i40e_txrx.c 84.9 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
G
Greg Rose 已提交
15 16
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
17 18 19 20 21 22 23 24 25 26
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

M
Mitch Williams 已提交
27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29
#include "i40e.h"
30
#include "i40e_prototype.h"
31 32 33 34 35 36 37 38 39 40 41

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

42
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/**
 * i40e_fdir - Generate a Flow Director descriptor based on fdata
 * @tx_ring: Tx ring to send buffer on
 * @fdata: Flow director filter data
 * @add: Indicate if we are adding a rule or deleting one
 *
 **/
static void i40e_fdir(struct i40e_ring *tx_ring,
		      struct i40e_fdir_filter *fdata, bool add)
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	u32 flex_ptype, dtype_cmd;
	u16 i;

	/* grab the next descriptor */
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	/* Use LAN VSI Id if not programmed by user */
	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

	dtype_cmd |= add ?
		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;

	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);

	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);

	if (fdata->cnt_index) {
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
			     ((u32)fdata->cnt_index <<
			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
	}

	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
	fdir_desc->rsvd = cpu_to_le32(0);
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
}

106
#define I40E_FD_CLEAN_DELAY 10
107 108
/**
 * i40e_program_fdir_filter - Program a Flow Director filter
109 110
 * @fdir_data: Packet data that will be filter parameters
 * @raw_packet: the pre-allocated packet buffer for FDir
111
 * @pf: The PF pointer
112 113
 * @add: True for add/update, False for remove
 **/
114 115 116
static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
				    u8 *raw_packet, struct i40e_pf *pf,
				    bool add)
117
{
118
	struct i40e_tx_buffer *tx_buf, *first;
119 120 121 122 123 124 125 126 127
	struct i40e_tx_desc *tx_desc;
	struct i40e_ring *tx_ring;
	struct i40e_vsi *vsi;
	struct device *dev;
	dma_addr_t dma;
	u32 td_cmd = 0;
	u16 i;

	/* find existing FDIR VSI */
128
	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
129 130 131
	if (!vsi)
		return -ENOENT;

132
	tx_ring = vsi->tx_rings[0];
133 134
	dev = tx_ring->dev;

135
	/* we need two descriptors to add/del a filter and we can wait */
136 137 138
	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
		if (!i)
			return -EAGAIN;
139
		msleep_interruptible(1);
140
	}
141

142 143
	dma = dma_map_single(dev, raw_packet,
			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
144 145 146 147
	if (dma_mapping_error(dev, dma))
		goto dma_fail;

	/* grab the next descriptor */
148
	i = tx_ring->next_to_use;
149
	first = &tx_ring->tx_bi[i];
150
	i40e_fdir(tx_ring, fdir_data, add);
151 152

	/* Now program a dummy descriptor */
153 154
	i = tx_ring->next_to_use;
	tx_desc = I40E_TX_DESC(tx_ring, i);
155
	tx_buf = &tx_ring->tx_bi[i];
156

157 158 159
	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;

	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
160

161
	/* record length, and DMA address */
162
	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
163 164
	dma_unmap_addr_set(tx_buf, dma, dma);

165
	tx_desc->buffer_addr = cpu_to_le64(dma);
166
	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
167

168 169 170
	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
	tx_buf->raw_buf = (void *)raw_packet;

171
	tx_desc->cmd_type_offset_bsz =
172
		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
173 174

	/* Force memory writes to complete before letting h/w
175
	 * know there are new descriptors to fetch.
176 177 178
	 */
	wmb();

179
	/* Mark the data descriptor to be watched */
180
	first->next_to_watch = tx_desc;
181

182 183 184 185 186 187 188
	writel(tx_ring->next_to_use, tx_ring->tail);
	return 0;

dma_fail:
	return -1;
}

189 190 191 192 193 194 195 196 197 198 199 200
#define IP_HEADER_OFFSET 14
#define I40E_UDPIP_DUMMY_PACKET_LEN 42
/**
 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
201
				   bool add)
202 203 204 205 206
{
	struct i40e_pf *pf = vsi->back;
	struct udphdr *udp;
	struct iphdr *ip;
	bool err = false;
207
	u8 *raw_packet;
208 209 210 211 212
	int ret;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

213 214 215
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
216 217 218 219 220 221 222 223 224 225 226
	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

	ip->daddr = fd_data->dst_ip[0];
	udp->dest = fd_data->dst_port;
	ip->saddr = fd_data->src_ip[0];
	udp->source = fd_data->src_port;

227 228 229 230
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
231 232
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
233
		err = true;
234
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
235 236 237 238 239 240 241 242
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
243
	}
244 245 246
	if (err)
		kfree(raw_packet);

247 248 249 250 251 252 253 254 255 256 257 258 259 260
	return err ? -EOPNOTSUPP : 0;
}

#define I40E_TCPIP_DUMMY_PACKET_LEN 54
/**
 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
261
				   bool add)
262 263 264 265 266
{
	struct i40e_pf *pf = vsi->back;
	struct tcphdr *tcp;
	struct iphdr *ip;
	bool err = false;
267
	u8 *raw_packet;
268 269 270 271 272 273 274
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
		0x0, 0x72, 0, 0, 0, 0};

275 276 277
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
278 279 280 281 282 283 284 285 286 287 288 289
	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

	ip->daddr = fd_data->dst_ip[0];
	tcp->dest = fd_data->dst_port;
	ip->saddr = fd_data->src_ip[0];
	tcp->source = fd_data->src_port;

	if (add) {
290
		pf->fd_tcp_rule++;
291 292 293 294
		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
		    I40E_DEBUG_FD & pf->hw.debug_mask)
			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
		pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
295 296 297 298
	} else {
		pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
				  (pf->fd_tcp_rule - 1) : 0;
		if (pf->fd_tcp_rule == 0) {
299 300
			if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
			    I40E_DEBUG_FD & pf->hw.debug_mask)
301
				dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
302
			pf->auto_disable_flags &= ~I40E_FLAG_FD_ATR_ENABLED;
303
		}
304 305
	}

306
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
307 308 309 310
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);

	if (ret) {
		dev_info(&pf->pdev->dev,
311 312
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
313
		err = true;
314
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
315 316 317 318 319 320 321
		if (add)
			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
322 323
	}

324 325 326
	if (err)
		kfree(raw_packet);

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	return err ? -EOPNOTSUPP : 0;
}

