAL;
540 541 542
		}
		break;
	default:
543
		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
544
			 input->flow_type);
545
		return -EINVAL;
546 547
	}

548 549 550 551 552 553
	/* The buffer allocated here will be normally be freed by
	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
	 * completion. In the event of an error adding the buffer to the FDIR
	 * ring, it will immediately be freed. It may also be freed by
	 * i40e_clean_tx_ring() when closing the VSI.
	 */
554 555 556
	return ret;
}

557 558 559
/**
 * i40e_fd_handle_status - check the Programming Status for FD
 * @rx_ring: the Rx ring for this descriptor
560
 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
561 562 563 564 565
 * @prog_id: the id originally used for programming
 *
 * This is used to verify if the FD programming or invalidation
 * requested by SW to the HW is successful or not and take actions accordingly.
 **/
566 567
static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
				  union i40e_rx_desc *rx_desc, u8 prog_id)
568
{
569 570 571
	struct i40e_pf *pf = rx_ring->vsi->back;
	struct pci_dev *pdev = pf->pdev;
	u32 fcnt_prog, fcnt_avail;
572
	u32 error;
573
	u64 qw;
574

575
	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
576 577 578
	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;

579
	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
580
		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
581 582 583
		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
		    (I40E_DEBUG_FD & pf->hw.debug_mask))
			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
584
				 pf->fd_inv);
585

586 587 588 589 590 591 592 593 594
		/* Check if the programming error is for ATR.
		 * If so, auto disable ATR and set a state for
		 * flush in progress. Next time we come here if flush is in
		 * progress do nothing, once flush is complete the state will
		 * be cleared.
		 */
		if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
			return;

595 596 597 598
		pf->fd_add_err++;
		/* store the current atr filter count */
		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);

599
		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
600 601
		    (pf->hw_disabled_flags & I40E_FLAG_FD_SB_ENABLED)) {
			pf->hw_disabled_flags |= I40E_FLAG_FD_ATR_ENABLED;
602 603 604
			set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
		}

605
		/* filter programming failed most likely due to table full */
606
		fcnt_prog = i40e_get_global_fd_count(pf);
607
		fcnt_avail = pf->fdir_pf_filter_count;
608 609 610 611 612
		/* If ATR is running fcnt_prog can quickly change,
		 * if we are very close to full, it makes sense to disable
		 * FD ATR/SB and then re-enable it when there is room.
		 */
		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
613
			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
614
			    !(pf->hw_disabled_flags &
615
				     I40E_FLAG_FD_SB_ENABLED)) {
616 617
				if (I40E_DEBUG_FD & pf->hw.debug_mask)
					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
618
				pf->hw_disabled_flags |=
619 620 621
							I40E_FLAG_FD_SB_ENABLED;
			}
		}
622
	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
623
		if (I40E_DEBUG_FD & pf->hw.debug_mask)
624
			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
625
				 rx_desc->wb.qword0.hi_dword.fd_id);
626
	}
627 628 629
}

/**
A
Alexander Duyck 已提交
630
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
631 632 633
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
A
Alexander Duyck 已提交
634 635
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
636
{
A
Alexander Duyck 已提交
637
	if (tx_buffer->skb) {
638 639 640 641
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
		else
			dev_kfree_skb_any(tx_buffer->skb);
A
Alexander Duyck 已提交
642
		if (dma_unmap_len(tx_buffer, len))
643
			dma_unmap_single(ring->dev,
644 645
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
646
					 DMA_TO_DEVICE);
A
Alexander Duyck 已提交
647 648 649 650 651
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
652
	}
653

A
Alexander Duyck 已提交
654 655
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
656
	dma_unmap_len_set(tx_buffer, len, 0);
A
Alexander Duyck 已提交
657
	/* tx_buffer must be completely set up in the transmit path */
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
}

/**
 * i40e_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
A
Alexander Duyck 已提交
674 675
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
676 677 678 679 680 681 682 683 684

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
685 686 687 688 689

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
690
	netdev_tx_reset_queue(txring_txq(tx_ring));
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
}

/**
 * i40e_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40e_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40e_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

/**
 * i40e_get_tx_pending - how many tx descriptors not processed
 * @tx_ring: the ring of descriptors
 *
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
 **/
719
u32 i40e_get_tx_pending(struct i40e_ring *ring)
720
{
J
Jesse Brandeburg 已提交
721 722
	u32 head, tail;

723
	head = i40e_get_head(ring);
J
Jesse Brandeburg 已提交
724 725 726 727 728 729 730
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
731 732
}

733
#define WB_STRIDE 4
734

735 736
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
737 738 739
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
740 741 742
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
743 744
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
745 746 747
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
748
	struct i40e_tx_desc *tx_head;
749
	struct i40e_tx_desc *tx_desc;
750 751
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
752 753 754

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
755
	i -= tx_ring->count;
756

757 758
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

A
Alexander Duyck 已提交
759 760
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
761 762 763 764 765

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

A
Alexander Duyck 已提交
766 767 768
		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

S
Scott Peterson 已提交
769
		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
770 771
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
772 773
			break;

A
Alexander Duyck 已提交
774
		/* clear next_to_watch to prevent false hangs */
775 776
		tx_buf->next_to_watch = NULL;

A
Alexander Duyck 已提交
777 778 779
		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;
780

A
Alexander Duyck 已提交
781
		/* free the skb */
782
		napi_consume_skb(tx_buf->skb, napi_budget);
783

A
Alexander Duyck 已提交
784 785 786 787 788
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);
789

A
Alexander Duyck 已提交
790 791 792
		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);
793

A
Alexander Duyck 已提交
794 795
		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
S
Scott Peterson 已提交
796 797
			i40e_trace(clean_tx_irq_unmap,
				   tx_ring, tx_desc, tx_buf);
798 799 800 801

			tx_buf++;
			tx_desc++;
			i++;
A
Alexander Duyck 已提交
802 803
			if (unlikely(!i)) {
				i -= tx_ring->count;
804 805 806 807
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

