code-reading.c 14.1 KB
Newer Older
1
#include <errno.h>
2
#include <linux/kernel.h>
B
Borislav Petkov 已提交
3
#include <linux/types.h>
4
#include <inttypes.h>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>

#include "parse-events.h"
#include "evlist.h"
#include "evsel.h"
#include "thread_map.h"
#include "cpumap.h"
#include "machine.h"
#include "event.h"
#include "thread.h"

#include "tests.h"

21 22
#include "sane_ctype.h"

23 24 25
#define BUFSZ	1024
#define READLEN	128

26 27 28 29 30
struct state {
	u64 done[1024];
	size_t done_cnt;
};

31 32 33 34 35 36 37 38 39
static unsigned int hex(char c)
{
	if (c >= '0' && c <= '9')
		return c - '0';
	if (c >= 'a' && c <= 'f')
		return c - 'a' + 10;
	return c - 'A' + 10;
}

40 41
static size_t read_objdump_chunk(const char **line, unsigned char **buf,
				 size_t *buf_len)
42
{
43 44
	size_t bytes_read = 0;
	unsigned char *chunk_start = *buf;
45 46

	/* Read bytes */
47
	while (*buf_len > 0) {
48 49 50
		char c1, c2;

		/* Get 2 hex digits */
51 52
		c1 = *(*line)++;
		if (!isxdigit(c1))
53
			break;
54 55
		c2 = *(*line)++;
		if (!isxdigit(c2))
56
			break;
57 58 59 60 61 62 63 64 65

		/* Store byte and advance buf */
		**buf = (hex(c1) << 4) | hex(c2);
		(*buf)++;
		(*buf_len)--;
		bytes_read++;

		/* End of chunk? */
		if (isspace(**line))
66 67
			break;
	}
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

	/*
	 * objdump will display raw insn as LE if code endian
	 * is LE and bytes_per_chunk > 1. In that case reverse
	 * the chunk we just read.
	 *
	 * see disassemble_bytes() at binutils/objdump.c for details
	 * how objdump chooses display endian)
	 */
	if (bytes_read > 1 && !bigendian()) {
		unsigned char *chunk_end = chunk_start + bytes_read - 1;
		unsigned char tmp;

		while (chunk_start < chunk_end) {
			tmp = *chunk_start;
			*chunk_start = *chunk_end;
			*chunk_end = tmp;
			chunk_start++;
			chunk_end--;
		}
	}

	return bytes_read;
}

static size_t read_objdump_line(const char *line, unsigned char *buf,
				size_t buf_len)
{
	const char *p;
	size_t ret, bytes_read = 0;

	/* Skip to a colon */
	p = strchr(line, ':');
	if (!p)
		return 0;
	p++;

	/* Skip initial spaces */
	while (*p) {
		if (!isspace(*p))
			break;
		p++;
	}

	do {
		ret = read_objdump_chunk(&p, &buf, &buf_len);
		bytes_read += ret;
		p++;
	} while (ret > 0);

118
	/* return number of successfully read bytes */
119
	return bytes_read;
120 121
}

122
static int read_objdump_output(FILE *f, void *buf, size_t *len, u64 start_addr)
123 124
{
	char *line = NULL;
125
	size_t line_len, off_last = 0;
126 127
	ssize_t ret;
	int err = 0;
128
	u64 addr, last_addr = start_addr;
129 130 131 132

	while (off_last < *len) {
		size_t off, read_bytes, written_bytes;
		unsigned char tmp[BUFSZ];
133 134 135 136 137 138 139 140 141

		ret = getline(&line, &line_len, f);
		if (feof(f))
			break;
		if (ret < 0) {
			pr_debug("getline failed\n");
			err = -1;
			break;
		}
142 143

		/* read objdump data into temporary buffer */
144
		read_bytes = read_objdump_line(line, tmp, sizeof(tmp));
145 146 147 148 149
		if (!read_bytes)
			continue;

		if (sscanf(line, "%"PRIx64, &addr) != 1)
			continue;
150 151 152 153 154
		if (addr < last_addr) {
			pr_debug("addr going backwards, read beyond section?\n");
			break;
		}
		last_addr = addr;
155 156 157 158 159 160 161 162 163

