code-reading.c 14.1 KB
Newer Older
1
#include <errno.h>
2
#include <linux/kernel.h>
B
Borislav Petkov 已提交
3
#include <linux/types.h>
4
#include <inttypes.h>
5 6 7 8
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
9
#include <sys/param.h>
10 11 12 13 14 15 16 17 18 19 20 21

#include "parse-events.h"
#include "evlist.h"
#include "evsel.h"
#include "thread_map.h"
#include "cpumap.h"
#include "machine.h"
#include "event.h"
#include "thread.h"

#include "tests.h"

22 23
#include "sane_ctype.h"

24 25 26
#define BUFSZ	1024
#define READLEN	128

27 28 29 30 31
struct state {
	u64 done[1024];
	size_t done_cnt;
};

32 33 34 35 36 37 38 39 40
static unsigned int hex(char c)
{
	if (c >= '0' && c <= '9')
		return c - '0';
	if (c >= 'a' && c <= 'f')
		return c - 'a' + 10;
	return c - 'A' + 10;
}

41 42
static size_t read_objdump_chunk(const char **line, unsigned char **buf,
				 size_t *buf_len)
43
{
44 45
	size_t bytes_read = 0;
	unsigned char *chunk_start = *buf;
46 47

	/* Read bytes */
48
	while (*buf_len > 0) {
49 50 51
		char c1, c2;

		/* Get 2 hex digits */
52 53
		c1 = *(*line)++;
		if (!isxdigit(c1))
54
			break;
55 56
		c2 = *(*line)++;
		if (!isxdigit(c2))
57
			break;
58 59 60 61 62 63 64 65 66

		/* Store byte and advance buf */
		**buf = (hex(c1) << 4) | hex(c2);
		(*buf)++;
		(*buf_len)--;
		bytes_read++;

		/* End of chunk? */
		if (isspace(**line))
67 68
			break;
	}
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

	/*
	 * objdump will display raw insn as LE if code endian
	 * is LE and bytes_per_chunk > 1. In that case reverse
	 * the chunk we just read.
	 *
	 * see disassemble_bytes() at binutils/objdump.c for details
	 * how objdump chooses display endian)
	 */
	if (bytes_read > 1 && !bigendian()) {
		unsigned char *chunk_end = chunk_start + bytes_read - 1;
		unsigned char tmp;

		while (chunk_start < chunk_end) {
			tmp = *chunk_start;
			*chunk_start = *chunk_end;
			*chunk_end = tmp;
			chunk_start++;
			chunk_end--;
		}
	}

	return bytes_read;
}

static size_t read_objdump_line(const char *line, unsigned char *buf,
				size_t buf_len)
{
	const char *p;
	size_t ret, bytes_read = 0;

	/* Skip to a colon */
	p = strchr(line, ':');
	if (!p)
		return 0;
	p++;

	/* Skip initial spaces */
	while (*p) {
		if (!isspace(*p))
			break;
		p++;
	}

	do {
		ret = read_objdump_chunk(&p, &buf, &buf_len);
		bytes_read += ret;
		p++;
	} while (ret > 0);

119
	/* return number of successfully read bytes */
120
	return bytes_read;
121 122
}

123
static int read_objdump_output(FILE *f, void *buf, size_t *len, u64 start_addr)
124 125
{
	char *line = NULL;
126
	size_t line_len, off_last = 0;
127 128
	ssize_t ret;
	int err = 0;
129
	u64 addr, last_addr = start_addr;
130 131 132 133

	while (off_last < *len) {
		size_t off, read_bytes, written_bytes;
		unsigned char tmp[BUFSZ];
134 135 136 137 138 139 140 141 142

		ret = getline(&line, &line_len, f);
		if (feof(f))
			break;
		if (ret < 0) {
			pr_debug("getline failed\n");
			err = -1;
			break;
		}
143 144

		/* read objdump data into temporary buffer */
145
		read_bytes = read_objdump_line(line, tmp, sizeof(tmp));
146 147 148 149 150
		if (!read_bytes)
			continue;

		if (sscanf(line, "%"PRIx64, &addr) != 1)
			continue;
151 152 153 154 155
		if (addr < last_addr) {
			pr_debug("addr going backwards, read beyond section?\n");
			break;
		}
		last_addr = addr;
156 157 158 159 160 161 162 163 164