A
Alexander Duyck 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

828 829
		prefetch(tx_desc);

A
Alexander Duyck 已提交
830 831 832 833 834
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
835
	tx_ring->next_to_clean = i;
836
	u64_stats_update_begin(&tx_ring->syncp);
837 838
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
839
	u64_stats_update_end(&tx_ring->syncp);
840 841
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;
A
Alexander Duyck 已提交
842

843 844 845 846 847 848
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
849
		unsigned int j = i40e_get_tx_pending(tx_ring);
850 851

		if (budget &&
852
		    ((j / WB_STRIDE) == 0) && (j > 0) &&
853
		    !test_bit(__I40E_DOWN, &vsi->state) &&
854 855 856
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}
857

858 859
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
860 861
				  total_packets, total_bytes);

862 863 864 865 866 867 868 869 870
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
871
		   !test_bit(__I40E_DOWN, &vsi->state)) {
872 873 874 875 876 877
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

878 879 880 881
	return !!budget;
}

/**
882
 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
883
 * @vsi: the VSI we care about
884
 * @q_vector: the vector on which to enable writeback
885 886
 *
 **/
887 888
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
889
{
890
	u16 flags = q_vector->tx.ring[0].flags;
891
	u32 val;
892

893 894
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;
895

896 897
	if (q_vector->arm_wb_state)
		return;
898

899 900 901
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
902

903 904 905 906 907 908
		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
		     val);
	} else {
		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
909

910 911 912 913 914 915 916 917 918 919 920 921 922 923
		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
	q_vector->arm_wb_state = true;
}

/**
 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
			  /* allow 00 to be written to the index */

		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
					 vsi->base_vector - 1), val);
	} else {
		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
			/* allow 00 to be written to the index */

		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
942 943 944 945 946 947
}

/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
948 949
 * Returns true if ITR changed, false if not
 *
950 951 952 953 954 955 956 957
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
958
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
959 960
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
961
	struct i40e_q_vector *qv = rc->ring->q_vector;
962 963
	u32 new_itr = rc->itr;
	int bytes_per_int;
964
	int usecs;
965 966

	if (rc->total_packets == 0 || !rc->itr)
967
		return false;
968 969

	/* simple throttlerate management
970
	 *   0-10MB/s   lowest (50000 ints/s)
971
	 *  10-20MB/s   low    (20000 ints/s)
972 973
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
974 975 976 977
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
978 979
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
980
	 */
981
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
982
	bytes_per_int = rc->total_bytes / usecs;
983

984
	switch (new_latency_range) {
985 986 987 988 989 990 991 992 993 994 995
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
996
	case I40E_ULTRA_LATENCY:
997 998 999
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
1000 1001
		break;
	}
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

1014
	rc->latency_range = new_latency_range;
1015 1016 1017

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
1018
		new_itr = I40E_ITR_50K;
1019 1020 1021 1022 1023
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
1024 1025 1026
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
1027 1028 1029 1030 1031 1032 1033 1034
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
1035 1036 1037 1038 1039 1040 1041

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
1042 1043
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
/**
 * i40e_rx_is_programming_status - check for programming status descriptor
 * @qw: qword representing status_error_len in CPU ordering
 *
 * The value of in the descriptor length field indicate if this
 * is a programming status descriptor for flow director or FCoE
 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
 * it is a packet descriptor.
 **/
static inline bool i40e_rx_is_programming_status(u64 qw)
{
	/* The Rx filter programming status and SPH bit occupy the same
	 * spot in the descriptor. Since we don't support packet split we
	 * can just reuse the bit as an indication that this is a
	 * programming status descriptor.
	 */
	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
}

1063 1064 1065 1066
/**
 * i40e_clean_programming_status - clean the programming status descriptor
 * @rx_ring: the rx ring that has this descriptor
 * @rx_desc: the rx descriptor written back by HW
1067
 * @qw: qword representing status_error_len in CPU ordering
1068 1069 1070 1071 1072 1073 1074
 *
 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 * status being successful or not and take actions accordingly. FCoE should
 * handle its context/filter programming/invalidation status and take actions.
 *
 **/
static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1075 1076
					  union i40e_rx_desc *rx_desc,
					  u64 qw)
1077
{
1078
	u32 ntc = rx_ring->next_to_clean + 1;
1079 1080
	u8 id;

1081 1082 1083 1084 1085 1086
	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

1087 1088 1089 1090
	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;

	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1091
		i40e_fd_handle_status(rx_ring, rx_desc, id);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
}

/**
 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

J
Jesse Brandeburg 已提交
1108 1109
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
1110 1111 1112 1113 1114 1115 1116
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1117 1118 1119 1120
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

1153 1154 1155 1156 1157
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

1158 1159
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
1160 1161 1162 1163 1164
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->page)
			continue;

1165 1166 1167 1168 1169 1170
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->dma,
					      rx_bi->page_offset,
1171
					      rx_ring->rx_buf_len,
1172 1173 1174 1175
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1176
				     i40e_rx_pg_size(rx_ring),
1177 1178
				     DMA_FROM_DEVICE,
				     I40E_RX_DMA_ATTR);
1179

1180
		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1181 1182 1183

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
1184 1185 1186 1187 1188 1189 1190 1191
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

1192
	rx_ring->next_to_alloc = 0;
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40e_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40e_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40e_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40e_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

J
Jesse Brandeburg 已提交
1227 1228
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
1229 1230 1231 1232 1233
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

1234
	u64_stats_init(&rx_ring->syncp);
1235

1236
	/* Round up to nearest 4K */
1237
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

1248
	rx_ring->next_to_alloc = 0;
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
1267 1268 1269 1270