		/* copy it from temporary buffer to 'buf' according
		 * to address on current objdump line */
		off = addr - start_addr;
		if (off >= *len)
			break;
		written_bytes = MIN(read_bytes, *len - off);
		memcpy(buf + off, tmp, written_bytes);
		off_last = off + written_bytes;
164 165
	}

166 167 168
	/* len returns number of bytes that could not be read */
	*len -= off_last;

169 170 171 172 173 174 175 176 177 178 179 180 181
	free(line);

	return err;
}

static int read_via_objdump(const char *filename, u64 addr, void *buf,
			    size_t len)
{
	char cmd[PATH_MAX * 2];
	const char *fmt;
	FILE *f;
	int ret;

182
	fmt = "%s -z -d --start-address=0x%"PRIx64" --stop-address=0x%"PRIx64" %s";
183 184 185 186 187 188 189
	ret = snprintf(cmd, sizeof(cmd), fmt, "objdump", addr, addr + len,
		       filename);
	if (ret <= 0 || (size_t)ret >= sizeof(cmd))
		return -1;

	pr_debug("Objdump command is: %s\n", cmd);

190 191 192
	/* Ignore objdump errors */
	strcat(cmd, " 2>/dev/null");

193 194 195 196 197 198
	f = popen(cmd, "r");
	if (!f) {
		pr_debug("popen failed\n");
		return -1;
	}

199
	ret = read_objdump_output(f, buf, &len, addr);
200
	if (len) {
201
		pr_debug("objdump read too few bytes: %zd\n", len);
202 203 204 205 206 207 208 209 210
		if (!ret)
			ret = len;
	}

	pclose(f);

	return ret;
}

211 212 213 214 215 216 217 218 219 220 221 222
static void dump_buf(unsigned char *buf, size_t len)
{
	size_t i;

	for (i = 0; i < len; i++) {
		pr_debug("0x%02x ", buf[i]);
		if (i % 16 == 15)
			pr_debug("\n");
	}
	pr_debug("\n");
}

223
static int read_object_code(u64 addr, size_t len, u8 cpumode,
224
			    struct thread *thread, struct state *state)
225 226 227 228 229 230 231 232 233 234
{
	struct addr_location al;
	unsigned char buf1[BUFSZ];
	unsigned char buf2[BUFSZ];
	size_t ret_len;
	u64 objdump_addr;
	int ret;

	pr_debug("Reading object code for memory address: %#"PRIx64"\n", addr);

235
	thread__find_addr_map(thread, cpumode, MAP__FUNCTION, addr, &al);
236 237 238 239 240 241 242
	if (!al.map || !al.map->dso) {
		pr_debug("thread__find_addr_map failed\n");
		return -1;
	}

	pr_debug("File is: %s\n", al.map->dso->long_name);

243 244
	if (al.map->dso->symtab_type == DSO_BINARY_TYPE__KALLSYMS &&
	    !dso__is_kcore(al.map->dso)) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
		pr_debug("Unexpected kernel address - skipping\n");
		return 0;
	}

	pr_debug("On file address is: %#"PRIx64"\n", al.addr);

	if (len > BUFSZ)
		len = BUFSZ;

	/* Do not go off the map */
	if (addr + len > al.map->end)
		len = al.map->end - addr;

	/* Read the object code using perf */
259 260
	ret_len = dso__data_read_offset(al.map->dso, thread->mg->machine,
					al.addr, buf1, len);
261 262 263 264 265 266 267 268 269
	if (ret_len != len) {
		pr_debug("dso__data_read_offset failed\n");
		return -1;
	}

	/*
	 * Converting addresses for use by objdump requires more information.
	 * map__load() does that.  See map__rip_2objdump() for details.
	 */
270
	if (map__load(al.map))
271 272
		return -1;

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	/* objdump struggles with kcore - try each map only once */
	if (dso__is_kcore(al.map->dso)) {
		size_t d;

		for (d = 0; d < state->done_cnt; d++) {
			if (state->done[d] == al.map->start) {
				pr_debug("kcore map tested already");
				pr_debug(" - skipping\n");
				return 0;
			}
		}
		if (state->done_cnt >= ARRAY_SIZE(state->done)) {
			pr_debug("Too many kcore maps - skipping\n");
			return 0;
		}
		state->done[state->done_cnt++] = al.map->start;
	}