		/* copy it from temporary buffer to 'buf' according
		 * to address on current objdump line */
		off = addr - start_addr;
		if (off >= *len)
			break;
		written_bytes = MIN(read_bytes, *len - off);
		memcpy(buf + off, tmp, written_bytes);
		off_last = off + written_bytes;
165 166
	}

167 168 169
	/* len returns number of bytes that could not be read */
	*len -= off_last;

170 171 172 173 174 175 176 177 178 179 180 181 182
	free(line);

	return err;
}

static int read_via_objdump(const char *filename, u64 addr, void *buf,
			    size_t len)
{
	char cmd[PATH_MAX * 2];
	const char *fmt;
	FILE *f;
	int ret;

183
	fmt = "%s -z -d --start-address=0x%"PRIx64" --stop-address=0x%"PRIx64" %s";
184 185 186 187 188 189 190
	ret = snprintf(cmd, sizeof(cmd), fmt, "objdump", addr, addr + len,
		       filename);
	if (ret <= 0 || (size_t)ret >= sizeof(cmd))
		return -1;

	pr_debug("Objdump command is: %s\n", cmd);

191 192 193
	/* Ignore objdump errors */
	strcat(cmd, " 2>/dev/null");

194 195 196 197 198 199
	f = popen(cmd, "r");
	if (!f) {
		pr_debug("popen failed\n");
		return -1;
	}

200
	ret = read_objdump_output(f, buf, &len, addr);
201
	if (len) {
202
		pr_debug("objdump read too few bytes: %zd\n", len);
203 204 205 206 207 208 209 210 211
		if (!ret)
			ret = len;
	}

	pclose(f);

	return ret;
}

212 213 214 215 216 217 218 219 220 221 222 223
static void dump_buf(unsigned char *buf, size_t len)
{
	size_t i;

	for (i = 0; i < len; i++) {
		pr_debug("0x%02x ", buf[i]);
		if (i % 16 == 15)
			pr_debug("\n");
	}
	pr_debug("\n");
}

224
static int read_object_code(u64 addr, size_t len, u8 cpumode,
225
			    struct thread *thread, struct state *state)
226 227 228 229 230 231 232 233 234 235
{
	struct addr_location al;
	unsigned char buf1[BUFSZ];
	unsigned char buf2[BUFSZ];
	size_t ret_len;
	u64 objdump_addr;
	int ret;

	pr_debug("Reading object code for memory address: %#"PRIx64"\n", addr);

236
	thread__find_addr_map(thread, cpumode, MAP__FUNCTION, addr, &al);
237 238 239 240 241 242 243
	if (!al.map || !al.map->dso) {
		pr_debug("thread__find_addr_map failed\n");
		return -1;
	}

	pr_debug("File is: %s\n", al.map->dso->long_name);

244 245
	if (al.map->dso->symtab_type == DSO_BINARY_TYPE__KALLSYMS &&
	    !dso__is_kcore(al.map->dso)) {
246 247 248 249 250 251 252 253 254 255 256 257 258 259
		pr_debug("Unexpected kernel address - skipping\n");
		return 0;
	}

	pr_debug("On file address is: %#"PRIx64"\n", al.addr);

	if (len > BUFSZ)
		len = BUFSZ;

	/* Do not go off the map */
	if (addr + len > al.map->end)
		len = al.map->end - addr;

	/* Read the object code using perf */
260 261
	ret_len = dso__data_read_offset(al.map->dso, thread->mg->machine,
					al.addr, buf1, len);
262 263 264 265 266 267 268 269 270
	if (ret_len != len) {
		pr_debug("dso__data_read_offset failed\n");
		return -1;
	}

	/*
	 * Converting addresses for use by objdump requires more information.
	 * map__load() does that.  See map__rip_2objdump() for details.
	 */
271
	if (map__load(al.map))
272 273
		return -1;