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

1271 1272 1273 1274 1275 1276 1277 1278 1279
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
/**
 * i40e_rx_offset - Return expected offset into page to access data
 * @rx_ring: Ring we are requesting offset of
 *
 * Returns the offset value for ring into the data buffer.
 */
static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
{
	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
}

1291
/**
1292 1293 1294
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
1295
 *
1296 1297
 * Returns true if the page was successfully allocated or
 * reused.
1298
 **/
1299 1300
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
1301
{
1302 1303
	struct page *page = bi->page;
	dma_addr_t dma;
1304

1305 1306 1307 1308 1309
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
1310

1311
	/* alloc new page for storage */
1312
	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1313 1314 1315 1316
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
1317

1318
	/* map page for use */
1319
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1320
				 i40e_rx_pg_size(rx_ring),
1321 1322
				 DMA_FROM_DEVICE,
				 I40E_RX_DMA_ATTR);
1323

1324 1325
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
1326
	 */
1327
	if (dma_mapping_error(rx_ring->dev, dma)) {
1328
		__free_pages(page, i40e_rx_pg_order(rx_ring));
1329 1330
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
1331 1332
	}

1333 1334
	bi->dma = dma;
	bi->page = page;
1335
	bi->page_offset = i40e_rx_offset(rx_ring);
1336 1337

	/* initialize pagecnt_bias to 1 representing we fully own page */
1338
	bi->pagecnt_bias = 1;
1339

1340 1341
	return true;
}
1342

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1353

1354 1355 1356 1357 1358
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
1359 1360 1361
}

/**
1362
 * i40e_alloc_rx_buffers - Replace used receive buffers
1363 1364
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
1365
 *
1366
 * Returns false if all allocations were successful, true if any fail
1367
 **/
1368
bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1369
{
1370
	u16 ntu = rx_ring->next_to_use;
1371 1372 1373 1374 1375
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
1376
		return false;
1377

1378 1379
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
1380

1381 1382 1383
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
1384

1385 1386 1387
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
1388
						 rx_ring->rx_buf_len,
1389 1390
						 DMA_FROM_DEVICE);

1391 1392 1393 1394
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1395

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1413 1414 1415

	return false;

1416
no_buffers:
1417 1418
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1419 1420 1421 1422 1423

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
1424 1425 1426 1427 1428 1429
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
1430
 * @rx_desc: the receive descriptor
1431 1432 1433
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
1434
				    union i40e_rx_desc *rx_desc)
1435
{
1436 1437
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
1438
	bool ipv4, ipv6;
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
1449

1450 1451
	skb->ip_summed = CHECKSUM_NONE;

1452 1453
	skb_checksum_none_assert(skb);

1454
	/* Rx csum enabled and ip headers found? */
1455 1456 1457 1458
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
1459
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1460 1461 1462 1463
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
1464 1465
		return;

1466 1467 1468 1469
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1470 1471

	if (ipv4 &&
1472 1473
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1474 1475
		goto checksum_fail;

J
Jesse Brandeburg 已提交
1476
	/* likely incorrect csum if alternate IP extension headers found */
1477
	if (ipv6 &&
1478
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1479
		/* don't increment checksum err here, non-fatal err */
1480 1481
		return;

1482
	/* there was some L4 error, count error and punt packet to the stack */
1483
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1484 1485 1486 1487 1488 1489
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
1490
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1491 1492
		return;

1493 1494 1495
	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
1496
	 */
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
1510 1511 1512 1513 1514

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
1515 1516 1517
}

/**
1518
 * i40e_ptype_to_htype - get a hash type
1519 1520 1521 1522
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
1523
static inline int i40e_ptype_to_htype(u8 ptype)
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
1551
	const __le64 rss_mask =
1552 1553 1554
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

1555
	if (!(ring->netdev->features & NETIF_F_RXHASH))
1556 1557 1558 1559 1560 1561 1562 1563
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

1564
/**
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 **/
static inline
void i40e_process_skb_fields(struct i40e_ring *rx_ring,
			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			     u8 rx_ptype)
{
	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;
1583 1584
	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1585 1586
		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;

1587
	if (unlikely(tsynvalid))
1588
		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1589 1590 1591 1592 1593 1594

	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);

	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);

	skb_record_rx_queue(skb, rx_ring->queue_index);
1595 1596 1597

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
}

/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
{
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_bi[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
1642 1643 1644 1645
	new_buff->dma		= old_buff->dma;
	new_buff->page		= old_buff->page;
	new_buff->page_offset	= old_buff->page_offset;
	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1646 1647 1648
}

/**
1649
 * i40e_page_is_reusable - check if any reuse is possible
1650
 * @page: page struct to check
1651 1652 1653
 *
 * A page is not reusable if it was allocated under low memory
 * conditions, or it's not in the same NUMA node as this CPU.
1654
 */
1655
static inline bool i40e_page_is_reusable(struct page *page)
1656
{
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	return (page_to_nid(page) == numa_mem_id()) &&
		!page_is_pfmemalloc(page);
}

/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
1688
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1689
{
1690 1691
	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
	struct page *page = rx_buffer->page;
1692 1693 1694 1695 1696 1697 1698

	/* Is any reuse possible? */
	if (unlikely(!i40e_page_is_reusable(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
1699
	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1700 1701
		return false;
#else
1702 1703 1704
#define I40E_LAST_OFFSET \
	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1705 1706 1707
		return false;
#endif

1708 1709 1710 1711
	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
	 */
1712
	if (unlikely(!pagecnt_bias)) {
1713 1714 1715
		page_ref_add(page, USHRT_MAX);
		rx_buffer->pagecnt_bias = USHRT_MAX;
	}
1716

1717
	return true;
1718 1719 1720 1721 1722 1723 1724
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @skb: sk_buff to place the data into
1725
 * @size: packet length from rx_desc
1726 1727
 *
 * This function will add the data contained in rx_buffer->page to the skb.
1728
 * It will just attach the page as a frag to the skb.
1729
 *
1730
 * The function will then update the page offset.
1731
 **/
1732
static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1733
			     struct i40e_rx_buffer *rx_buffer,
1734 1735
			     struct sk_buff *skb,
			     unsigned int size)
1736 1737
{
#if (PAGE_SIZE < 8192)
1738
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1739
#else
1740
	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1741 1742
#endif

