code-reading.c 14.5 KB
Newer Older
1
#include <errno.h>
2
#include <linux/kernel.h>
B
Borislav Petkov 已提交
3
#include <linux/types.h>
4
#include <inttypes.h>
5 6 7 8
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
9
#include <sys/param.h>
10 11 12 13 14 15 16 17 18 19 20 21

#include "parse-events.h"
#include "evlist.h"
#include "evsel.h"
#include "thread_map.h"
#include "cpumap.h"
#include "machine.h"
#include "event.h"
#include "thread.h"

#include "tests.h"

22 23
#include "sane_ctype.h"

24 25 26
#define BUFSZ	1024
#define READLEN	128

27 28 29 30 31
struct state {
	u64 done[1024];
	size_t done_cnt;
};

32 33 34 35 36 37 38 39 40
static unsigned int hex(char c)
{
	if (c >= '0' && c <= '9')
		return c - '0';
	if (c >= 'a' && c <= 'f')
		return c - 'a' + 10;
	return c - 'A' + 10;
}

41 42
static size_t read_objdump_chunk(const char **line, unsigned char **buf,
				 size_t *buf_len)
43
{
44 45
	size_t bytes_read = 0;
	unsigned char *chunk_start = *buf;
46 47

	/* Read bytes */
48
	while (*buf_len > 0) {
49 50 51
		char c1, c2;

		/* Get 2 hex digits */
52 53
		c1 = *(*line)++;
		if (!isxdigit(c1))
54
			break;
55 56
		c2 = *(*line)++;
		if (!isxdigit(c2))
57
			break;
58 59 60 61 62 63 64 65 66

		/* Store byte and advance buf */
		**buf = (hex(c1) << 4) | hex(c2);
		(*buf)++;
		(*buf_len)--;
		bytes_read++;

		/* End of chunk? */
		if (isspace(**line))
67 68
			break;
	}
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

	/*
	 * objdump will display raw insn as LE if code endian
	 * is LE and bytes_per_chunk > 1. In that case reverse
	 * the chunk we just read.
	 *
	 * see disassemble_bytes() at binutils/objdump.c for details
	 * how objdump chooses display endian)
	 */
	if (bytes_read > 1 && !bigendian()) {
		unsigned char *chunk_end = chunk_start + bytes_read - 1;
		unsigned char tmp;

		while (chunk_start < chunk_end) {
			tmp = *chunk_start;
			*chunk_start = *chunk_end;
			*chunk_end = tmp;
			chunk_start++;
			chunk_end--;
		}
	}

	return bytes_read;
}

static size_t read_objdump_line(const char *line, unsigned char *buf,
				size_t buf_len)
{
	const char *p;
	size_t ret, bytes_read = 0;

	/* Skip to a colon */
	p = strchr(line, ':');
	if (!p)
		return 0;
	p++;

	/* Skip initial spaces */
	while (*p) {
		if (!isspace(*p))
			break;
		p++;
	}

	do {
		ret = read_objdump_chunk(&p, &buf, &buf_len);
		bytes_read += ret;
		p++;
	} while (ret > 0);

119
	/* return number of successfully read bytes */
120
	return bytes_read;
121 122
}

123
static int read_objdump_output(FILE *f, void *buf, size_t *len, u64 start_addr)
124 125
{
	char *line = NULL;
126
	size_t line_len, off_last = 0;
127 128
	ssize_t ret;
	int err = 0;
129
	u64 addr, last_addr = start_addr;
130 131 132 133

	while (off_last < *len) {
		size_t off, read_bytes, written_bytes;
		unsigned char tmp[BUFSZ];
134 135 136 137 138 139 140 141 142

		ret = getline(&line, &line_len, f);
		if (feof(f))
			break;
		if (ret < 0) {
			pr_debug("getline failed\n");
			err = -1;
			break;
		}
143 144

		/* read objdump data into temporary buffer */
145
		read_bytes = read_objdump_line(line, tmp, sizeof(tmp));
146 147 148 149 150
		if (!read_bytes)
			continue;

		if (sscanf(line, "%"PRIx64, &addr) != 1)
			continue;
151 152 153 154 155
		if (addr < last_addr) {
			pr_debug("addr going backwards, read beyond section?\n");
			break;
		}
		last_addr = addr;
156 157 158 159 160 161 162 163 164