#define I40E_IP_DUMMY_PACKET_LEN 34
/**
 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
				  struct i40e_fdir_filter *fd_data,
342
				  bool add)
343 344 345 346
{
	struct i40e_pf *pf = vsi->back;
	struct iphdr *ip;
	bool err = false;
347
	u8 *raw_packet;
348 349 350 351 352 353 354 355
	int ret;
	int i;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0};

	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
356 357 358 359 360 361 362 363 364 365
		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
		if (!raw_packet)
			return -ENOMEM;
		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);

		ip->saddr = fd_data->src_ip[0];
		ip->daddr = fd_data->dst_ip[0];
		ip->protocol = 0;

366 367 368 369 370
		fd_data->pctype = i;
		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);

		if (ret) {
			dev_info(&pf->pdev->dev,
371 372
				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
				 fd_data->pctype, fd_data->fd_id, ret);
373
			err = true;
374
		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
375 376 377 378 379 380 381 382
			if (add)
				dev_info(&pf->pdev->dev,
					 "Filter OK for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
			else
				dev_info(&pf->pdev->dev,
					 "Filter deleted for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
383 384 385
		}
	}

386 387 388
	if (err)
		kfree(raw_packet);

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
	return err ? -EOPNOTSUPP : 0;
}

/**
 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 * @vsi: pointer to the targeted VSI
 * @cmd: command to get or set RX flow classification rules
 * @add: true adds a filter, false removes it
 *
 **/
int i40e_add_del_fdir(struct i40e_vsi *vsi,
		      struct i40e_fdir_filter *input, bool add)
{
	struct i40e_pf *pf = vsi->back;
	int ret;

	switch (input->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
407
		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
408 409
		break;
	case UDP_V4_FLOW:
410
		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
411 412 413 414
		break;
	case IP_USER_FLOW:
		switch (input->ip4_proto) {
		case IPPROTO_TCP:
415
			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
416 417
			break;
		case IPPROTO_UDP:
418
			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
419
			break;
420
		case IPPROTO_IP:
421
			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
422
			break;
423 424 425
		default:
			/* We cannot support masking based on protocol */
			goto unsupported_flow;
426 427 428
		}
		break;
	default:
429
unsupported_flow:
430
		dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
431 432 433 434
			 input->flow_type);
		ret = -EINVAL;
	}

435 436 437 438 439 440
	/* The buffer allocated here will be normally be freed by
	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
	 * completion. In the event of an error adding the buffer to the FDIR
	 * ring, it will immediately be freed. It may also be freed by
	 * i40e_clean_tx_ring() when closing the VSI.
	 */
441 442 443
	return ret;
}

444 445 446
/**
 * i40e_fd_handle_status - check the Programming Status for FD
 * @rx_ring: the Rx ring for this descriptor
447
 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
448 449 450 451 452
 * @prog_id: the id originally used for programming
 *
 * This is used to verify if the FD programming or invalidation
 * requested by SW to the HW is successful or not and take actions accordingly.
 **/
453 454
static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
				  union i40e_rx_desc *rx_desc, u8 prog_id)
455
{
456 457 458
	struct i40e_pf *pf = rx_ring->vsi->back;
	struct pci_dev *pdev = pf->pdev;
	u32 fcnt_prog, fcnt_avail;
459
	u32 error;
460
	u64 qw;
461

462
	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
463 464 465
	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;

466
	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
467
		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
468 469 470
		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
		    (I40E_DEBUG_FD & pf->hw.debug_mask))
			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
471
				 pf->fd_inv);
472

473 474 475 476 477 478 479 480 481
		/* Check if the programming error is for ATR.
		 * If so, auto disable ATR and set a state for
		 * flush in progress. Next time we come here if flush is in
		 * progress do nothing, once flush is complete the state will
		 * be cleared.
		 */
		if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
			return;

482 483 484 485
		pf->fd_add_err++;
		/* store the current atr filter count */
		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);

486 487 488 489 490 491
		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
		    (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
			pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
			set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
		}

492
		/* filter programming failed most likely due to table full */
493
		fcnt_prog = i40e_get_global_fd_count(pf);
494
		fcnt_avail = pf->fdir_pf_filter_count;
495 496 497 498 499
		/* If ATR is running fcnt_prog can quickly change,
		 * if we are very close to full, it makes sense to disable
		 * FD ATR/SB and then re-enable it when there is room.
		 */
		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
500
			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
501 502
			    !(pf->auto_disable_flags &
				     I40E_FLAG_FD_SB_ENABLED)) {
503 504
				if (I40E_DEBUG_FD & pf->hw.debug_mask)
					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
505 506 507 508
				pf->auto_disable_flags |=
							I40E_FLAG_FD_SB_ENABLED;
			}
		}
509
	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
510
		if (I40E_DEBUG_FD & pf->hw.debug_mask)
511
			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
512
				 rx_desc->wb.qword0.hi_dword.fd_id);
513
	}
514 515 516
}

/**
A
Alexander Duyck 已提交
517
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
518 519 520
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
A
Alexander Duyck 已提交
521 522
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
523
{
A
Alexander Duyck 已提交
524
	if (tx_buffer->skb) {
525 526 527 528
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
		else
			dev_kfree_skb_any(tx_buffer->skb);
A
Alexander Duyck 已提交
529
		if (dma_unmap_len(tx_buffer, len))
530
			dma_unmap_single(ring->dev,
531 532
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
533
					 DMA_TO_DEVICE);
A
Alexander Duyck 已提交
534 535 536 537 538
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
539
	}
540

A
Alexander Duyck 已提交
541 542
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
543
	dma_unmap_len_set(tx_buffer, len, 0);
A
Alexander Duyck 已提交
544
	/* tx_buffer must be completely set up in the transmit path */
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
}

/**
 * i40e_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
A
Alexander Duyck 已提交
561 562
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
563 564 565 566 567 568 569 570 571

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
572 573 574 575 576

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
577
	netdev_tx_reset_queue(txring_txq(tx_ring));
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
}

/**
 * i40e_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40e_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40e_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

/**
 * i40e_get_tx_pending - how many tx descriptors not processed
 * @tx_ring: the ring of descriptors
602
 * @in_sw: is tx_pending being checked in SW or HW
603 604 605 606
 *
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
 **/
607
u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
608
{
J
Jesse Brandeburg 已提交
609 610
	u32 head, tail;

611 612 613 614
	if (!in_sw)
		head = i40e_get_head(ring);
	else
		head = ring->next_to_clean;
J
Jesse Brandeburg 已提交
615 616 617 618 619 620 621
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
622 623
}

