code-reading.c 15.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <errno.h>
3
#include <linux/kernel.h>
B
Borislav Petkov 已提交
4
#include <linux/types.h>
5
#include <inttypes.h>
6 7 8 9
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
10
#include <sys/param.h>
11 12 13 14 15 16 17 18 19 20 21 22

#include "parse-events.h"
#include "evlist.h"
#include "evsel.h"
#include "thread_map.h"
#include "cpumap.h"
#include "machine.h"
#include "event.h"
#include "thread.h"

#include "tests.h"

23 24
#include "sane_ctype.h"

25 26 27
#define BUFSZ	1024
#define READLEN	128

28 29 30 31 32
struct state {
	u64 done[1024];
	size_t done_cnt;
};

33 34 35 36 37 38 39 40 41
static unsigned int hex(char c)
{
	if (c >= '0' && c <= '9')
		return c - '0';
	if (c >= 'a' && c <= 'f')
		return c - 'a' + 10;
	return c - 'A' + 10;
}

42 43
static size_t read_objdump_chunk(const char **line, unsigned char **buf,
				 size_t *buf_len)
44
{
45 46
	size_t bytes_read = 0;
	unsigned char *chunk_start = *buf;
47 48

	/* Read bytes */
49
	while (*buf_len > 0) {
50 51 52
		char c1, c2;

		/* Get 2 hex digits */
53 54
		c1 = *(*line)++;
		if (!isxdigit(c1))
55
			break;
56 57
		c2 = *(*line)++;
		if (!isxdigit(c2))
58
			break;
59 60 61 62 63 64 65 66 67

		/* Store byte and advance buf */
		**buf = (hex(c1) << 4) | hex(c2);
		(*buf)++;
		(*buf_len)--;
		bytes_read++;

		/* End of chunk? */
		if (isspace(**line))
68 69
			break;
	}
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

	/*
	 * objdump will display raw insn as LE if code endian
	 * is LE and bytes_per_chunk > 1. In that case reverse
	 * the chunk we just read.
	 *
	 * see disassemble_bytes() at binutils/objdump.c for details
	 * how objdump chooses display endian)
	 */
	if (bytes_read > 1 && !bigendian()) {
		unsigned char *chunk_end = chunk_start + bytes_read - 1;
		unsigned char tmp;

		while (chunk_start < chunk_end) {
			tmp = *chunk_start;
			*chunk_start = *chunk_end;
			*chunk_end = tmp;
			chunk_start++;
			chunk_end--;
		}
	}

	return bytes_read;
}

static size_t read_objdump_line(const char *line, unsigned char *buf,
				size_t buf_len)
{
	const char *p;
	size_t ret, bytes_read = 0;

	/* Skip to a colon */
	p = strchr(line, ':');
	if (!p)
		return 0;
	p++;

	/* Skip initial spaces */
	while (*p) {
		if (!isspace(*p))
			break;
		p++;
	}

	do {
		ret = read_objdump_chunk(&p, &buf, &buf_len);
		bytes_read += ret;
		p++;
	} while (ret > 0);

120
	/* return number of successfully read bytes */
121
	return bytes_read;
122 123
}

124
static int read_objdump_output(FILE *f, void *buf, size_t *len, u64 start_addr)
125 126
{
	char *line = NULL;
127
	size_t line_len, off_last = 0;
128 129
	ssize_t ret;
	int err = 0;
130
	u64 addr, last_addr = start_addr;
131 132 133 134

	while (off_last < *len) {
		size_t off, read_bytes, written_bytes;
		unsigned char tmp[BUFSZ];
135 136 137 138 139 140 141 142 143

		ret = getline(&line, &line_len, f);
		if (feof(f))
			break;
		if (ret < 0) {
			pr_debug("getline failed\n");
			err = -1;
			break;
		}
144 145

		/* read objdump data into temporary buffer */
146
		read_bytes = read_objdump_line(line, tmp, sizeof(tmp));
147 148 149 150 151
		if (!read_bytes)
			continue;

		if (sscanf(line, "%"PRIx64, &addr) != 1)
			continue;
152 153 154 155 156
		if (addr < last_addr) {
			pr_debug("addr going backwards, read beyond section?\n");
			break;
		}
		last_addr = addr;
157 158 159 160 161 162 163 164 165

		/* copy it from temporary buffer to 'buf' according
		 * to address on current objdump line */
		off = addr - start_addr;
		if (off >= *len)
			break;
		written_bytes = MIN(read_bytes, *len - off);
		memcpy(buf + off, tmp, written_bytes);
		off_last = off + written_bytes;
166 167
	}