		/* copy it from temporary buffer to 'buf' according
		 * to address on current objdump line */
		off = addr - start_addr;
		if (off >= *len)
			break;
		written_bytes = MIN(read_bytes, *len - off);
		memcpy(buf + off, tmp, written_bytes);
		off_last = off + written_bytes;
165 166
	}

167 168 169
	/* len returns number of bytes that could not be read */
	*len -= off_last;

170 171 172 173 174 175 176 177 178 179 180 181 182
	free(line);

	return err;
}

static int read_via_objdump(const char *filename, u64 addr, void *buf,
			    size_t len)
{
	char cmd[PATH_MAX * 2];
	const char *fmt;
	FILE *f;
	int ret;

183
	fmt = "%s -z -d --start-address=0x%"PRIx64" --stop-address=0x%"PRIx64" %s";
184 185 186 187 188 189 190
	ret = snprintf(cmd, sizeof(cmd), fmt, "objdump", addr, addr + len,
		       filename);
	if (ret <= 0 || (size_t)ret >= sizeof(cmd))
		return -1;

	pr_debug("Objdump command is: %s\n", cmd);

191 192 193
	/* Ignore objdump errors */
	strcat(cmd, " 2>/dev/null");

194 195 196 197 198 199
	f = popen(cmd, "r");
	if (!f) {
		pr_debug("popen failed\n");
		return -1;
	}

200
	ret = read_objdump_output(f, buf, &len, addr);
201
	if (len) {
202
		pr_debug("objdump read too few bytes: %zd\n", len);
203 204 205 206 207 208 209 210 211
		if (!ret)
			ret = len;
	}

	pclose(f);

	return ret;
}

212 213 214 215 216 217 218 219 220 221 222 223
static void dump_buf(unsigned char *buf, size_t len)
{
	size_t i;

	for (i = 0; i < len; i++) {
		pr_debug("0x%02x ", buf[i]);
		if (i % 16 == 15)
			pr_debug("\n");
	}
	pr_debug("\n");
}

224
static int read_object_code(u64 addr, size_t len, u8 cpumode,
225
			    struct thread *thread, struct state *state)
226 227 228 229 230 231
{
	struct addr_location al;
	unsigned char buf1[BUFSZ];
	unsigned char buf2[BUFSZ];
	size_t ret_len;
	u64 objdump_addr;
232 233
	const char *objdump_name;
	char decomp_name[KMOD_DECOMP_LEN];
234 235 236 237
	int ret;

	pr_debug("Reading object code for memory address: %#"PRIx64"\n", addr);

238
	thread__find_addr_map(thread, cpumode, MAP__FUNCTION, addr, &al);
239 240 241 242 243 244 245
	if (!al.map || !al.map->dso) {
		pr_debug("thread__find_addr_map failed\n");
		return -1;
	}

	pr_debug("File is: %s\n", al.map->dso->long_name);

246 247
	if (al.map->dso->symtab_type == DSO_BINARY_TYPE__KALLSYMS &&
	    !dso__is_kcore(al.map->dso)) {
248 249 250 251 252 253 254 255 256 257 258 259 260 261
		pr_debug("Unexpected kernel address - skipping\n");
		return 0;
	}

	pr_debug("On file address is: %#"PRIx64"\n", al.addr);

	if (len > BUFSZ)
		len = BUFSZ;

	/* Do not go off the map */
	if (addr + len > al.map->end)
		len = al.map->end - addr;

	/* Read the object code using perf */
262 263
	ret_len = dso__data_read_offset(al.map->dso, thread->mg->machine,
					al.addr, buf1, len);
264 265 266 267 268 269 270 271 272
	if (ret_len != len) {
		pr_debug("dso__data_read_offset failed\n");
		return -1;
	}

	/*
	 * Converting addresses for use by objdump requires more information.
	 * map__load() does that.  See map__rip_2objdump() for details.
	 */
273
	if (map__load(al.map))
274 275
		return -1;

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
	/* objdump struggles with kcore - try each map only once */
	if (dso__is_kcore(al.map->dso)) {
		size_t d;

		for (d = 0; d < state->done_cnt; d++) {
			if (state->done[d] == al.map->start) {
				pr_debug("kcore map tested already");
				pr_debug(" - skipping\n");
				return 0;
			}
		}
		if (state->done_cnt >= ARRAY_SIZE(state->done)) {
			pr_debug("Too many kcore maps - skipping\n");
			return 0;
		}
		state->done[state->done_cnt++] = al.map->start;
	}