624
#define WB_STRIDE 4
625

626 627
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
628 629 630
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
631 632 633
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
634 635
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
636 637 638
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
639
	struct i40e_tx_desc *tx_head;
640
	struct i40e_tx_desc *tx_desc;
641 642
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
643 644 645

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
646
	i -= tx_ring->count;
647

648 649
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

A
Alexander Duyck 已提交
650 651
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
652 653 654 655 656

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

A
Alexander Duyck 已提交
657 658 659
		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

660 661
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
662 663
			break;

A
Alexander Duyck 已提交
664
		/* clear next_to_watch to prevent false hangs */
665 666
		tx_buf->next_to_watch = NULL;

A
Alexander Duyck 已提交
667 668 669
		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;
670

A
Alexander Duyck 已提交
671
		/* free the skb */
672
		napi_consume_skb(tx_buf->skb, napi_budget);
673

A
Alexander Duyck 已提交
674 675 676 677 678
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);
679

A
Alexander Duyck 已提交
680 681 682
		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);
683

A
Alexander Duyck 已提交
684 685
		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
686 687 688 689

			tx_buf++;
			tx_desc++;
			i++;
A
Alexander Duyck 已提交
690 691
			if (unlikely(!i)) {
				i -= tx_ring->count;
692 693 694 695
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

A
Alexander Duyck 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

716 717
		prefetch(tx_desc);

A
Alexander Duyck 已提交
718 719 720 721 722
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
723
	tx_ring->next_to_clean = i;
724
	u64_stats_update_begin(&tx_ring->syncp);
725 726
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
727
	u64_stats_update_end(&tx_ring->syncp);
728 729
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;
A
Alexander Duyck 已提交
730

731 732 733 734 735 736
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
737
		unsigned int j = i40e_get_tx_pending(tx_ring, false);
738 739

		if (budget &&
740
		    ((j / WB_STRIDE) == 0) && (j > 0) &&
741
		    !test_bit(__I40E_DOWN, &vsi->state) &&
742 743 744
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}
745

746 747
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
748 749
				  total_packets, total_bytes);

750 751 752 753 754 755 756 757 758
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
759
		   !test_bit(__I40E_DOWN, &vsi->state)) {
760 761 762 763 764 765
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

766 767 768 769
	return !!budget;
}

/**
770
 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
771
 * @vsi: the VSI we care about
772
 * @q_vector: the vector on which to enable writeback
773 774
 *
 **/
775 776
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
777
{
778
	u16 flags = q_vector->tx.ring[0].flags;
779
	u32 val;
780

781 782
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;
783

784 785
	if (q_vector->arm_wb_state)
		return;
786

787 788 789
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
790

791 792 793 794 795 796
		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
		     val);
	} else {
		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
797

798 799 800 801 802 803 804 805 806 807 808 809 810 811
		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
	q_vector->arm_wb_state = true;
}

/**
 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
			  /* allow 00 to be written to the index */

		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
					 vsi->base_vector - 1), val);
	} else {
		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
			/* allow 00 to be written to the index */

		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
830 831 832 833 834 835
}

/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
836 837
 * Returns true if ITR changed, false if not
 *
838 839 840 841 842 843 844 845
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
846
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
847 848
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
849
	struct i40e_q_vector *qv = rc->ring->q_vector;
850 851
	u32 new_itr = rc->itr;
	int bytes_per_int;
852
	int usecs;
853 854

	if (rc->total_packets == 0 || !rc->itr)
855
		return false;
856 857

	/* simple throttlerate management
858
	 *   0-10MB/s   lowest (50000 ints/s)
859
	 *  10-20MB/s   low    (20000 ints/s)
860 861
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
862 863 864 865
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
866 867
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
868
	 */
869
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
870
	bytes_per_int = rc->total_bytes / usecs;
871

872
	switch (new_latency_range) {
873 874 875 876 877 878 879 880 881 882 883
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
884
	case I40E_ULTRA_LATENCY:
885 886 887
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
888 889
		break;
	}
890 891 892 893 894 895 896 897 898 899 900 901

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

902
	rc->latency_range = new_latency_range;
903 904 905

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
906
		new_itr = I40E_ITR_50K;
907 908 909 910 911
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
912 913 914
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
915 916 917 918 919 920 921 922
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
923 924 925 926 927 928 929

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
}

/**
 * i40e_clean_programming_status - clean the programming status descriptor
 * @rx_ring: the rx ring that has this descriptor
 * @rx_desc: the rx descriptor written back by HW
 *
 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 * status being successful or not and take actions accordingly. FCoE should
 * handle its context/filter programming/invalidation status and take actions.
 *
 **/
static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
					  union i40e_rx_desc *rx_desc)
{
	u64 qw;
	u8 id;

	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;

	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
953
		i40e_fd_handle_status(rx_ring, rx_desc, id);
954 955 956 957 958
#ifdef I40E_FCOE
	else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
		 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
		i40e_fcoe_handle_status(rx_ring, rx_desc, id);
#endif
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
}

/**
 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

J
Jesse Brandeburg 已提交
975 976
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
977 978 979 980 981 982 983
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
984 985 986 987
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

1020 1021 1022 1023 1024
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

1025 1026
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
1027 1028 1029 1030 1031
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->page)
			continue;

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->dma,
					      rx_bi->page_offset,
					      I40E_RXBUFFER_2048,
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
				     PAGE_SIZE,
				     DMA_FROM_DEVICE,
				     I40E_RX_DMA_ATTR);
1046 1047 1048 1049
		__free_pages(rx_bi->page, 0);

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
1050 1051 1052 1053 1054 1055 1056 1057
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

1058
	rx_ring->next_to_alloc = 0;
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40e_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40e_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40e_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40e_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

J
Jesse Brandeburg 已提交
1093 1094
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
1095 1096 1097 1098 1099
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

1100
	u64_stats_init(&rx_ring->syncp);
1101

1102
	/* Round up to nearest 4K */
1103
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

1114
	rx_ring->next_to_alloc = 0;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
1133 1134 1135 1136

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

/**
1147 1148 1149
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
1150
 *
1151 1152
 * Returns true if the page was successfully allocated or
 * reused.
1153
 **/
1154 1155
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
1156
{
1157 1158
	struct page *page = bi->page;
	dma_addr_t dma;
1159

1160 1161 1162 1163 1164
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
1165