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	/* objdump struggles with kcore - try each map only once */
	if (dso__is_kcore(al.map->dso)) {
		size_t d;

		for (d = 0; d < state->done_cnt; d++) {
			if (state->done[d] == al.map->start) {
				pr_debug("kcore map tested already");
				pr_debug(" - skipping\n");
				return 0;
			}
		}
		if (state->done_cnt >= ARRAY_SIZE(state->done)) {
			pr_debug("Too many kcore maps - skipping\n");
			return 0;
		}
		state->done[state->done_cnt++] = al.map->start;
	}

292 293 294 295 296 297 298 299 300 301 302
	/* Read the object code using objdump */
	objdump_addr = map__rip_2objdump(al.map, al.addr);
	ret = read_via_objdump(al.map->dso->long_name, objdump_addr, buf2, len);
	if (ret > 0) {
		/*
		 * The kernel maps are inaccurate - assume objdump is right in
		 * that case.
		 */
		if (cpumode == PERF_RECORD_MISC_KERNEL ||
		    cpumode == PERF_RECORD_MISC_GUEST_KERNEL) {
			len -= ret;
303
			if (len) {
304
				pr_debug("Reducing len to %zu\n", len);
305 306 307 308 309 310 311 312 313
			} else if (dso__is_kcore(al.map->dso)) {
				/*
				 * objdump cannot handle very large segments
				 * that may be found in kcore.
				 */
				pr_debug("objdump failed for kcore");
				pr_debug(" - skipping\n");
				return 0;
			} else {
314
				return -1;
315
			}
316 317 318 319 320 321 322 323 324 325
		}
	}
	if (ret < 0) {
		pr_debug("read_via_objdump failed\n");
		return -1;
	}

	/* The results should be identical */
	if (memcmp(buf1, buf2, len)) {
		pr_debug("Bytes read differ from those read by objdump\n");
326 327 328 329
		pr_debug("buf1 (dso):\n");
		dump_buf(buf1, len);
		pr_debug("buf2 (objdump):\n");
		dump_buf(buf2, len);
330 331 332 333 334 335 336 337 338
		return -1;
	}
	pr_debug("Bytes read match those read by objdump\n");

	return 0;
}

static int process_sample_event(struct machine *machine,
				struct perf_evlist *evlist,
339
				union perf_event *event, struct state *state)
340 341 342
{
	struct perf_sample sample;
	struct thread *thread;
343
	int ret;
344 345 346 347 348 349

	if (perf_evlist__parse_sample(evlist, event, &sample)) {
		pr_debug("perf_evlist__parse_sample failed\n");
		return -1;
	}

350
	thread = machine__findnew_thread(machine, sample.pid, sample.tid);
351 352 353 354 355
	if (!thread) {
		pr_debug("machine__findnew_thread failed\n");
		return -1;
	}

356
	ret = read_object_code(sample.ip, READLEN, sample.cpumode, thread, state);
357 358
	thread__put(thread);
	return ret;
359 360 361
}

static int process_event(struct machine *machine, struct perf_evlist *evlist,
362
			 union perf_event *event, struct state *state)
363 364
{
	if (event->header.type == PERF_RECORD_SAMPLE)
365
		return process_sample_event(machine, evlist, event, state);
366

367 368 369 370 371 372 373 374 375 376 377 378 379
	if (event->header.type == PERF_RECORD_THROTTLE ||
	    event->header.type == PERF_RECORD_UNTHROTTLE)
		return 0;

	if (event->header.type < PERF_RECORD_MAX) {
		int ret;

		ret = machine__process_event(machine, event, NULL);
		if (ret < 0)
			pr_debug("machine__process_event failed, event type %u\n",
				 event->header.type);
		return ret;
	}
380 381 382 383

	return 0;
}

384 385
static int process_events(struct machine *machine, struct perf_evlist *evlist,
			  struct state *state)
386 387 388 389 390 391
{
	union perf_event *event;
	int i, ret;

	for (i = 0; i < evlist->nr_mmaps; i++) {
		while ((event = perf_evlist__mmap_read(evlist, i)) != NULL) {
392
			ret = process_event(machine, evlist, event, state);
393
			perf_evlist__mmap_consume(evlist, i);
394 395 396 397 398 399 400 401 402 403 404 405 406 407
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

static int comp(const void *a, const void *b)
{
	return *(int *)a - *(int *)b;
}

static void do_sort_something(void)
{
408
	int buf[40960], i;
409

410 411
	for (i = 0; i < (int)ARRAY_SIZE(buf); i++)
		buf[i] = ARRAY_SIZE(buf) - i - 1;
412