291 292 293 294 295 296 297 298 299 300 301
	/* Read the object code using objdump */
	objdump_addr = map__rip_2objdump(al.map, al.addr);
	ret = read_via_objdump(al.map->dso->long_name, objdump_addr, buf2, len);
	if (ret > 0) {
		/*
		 * The kernel maps are inaccurate - assume objdump is right in
		 * that case.
		 */
		if (cpumode == PERF_RECORD_MISC_KERNEL ||
		    cpumode == PERF_RECORD_MISC_GUEST_KERNEL) {
			len -= ret;
302
			if (len) {
303
				pr_debug("Reducing len to %zu\n", len);
304 305 306 307 308 309 310 311 312
			} else if (dso__is_kcore(al.map->dso)) {
				/*
				 * objdump cannot handle very large segments
				 * that may be found in kcore.
				 */
				pr_debug("objdump failed for kcore");
				pr_debug(" - skipping\n");
				return 0;
			} else {
313
				return -1;
314
			}
315 316 317 318 319 320 321 322 323 324
		}
	}
	if (ret < 0) {
		pr_debug("read_via_objdump failed\n");
		return -1;
	}

	/* The results should be identical */
	if (memcmp(buf1, buf2, len)) {
		pr_debug("Bytes read differ from those read by objdump\n");
325 326 327 328
		pr_debug("buf1 (dso):\n");
		dump_buf(buf1, len);
		pr_debug("buf2 (objdump):\n");
		dump_buf(buf2, len);
329 330 331 332 333 334 335 336 337
		return -1;
	}
	pr_debug("Bytes read match those read by objdump\n");

	return 0;
}

static int process_sample_event(struct machine *machine,
				struct perf_evlist *evlist,
338
				union perf_event *event, struct state *state)
339 340 341
{
	struct perf_sample sample;
	struct thread *thread;
342
	int ret;
343 344 345 346 347 348

	if (perf_evlist__parse_sample(evlist, event, &sample)) {
		pr_debug("perf_evlist__parse_sample failed\n");
		return -1;
	}

349
	thread = machine__findnew_thread(machine, sample.pid, sample.tid);
350 351 352 353 354
	if (!thread) {
		pr_debug("machine__findnew_thread failed\n");
		return -1;
	}

355
	ret = read_object_code(sample.ip, READLEN, sample.cpumode, thread, state);
356 357
	thread__put(thread);
	return ret;
358 359 360
}

static int process_event(struct machine *machine, struct perf_evlist *evlist,
361
			 union perf_event *event, struct state *state)
362 363
{
	if (event->header.type == PERF_RECORD_SAMPLE)
364
		return process_sample_event(machine, evlist, event, state);
365

366 367 368 369 370 371 372 373 374 375 376 377 378
	if (event->header.type == PERF_RECORD_THROTTLE ||
	    event->header.type == PERF_RECORD_UNTHROTTLE)
		return 0;

	if (event->header.type < PERF_RECORD_MAX) {
		int ret;

		ret = machine__process_event(machine, event, NULL);
		if (ret < 0)
			pr_debug("machine__process_event failed, event type %u\n",
				 event->header.type);
		return ret;
	}
379 380 381 382

	return 0;
}

383 384
static int process_events(struct machine *machine, struct perf_evlist *evlist,
			  struct state *state)
385 386 387 388 389 390
{
	union perf_event *event;
	int i, ret;

	for (i = 0; i < evlist->nr_mmaps; i++) {
		while ((event = perf_evlist__mmap_read(evlist, i)) != NULL) {
391
			ret = process_event(machine, evlist, event, state);
392
			perf_evlist__mmap_consume(evlist, i);
393 394 395 396 397 398 399 400 401 402 403 404 405 406
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

static int comp(const void *a, const void *b)
{
	return *(int *)a - *(int *)b;
}

static void do_sort_something(void)
{
407
	int buf[40960], i;
408

409 410
	for (i = 0; i < (int)ARRAY_SIZE(buf); i++)
		buf[i] = ARRAY_SIZE(buf) - i - 1;
411