1166 1167 1168 1169 1170 1171
	/* alloc new page for storage */
	page = dev_alloc_page();
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
1172

1173
	/* map page for use */
1174 1175 1176 1177
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
				 PAGE_SIZE,
				 DMA_FROM_DEVICE,
				 I40E_RX_DMA_ATTR);
1178

1179 1180
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
1181
	 */
1182 1183 1184 1185
	if (dma_mapping_error(rx_ring->dev, dma)) {
		__free_pages(page, 0);
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
1186 1187
	}

1188 1189 1190
	bi->dma = dma;
	bi->page = page;
	bi->page_offset = 0;
1191

1192 1193
	return true;
}
1194

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1205

1206 1207 1208 1209 1210
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
1211 1212 1213
}

/**
1214
 * i40e_alloc_rx_buffers - Replace used receive buffers
1215 1216
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
1217
 *
1218
 * Returns false if all allocations were successful, true if any fail
1219
 **/
1220
bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1221
{
1222
	u16 ntu = rx_ring->next_to_use;
1223 1224 1225 1226 1227
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
1228
		return false;
1229

1230 1231
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
1232

1233 1234 1235
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
1236

1237 1238 1239 1240 1241 1242
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
						 I40E_RXBUFFER_2048,
						 DMA_FROM_DEVICE);

1243 1244 1245 1246
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1247

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1265 1266 1267

	return false;

1268
no_buffers:
1269 1270
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1271 1272 1273 1274 1275

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
1276 1277 1278 1279 1280 1281
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
1282 1283 1284
 * @rx_desc: the receive descriptor
 *
 * skb->protocol must be set before this function is called
1285 1286 1287
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
1288
				    union i40e_rx_desc *rx_desc)
1289
{
1290 1291
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
1292
	bool ipv4, ipv6;
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
1303

1304 1305
	skb->ip_summed = CHECKSUM_NONE;

1306 1307
	skb_checksum_none_assert(skb);

1308
	/* Rx csum enabled and ip headers found? */
1309 1310 1311 1312
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
1313
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1314 1315 1316 1317
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
1318 1319
		return;

1320 1321 1322 1323
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1324 1325

	if (ipv4 &&
1326 1327
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1328 1329
		goto checksum_fail;

J
Jesse Brandeburg 已提交
1330
	/* likely incorrect csum if alternate IP extension headers found */
1331
	if (ipv6 &&
1332
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1333
		/* don't increment checksum err here, non-fatal err */
1334 1335
		return;

1336
	/* there was some L4 error, count error and punt packet to the stack */
1337
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1338 1339 1340 1341 1342 1343
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
1344
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1345 1346
		return;

1347 1348 1349
	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
1350
	 */
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
1364 1365 1366 1367 1368

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
1369 1370 1371
}

/**
1372
 * i40e_ptype_to_htype - get a hash type
1373 1374 1375 1376
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
1377
static inline int i40e_ptype_to_htype(u8 ptype)
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
1405
	const __le64 rss_mask =
1406 1407 1408
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

1409
	if (!(ring->netdev->features & NETIF_F_RXHASH))
1410 1411 1412 1413 1414 1415 1416 1417
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

1418
/**
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 **/
static inline
void i40e_process_skb_fields(struct i40e_ring *rx_ring,
			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			     u8 rx_ptype)
{
	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;
1437 1438
	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1439 1440
		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;

1441
	if (unlikely(tsynvalid))
1442
		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);

	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);

	skb_record_rx_queue(skb, rx_ring->queue_index);
}

/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
{
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_bi[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	*new_buff = *old_buff;
}

/**
1500
 * i40e_page_is_reusable - check if any reuse is possible
1501
 * @page: page struct to check
1502 1503 1504
 *
 * A page is not reusable if it was allocated under low memory
 * conditions, or it's not in the same NUMA node as this CPU.
1505
 */
1506
static inline bool i40e_page_is_reusable(struct page *page)
1507
{
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	return (page_to_nid(page) == numa_mem_id()) &&
		!page_is_pfmemalloc(page);
}

/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
 * @page: page address from rx_buffer
 * @truesize: actual size of the buffer in this page
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
				   struct page *page,
				   const unsigned int truesize)
{
#if (PAGE_SIZE >= 8192)
	unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
#endif

	/* Is any reuse possible? */
	if (unlikely(!i40e_page_is_reusable(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= truesize;
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > last_offset)
		return false;
#endif

	/* Inc ref count on page before passing it up to the stack */
	get_page(page);

	return true;
1572 1573 1574 1575 1576 1577
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
1578
 * @size: packet length from rx_desc
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
 * @skb: sk_buff to place the data into
 *
 * This function will add the data contained in rx_buffer->page to the skb.
 * This is done either through a direct copy if the data in the buffer is
 * less than the skb header size, otherwise it will just attach the page as
 * a frag to the skb.
 *
 * The function will then update the page offset if necessary and return
 * true if the buffer can be reused by the adapter.
 **/
static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
			     struct i40e_rx_buffer *rx_buffer,
1591
			     unsigned int size,
1592 1593 1594
			     struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
1595
	unsigned char *va = page_address(page) + rx_buffer->page_offset;
1596 1597 1598 1599 1600
#if (PAGE_SIZE < 8192)
	unsigned int truesize = I40E_RXBUFFER_2048;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
1601 1602 1603 1604
	unsigned int pull_len;

	if (unlikely(skb_is_nonlinear(skb)))
		goto add_tail_frag;
1605 1606 1607 1608

	/* will the data fit in the skb we allocated? if so, just
	 * copy it as it is pretty small anyway
	 */
1609
	if (size <= I40E_RX_HDR_SIZE) {
1610 1611
		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

1612 1613
		/* page is reusable, we can reuse buffer as-is */
		if (likely(i40e_page_is_reusable(page)))
1614 1615 1616 1617 1618 1619 1620
			return true;

		/* this page cannot be reused so discard it */
		__free_pages(page, 0);
		return false;
	}

1621 1622 1623 1624 1625
	/* we need the header to contain the greater of either
	 * ETH_HLEN or 60 bytes if the skb->len is less than
	 * 60 for skb_pad.
	 */
	pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1626

1627 1628 1629 1630
	/* align pull length to size of long to optimize
	 * memcpy performance
	 */
	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
1631

1632 1633 1634
	/* update all of the pointers */
	va += pull_len;
	size -= pull_len;
1635