168 169 170
	/* len returns number of bytes that could not be read */
	*len -= off_last;

171 172 173 174 175 176 177 178 179 180 181 182 183
	free(line);

	return err;
}

static int read_via_objdump(const char *filename, u64 addr, void *buf,
			    size_t len)
{
	char cmd[PATH_MAX * 2];
	const char *fmt;
	FILE *f;
	int ret;

184
	fmt = "%s -z -d --start-address=0x%"PRIx64" --stop-address=0x%"PRIx64" %s";
185 186 187 188 189 190 191
	ret = snprintf(cmd, sizeof(cmd), fmt, "objdump", addr, addr + len,
		       filename);
	if (ret <= 0 || (size_t)ret >= sizeof(cmd))
		return -1;

	pr_debug("Objdump command is: %s\n", cmd);

192 193 194
	/* Ignore objdump errors */
	strcat(cmd, " 2>/dev/null");

195 196 197 198 199 200
	f = popen(cmd, "r");
	if (!f) {
		pr_debug("popen failed\n");
		return -1;
	}

201
	ret = read_objdump_output(f, buf, &len, addr);
202
	if (len) {
203
		pr_debug("objdump read too few bytes: %zd\n", len);
204 205 206 207 208 209 210 211 212
		if (!ret)
			ret = len;
	}

	pclose(f);

	return ret;
}

213 214 215 216 217 218 219 220 221 222 223 224
static void dump_buf(unsigned char *buf, size_t len)
{
	size_t i;

	for (i = 0; i < len; i++) {
		pr_debug("0x%02x ", buf[i]);
		if (i % 16 == 15)
			pr_debug("\n");
	}
	pr_debug("\n");
}

225
static int read_object_code(u64 addr, size_t len, u8 cpumode,
226
			    struct thread *thread, struct state *state)
227 228 229 230 231 232
{
	struct addr_location al;
	unsigned char buf1[BUFSZ];
	unsigned char buf2[BUFSZ];
	size_t ret_len;
	u64 objdump_addr;
233 234
	const char *objdump_name;
	char decomp_name[KMOD_DECOMP_LEN];
235 236 237 238
	int ret;

	pr_debug("Reading object code for memory address: %#"PRIx64"\n", addr);

239
	thread__find_addr_map(thread, cpumode, MAP__FUNCTION, addr, &al);
240
	if (!al.map || !al.map->dso) {
241 242 243 244 245
		if (cpumode == PERF_RECORD_MISC_HYPERVISOR) {
			pr_debug("Hypervisor address can not be resolved - skipping\n");
			return 0;
		}

246 247 248 249 250 251
		pr_debug("thread__find_addr_map failed\n");
		return -1;
	}

	pr_debug("File is: %s\n", al.map->dso->long_name);

252 253
	if (al.map->dso->symtab_type == DSO_BINARY_TYPE__KALLSYMS &&
	    !dso__is_kcore(al.map->dso)) {
254 255 256 257 258 259 260 261 262 263 264 265 266 267
		pr_debug("Unexpected kernel address - skipping\n");
		return 0;
	}

	pr_debug("On file address is: %#"PRIx64"\n", al.addr);

	if (len > BUFSZ)
		len = BUFSZ;

	/* Do not go off the map */
	if (addr + len > al.map->end)
		len = al.map->end - addr;

	/* Read the object code using perf */
268 269
	ret_len = dso__data_read_offset(al.map->dso, thread->mg->machine,
					al.addr, buf1, len);
270 271 272 273 274 275 276 277 278
	if (ret_len != len) {
		pr_debug("dso__data_read_offset failed\n");
		return -1;
	}

	/*
	 * Converting addresses for use by objdump requires more information.
	 * map__load() does that.  See map__rip_2objdump() for details.
	 */
279
	if (map__load(al.map))
280 281
		return -1;

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	/* objdump struggles with kcore - try each map only once */
	if (dso__is_kcore(al.map->dso)) {
		size_t d;

		for (d = 0; d < state->done_cnt; d++) {
			if (state->done[d] == al.map->start) {
				pr_debug("kcore map tested already");
				pr_debug(" - skipping\n");
				return 0;
			}
		}
		if (state->done_cnt >= ARRAY_SIZE(state->done)) {
			pr_debug("Too many kcore maps - skipping\n");
			return 0;
		}
		state->done[state->done_cnt++] = al.map->start;
	}