1743 1744
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
			rx_buffer->page_offset, size, truesize);
1745

1746 1747 1748 1749 1750 1751
	/* page is being used so we must update the page offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif
1752 1753
}

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
/**
 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
 * @rx_ring: rx descriptor ring to transact packets on
 * @size: size of buffer to add to skb
 *
 * This function will pull an Rx buffer from the ring and synchronize it
 * for use by the CPU.
 */
static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
						 const unsigned int size)
{
	struct i40e_rx_buffer *rx_buffer;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	prefetchw(rx_buffer->page);

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      size,
				      DMA_FROM_DEVICE);

1777 1778 1779
	/* We have pulled a buffer for use, so decrement pagecnt_bias */
	rx_buffer->pagecnt_bias--;

1780 1781 1782
	return rx_buffer;
}

1783
/**
1784
 * i40e_construct_skb - Allocate skb and populate it
1785
 * @rx_ring: rx descriptor ring to transact packets on
1786
 * @rx_buffer: rx buffer to pull data from
1787
 * @size: size of buffer to add to skb
1788
 *
1789 1790 1791
 * This function allocates an skb.  It then populates it with the page
 * data from the current receive descriptor, taking care to set up the
 * skb correctly.
1792
 */
1793 1794 1795
static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
					  struct i40e_rx_buffer *rx_buffer,
					  unsigned int size)
1796
{
1797 1798
	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
#if (PAGE_SIZE < 8192)
1799
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1800 1801 1802 1803 1804
#else
	unsigned int truesize = SKB_DATA_ALIGN(size);
#endif
	unsigned int headlen;
	struct sk_buff *skb;
1805

1806 1807
	/* prefetch first cache line of first page */
	prefetch(va);
1808
#if L1_CACHE_BYTES < 128
1809
	prefetch(va + L1_CACHE_BYTES);
1810 1811
#endif

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	/* allocate a skb to store the frags */
	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
			       I40E_RX_HDR_SIZE,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;

	/* Determine available headroom for copy */
	headlen = size;
	if (headlen > I40E_RX_HDR_SIZE)
		headlen = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1823

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	/* align pull length to size of long to optimize memcpy performance */
	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));

	/* update all of the pointers */
	size -= headlen;
	if (size) {
		skb_add_rx_frag(skb, 0, rx_buffer->page,
				rx_buffer->page_offset + headlen,
				size, truesize);

		/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
		rx_buffer->page_offset ^= truesize;
#else
		rx_buffer->page_offset += truesize;
#endif
	} else {
		/* buffer is unused, reset bias back to rx_buffer */
		rx_buffer->pagecnt_bias++;
	}
1844 1845 1846 1847

	return skb;
}

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
/**
 * i40e_build_skb - Build skb around an existing buffer
 * @rx_ring: Rx descriptor ring to transact packets on
 * @rx_buffer: Rx buffer to pull data from
 * @size: size of buffer to add to skb
 *
 * This function builds an skb around an existing Rx buffer, taking care
 * to set up the skb correctly and avoid any memcpy overhead.
 */
static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
				      struct i40e_rx_buffer *rx_buffer,
				      unsigned int size)
{
	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
#if (PAGE_SIZE < 8192)
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
#else
	unsigned int truesize = SKB_DATA_ALIGN(size);
#endif
	struct sk_buff *skb;

	/* prefetch first cache line of first page */
	prefetch(va);
#if L1_CACHE_BYTES < 128
	prefetch(va + L1_CACHE_BYTES);
#endif
	/* build an skb around the page buffer */
	skb = build_skb(va - I40E_SKB_PAD, truesize);
	if (unlikely(!skb))
		return NULL;

	/* update pointers within the skb to store the data */
	skb_reserve(skb, I40E_SKB_PAD);
	__skb_put(skb, size);

	/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif

	return skb;
}

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
/**
 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: rx buffer to pull data from
 *
 * This function will clean up the contents of the rx_buffer.  It will
 * either recycle the bufer or unmap it and free the associated resources.
 */
static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *rx_buffer)
{
	if (i40e_can_reuse_rx_page(rx_buffer)) {
1905 1906 1907 1908 1909
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
1910 1911
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
				     i40e_rx_pg_size(rx_ring),
1912
				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1913 1914
		__page_frag_cache_drain(rx_buffer->page,
					rx_buffer->pagecnt_bias);
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
1931
 **/
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

/**
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 **/
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1967 1968
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1969
	struct sk_buff *skb = rx_ring->skb;
1970
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1971
	bool failure = false;
1972

1973
	while (likely(total_rx_packets < budget)) {
1974
		struct i40e_rx_buffer *rx_buffer;
1975
		union i40e_rx_desc *rx_desc;
1976
		unsigned int size;
1977
		u16 vlan_tag;
1978 1979 1980
		u8 rx_ptype;
		u64 qword;

1981 1982
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1983
			failure = failure ||
1984
				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1985 1986 1987
			cleaned_count = 0;
		}

1988 1989 1990 1991 1992
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
1993
		 * hardware wrote DD then the length will be non-zero
1994
		 */
1995
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1996

1997
		/* This memory barrier is needed to keep us from reading
1998 1999
		 * any other fields out of the rx_desc until we have
		 * verified the descriptor has been written back.
2000
		 */
2001
		dma_rmb();
2002

2003 2004 2005 2006 2007 2008 2009 2010 2011
		if (unlikely(i40e_rx_is_programming_status(qword))) {
			i40e_clean_programming_status(rx_ring, rx_desc, qword);
			continue;
		}
		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		if (!size)
			break;