1636 1637 1638
add_tail_frag:
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
			(unsigned long)va & ~PAGE_MASK, size, truesize);
1639

1640
	return i40e_can_reuse_rx_page(rx_buffer, page, truesize);
1641 1642 1643 1644 1645 1646
}

/**
 * i40e_fetch_rx_buffer - Allocate skb and populate it
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_desc: descriptor containing info written by hardware
1647
 *
1648 1649 1650 1651 1652 1653 1654
 * This function allocates an skb on the fly, and populates it with the page
 * data from the current receive descriptor, taking care to set up the skb
 * correctly, as well as handling calling the page recycle function if
 * necessary.
 */
static inline
struct sk_buff *i40e_fetch_rx_buffer(struct i40e_ring *rx_ring,
1655 1656
				     union i40e_rx_desc *rx_desc,
				     struct sk_buff *skb)
1657
{
1658 1659 1660 1661 1662
	u64 local_status_error_len =
		le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	unsigned int size =
		(local_status_error_len & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	struct i40e_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) + rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
				       I40E_RX_HDR_SIZE,
				       GFP_ATOMIC | __GFP_NOWARN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_buff_failed++;
			return NULL;
		}

		/* we will be copying header into skb->data in
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
1699
				      size,
1700 1701 1702
				      DMA_FROM_DEVICE);

	/* pull page into skb */
1703
	if (i40e_add_rx_frag(rx_ring, rx_buffer, size, skb)) {
1704 1705 1706 1707 1708
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
1709 1710
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;

	return skb;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
1729
 **/
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

#define staterrlen rx_desc->wb.qword1.status_error_len
	if (unlikely(i40e_rx_is_programming_status(le64_to_cpu(staterrlen)))) {
		i40e_clean_programming_status(rx_ring, rx_desc);
		return true;
	}
	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

/**
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 **/
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1770 1771
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1772
	struct sk_buff *skb = rx_ring->skb;
1773
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1774
	bool failure = false;
1775

1776 1777
	while (likely(total_rx_packets < budget)) {
		union i40e_rx_desc *rx_desc;
1778
		u16 vlan_tag;
1779 1780 1781
		u8 rx_ptype;
		u64 qword;

1782 1783
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1784
			failure = failure ||
1785
				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1786 1787 1788
			cleaned_count = 0;
		}

1789 1790 1791 1792 1793 1794 1795
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
		 * hardware wrote DD then it will be non-zero
		 */
1796 1797
		if (!i40e_test_staterr(rx_desc,
				       BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1798 1799
			break;

1800 1801 1802 1803
		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
1804
		dma_rmb();
1805

1806
		skb = i40e_fetch_rx_buffer(rx_ring, rx_desc, skb);
1807 1808
		if (!skb)
			break;
1809 1810 1811

		cleaned_count++;

1812
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1813 1814
			continue;

1815 1816 1817 1818 1819 1820
		/* ERR_MASK will only have valid bits if EOP set, and
		 * what we are doing here is actually checking
		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
		 * the error field
		 */
		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1821 1822 1823 1824
			dev_kfree_skb_any(skb);
			continue;
		}

1825 1826
		if (i40e_cleanup_headers(rx_ring, skb)) {
			skb = NULL;
1827
			continue;
1828
		}
1829 1830 1831 1832

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

1833 1834 1835 1836
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;

1837 1838
		/* populate checksum, VLAN, and protocol */
		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1839 1840

#ifdef I40E_FCOE
1841 1842 1843
		if (unlikely(
		    i40e_rx_is_fcoe(rx_ptype) &&
		    !i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
1844 1845 1846 1847
			dev_kfree_skb_any(skb);
			continue;
		}
#endif
1848 1849 1850 1851

		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

1852
		i40e_receive_skb(rx_ring, skb, vlan_tag);
1853
		skb = NULL;
1854

1855 1856 1857
		/* update budget accounting */
		total_rx_packets++;
	}
1858

1859 1860
	rx_ring->skb = skb;

1861
	u64_stats_update_begin(&rx_ring->syncp);
1862 1863
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
1864
	u64_stats_update_end(&rx_ring->syncp);
1865 1866 1867
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1868
	/* guarantee a trip back through this routine if there was a failure */
1869
	return failure ? budget : total_rx_packets;
1870 1871
}

1872 1873 1874 1875 1876
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1877 1878 1879
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
1880 1881 1882 1883 1884 1885 1886 1887
	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_PFINT_DYN_CTLN
1888
static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
1889
{
1890
	return vsi->rx_rings[idx]->rx_itr_setting;
1891 1892
}

1893
static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
1894
{
1895
	return vsi->tx_rings[idx]->tx_itr_setting;
1896
}
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
1908 1909
	bool rx = false, tx = false;
	u32 rxval, txval;
1910
	int vector;
1911
	int idx = q_vector->v_idx;
1912
	int rx_itr_setting, tx_itr_setting;
1913 1914

	vector = (q_vector->v_idx + vsi->base_vector);
1915

1916 1917 1918
	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
1919 1920
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

1921 1922
	rx_itr_setting = get_rx_itr(vsi, idx);
	tx_itr_setting = get_tx_itr(vsi, idx);
1923

1924
	if (q_vector->itr_countdown > 0 ||
1925 1926
	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
1927 1928 1929
		goto enable_int;
	}

1930
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1931 1932
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1933
	}
1934

1935
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1936 1937
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1938
	}
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966

	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
	}

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

1967
enable_int:
1968 1969
	if (!test_bit(__I40E_DOWN, &vsi->state))
		wr32(hw, INTREG(vector - 1), txval);
1970 1971 1972 1973 1974

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1975 1976
}

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
/**
 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40e_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
1991
	struct i40e_ring *ring;
1992
	bool clean_complete = true;
1993
	bool arm_wb = false;
1994
	int budget_per_ring;
1995
	int work_done = 0;
1996 1997 1998 1999 2000 2001

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

2002 2003
	/* Clear hung_detected bit */
	clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
2004 2005 2006
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
2007
	i40e_for_each_ring(ring, q_vector->tx) {
2008
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2009 2010 2011 2012
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
2013
		ring->arm_wb = false;
2014
	}
2015

2016 2017 2018 2019
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

2020 2021 2022 2023
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2024

2025
	i40e_for_each_ring(ring, q_vector->rx) {
2026
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2027 2028

		work_done += cleaned;
2029 2030 2031
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
2032
	}
2033 2034

