code-reading.c 14.0 KB
Newer Older
1
#include <linux/kernel.h>
B
Borislav Petkov 已提交
2
#include <linux/types.h>
3
#include <inttypes.h>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <ctype.h>
#include <string.h>

#include "parse-events.h"
#include "evlist.h"
#include "evsel.h"
#include "thread_map.h"
#include "cpumap.h"
#include "machine.h"
#include "event.h"
#include "thread.h"

#include "tests.h"

#define BUFSZ	1024
#define READLEN	128

24 25 26 27 28
struct state {
	u64 done[1024];
	size_t done_cnt;
};

29 30 31 32 33 34 35 36 37
static unsigned int hex(char c)
{
	if (c >= '0' && c <= '9')
		return c - '0';
	if (c >= 'a' && c <= 'f')
		return c - 'a' + 10;
	return c - 'A' + 10;
}

38 39
static size_t read_objdump_chunk(const char **line, unsigned char **buf,
				 size_t *buf_len)
40
{
41 42
	size_t bytes_read = 0;
	unsigned char *chunk_start = *buf;
43 44

	/* Read bytes */
45
	while (*buf_len > 0) {
46 47 48
		char c1, c2;

		/* Get 2 hex digits */
49 50
		c1 = *(*line)++;
		if (!isxdigit(c1))
51
			break;
52 53
		c2 = *(*line)++;
		if (!isxdigit(c2))
54
			break;
55 56 57 58 59 60 61 62 63

		/* Store byte and advance buf */
		**buf = (hex(c1) << 4) | hex(c2);
		(*buf)++;
		(*buf_len)--;
		bytes_read++;

		/* End of chunk? */
		if (isspace(**line))
64 65
			break;
	}
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

	/*
	 * objdump will display raw insn as LE if code endian
	 * is LE and bytes_per_chunk > 1. In that case reverse
	 * the chunk we just read.
	 *
	 * see disassemble_bytes() at binutils/objdump.c for details
	 * how objdump chooses display endian)
	 */
	if (bytes_read > 1 && !bigendian()) {
		unsigned char *chunk_end = chunk_start + bytes_read - 1;
		unsigned char tmp;

		while (chunk_start < chunk_end) {
			tmp = *chunk_start;
			*chunk_start = *chunk_end;
			*chunk_end = tmp;
			chunk_start++;
			chunk_end--;
		}
	}

	return bytes_read;
}

static size_t read_objdump_line(const char *line, unsigned char *buf,
				size_t buf_len)
{
	const char *p;
	size_t ret, bytes_read = 0;

	/* Skip to a colon */
	p = strchr(line, ':');
	if (!p)
		return 0;
	p++;

	/* Skip initial spaces */
	while (*p) {
		if (!isspace(*p))
			break;
		p++;
	}

	do {
		ret = read_objdump_chunk(&p, &buf, &buf_len);
		bytes_read += ret;
		p++;
	} while (ret > 0);

116
	/* return number of successfully read bytes */
117
	return bytes_read;
118 119
}

120
static int read_objdump_output(FILE *f, void *buf, size_t *len, u64 start_addr)
121 122
{
	char *line = NULL;
123
	size_t line_len, off_last = 0;
124 125
	ssize_t ret;
	int err = 0;
126
	u64 addr, last_addr = start_addr;
127 128 129 130

	while (off_last < *len) {
		size_t off, read_bytes, written_bytes;
		unsigned char tmp[BUFSZ];
131 132 133 134 135 136 137 138 139

		ret = getline(&line, &line_len, f);
		if (feof(f))
			break;
		if (ret < 0) {
			pr_debug("getline failed\n");
			err = -1;
			break;
		}
140 141

		/* read objdump data into temporary buffer */
142
		read_bytes = read_objdump_line(line, tmp, sizeof(tmp));
143 144 145 146 147
		if (!read_bytes)
			continue;

		if (sscanf(line, "%"PRIx64, &addr) != 1)
			continue;
148 149 150 151 152
		if (addr < last_addr) {
			pr_debug("addr going backwards, read beyond section?\n");
			break;
		}
		last_addr = addr;
153 154 155 156 157 158 159 160 161

		/* copy it from temporary buffer to 'buf' according
		 * to address on current objdump line */
		off = addr - start_addr;
		if (off >= *len)
			break;
		written_bytes = MIN(read_bytes, *len - off);
		memcpy(buf + off, tmp, written_bytes);
		off_last = off + written_bytes;
162 163
	}

164 165 166
	/* len returns number of bytes that could not be read */
	*len -= off_last;

167 168 169 170 171 172 173 174 175 176 177 178 179
	free(line);

	return err;
}

static int read_via_objdump(const char *filename, u64 addr, void *buf,
			    size_t len)
{
	char cmd[PATH_MAX * 2];
	const char *fmt;
	FILE *f;
	int ret;