S
Scott Peterson 已提交
2012
		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2013 2014
		rx_buffer = i40e_get_rx_buffer(rx_ring, size);

2015 2016 2017
		/* retrieve a buffer from the ring */
		if (skb)
			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2018 2019
		else if (ring_uses_build_skb(rx_ring))
			skb = i40e_build_skb(rx_ring, rx_buffer, size);
2020 2021 2022 2023 2024 2025 2026
		else
			skb = i40e_construct_skb(rx_ring, rx_buffer, size);

		/* exit if we failed to retrieve a buffer */
		if (!skb) {
			rx_ring->rx_stats.alloc_buff_failed++;
			rx_buffer->pagecnt_bias++;
2027
			break;
2028
		}
2029

2030
		i40e_put_rx_buffer(rx_ring, rx_buffer);
2031 2032
		cleaned_count++;

2033
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2034 2035
			continue;

2036 2037 2038 2039 2040 2041
		/* ERR_MASK will only have valid bits if EOP set, and
		 * what we are doing here is actually checking
		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
		 * the error field
		 */
		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
2042
			dev_kfree_skb_any(skb);
2043
			skb = NULL;
2044 2045 2046
			continue;
		}

2047 2048
		if (i40e_cleanup_headers(rx_ring, skb)) {
			skb = NULL;
2049
			continue;
2050
		}
2051 2052 2053 2054

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

2055 2056 2057 2058
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;

2059 2060
		/* populate checksum, VLAN, and protocol */
		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2061

2062 2063 2064
		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

S
Scott Peterson 已提交
2065
		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2066
		i40e_receive_skb(rx_ring, skb, vlan_tag);
2067
		skb = NULL;
2068

2069 2070 2071
		/* update budget accounting */
		total_rx_packets++;
	}
2072

2073 2074
	rx_ring->skb = skb;

2075
	u64_stats_update_begin(&rx_ring->syncp);
2076 2077
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
2078
	u64_stats_update_end(&rx_ring->syncp);
2079 2080 2081
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

2082
	/* guarantee a trip back through this routine if there was a failure */
2083
	return failure ? budget : total_rx_packets;
2084 2085
}

2086 2087 2088 2089 2090
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2091 2092 2093
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
2094 2095 2096 2097 2098 2099 2100 2101
	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_PFINT_DYN_CTLN
2102
static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
2103
{
2104
	return vsi->rx_rings[idx]->rx_itr_setting;
2105 2106
}

2107
static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
2108
{
2109
	return vsi->tx_rings[idx]->tx_itr_setting;
2110
}
2111

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
2122 2123
	bool rx = false, tx = false;
	u32 rxval, txval;
2124
	int vector;
2125
	int idx = q_vector->v_idx;
2126
	int rx_itr_setting, tx_itr_setting;
2127 2128

	vector = (q_vector->v_idx + vsi->base_vector);
2129

2130 2131 2132
	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
2133 2134
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

2135 2136
	rx_itr_setting = get_rx_itr(vsi, idx);
	tx_itr_setting = get_tx_itr(vsi, idx);
2137

2138
	if (q_vector->itr_countdown > 0 ||
2139 2140
	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
2141 2142 2143
		goto enable_int;
	}

2144
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2145 2146
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
2147
	}
2148

2149
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2150 2151
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
2152
	}
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180

	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
	}

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

2181
enable_int:
2182 2183
	if (!test_bit(__I40E_DOWN, &vsi->state))
		wr32(hw, INTREG(vector - 1), txval);
2184 2185 2186 2187 2188

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2189 2190
}

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
/**
 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40e_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
2205
	struct i40e_ring *ring;
2206
	bool clean_complete = true;
2207
	bool arm_wb = false;
2208
	int budget_per_ring;
2209
	int work_done = 0;
2210 2211 2212 2213 2214 2215

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

2216 2217 2218
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
2219
	i40e_for_each_ring(ring, q_vector->tx) {
2220
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2221 2222 2223 2224
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
2225
		ring->arm_wb = false;
2226
	}
2227

2228 2229 2230 2231
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

2232 2233 2234 2235
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2236

2237
	i40e_for_each_ring(ring, q_vector->rx) {
2238
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2239 2240

		work_done += cleaned;
2241 2242 2243
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
2244
	}
2245 2246

	/* If work not completed, return budget and polling will return */
2247
	if (!clean_complete) {
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
		const cpumask_t *aff_mask = &q_vector->affinity_mask;
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
		if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
			   !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
2260
tx_only:
2261 2262 2263 2264 2265
			if (arm_wb) {
				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
				i40e_enable_wb_on_itr(vsi, q_vector);
			}
			return budget;
2266
		}
2267
	}
2268

2269 2270 2271
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

2272
	/* Work is done so exit the polling mode and re-enable the interrupt */
2273
	napi_complete_done(napi, work_done);
2274 2275 2276 2277 2278 2279 2280 2281

	/* If we're prematurely stopping polling to fix the interrupt
	 * affinity we want to make sure polling starts back up so we
	 * issue a call to i40e_force_wb which triggers a SW interrupt.
	 */
	if (!clean_complete)
		i40e_force_wb(vsi, q_vector);
	else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
2282
		i40e_irq_dynamic_enable_icr0(vsi->back, false);
2283 2284 2285
	else
		i40e_update_enable_itr(vsi, q_vector);

2286
	return min(work_done, budget - 1);
2287 2288 2289 2290 2291 2292
}

/**
 * i40e_atr - Add a Flow Director ATR filter
 * @tx_ring:  ring to add programming descriptor to
 * @skb:      send buffer
2293
 * @tx_flags: send tx flags
2294 2295
 **/
static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2296
		     u32 tx_flags)
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	union {
		unsigned char *network;
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	struct tcphdr *th;
	unsigned int hlen;
	u32 flex_ptype, dtype_cmd;
2308
	int l4_proto;
2309
	u16 i;
2310 2311