413
	qsort(buf, ARRAY_SIZE(buf), sizeof(int), comp);
414

415
	for (i = 0; i < (int)ARRAY_SIZE(buf); i++) {
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
		if (buf[i] != i) {
			pr_debug("qsort failed\n");
			break;
		}
	}
}

static void sort_something(void)
{
	int i;

	for (i = 0; i < 10; i++)
		do_sort_something();
}

static void syscall_something(void)
{
	int pipefd[2];
	int i;

	for (i = 0; i < 1000; i++) {
		if (pipe(pipefd) < 0) {
			pr_debug("pipe failed\n");
			break;
		}
		close(pipefd[1]);
		close(pipefd[0]);
	}
}

static void fs_something(void)
{
	const char *test_file_name = "temp-perf-code-reading-test-file--";
	FILE *f;
	int i;

	for (i = 0; i < 1000; i++) {
		f = fopen(test_file_name, "w+");
		if (f) {
			fclose(f);
			unlink(test_file_name);
		}
	}
}

static void do_something(void)
{
	fs_something();

	sort_something();

	syscall_something();
}

enum {
	TEST_CODE_READING_OK,
	TEST_CODE_READING_NO_VMLINUX,
473
	TEST_CODE_READING_NO_KCORE,
474
	TEST_CODE_READING_NO_ACCESS,
475
	TEST_CODE_READING_NO_KERNEL_OBJ,
476 477
};

478
static int do_test_code_reading(bool try_kcore)
479 480 481
{
	struct machine *machine;
	struct thread *thread;
482
	struct record_opts opts = {
483 484 485
		.mmap_pages	     = UINT_MAX,
		.user_freq	     = UINT_MAX,
		.user_interval	     = ULLONG_MAX,
486
		.freq		     = 500,
487 488 489 490
		.target		     = {
			.uses_mmap   = true,
		},
	};
491 492 493
	struct state state = {
		.done_cnt = 0,
	};
494 495 496 497 498 499 500
	struct thread_map *threads = NULL;
	struct cpu_map *cpus = NULL;
	struct perf_evlist *evlist = NULL;
	struct perf_evsel *evsel = NULL;
	int err = -1, ret;
	pid_t pid;
	struct map *map;
501
	bool have_vmlinux, have_kcore, excl_kernel = false;
502 503 504

	pid = getpid();

505
	machine = machine__new_host();
506 507 508 509 510 511 512

	ret = machine__create_kernel_maps(machine);
	if (ret < 0) {
		pr_debug("machine__create_kernel_maps failed\n");
		goto out_err;
	}

513 514 515 516
	/* Force the use of kallsyms instead of vmlinux to try kcore */
	if (try_kcore)
		symbol_conf.kallsyms_name = "/proc/kallsyms";

517
	/* Load kernel map */
518
	map = machine__kernel_map(machine);
519
	ret = map__load(map);
520 521 522 523
	if (ret < 0) {
		pr_debug("map__load failed\n");
		goto out_err;
	}
524 525 526 527 528 529 530 531 532
	have_vmlinux = dso__is_vmlinux(map->dso);
	have_kcore = dso__is_kcore(map->dso);

	/* 2nd time through we just try kcore */
	if (try_kcore && !have_kcore)
		return TEST_CODE_READING_NO_KCORE;

	/* No point getting kernel events if there is no kernel object */
	if (!have_vmlinux && !have_kcore)
533 534 535 536 537 538 539 540 541
		excl_kernel = true;

	threads = thread_map__new_by_tid(pid);
	if (!threads) {
		pr_debug("thread_map__new_by_tid failed\n");
		goto out_err;
	}

	ret = perf_event__synthesize_thread_map(NULL, threads,
542
						perf_event__process, machine, false, 500);
543 544 545 546 547
	if (ret < 0) {
		pr_debug("perf_event__synthesize_thread_map failed\n");
		goto out_err;
	}