	/* If work not completed, return budget and polling will return */
2035
	if (!clean_complete) {
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
		const cpumask_t *aff_mask = &q_vector->affinity_mask;
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
		if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
			   !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
2048
tx_only:
2049 2050 2051 2052 2053
			if (arm_wb) {
				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
				i40e_enable_wb_on_itr(vsi, q_vector);
			}
			return budget;
2054
		}
2055
	}
2056

2057 2058 2059
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

2060
	/* Work is done so exit the polling mode and re-enable the interrupt */
2061
	napi_complete_done(napi, work_done);
2062 2063 2064 2065 2066 2067 2068 2069

	/* If we're prematurely stopping polling to fix the interrupt
	 * affinity we want to make sure polling starts back up so we
	 * issue a call to i40e_force_wb which triggers a SW interrupt.
	 */
	if (!clean_complete)
		i40e_force_wb(vsi, q_vector);
	else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
2070
		i40e_irq_dynamic_enable_icr0(vsi->back, false);
2071 2072 2073
	else
		i40e_update_enable_itr(vsi, q_vector);

2074
	return min(work_done, budget - 1);
2075 2076 2077 2078 2079 2080
}

/**
 * i40e_atr - Add a Flow Director ATR filter
 * @tx_ring:  ring to add programming descriptor to
 * @skb:      send buffer
2081
 * @tx_flags: send tx flags
2082 2083
 **/
static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2084
		     u32 tx_flags)
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	union {
		unsigned char *network;
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	struct tcphdr *th;
	unsigned int hlen;
	u32 flex_ptype, dtype_cmd;
2096
	int l4_proto;
2097
	u16 i;
2098 2099

	/* make sure ATR is enabled */
J
Jesse Brandeburg 已提交
2100
	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2101 2102
		return;

2103 2104 2105
	if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
		return;

2106 2107 2108 2109
	/* if sampling is disabled do nothing */
	if (!tx_ring->atr_sample_rate)
		return;

2110
	/* Currently only IPv4/IPv6 with TCP is supported */
2111 2112
	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
		return;
2113

2114 2115 2116
	/* snag network header to get L4 type and address */
	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
		      skb_inner_network_header(skb) : skb_network_header(skb);
2117

2118 2119 2120 2121
	/* Note: tx_flags gets modified to reflect inner protocols in
	 * tx_enable_csum function if encap is enabled.
	 */
	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2122
		/* access ihl as u8 to avoid unaligned access on ia64 */
2123 2124
		hlen = (hdr.network[0] & 0x0F) << 2;
		l4_proto = hdr.ipv4->protocol;
2125
	} else {
2126 2127 2128
		hlen = hdr.network - skb->data;
		l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
		hlen -= hdr.network - skb->data;
2129 2130
	}

2131
	if (l4_proto != IPPROTO_TCP)
2132 2133
		return;

2134 2135
	th = (struct tcphdr *)(hdr.network + hlen);

2136 2137 2138
	/* Due to lack of space, no more new filters can be programmed */
	if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
		return;
2139 2140
	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
2141 2142 2143 2144 2145 2146
		/* HW ATR eviction will take care of removing filters on FIN
		 * and RST packets.
		 */
		if (th->fin || th->rst)
			return;
	}
2147 2148 2149

	tx_ring->atr_count++;

2150 2151 2152 2153 2154
	/* sample on all syn/fin/rst packets or once every atr sample rate */
	if (!th->fin &&
	    !th->syn &&
	    !th->rst &&
	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2155 2156 2157 2158 2159
		return;

	tx_ring->atr_count = 0;

	/* grab the next descriptor */
2160 2161 2162 2163 2164
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2165 2166 2167

	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2168
	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2169 2170 2171 2172 2173 2174 2175 2176 2177
		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

2178
	dtype_cmd |= (th->fin || th->rst) ?
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
		     I40E_TXD_FLTR_QW1_DEST_SHIFT;

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;

2190
	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2191
	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2192 2193 2194 2195 2196 2197 2198 2199 2200
		dtype_cmd |=
			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
	else
		dtype_cmd |=
			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2201

2202 2203
	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
2204 2205
		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;

2206
	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
J
Jesse Brandeburg 已提交
2207
	fdir_desc->rsvd = cpu_to_le32(0);
2208
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
J
Jesse Brandeburg 已提交
2209
	fdir_desc->fd_id = cpu_to_le32(0);
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
}

/**
 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
2224
#ifdef I40E_FCOE
2225
inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2226 2227
				      struct i40e_ring *tx_ring,
				      u32 *flags)
2228 2229 2230 2231
#else
static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
					     struct i40e_ring *tx_ring,
					     u32 *flags)
2232
#endif
2233 2234 2235 2236
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

2250
	/* if we have a HW VLAN tag being added, default to the HW one */
2251 2252
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2253 2254
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
2255
	} else if (protocol == htons(ETH_P_8021Q)) {
2256
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
2257

2258 2259 2260 2261 2262 2263 2264 2265 2266
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

2267 2268 2269
	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
		goto out;

2270
	/* Insert 802.1p priority into VLAN header */
2271 2272
	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
	    (skb->priority != TC_PRIO_CONTROL)) {
2273 2274 2275 2276 2277
		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
		tx_flags |= (skb->priority & 0x7) <<
				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
			struct vlan_ethhdr *vhdr;
2278 2279 2280 2281 2282
			int rc;

			rc = skb_cow_head(skb, 0);
			if (rc < 0)
				return rc;
2283 2284 2285 2286 2287 2288 2289
			vhdr = (struct vlan_ethhdr *)skb->data;
			vhdr->h_vlan_TCI = htons(tx_flags >>
						 I40E_TX_FLAGS_VLAN_SHIFT);
		} else {
			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
		}
	}
2290 2291

out:
2292 2293 2294 2295 2296 2297
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
2298
 * @first:    pointer to first Tx buffer for xmit
2299
 * @hdr_len:  ptr to the size of the packet header
2300
 * @cd_type_cmd_tso_mss: Quad Word 1
2301 2302 2303
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
2304 2305
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
2306
{
2307
	struct sk_buff *skb = first->skb;
2308
	u64 cd_cmd, cd_tso_len, cd_mss;
2309 2310 2311 2312 2313
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
2314 2315
	union {
		struct tcphdr *tcp;
2316
		struct udphdr *udp;
2317 2318 2319
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
2320
	u16 gso_segs, gso_size;
2321 2322
	int err;