	/* make sure ATR is enabled */
J
Jesse Brandeburg 已提交
2312
	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2313 2314
		return;

2315
	if ((pf->hw_disabled_flags & I40E_FLAG_FD_ATR_ENABLED))
2316 2317
		return;

2318 2319 2320 2321
	/* if sampling is disabled do nothing */
	if (!tx_ring->atr_sample_rate)
		return;

2322
	/* Currently only IPv4/IPv6 with TCP is supported */
2323 2324
	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
		return;
2325

2326 2327 2328
	/* snag network header to get L4 type and address */
	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
		      skb_inner_network_header(skb) : skb_network_header(skb);
2329

2330 2331 2332 2333
	/* Note: tx_flags gets modified to reflect inner protocols in
	 * tx_enable_csum function if encap is enabled.
	 */
	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2334
		/* access ihl as u8 to avoid unaligned access on ia64 */
2335 2336
		hlen = (hdr.network[0] & 0x0F) << 2;
		l4_proto = hdr.ipv4->protocol;
2337
	} else {
2338 2339 2340
		hlen = hdr.network - skb->data;
		l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
		hlen -= hdr.network - skb->data;
2341 2342
	}

2343
	if (l4_proto != IPPROTO_TCP)
2344 2345
		return;

2346 2347
	th = (struct tcphdr *)(hdr.network + hlen);

2348
	/* Due to lack of space, no more new filters can be programmed */
2349
	if (th->syn && (pf->hw_disabled_flags & I40E_FLAG_FD_ATR_ENABLED))
2350
		return;
2351
	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) {
2352 2353 2354 2355 2356 2357
		/* HW ATR eviction will take care of removing filters on FIN
		 * and RST packets.
		 */
		if (th->fin || th->rst)
			return;
	}
2358 2359 2360

	tx_ring->atr_count++;

2361 2362 2363 2364 2365
	/* sample on all syn/fin/rst packets or once every atr sample rate */
	if (!th->fin &&
	    !th->syn &&
	    !th->rst &&
	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2366 2367 2368 2369 2370
		return;

	tx_ring->atr_count = 0;

	/* grab the next descriptor */
2371 2372 2373 2374 2375
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2376 2377 2378

	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2379
	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2380 2381 2382 2383 2384 2385 2386 2387 2388
		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

2389
	dtype_cmd |= (th->fin || th->rst) ?
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
		     I40E_TXD_FLTR_QW1_DEST_SHIFT;

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;

2401
	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2402
	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2403 2404 2405 2406 2407 2408 2409 2410 2411
		dtype_cmd |=
			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
	else
		dtype_cmd |=
			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2412

2413
	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)
2414 2415
		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;

2416
	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
J
Jesse Brandeburg 已提交
2417
	fdir_desc->rsvd = cpu_to_le32(0);
2418
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
J
Jesse Brandeburg 已提交
2419
	fdir_desc->fd_id = cpu_to_le32(0);
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
}

/**
 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
2434 2435 2436
static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
					     struct i40e_ring *tx_ring,
					     u32 *flags)
2437 2438 2439 2440
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

2454
	/* if we have a HW VLAN tag being added, default to the HW one */
2455 2456
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2457 2458
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
2459
	} else if (protocol == htons(ETH_P_8021Q)) {
2460
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
2461

2462 2463 2464 2465 2466 2467 2468 2469 2470
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

2471 2472 2473
	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
		goto out;

2474
	/* Insert 802.1p priority into VLAN header */
2475 2476
	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
	    (skb->priority != TC_PRIO_CONTROL)) {
2477 2478 2479 2480 2481
		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
		tx_flags |= (skb->priority & 0x7) <<
				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
			struct vlan_ethhdr *vhdr;
2482 2483 2484 2485 2486
			int rc;

			rc = skb_cow_head(skb, 0);
			if (rc < 0)
				return rc;
2487 2488 2489 2490 2491 2492 2493
			vhdr = (struct vlan_ethhdr *)skb->data;
			vhdr->h_vlan_TCI = htons(tx_flags >>
						 I40E_TX_FLAGS_VLAN_SHIFT);
		} else {
			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
		}
	}
2494 2495

out:
2496 2497 2498 2499 2500 2501
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
2502
 * @first:    pointer to first Tx buffer for xmit
2503
 * @hdr_len:  ptr to the size of the packet header
2504
 * @cd_type_cmd_tso_mss: Quad Word 1
2505 2506 2507
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
2508 2509
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
2510
{
2511
	struct sk_buff *skb = first->skb;
2512
	u64 cd_cmd, cd_tso_len, cd_mss;
2513 2514 2515 2516 2517
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
2518 2519
	union {
		struct tcphdr *tcp;
2520
		struct udphdr *udp;
2521 2522 2523
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
2524
	u16 gso_segs, gso_size;
2525 2526
	int err;

2527 2528 2529
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2530 2531 2532
	if (!skb_is_gso(skb))
		return 0;

2533 2534 2535
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
2536

2537 2538
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2539

2540 2541 2542 2543
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
2544
	} else {
2545 2546 2547
		ip.v6->payload_len = 0;
	}

2548
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2549
					 SKB_GSO_GRE_CSUM |
2550
					 SKB_GSO_IPXIP4 |
2551
					 SKB_GSO_IPXIP6 |
2552
					 SKB_GSO_UDP_TUNNEL |
2553
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2554 2555 2556 2557
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

2558 2559 2560 2561
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
2562
			paylen = skb->len - l4_offset;
2563 2564
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
2565 2566
		}

2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
2578 2579
	}

2580 2581 2582 2583
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
2584
	paylen = skb->len - l4_offset;
2585
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2586 2587 2588

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2589

2590 2591 2592 2593 2594 2595 2596 2597
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

2598 2599 2600
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
2601
	cd_mss = gso_size;
2602 2603 2604
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2605 2606 2607
	return 1;
}