412
	qsort(buf, ARRAY_SIZE(buf), sizeof(int), comp);
413

414
	for (i = 0; i < (int)ARRAY_SIZE(buf); i++) {
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
		if (buf[i] != i) {
			pr_debug("qsort failed\n");
			break;
		}
	}
}

static void sort_something(void)
{
	int i;

	for (i = 0; i < 10; i++)
		do_sort_something();
}

static void syscall_something(void)
{
	int pipefd[2];
	int i;

	for (i = 0; i < 1000; i++) {
		if (pipe(pipefd) < 0) {
			pr_debug("pipe failed\n");
			break;
		}
		close(pipefd[1]);
		close(pipefd[0]);
	}
}

static void fs_something(void)
{
	const char *test_file_name = "temp-perf-code-reading-test-file--";
	FILE *f;
	int i;

	for (i = 0; i < 1000; i++) {
		f = fopen(test_file_name, "w+");
		if (f) {
			fclose(f);
			unlink(test_file_name);
		}
	}
}

static void do_something(void)
{
	fs_something();

	sort_something();

	syscall_something();
}

enum {
	TEST_CODE_READING_OK,
	TEST_CODE_READING_NO_VMLINUX,
472
	TEST_CODE_READING_NO_KCORE,
473
	TEST_CODE_READING_NO_ACCESS,
474
	TEST_CODE_READING_NO_KERNEL_OBJ,
475 476
};

477
static int do_test_code_reading(bool try_kcore)
478 479 480
{
	struct machine *machine;
	struct thread *thread;
481
	struct record_opts opts = {
482 483 484
		.mmap_pages	     = UINT_MAX,
		.user_freq	     = UINT_MAX,
		.user_interval	     = ULLONG_MAX,
485
		.freq		     = 500,
486 487 488 489
		.target		     = {
			.uses_mmap   = true,
		},
	};
490 491 492
	struct state state = {
		.done_cnt = 0,
	};
493 494 495 496 497 498 499
	struct thread_map *threads = NULL;
	struct cpu_map *cpus = NULL;
	struct perf_evlist *evlist = NULL;
	struct perf_evsel *evsel = NULL;
	int err = -1, ret;
	pid_t pid;
	struct map *map;
500
	bool have_vmlinux, have_kcore, excl_kernel = false;
501 502 503

	pid = getpid();

504
	machine = machine__new_host();
505 506 507 508 509 510 511

	ret = machine__create_kernel_maps(machine);
	if (ret < 0) {
		pr_debug("machine__create_kernel_maps failed\n");
		goto out_err;
	}

512 513 514 515
	/* Force the use of kallsyms instead of vmlinux to try kcore */
	if (try_kcore)
		symbol_conf.kallsyms_name = "/proc/kallsyms";

516
	/* Load kernel map */
517
	map = machine__kernel_map(machine);
518
	ret = map__load(map);
519 520 521 522
	if (ret < 0) {
		pr_debug("map__load failed\n");
		goto out_err;
	}
523 524 525 526 527 528 529 530 531
	have_vmlinux = dso__is_vmlinux(map->dso);
	have_kcore = dso__is_kcore(map->dso);

	/* 2nd time through we just try kcore */
	if (try_kcore && !have_kcore)
		return TEST_CODE_READING_NO_KCORE;

	/* No point getting kernel events if there is no kernel object */
	if (!have_vmlinux && !have_kcore)
532 533 534 535 536 537 538 539 540
		excl_kernel = true;

	threads = thread_map__new_by_tid(pid);
	if (!threads) {
		pr_debug("thread_map__new_by_tid failed\n");
		goto out_err;
	}

	ret = perf_event__synthesize_thread_map(NULL, threads,
541
						perf_event__process, machine, false, 500);
542 543 544 545 546
	if (ret < 0) {
		pr_debug("perf_event__synthesize_thread_map failed\n");
		goto out_err;
	}