300 301 302 303 304 305 306 307 308 309 310 311
	objdump_name = al.map->dso->long_name;
	if (dso__needs_decompress(al.map->dso)) {
		if (dso__decompress_kmodule_path(al.map->dso, objdump_name,
						 decomp_name,
						 sizeof(decomp_name)) < 0) {
			pr_debug("decompression failed\n");
			return -1;
		}

		objdump_name = decomp_name;
	}

312 313
	/* Read the object code using objdump */
	objdump_addr = map__rip_2objdump(al.map, al.addr);
314 315 316 317 318
	ret = read_via_objdump(objdump_name, objdump_addr, buf2, len);

	if (dso__needs_decompress(al.map->dso))
		unlink(objdump_name);

319 320 321 322 323 324 325 326
	if (ret > 0) {
		/*
		 * The kernel maps are inaccurate - assume objdump is right in
		 * that case.
		 */
		if (cpumode == PERF_RECORD_MISC_KERNEL ||
		    cpumode == PERF_RECORD_MISC_GUEST_KERNEL) {
			len -= ret;
327
			if (len) {
328
				pr_debug("Reducing len to %zu\n", len);
329 330 331 332 333 334 335 336 337
			} else if (dso__is_kcore(al.map->dso)) {
				/*
				 * objdump cannot handle very large segments
				 * that may be found in kcore.
				 */
				pr_debug("objdump failed for kcore");
				pr_debug(" - skipping\n");
				return 0;
			} else {
338
				return -1;
339
			}
340 341 342 343 344 345 346 347 348 349
		}
	}
	if (ret < 0) {
		pr_debug("read_via_objdump failed\n");
		return -1;
	}

	/* The results should be identical */
	if (memcmp(buf1, buf2, len)) {
		pr_debug("Bytes read differ from those read by objdump\n");
350 351 352 353
		pr_debug("buf1 (dso):\n");
		dump_buf(buf1, len);
		pr_debug("buf2 (objdump):\n");
		dump_buf(buf2, len);
354 355 356 357 358 359 360 361 362
		return -1;
	}
	pr_debug("Bytes read match those read by objdump\n");

	return 0;
}

static int process_sample_event(struct machine *machine,
				struct perf_evlist *evlist,
363
				union perf_event *event, struct state *state)
364 365 366
{
	struct perf_sample sample;
	struct thread *thread;
367
	int ret;
368 369 370 371 372 373

	if (perf_evlist__parse_sample(evlist, event, &sample)) {
		pr_debug("perf_evlist__parse_sample failed\n");
		return -1;
	}

374
	thread = machine__findnew_thread(machine, sample.pid, sample.tid);
375 376 377 378 379
	if (!thread) {
		pr_debug("machine__findnew_thread failed\n");
		return -1;
	}

380
	ret = read_object_code(sample.ip, READLEN, sample.cpumode, thread, state);
381 382
	thread__put(thread);
	return ret;
383 384 385
}

static int process_event(struct machine *machine, struct perf_evlist *evlist,
386
			 union perf_event *event, struct state *state)
387 388
{
	if (event->header.type == PERF_RECORD_SAMPLE)
389
		return process_sample_event(machine, evlist, event, state);
390

391 392 393 394 395 396 397 398 399 400 401 402 403
	if (event->header.type == PERF_RECORD_THROTTLE ||
	    event->header.type == PERF_RECORD_UNTHROTTLE)
		return 0;

	if (event->header.type < PERF_RECORD_MAX) {
		int ret;

		ret = machine__process_event(machine, event, NULL);
		if (ret < 0)
			pr_debug("machine__process_event failed, event type %u\n",
				 event->header.type);
		return ret;
	}
404 405 406 407

	return 0;
}

408 409
static int process_events(struct machine *machine, struct perf_evlist *evlist,
			  struct state *state)
410 411
{
	union perf_event *event;
412
	struct perf_mmap *md;
413 414 415
	int i, ret;

	for (i = 0; i < evlist->nr_mmaps; i++) {
416
		md = &evlist->mmap[i];
417
		if (perf_mmap__read_init(md) < 0)
418 419
			continue;

420
		while ((event = perf_mmap__read_event(md)) != NULL) {
421
			ret = process_event(machine, evlist, event, state);
422
			perf_mmap__consume(md);
423 424 425
			if (ret < 0)
				return ret;
		}
426
		perf_mmap__read_done(md);
427 428 429 430 431 432 433 434 435 436 437
	}
	return 0;
}

static int comp(const void *a, const void *b)
{
	return *(int *)a - *(int *)b;
}

static void do_sort_something(void)
{
438
	int buf[40960], i;
439

440 441
	for (i = 0; i < (int)ARRAY_SIZE(buf); i++)
		buf[i] = ARRAY_SIZE(buf) - i - 1;
442