294 295 296 297 298 299 300 301 302 303 304 305
	objdump_name = al.map->dso->long_name;
	if (dso__needs_decompress(al.map->dso)) {
		if (dso__decompress_kmodule_path(al.map->dso, objdump_name,
						 decomp_name,
						 sizeof(decomp_name)) < 0) {
			pr_debug("decompression failed\n");
			return -1;
		}

		objdump_name = decomp_name;
	}

306 307
	/* Read the object code using objdump */
	objdump_addr = map__rip_2objdump(al.map, al.addr);
308 309 310 311 312
	ret = read_via_objdump(objdump_name, objdump_addr, buf2, len);

	if (dso__needs_decompress(al.map->dso))
		unlink(objdump_name);

313 314 315 316 317 318 319 320
	if (ret > 0) {
		/*
		 * The kernel maps are inaccurate - assume objdump is right in
		 * that case.
		 */
		if (cpumode == PERF_RECORD_MISC_KERNEL ||
		    cpumode == PERF_RECORD_MISC_GUEST_KERNEL) {
			len -= ret;
321
			if (len) {
322
				pr_debug("Reducing len to %zu\n", len);
323 324 325 326 327 328 329 330 331
			} else if (dso__is_kcore(al.map->dso)) {
				/*
				 * objdump cannot handle very large segments
				 * that may be found in kcore.
				 */
				pr_debug("objdump failed for kcore");
				pr_debug(" - skipping\n");
				return 0;
			} else {
332
				return -1;
333
			}
334 335 336 337 338 339 340 341 342 343
		}
	}
	if (ret < 0) {
		pr_debug("read_via_objdump failed\n");
		return -1;
	}

	/* The results should be identical */
	if (memcmp(buf1, buf2, len)) {
		pr_debug("Bytes read differ from those read by objdump\n");
344 345 346 347
		pr_debug("buf1 (dso):\n");
		dump_buf(buf1, len);
		pr_debug("buf2 (objdump):\n");
		dump_buf(buf2, len);
348 349 350 351 352 353 354 355 356
		return -1;
	}
	pr_debug("Bytes read match those read by objdump\n");

	return 0;
}

static int process_sample_event(struct machine *machine,
				struct perf_evlist *evlist,
357
				union perf_event *event, struct state *state)
358 359 360
{
	struct perf_sample sample;
	struct thread *thread;
361
	int ret;
362 363 364 365 366 367

	if (perf_evlist__parse_sample(evlist, event, &sample)) {
		pr_debug("perf_evlist__parse_sample failed\n");
		return -1;
	}

368
	thread = machine__findnew_thread(machine, sample.pid, sample.tid);
369 370 371 372 373
	if (!thread) {
		pr_debug("machine__findnew_thread failed\n");
		return -1;
	}

374
	ret = read_object_code(sample.ip, READLEN, sample.cpumode, thread, state);
375 376
	thread__put(thread);
	return ret;
377 378 379
}

static int process_event(struct machine *machine, struct perf_evlist *evlist,
380
			 union perf_event *event, struct state *state)
381 382
{
	if (event->header.type == PERF_RECORD_SAMPLE)
383
		return process_sample_event(machine, evlist, event, state);
384

385 386 387 388 389 390 391 392 393 394 395 396 397
	if (event->header.type == PERF_RECORD_THROTTLE ||
	    event->header.type == PERF_RECORD_UNTHROTTLE)
		return 0;

	if (event->header.type < PERF_RECORD_MAX) {
		int ret;

		ret = machine__process_event(machine, event, NULL);
		if (ret < 0)
			pr_debug("machine__process_event failed, event type %u\n",
				 event->header.type);
		return ret;
	}
398 399 400 401

	return 0;
}

402 403
static int process_events(struct machine *machine, struct perf_evlist *evlist,
			  struct state *state)
404 405 406 407 408 409
{
	union perf_event *event;
	int i, ret;

	for (i = 0; i < evlist->nr_mmaps; i++) {
		while ((event = perf_evlist__mmap_read(evlist, i)) != NULL) {
410
			ret = process_event(machine, evlist, event, state);
411
			perf_evlist__mmap_consume(evlist, i);
412 413 414 415 416 417 418 419 420 421 422 423 424 425
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

static int comp(const void *a, const void *b)
{
	return *(int *)a - *(int *)b;
}

static void do_sort_something(void)
{
426
	int buf[40960], i;
427

428 429
	for (i = 0; i < (int)ARRAY_SIZE(buf); i++)
		buf[i] = ARRAY_SIZE(buf) - i - 1;
430