2323 2324 2325
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2326 2327 2328
	if (!skb_is_gso(skb))
		return 0;

2329 2330 2331
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
2332

2333 2334
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2335

2336 2337 2338 2339
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
2340
	} else {
2341 2342 2343
		ip.v6->payload_len = 0;
	}

2344
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2345
					 SKB_GSO_GRE_CSUM |
2346
					 SKB_GSO_IPXIP4 |
2347
					 SKB_GSO_IPXIP6 |
2348
					 SKB_GSO_UDP_TUNNEL |
2349
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2350 2351 2352 2353
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

2354 2355 2356 2357
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
2358
			paylen = skb->len - l4_offset;
2359 2360
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
2361 2362
		}

2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
2374 2375
	}

2376 2377 2378 2379
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
2380
	paylen = skb->len - l4_offset;
2381
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2382 2383 2384

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2385

2386 2387 2388 2389 2390 2391 2392 2393
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

2394 2395 2396
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
2397
	cd_mss = gso_size;
2398 2399 2400
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2401 2402 2403
	return 1;
}

J
Jacob Keller 已提交
2404 2405 2406 2407 2408
/**
 * i40e_tsyn - set up the tsyn context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @tx_flags: the collected send information
2409
 * @cd_type_cmd_tso_mss: Quad Word 1
J
Jacob Keller 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
 *
 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
 **/
static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
{
	struct i40e_pf *pf;

	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
		return 0;

	/* Tx timestamps cannot be sampled when doing TSO */
	if (tx_flags & I40E_TX_FLAGS_TSO)
		return 0;

	/* only timestamp the outbound packet if the user has requested it and
	 * we are not already transmitting a packet to be timestamped
	 */
	pf = i40e_netdev_to_pf(tx_ring->netdev);
2429 2430 2431
	if (!(pf->flags & I40E_FLAG_PTP))
		return 0;

2432 2433
	if (pf->ptp_tx &&
	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
J
Jacob Keller 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
		pf->ptp_tx_skb = skb_get(skb);
	} else {
		return 0;
	}

	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
				I40E_TXD_CTX_QW1_CMD_SHIFT;

	return 1;
}

2446 2447 2448
/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
2449
 * @tx_flags: pointer to Tx flags currently set
2450 2451
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
2452
 * @tx_ring: Tx descriptor ring
2453 2454
 * @cd_tunneling: ptr to context desc bits
 **/
2455 2456 2457 2458
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
2459
{
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
2470
	unsigned char *exthdr;
2471
	u32 offset, cmd = 0;
2472
	__be16 frag_off;
2473 2474
	u8 l4_proto = 0;

2475 2476 2477
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2478 2479
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2480

2481 2482 2483
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

2484
	if (skb->encapsulation) {
2485
		u32 tunnel = 0;
2486 2487
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2488 2489 2490 2491
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

2492 2493
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2494
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2495 2496

			exthdr = ip.hdr + sizeof(*ip.v6);
2497
			l4_proto = ip.v6->nexthdr;
2498 2499 2500
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
2501 2502 2503 2504
		}

		/* define outer transport */
		switch (l4_proto) {
2505
		case IPPROTO_UDP:
2506
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2507
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2508
			break;
2509
		case IPPROTO_GRE:
2510
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2511
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2512
			break;
2513 2514 2515 2516 2517
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
2518
		default:
2519 2520 2521 2522 2523
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
2524
		}
2525

2526 2527 2528 2529 2530 2531 2532
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

2533 2534 2535 2536
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

2537 2538
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2539
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2540 2541 2542
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

2543 2544 2545
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

2546 2547
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
2548
		l4_proto = 0;
2549

2550 2551 2552 2553 2554
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
2555
			*tx_flags |= I40E_TX_FLAGS_IPV6;
2556 2557 2558
	}

	/* Enable IP checksum offloads */
2559
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2560
		l4_proto = ip.v4->protocol;
2561 2562 2563
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
2564 2565 2566
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
2567
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2568
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2569 2570 2571 2572 2573 2574

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
2575
	}
2576

2577 2578
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2579 2580

	/* Enable L4 checksum offloads */
2581
	switch (l4_proto) {
2582 2583
	case IPPROTO_TCP:
		/* enable checksum offloads */
2584 2585
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2586 2587 2588
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
2589 2590 2591
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2592 2593 2594
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
2595 2596 2597
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2598 2599
		break;
	default:
2600 2601 2602 2603
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
2604
	}
2605 2606 2607

	*td_cmd |= cmd;
	*td_offset |= offset;
2608 2609

	return 1;
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
2624
	int i = tx_ring->next_to_use;
2625

2626 2627
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
2628 2629 2630
		return;

	/* grab the next descriptor */
2631 2632 2633 2634
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2635 2636 2637 2638

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2639
	context_desc->rsvd = cpu_to_le16(0);
2640 2641 2642
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

E
Eric Dumazet 已提交
2643 2644 2645 2646 2647 2648 2649
/**
 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
2650
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
E
Eric Dumazet 已提交
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

2666
/**
2667
 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2668 2669
 * @skb:      send buffer
 *
2670 2671 2672 2673 2674 2675 2676 2677
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
2678
 **/
2679
bool __i40e_chk_linearize(struct sk_buff *skb)
2680
{
2681
	const struct skb_frag_struct *frag, *stale;
2682
	int nr_frags, sum;
2683

2684
	/* no need to check if number of frags is less than 7 */
2685
	nr_frags = skb_shinfo(skb)->nr_frags;
2686
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2687
		return false;
2688

2689
	/* We need to walk through the list and validate that each group
2690
	 * of 6 fragments totals at least gso_size.
2691
	 */
2692
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2693 2694 2695 2696 2697 2698 2699 2700
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
2701
	sum = 1 - skb_shinfo(skb)->gso_size;
2702

2703 2704 2705 2706 2707 2708
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
2709 2710 2711 2712 2713 2714

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
2715
		sum += skb_frag_size(frag++);
2716 2717 2718 2719 2720

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

2721
		if (!nr_frags--)
2722 2723
			break;