443
	qsort(buf, ARRAY_SIZE(buf), sizeof(int), comp);
444

445
	for (i = 0; i < (int)ARRAY_SIZE(buf); i++) {
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
		if (buf[i] != i) {
			pr_debug("qsort failed\n");
			break;
		}
	}
}

static void sort_something(void)
{
	int i;

	for (i = 0; i < 10; i++)
		do_sort_something();
}

static void syscall_something(void)
{
	int pipefd[2];
	int i;

	for (i = 0; i < 1000; i++) {
		if (pipe(pipefd) < 0) {
			pr_debug("pipe failed\n");
			break;
		}
		close(pipefd[1]);
		close(pipefd[0]);
	}
}

static void fs_something(void)
{
	const char *test_file_name = "temp-perf-code-reading-test-file--";
	FILE *f;
	int i;

	for (i = 0; i < 1000; i++) {
		f = fopen(test_file_name, "w+");
		if (f) {
			fclose(f);
			unlink(test_file_name);
		}
	}
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
static const char *do_determine_event(bool excl_kernel)
{
	const char *event = excl_kernel ? "cycles:u" : "cycles";

#ifdef __s390x__
	char cpuid[128], model[16], model_c[16], cpum_cf_v[16];
	unsigned int family;
	int ret, cpum_cf_a;

	if (get_cpuid(cpuid, sizeof(cpuid)))
		goto out_clocks;
	ret = sscanf(cpuid, "%*[^,],%u,%[^,],%[^,],%[^,],%x", &family, model_c,
		     model, cpum_cf_v, &cpum_cf_a);
	if (ret != 5)		 /* Not available */
		goto out_clocks;
	if (excl_kernel && (cpum_cf_a & 4))
		return event;
	if (!excl_kernel && (cpum_cf_a & 2))
		return event;

	/* Fall through: missing authorization */
out_clocks:
	event = excl_kernel ? "cpu-clock:u" : "cpu-clock";

#endif
	return event;
}

519 520 521 522 523 524 525 526 527 528 529 530
static void do_something(void)
{
	fs_something();

	sort_something();

	syscall_something();
}

enum {
	TEST_CODE_READING_OK,
	TEST_CODE_READING_NO_VMLINUX,
531
	TEST_CODE_READING_NO_KCORE,
532
	TEST_CODE_READING_NO_ACCESS,
533
	TEST_CODE_READING_NO_KERNEL_OBJ,
534 535
};

536
static int do_test_code_reading(bool try_kcore)
537 538 539
{
	struct machine *machine;
	struct thread *thread;
540
	struct record_opts opts = {
541 542 543
		.mmap_pages	     = UINT_MAX,
		.user_freq	     = UINT_MAX,
		.user_interval	     = ULLONG_MAX,
544
		.freq		     = 500,
545 546 547 548
		.target		     = {
			.uses_mmap   = true,
		},
	};
549 550 551
	struct state state = {
		.done_cnt = 0,
	};
552 553 554 555 556 557 558
	struct thread_map *threads = NULL;
	struct cpu_map *cpus = NULL;
	struct perf_evlist *evlist = NULL;
	struct perf_evsel *evsel = NULL;
	int err = -1, ret;
	pid_t pid;
	struct map *map;
559
	bool have_vmlinux, have_kcore, excl_kernel = false;
560 561 562

	pid = getpid();

563
	machine = machine__new_host();
564 565 566 567 568 569 570

	ret = machine__create_kernel_maps(machine);
	if (ret < 0) {
		pr_debug("machine__create_kernel_maps failed\n");
		goto out_err;
	}

571 572 573 574
	/* Force the use of kallsyms instead of vmlinux to try kcore */
	if (try_kcore)
		symbol_conf.kallsyms_name = "/proc/kallsyms";

575
	/* Load kernel map */
576
	map = machine__kernel_map(machine);
577
	ret = map__load(map);
578 579 580 581
	if (ret < 0) {
		pr_debug("map__load failed\n");
		goto out_err;
	}
582 583 584 585 586 587 588 589 590
	have_vmlinux = dso__is_vmlinux(map->dso);
	have_kcore = dso__is_kcore(map->dso);

	/* 2nd time through we just try kcore */
	if (try_kcore && !have_kcore)
		return TEST_CODE_READING_NO_KCORE;

	/* No point getting kernel events if there is no kernel object */
	if (!have_vmlinux && !have_kcore)
591 592 593 594 595 596 597 598 599
		excl_kernel = true;

	threads = thread_map__new_by_tid(pid);
	if (!threads) {
		pr_debug("thread_map__new_by_tid failed\n");
		goto out_err;
	}

	ret = perf_event__synthesize_thread_map(NULL, threads,
600
						perf_event__process, machine, false, 500);
601 602 603 604 605
	if (ret < 0) {
		pr_debug("perf_event__synthesize_thread_map failed\n");
		goto out_err;
	}