548
	thread = machine__findnew_thread(machine, pid, pid);
549 550
	if (!thread) {
		pr_debug("machine__findnew_thread failed\n");
551
		goto out_put;
552 553 554 555 556
	}

	cpus = cpu_map__new(NULL);
	if (!cpus) {
		pr_debug("cpu_map__new failed\n");
557
		goto out_put;
558 559 560 561 562 563 564 565
	}

	while (1) {
		const char *str;

		evlist = perf_evlist__new();
		if (!evlist) {
			pr_debug("perf_evlist__new failed\n");
566
			goto out_put;
567 568 569 570 571 572 573 574 575
		}

		perf_evlist__set_maps(evlist, cpus, threads);

		if (excl_kernel)
			str = "cycles:u";
		else
			str = "cycles";
		pr_debug("Parsing event '%s'\n", str);
576
		ret = parse_events(evlist, str, NULL);
577 578
		if (ret < 0) {
			pr_debug("parse_events failed\n");
579
			goto out_put;
580 581
		}

582
		perf_evlist__config(evlist, &opts, NULL);
583 584 585 586 587 588 589 590 591 592 593

		evsel = perf_evlist__first(evlist);

		evsel->attr.comm = 1;
		evsel->attr.disabled = 1;
		evsel->attr.enable_on_exec = 0;

		ret = perf_evlist__open(evlist);
		if (ret < 0) {
			if (!excl_kernel) {
				excl_kernel = true;
594 595 596 597 598 599 600
				/*
				 * Both cpus and threads are now owned by evlist
				 * and will be freed by following perf_evlist__set_maps
				 * call. Getting refference to keep them alive.
				 */
				cpu_map__get(cpus);
				thread_map__get(threads);
601
				perf_evlist__set_maps(evlist, NULL, NULL);
602 603 604 605
				perf_evlist__delete(evlist);
				evlist = NULL;
				continue;
			}
606

607
			if (verbose > 0) {
608 609 610 611 612
				char errbuf[512];
				perf_evlist__strerror_open(evlist, errno, errbuf, sizeof(errbuf));
				pr_debug("perf_evlist__open() failed!\n%s\n", errbuf);
			}

613
			goto out_put;
614 615 616 617 618 619 620
		}
		break;
	}

	ret = perf_evlist__mmap(evlist, UINT_MAX, false);
	if (ret < 0) {
		pr_debug("perf_evlist__mmap failed\n");
621
		goto out_put;
622 623 624 625 626 627 628 629
	}

	perf_evlist__enable(evlist);

	do_something();

	perf_evlist__disable(evlist);

630
	ret = process_events(machine, evlist, &state);
631
	if (ret < 0)
632
		goto out_put;
633

634 635 636
	if (!have_vmlinux && !have_kcore && !try_kcore)
		err = TEST_CODE_READING_NO_KERNEL_OBJ;
	else if (!have_vmlinux && !try_kcore)
637 638 639 640 641
		err = TEST_CODE_READING_NO_VMLINUX;
	else if (excl_kernel)
		err = TEST_CODE_READING_NO_ACCESS;
	else
		err = TEST_CODE_READING_OK;
642 643
out_put:
	thread__put(thread);
644
out_err:
645

646 647
	if (evlist) {
		perf_evlist__delete(evlist);
648
	} else {
649
		cpu_map__put(cpus);
650
		thread_map__put(threads);
651
	}
652
	machine__delete_threads(machine);
653
	machine__delete(machine);
654 655 656 657

	return err;
}

658
int test__code_reading(int subtest __maybe_unused)
659 660 661
{
	int ret;

662 663 664
	ret = do_test_code_reading(false);
	if (!ret)
		ret = do_test_code_reading(true);
665 666 667 668 669

	switch (ret) {
	case TEST_CODE_READING_OK:
		return 0;
	case TEST_CODE_READING_NO_VMLINUX:
670
		pr_debug("no vmlinux\n");
671
		return 0;
672
	case TEST_CODE_READING_NO_KCORE:
673
		pr_debug("no kcore\n");
674
		return 0;
675
	case TEST_CODE_READING_NO_ACCESS:
676
		pr_debug("no access\n");
677
		return 0;
678
	case TEST_CODE_READING_NO_KERNEL_OBJ:
679
		pr_debug("no kernel obj\n");
680
		return 0;
681 682 683 684
	default:
		return -1;
	};
}