J
Jacob Keller 已提交
2608 2609 2610 2611 2612
/**
 * i40e_tsyn - set up the tsyn context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @tx_flags: the collected send information
2613
 * @cd_type_cmd_tso_mss: Quad Word 1
J
Jacob Keller 已提交
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
 *
 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
 **/
static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
{
	struct i40e_pf *pf;

	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
		return 0;

	/* Tx timestamps cannot be sampled when doing TSO */
	if (tx_flags & I40E_TX_FLAGS_TSO)
		return 0;

	/* only timestamp the outbound packet if the user has requested it and
	 * we are not already transmitting a packet to be timestamped
	 */
	pf = i40e_netdev_to_pf(tx_ring->netdev);
2633 2634 2635
	if (!(pf->flags & I40E_FLAG_PTP))
		return 0;

2636 2637
	if (pf->ptp_tx &&
	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
J
Jacob Keller 已提交
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
		pf->ptp_tx_skb = skb_get(skb);
	} else {
		return 0;
	}

	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
				I40E_TXD_CTX_QW1_CMD_SHIFT;

	return 1;
}

2650 2651 2652
/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
2653
 * @tx_flags: pointer to Tx flags currently set
2654 2655
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
2656
 * @tx_ring: Tx descriptor ring
2657 2658
 * @cd_tunneling: ptr to context desc bits
 **/
2659 2660 2661 2662
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
2663
{
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
2674
	unsigned char *exthdr;
2675
	u32 offset, cmd = 0;
2676
	__be16 frag_off;
2677 2678
	u8 l4_proto = 0;

2679 2680 2681
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2682 2683
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2684

2685 2686 2687
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

2688
	if (skb->encapsulation) {
2689
		u32 tunnel = 0;
2690 2691
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2692 2693 2694 2695
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

2696 2697
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2698
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2699 2700

			exthdr = ip.hdr + sizeof(*ip.v6);
2701
			l4_proto = ip.v6->nexthdr;
2702 2703 2704
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
2705 2706 2707 2708
		}

		/* define outer transport */
		switch (l4_proto) {
2709
		case IPPROTO_UDP:
2710
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2711
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2712
			break;
2713
		case IPPROTO_GRE:
2714
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2715
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2716
			break;
2717 2718 2719 2720 2721
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
2722
		default:
2723 2724 2725 2726 2727
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
2728
		}
2729

2730 2731 2732 2733 2734 2735 2736
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

2737 2738 2739 2740
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

2741 2742
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2743
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2744 2745 2746
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

2747 2748 2749
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

2750 2751
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
2752
		l4_proto = 0;
2753

2754 2755 2756 2757 2758
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
2759
			*tx_flags |= I40E_TX_FLAGS_IPV6;
2760 2761 2762
	}

	/* Enable IP checksum offloads */
2763
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2764
		l4_proto = ip.v4->protocol;
2765 2766 2767
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
2768 2769 2770
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
2771
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2772
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2773 2774 2775 2776 2777 2778

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
2779
	}
2780

2781 2782
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2783 2784

	/* Enable L4 checksum offloads */
2785
	switch (l4_proto) {
2786 2787
	case IPPROTO_TCP:
		/* enable checksum offloads */
2788 2789
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2790 2791 2792
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
2793 2794 2795
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2796 2797 2798
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
2799 2800 2801
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2802 2803
		break;
	default:
2804 2805 2806 2807
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
2808
	}
2809 2810 2811

	*td_cmd |= cmd;
	*td_offset |= offset;
2812 2813

	return 1;
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
2828
	int i = tx_ring->next_to_use;
2829

2830 2831
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
2832 2833 2834
		return;

	/* grab the next descriptor */
2835 2836 2837 2838
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2839 2840 2841 2842

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2843
	context_desc->rsvd = cpu_to_le16(0);
2844 2845 2846
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

E
Eric Dumazet 已提交
2847 2848 2849 2850 2851 2852 2853
/**
 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
2854
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
E
Eric Dumazet 已提交
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

2870
/**
2871
 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2872 2873
 * @skb:      send buffer
 *
2874 2875 2876 2877 2878 2879 2880 2881
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
2882
 **/
2883
bool __i40e_chk_linearize(struct sk_buff *skb)
2884
{
2885
	const struct skb_frag_struct *frag, *stale;
2886
	int nr_frags, sum;
2887

2888
	/* no need to check if number of frags is less than 7 */
2889
	nr_frags = skb_shinfo(skb)->nr_frags;
2890
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2891
		return false;
2892

2893
	/* We need to walk through the list and validate that each group
2894
	 * of 6 fragments totals at least gso_size.
2895
	 */
2896
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2897 2898 2899 2900 2901 2902 2903 2904
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
2905
	sum = 1 - skb_shinfo(skb)->gso_size;
2906

2907 2908 2909 2910 2911 2912
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
2913 2914 2915 2916 2917 2918

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
2919
		sum += skb_frag_size(frag++);
2920 2921 2922 2923 2924

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

2925
		if (!nr_frags--)
2926 2927
			break;

2928
		sum -= skb_frag_size(stale++);
2929 2930
	}

2931
	return false;
2932 2933
}

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
/**
 * i40e_tx_map - Build the Tx descriptor
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
2944 2945 2946
static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
			       struct i40e_tx_buffer *first, u32 tx_flags,
			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2947 2948 2949
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
A
Alexander Duyck 已提交
2950
	struct skb_frag_struct *frag;
2951 2952
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
A
Alexander Duyck 已提交
2953
	u16 i = tx_ring->next_to_use;
2954 2955
	u32 td_tag = 0;
	dma_addr_t dma;
2956
	u16 desc_count = 1;
2957 2958 2959 2960 2961 2962 2963

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

A
Alexander Duyck 已提交
2964 2965 2966 2967
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

2968
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
2969 2970 2971
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2972 2973
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

A
Alexander Duyck 已提交
2974 2975 2976 2977 2978 2979 2980
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