606
	thread = machine__findnew_thread(machine, pid, pid);
607 608
	if (!thread) {
		pr_debug("machine__findnew_thread failed\n");
609
		goto out_put;
610 611 612 613 614
	}

	cpus = cpu_map__new(NULL);
	if (!cpus) {
		pr_debug("cpu_map__new failed\n");
615
		goto out_put;
616 617 618 619 620 621 622 623
	}

	while (1) {
		const char *str;

		evlist = perf_evlist__new();
		if (!evlist) {
			pr_debug("perf_evlist__new failed\n");
624
			goto out_put;
625 626 627 628
		}

		perf_evlist__set_maps(evlist, cpus, threads);

629
		str = do_determine_event(excl_kernel);
630
		pr_debug("Parsing event '%s'\n", str);
631
		ret = parse_events(evlist, str, NULL);
632 633
		if (ret < 0) {
			pr_debug("parse_events failed\n");
634
			goto out_put;
635 636
		}

637
		perf_evlist__config(evlist, &opts, NULL);
638 639 640 641 642 643 644 645 646 647 648

		evsel = perf_evlist__first(evlist);

		evsel->attr.comm = 1;
		evsel->attr.disabled = 1;
		evsel->attr.enable_on_exec = 0;

		ret = perf_evlist__open(evlist);
		if (ret < 0) {
			if (!excl_kernel) {
				excl_kernel = true;
649 650 651 652 653 654 655
				/*
				 * Both cpus and threads are now owned by evlist
				 * and will be freed by following perf_evlist__set_maps
				 * call. Getting refference to keep them alive.
				 */
				cpu_map__get(cpus);
				thread_map__get(threads);
656
				perf_evlist__set_maps(evlist, NULL, NULL);
657 658 659 660
				perf_evlist__delete(evlist);
				evlist = NULL;
				continue;
			}
661

662
			if (verbose > 0) {
663 664 665 666 667
				char errbuf[512];
				perf_evlist__strerror_open(evlist, errno, errbuf, sizeof(errbuf));
				pr_debug("perf_evlist__open() failed!\n%s\n", errbuf);
			}

668
			goto out_put;
669 670 671 672
		}
		break;
	}

673
	ret = perf_evlist__mmap(evlist, UINT_MAX);
674 675
	if (ret < 0) {
		pr_debug("perf_evlist__mmap failed\n");
676
		goto out_put;
677 678 679 680 681 682 683 684
	}

	perf_evlist__enable(evlist);

	do_something();

	perf_evlist__disable(evlist);

685
	ret = process_events(machine, evlist, &state);
686
	if (ret < 0)
687
		goto out_put;
688

689 690 691
	if (!have_vmlinux && !have_kcore && !try_kcore)
		err = TEST_CODE_READING_NO_KERNEL_OBJ;
	else if (!have_vmlinux && !try_kcore)
692 693 694 695 696
		err = TEST_CODE_READING_NO_VMLINUX;
	else if (excl_kernel)
		err = TEST_CODE_READING_NO_ACCESS;
	else
		err = TEST_CODE_READING_OK;
697 698
out_put:
	thread__put(thread);
699
out_err:
700

701 702
	if (evlist) {
		perf_evlist__delete(evlist);
703
	} else {
704
		cpu_map__put(cpus);
705
		thread_map__put(threads);
706
	}
707
	machine__delete_threads(machine);
708
	machine__delete(machine);
709 710 711 712

	return err;
}

713
int test__code_reading(struct test *test __maybe_unused, int subtest __maybe_unused)
714 715 716
{
	int ret;

717 718 719
	ret = do_test_code_reading(false);
	if (!ret)
		ret = do_test_code_reading(true);
720 721 722 723 724

	switch (ret) {
	case TEST_CODE_READING_OK:
		return 0;
	case TEST_CODE_READING_NO_VMLINUX:
725
		pr_debug("no vmlinux\n");
726
		return 0;
727
	case TEST_CODE_READING_NO_KCORE:
728
		pr_debug("no kcore\n");
729
		return 0;
730
	case TEST_CODE_READING_NO_ACCESS:
731
		pr_debug("no access\n");
732
		return 0;
733
	case TEST_CODE_READING_NO_KERNEL_OBJ:
734
		pr_debug("no kernel obj\n");
735
		return 0;
736 737 738 739
	default:
		return -1;
	};
}