431
	qsort(buf, ARRAY_SIZE(buf), sizeof(int), comp);
432

433
	for (i = 0; i < (int)ARRAY_SIZE(buf); i++) {
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
		if (buf[i] != i) {
			pr_debug("qsort failed\n");
			break;
		}
	}
}

static void sort_something(void)
{
	int i;

	for (i = 0; i < 10; i++)
		do_sort_something();
}

static void syscall_something(void)
{
	int pipefd[2];
	int i;

	for (i = 0; i < 1000; i++) {
		if (pipe(pipefd) < 0) {
			pr_debug("pipe failed\n");
			break;
		}
		close(pipefd[1]);
		close(pipefd[0]);
	}
}

static void fs_something(void)
{
	const char *test_file_name = "temp-perf-code-reading-test-file--";
	FILE *f;
	int i;

	for (i = 0; i < 1000; i++) {
		f = fopen(test_file_name, "w+");
		if (f) {
			fclose(f);
			unlink(test_file_name);
		}
	}
}

static void do_something(void)
{
	fs_something();

	sort_something();

	syscall_something();
}

enum {
	TEST_CODE_READING_OK,
	TEST_CODE_READING_NO_VMLINUX,
491
	TEST_CODE_READING_NO_KCORE,
492
	TEST_CODE_READING_NO_ACCESS,
493
	TEST_CODE_READING_NO_KERNEL_OBJ,
494 495
};

496
static int do_test_code_reading(bool try_kcore)
497 498 499
{
	struct machine *machine;
	struct thread *thread;
500
	struct record_opts opts = {
501 502 503
		.mmap_pages	     = UINT_MAX,
		.user_freq	     = UINT_MAX,
		.user_interval	     = ULLONG_MAX,
504
		.freq		     = 500,
505 506 507 508
		.target		     = {
			.uses_mmap   = true,
		},
	};
509 510 511
	struct state state = {
		.done_cnt = 0,
	};
512 513 514 515 516 517 518
	struct thread_map *threads = NULL;
	struct cpu_map *cpus = NULL;
	struct perf_evlist *evlist = NULL;
	struct perf_evsel *evsel = NULL;
	int err = -1, ret;
	pid_t pid;
	struct map *map;
519
	bool have_vmlinux, have_kcore, excl_kernel = false;
520 521 522

	pid = getpid();

523
	machine = machine__new_host();
524 525 526 527 528 529 530

	ret = machine__create_kernel_maps(machine);
	if (ret < 0) {
		pr_debug("machine__create_kernel_maps failed\n");
		goto out_err;
	}

531 532 533 534
	/* Force the use of kallsyms instead of vmlinux to try kcore */
	if (try_kcore)
		symbol_conf.kallsyms_name = "/proc/kallsyms";

535
	/* Load kernel map */
536
	map = machine__kernel_map(machine);
537
	ret = map__load(map);
538 539 540 541
	if (ret < 0) {
		pr_debug("map__load failed\n");
		goto out_err;
	}
542 543 544 545 546 547 548 549 550
	have_vmlinux = dso__is_vmlinux(map->dso);
	have_kcore = dso__is_kcore(map->dso);

	/* 2nd time through we just try kcore */
	if (try_kcore && !have_kcore)
		return TEST_CODE_READING_NO_KCORE;

	/* No point getting kernel events if there is no kernel object */
	if (!have_vmlinux && !have_kcore)
551 552 553 554 555 556 557 558 559
		excl_kernel = true;

	threads = thread_map__new_by_tid(pid);
	if (!threads) {
		pr_debug("thread_map__new_by_tid failed\n");
		goto out_err;
	}

	ret = perf_event__synthesize_thread_map(NULL, threads,
560
						perf_event__process, machine, false, 500);
561 562 563 564 565
	if (ret < 0) {
		pr_debug("perf_event__synthesize_thread_map failed\n");
		goto out_err;
	}