2724
		sum -= skb_frag_size(stale++);
2725 2726
	}

2727
	return false;
2728 2729
}

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
/**
 * i40e_tx_map - Build the Tx descriptor
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
2740
#ifdef I40E_FCOE
2741
inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2742 2743
			struct i40e_tx_buffer *first, u32 tx_flags,
			const u8 hdr_len, u32 td_cmd, u32 td_offset)
2744 2745 2746 2747
#else
static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
			       struct i40e_tx_buffer *first, u32 tx_flags,
			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2748
#endif
2749 2750 2751
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
A
Alexander Duyck 已提交
2752
	struct skb_frag_struct *frag;
2753 2754
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
A
Alexander Duyck 已提交
2755
	u16 i = tx_ring->next_to_use;
2756 2757
	u32 td_tag = 0;
	dma_addr_t dma;
2758
	u16 desc_count = 1;
2759 2760 2761 2762 2763 2764 2765

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

A
Alexander Duyck 已提交
2766 2767 2768 2769
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

2770
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
2771 2772 2773
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2774 2775
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

A
Alexander Duyck 已提交
2776 2777 2778 2779 2780 2781 2782
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

2783 2784
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
A
Alexander Duyck 已提交
2785 2786 2787
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2788 2789
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
2790
					   max_data, td_tag);
2791 2792 2793

			tx_desc++;
			i++;
2794 2795
			desc_count++;

2796 2797 2798 2799 2800
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

2801 2802
			dma += max_data;
			size -= max_data;
2803

2804
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
A
Alexander Duyck 已提交
2805 2806
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}
2807 2808 2809 2810

		if (likely(!data_len))
			break;

A
Alexander Duyck 已提交
2811 2812
		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);
2813 2814 2815

		tx_desc++;
		i++;
2816 2817
		desc_count++;

2818 2819 2820 2821 2822
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

A
Alexander Duyck 已提交
2823 2824
		size = skb_frag_size(frag);
		data_len -= size;
2825

A
Alexander Duyck 已提交
2826 2827
		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);
2828

A
Alexander Duyck 已提交
2829 2830
		tx_bi = &tx_ring->tx_bi[i];
	}
2831

2832
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
A
Alexander Duyck 已提交
2833 2834 2835 2836 2837 2838 2839

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

E
Eric Dumazet 已提交
2840
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2841

2842 2843 2844 2845 2846 2847 2848 2849 2850
	/* write last descriptor with EOP bit */
	td_cmd |= I40E_TX_DESC_CMD_EOP;

	/* We can OR these values together as they both are checked against
	 * 4 below and at this point desc_count will be used as a boolean value
	 * after this if/else block.
	 */
	desc_count |= ++tx_ring->packet_stride;

2851
	/* Algorithm to optimize tail and RS bit setting:
2852 2853 2854 2855 2856 2857
	 * if queue is stopped
	 *	mark RS bit
	 *	reset packet counter
	 * else if xmit_more is supported and is true
	 *	advance packet counter to 4
	 *	reset desc_count to 0
2858
	 *
2859 2860 2861 2862 2863
	 * if desc_count >= 4
	 *	mark RS bit
	 *	reset packet counter
	 * if desc_count > 0
	 *	update tail
2864
	 *
2865
	 * Note: If there are less than 4 descriptors
2866 2867 2868
	 * pending and interrupts were disabled the service task will
	 * trigger a force WB.
	 */
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
	if (netif_xmit_stopped(txring_txq(tx_ring))) {
		goto do_rs;
	} else if (skb->xmit_more) {
		/* set stride to arm on next packet and reset desc_count */
		tx_ring->packet_stride = WB_STRIDE;
		desc_count = 0;
	} else if (desc_count >= WB_STRIDE) {
do_rs:
		/* write last descriptor with RS bit set */
		td_cmd |= I40E_TX_DESC_CMD_RS;
2879 2880 2881 2882
		tx_ring->packet_stride = 0;
	}

	tx_desc->cmd_type_offset_bsz =
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
2895

A
Alexander Duyck 已提交
2896
	/* notify HW of packet */
2897
	if (desc_count) {
2898
		writel(i, tx_ring->tail);
2899 2900 2901 2902 2903

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
2904
	}
2905

2906 2907 2908
	return;

dma_error:
A
Alexander Duyck 已提交
2909
	dev_info(tx_ring->dev, "TX DMA map failed\n");
2910 2911 2912 2913

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
A
Alexander Duyck 已提交
2914
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
2943
	int tso, count;
J
Jacob Keller 已提交
2944
	int tsyn;
J
Jesse Brandeburg 已提交
2945

2946 2947 2948
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

2949
	count = i40e_xmit_descriptor_count(skb);
2950
	if (i40e_chk_linearize(skb, count)) {
2951 2952 2953 2954
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
2955
		count = i40e_txd_use_count(skb->len);
2956 2957
		tx_ring->tx_stats.tx_linearize++;
	}
2958 2959 2960 2961 2962 2963 2964 2965 2966

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
2967
		return NETDEV_TX_BUSY;
2968
	}
2969

2970 2971 2972 2973 2974 2975
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

2976 2977 2978 2979 2980
	/* prepare the xmit flags */
	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
		goto out_drop;

	/* obtain protocol of skb */
2981
	protocol = vlan_get_protocol(skb);
2982 2983

	/* setup IPv4/IPv6 offloads */
2984
	if (protocol == htons(ETH_P_IP))
2985
		tx_flags |= I40E_TX_FLAGS_IPV4;
2986
	else if (protocol == htons(ETH_P_IPV6))
2987 2988
		tx_flags |= I40E_TX_FLAGS_IPV6;

2989
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2990 2991 2992 2993 2994 2995

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

2996 2997 2998 2999 3000 3001
	/* Always offload the checksum, since it's in the data descriptor */
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;

J
Jacob Keller 已提交
3002 3003 3004 3005 3006
	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);

	if (tsyn)
		tx_flags |= I40E_TX_FLAGS_TSYN;

3007 3008
	skb_tx_timestamp(skb);

3009 3010 3011
	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

3012 3013 3014 3015 3016 3017 3018
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

	/* Add Flow Director ATR if it's enabled.
	 *
	 * NOTE: this must always be directly before the data descriptor.
	 */
3019
	i40e_atr(tx_ring, skb, tx_flags);
3020 3021 3022 3023 3024 3025 3026

	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		    td_cmd, td_offset);

	return NETDEV_TX_OK;

out_drop:
3027 3028
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
	return NETDEV_TX_OK;
}

/**
 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40e_netdev_priv *np = netdev_priv(netdev);
	struct i40e_vsi *vsi = np->vsi;
3043
	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3044 3045 3046 3047

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
3048 3049
	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
		return NETDEV_TX_OK;
3050 3051 3052

	return i40e_xmit_frame_ring(skb, tx_ring);
}