547
	thread = machine__findnew_thread(machine, pid, pid);
548 549
	if (!thread) {
		pr_debug("machine__findnew_thread failed\n");
550
		goto out_put;
551 552 553 554 555
	}

	cpus = cpu_map__new(NULL);
	if (!cpus) {
		pr_debug("cpu_map__new failed\n");
556
		goto out_put;
557 558 559 560 561 562 563 564
	}

	while (1) {
		const char *str;

		evlist = perf_evlist__new();
		if (!evlist) {
			pr_debug("perf_evlist__new failed\n");
565
			goto out_put;
566 567 568 569 570 571 572 573 574
		}

		perf_evlist__set_maps(evlist, cpus, threads);

		if (excl_kernel)
			str = "cycles:u";
		else
			str = "cycles";
		pr_debug("Parsing event '%s'\n", str);
575
		ret = parse_events(evlist, str, NULL);
576 577
		if (ret < 0) {
			pr_debug("parse_events failed\n");
578
			goto out_put;
579 580
		}

581
		perf_evlist__config(evlist, &opts, NULL);
582 583 584 585 586 587 588 589 590 591 592

		evsel = perf_evlist__first(evlist);

		evsel->attr.comm = 1;
		evsel->attr.disabled = 1;
		evsel->attr.enable_on_exec = 0;

		ret = perf_evlist__open(evlist);
		if (ret < 0) {
			if (!excl_kernel) {
				excl_kernel = true;
593 594 595 596 597 598 599
				/*
				 * Both cpus and threads are now owned by evlist
				 * and will be freed by following perf_evlist__set_maps
				 * call. Getting refference to keep them alive.
				 */
				cpu_map__get(cpus);
				thread_map__get(threads);
600
				perf_evlist__set_maps(evlist, NULL, NULL);
601 602 603 604
				perf_evlist__delete(evlist);
				evlist = NULL;
				continue;
			}
605

606
			if (verbose > 0) {
607 608 609 610 611
				char errbuf[512];
				perf_evlist__strerror_open(evlist, errno, errbuf, sizeof(errbuf));
				pr_debug("perf_evlist__open() failed!\n%s\n", errbuf);
			}

612
			goto out_put;
613 614 615 616 617 618 619
		}
		break;
	}

	ret = perf_evlist__mmap(evlist, UINT_MAX, false);
	if (ret < 0) {
		pr_debug("perf_evlist__mmap failed\n");
620
		goto out_put;
621 622 623 624 625 626 627 628
	}

	perf_evlist__enable(evlist);

	do_something();

	perf_evlist__disable(evlist);

629
	ret = process_events(machine, evlist, &state);
630
	if (ret < 0)
631
		goto out_put;
632

633 634 635
	if (!have_vmlinux && !have_kcore && !try_kcore)
		err = TEST_CODE_READING_NO_KERNEL_OBJ;
	else if (!have_vmlinux && !try_kcore)
636 637 638 639 640
		err = TEST_CODE_READING_NO_VMLINUX;
	else if (excl_kernel)
		err = TEST_CODE_READING_NO_ACCESS;
	else
		err = TEST_CODE_READING_OK;
641 642
out_put:
	thread__put(thread);
643
out_err:
644

645 646
	if (evlist) {
		perf_evlist__delete(evlist);
647
	} else {
648
		cpu_map__put(cpus);
649
		thread_map__put(threads);
650
	}
651
	machine__delete_threads(machine);
652
	machine__delete(machine);
653 654 655 656

	return err;
}

657
int test__code_reading(int subtest __maybe_unused)
658 659 660
{
	int ret;

661 662 663
	ret = do_test_code_reading(false);
	if (!ret)
		ret = do_test_code_reading(true);
664 665 666 667 668

	switch (ret) {
	case TEST_CODE_READING_OK:
		return 0;
	case TEST_CODE_READING_NO_VMLINUX:
669
		pr_debug("no vmlinux\n");
670
		return 0;
671
	case TEST_CODE_READING_NO_KCORE:
672
		pr_debug("no kcore\n");
673
		return 0;
674
	case TEST_CODE_READING_NO_ACCESS:
675
		pr_debug("no access\n");
676
		return 0;
677
	case TEST_CODE_READING_NO_KERNEL_OBJ:
678
		pr_debug("no kernel obj\n");
679
		return 0;
680 681 682 683
	default:
		return -1;
	};
}