566
	thread = machine__findnew_thread(machine, pid, pid);
567 568
	if (!thread) {
		pr_debug("machine__findnew_thread failed\n");
569
		goto out_put;
570 571 572 573 574
	}

	cpus = cpu_map__new(NULL);
	if (!cpus) {
		pr_debug("cpu_map__new failed\n");
575
		goto out_put;
576 577 578 579 580 581 582 583
	}

	while (1) {
		const char *str;

		evlist = perf_evlist__new();
		if (!evlist) {
			pr_debug("perf_evlist__new failed\n");
584
			goto out_put;
585 586 587 588 589 590 591 592 593
		}

		perf_evlist__set_maps(evlist, cpus, threads);

		if (excl_kernel)
			str = "cycles:u";
		else
			str = "cycles";
		pr_debug("Parsing event '%s'\n", str);
594
		ret = parse_events(evlist, str, NULL);
595 596
		if (ret < 0) {
			pr_debug("parse_events failed\n");
597
			goto out_put;
598 599
		}

600
		perf_evlist__config(evlist, &opts, NULL);
601 602 603 604 605 606 607 608 609 610 611

		evsel = perf_evlist__first(evlist);

		evsel->attr.comm = 1;
		evsel->attr.disabled = 1;
		evsel->attr.enable_on_exec = 0;

		ret = perf_evlist__open(evlist);
		if (ret < 0) {
			if (!excl_kernel) {
				excl_kernel = true;
612 613 614 615 616 617 618
				/*
				 * Both cpus and threads are now owned by evlist
				 * and will be freed by following perf_evlist__set_maps
				 * call. Getting refference to keep them alive.
				 */
				cpu_map__get(cpus);
				thread_map__get(threads);
619
				perf_evlist__set_maps(evlist, NULL, NULL);
620 621 622 623
				perf_evlist__delete(evlist);
				evlist = NULL;
				continue;
			}
624

625
			if (verbose > 0) {
626 627 628 629 630
				char errbuf[512];
				perf_evlist__strerror_open(evlist, errno, errbuf, sizeof(errbuf));
				pr_debug("perf_evlist__open() failed!\n%s\n", errbuf);
			}

631
			goto out_put;
632 633 634 635 636 637 638
		}
		break;
	}

	ret = perf_evlist__mmap(evlist, UINT_MAX, false);
	if (ret < 0) {
		pr_debug("perf_evlist__mmap failed\n");
639
		goto out_put;
640 641 642 643 644 645 646 647
	}

	perf_evlist__enable(evlist);

	do_something();

	perf_evlist__disable(evlist);

648
	ret = process_events(machine, evlist, &state);
649
	if (ret < 0)
650
		goto out_put;
651

652 653 654
	if (!have_vmlinux && !have_kcore && !try_kcore)
		err = TEST_CODE_READING_NO_KERNEL_OBJ;
	else if (!have_vmlinux && !try_kcore)
655 656 657 658 659
		err = TEST_CODE_READING_NO_VMLINUX;
	else if (excl_kernel)
		err = TEST_CODE_READING_NO_ACCESS;
	else
		err = TEST_CODE_READING_OK;
660 661
out_put:
	thread__put(thread);
662
out_err:
663

664 665
	if (evlist) {
		perf_evlist__delete(evlist);
666
	} else {
667
		cpu_map__put(cpus);
668
		thread_map__put(threads);
669
	}
670
	machine__delete_threads(machine);
671
	machine__delete(machine);
672 673 674 675

	return err;
}

676
int test__code_reading(int subtest __maybe_unused)
677 678 679
{
	int ret;

680 681 682
	ret = do_test_code_reading(false);
	if (!ret)
		ret = do_test_code_reading(true);
683 684 685 686 687

	switch (ret) {
	case TEST_CODE_READING_OK:
		return 0;
	case TEST_CODE_READING_NO_VMLINUX:
688
		pr_debug("no vmlinux\n");
689
		return 0;
690
	case TEST_CODE_READING_NO_KCORE:
691
		pr_debug("no kcore\n");
692
		return 0;
693
	case TEST_CODE_READING_NO_ACCESS:
694
		pr_debug("no access\n");
695
		return 0;
696
	case TEST_CODE_READING_NO_KERNEL_OBJ:
697
		pr_debug("no kernel obj\n");
698
		return 0;
699 700 701 702
	default:
		return -1;
	};
}