2981 2982
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
A
Alexander Duyck 已提交
2983 2984 2985
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2986 2987
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
2988
					   max_data, td_tag);
2989 2990 2991

			tx_desc++;
			i++;
2992 2993
			desc_count++;

2994 2995 2996 2997 2998
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

2999 3000
			dma += max_data;
			size -= max_data;
3001

3002
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
A
Alexander Duyck 已提交
3003 3004
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}
3005 3006 3007 3008

		if (likely(!data_len))
			break;

A
Alexander Duyck 已提交
3009 3010
		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);
3011 3012 3013

		tx_desc++;
		i++;
3014 3015
		desc_count++;

3016 3017 3018 3019 3020
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

A
Alexander Duyck 已提交
3021 3022
		size = skb_frag_size(frag);
		data_len -= size;
3023

A
Alexander Duyck 已提交
3024 3025
		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);
3026

A
Alexander Duyck 已提交
3027 3028
		tx_bi = &tx_ring->tx_bi[i];
	}
3029

3030
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
A
Alexander Duyck 已提交
3031 3032 3033 3034 3035 3036 3037

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

E
Eric Dumazet 已提交
3038
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3039

3040 3041 3042 3043 3044 3045 3046 3047 3048
	/* write last descriptor with EOP bit */
	td_cmd |= I40E_TX_DESC_CMD_EOP;

	/* We can OR these values together as they both are checked against
	 * 4 below and at this point desc_count will be used as a boolean value
	 * after this if/else block.
	 */
	desc_count |= ++tx_ring->packet_stride;

3049
	/* Algorithm to optimize tail and RS bit setting:
3050 3051 3052 3053 3054 3055
	 * if queue is stopped
	 *	mark RS bit
	 *	reset packet counter
	 * else if xmit_more is supported and is true
	 *	advance packet counter to 4
	 *	reset desc_count to 0
3056
	 *
3057 3058 3059 3060 3061
	 * if desc_count >= 4
	 *	mark RS bit
	 *	reset packet counter
	 * if desc_count > 0
	 *	update tail
3062
	 *
3063
	 * Note: If there are less than 4 descriptors
3064 3065 3066
	 * pending and interrupts were disabled the service task will
	 * trigger a force WB.
	 */
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
	if (netif_xmit_stopped(txring_txq(tx_ring))) {
		goto do_rs;
	} else if (skb->xmit_more) {
		/* set stride to arm on next packet and reset desc_count */
		tx_ring->packet_stride = WB_STRIDE;
		desc_count = 0;
	} else if (desc_count >= WB_STRIDE) {
do_rs:
		/* write last descriptor with RS bit set */
		td_cmd |= I40E_TX_DESC_CMD_RS;
3077 3078 3079 3080
		tx_ring->packet_stride = 0;
	}

	tx_desc->cmd_type_offset_bsz =
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
3093

A
Alexander Duyck 已提交
3094
	/* notify HW of packet */
3095
	if (desc_count) {
3096
		writel(i, tx_ring->tail);
3097 3098 3099 3100 3101

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
3102
	}
3103

3104 3105 3106
	return;

dma_error:
A
Alexander Duyck 已提交
3107
	dev_info(tx_ring->dev, "TX DMA map failed\n");
3108 3109 3110 3111

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
A
Alexander Duyck 已提交
3112
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
3141
	int tso, count;
J
Jacob Keller 已提交
3142
	int tsyn;
J
Jesse Brandeburg 已提交
3143

3144 3145 3146
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

S
Scott Peterson 已提交
3147 3148
	i40e_trace(xmit_frame_ring, skb, tx_ring);

3149
	count = i40e_xmit_descriptor_count(skb);
3150
	if (i40e_chk_linearize(skb, count)) {
3151 3152 3153 3154
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
3155
		count = i40e_txd_use_count(skb->len);
3156 3157
		tx_ring->tx_stats.tx_linearize++;
	}
3158 3159 3160 3161 3162 3163 3164 3165 3166

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
3167
		return NETDEV_TX_BUSY;
3168
	}
3169

3170 3171 3172 3173 3174 3175
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

3176 3177 3178 3179 3180
	/* prepare the xmit flags */
	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
		goto out_drop;

	/* obtain protocol of skb */
3181
	protocol = vlan_get_protocol(skb);
3182 3183

	/* setup IPv4/IPv6 offloads */
3184
	if (protocol == htons(ETH_P_IP))
3185
		tx_flags |= I40E_TX_FLAGS_IPV4;
3186
	else if (protocol == htons(ETH_P_IPV6))
3187 3188
		tx_flags |= I40E_TX_FLAGS_IPV6;

3189
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3190 3191 3192 3193 3194 3195

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

3196 3197 3198 3199 3200 3201
	/* Always offload the checksum, since it's in the data descriptor */
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;

J
Jacob Keller 已提交
3202 3203 3204 3205 3206
	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);

	if (tsyn)
		tx_flags |= I40E_TX_FLAGS_TSYN;

3207 3208
	skb_tx_timestamp(skb);

3209 3210 3211
	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

3212 3213 3214 3215 3216 3217 3218
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

	/* Add Flow Director ATR if it's enabled.
	 *
	 * NOTE: this must always be directly before the data descriptor.
	 */
3219
	i40e_atr(tx_ring, skb, tx_flags);
3220 3221 3222 3223 3224 3225 3226

	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		    td_cmd, td_offset);

	return NETDEV_TX_OK;

out_drop:
S
Scott Peterson 已提交
3227
	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3228 3229
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
	return NETDEV_TX_OK;
}

/**
 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40e_netdev_priv *np = netdev_priv(netdev);
	struct i40e_vsi *vsi = np->vsi;
3244
	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3245 3246 3247 3248

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
3249 3250
	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
		return NETDEV_TX_OK;
3251 3252 3253

	return i40e_xmit_frame_ring(skb, tx_ring);
}