180
	fmt = "%s -z -d --start-address=0x%"PRIx64" --stop-address=0x%"PRIx64" %s";
181 182 183 184 185 186 187
	ret = snprintf(cmd, sizeof(cmd), fmt, "objdump", addr, addr + len,
		       filename);
	if (ret <= 0 || (size_t)ret >= sizeof(cmd))
		return -1;

	pr_debug("Objdump command is: %s\n", cmd);

188 189 190
	/* Ignore objdump errors */
	strcat(cmd, " 2>/dev/null");

191 192 193 194 195 196
	f = popen(cmd, "r");
	if (!f) {
		pr_debug("popen failed\n");
		return -1;
	}

197
	ret = read_objdump_output(f, buf, &len, addr);
198
	if (len) {
199
		pr_debug("objdump read too few bytes: %zd\n", len);
200 201 202 203 204 205 206 207 208
		if (!ret)
			ret = len;
	}

	pclose(f);

	return ret;
}

209 210 211 212 213 214 215 216 217 218 219 220
static void dump_buf(unsigned char *buf, size_t len)
{
	size_t i;

	for (i = 0; i < len; i++) {
		pr_debug("0x%02x ", buf[i]);
		if (i % 16 == 15)
			pr_debug("\n");
	}
	pr_debug("\n");
}

221
static int read_object_code(u64 addr, size_t len, u8 cpumode,
222
			    struct thread *thread, struct state *state)
223 224 225 226 227 228 229 230 231 232
{
	struct addr_location al;
	unsigned char buf1[BUFSZ];
	unsigned char buf2[BUFSZ];
	size_t ret_len;
	u64 objdump_addr;
	int ret;

	pr_debug("Reading object code for memory address: %#"PRIx64"\n", addr);

233
	thread__find_addr_map(thread, cpumode, MAP__FUNCTION, addr, &al);
234 235 236 237 238 239 240
	if (!al.map || !al.map->dso) {
		pr_debug("thread__find_addr_map failed\n");
		return -1;
	}

	pr_debug("File is: %s\n", al.map->dso->long_name);

241 242
	if (al.map->dso->symtab_type == DSO_BINARY_TYPE__KALLSYMS &&
	    !dso__is_kcore(al.map->dso)) {
243 244 245 246 247 248 249 250 251 252 253 254 255 256
		pr_debug("Unexpected kernel address - skipping\n");
		return 0;
	}

	pr_debug("On file address is: %#"PRIx64"\n", al.addr);

	if (len > BUFSZ)
		len = BUFSZ;

	/* Do not go off the map */
	if (addr + len > al.map->end)
		len = al.map->end - addr;

	/* Read the object code using perf */
257 258
	ret_len = dso__data_read_offset(al.map->dso, thread->mg->machine,
					al.addr, buf1, len);
259 260 261 262 263 264 265 266 267
	if (ret_len != len) {
		pr_debug("dso__data_read_offset failed\n");
		return -1;
	}

	/*
	 * Converting addresses for use by objdump requires more information.
	 * map__load() does that.  See map__rip_2objdump() for details.
	 */
268
	if (map__load(al.map))
269 270
		return -1;

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	/* objdump struggles with kcore - try each map only once */
	if (dso__is_kcore(al.map->dso)) {
		size_t d;

		for (d = 0; d < state->done_cnt; d++) {
			if (state->done[d] == al.map->start) {
				pr_debug("kcore map tested already");
				pr_debug(" - skipping\n");
				return 0;
			}
		}
		if (state->done_cnt >= ARRAY_SIZE(state->done)) {
			pr_debug("Too many kcore maps - skipping\n");
			return 0;
		}
		state->done[state->done_cnt++] = al.map->start;
	}

289 290 291 292 293 294 295 296 297 298 299
	/* Read the object code using objdump */
	objdump_addr = map__rip_2objdump(al.map, al.addr);
	ret = read_via_objdump(al.map->dso->long_name, objdump_addr, buf2, len);
	if (ret > 0) {
		/*
		 * The kernel maps are inaccurate - assume objdump is right in
		 * that case.
		 */
		if (cpumode == PERF_RECORD_MISC_KERNEL ||
		    cpumode == PERF_RECORD_MISC_GUEST_KERNEL) {
			len -= ret;
300
			if (len) {
301
				pr_debug("Reducing len to %zu\n", len);
302 303 304 305 306 307 308 309 310
			} else if (dso__is_kcore(al.map->dso)) {
				/*
				 * objdump cannot handle very large segments
				 * that may be found in kcore.
				 */
				pr_debug("objdump failed for kcore");
				pr_debug(" - skipping\n");
				return 0;
			} else {
311
				return -1;
312
			}
313 314 315 316 317 318 319 320 321 322
		}
	}
	if (ret < 0) {
		pr_debug("read_via_objdump failed\n");
		return -1;
	}

	/* The results should be identical */
	if (memcmp(buf1, buf2, len)) {
		pr_debug("Bytes read differ from those read by objdump\n");
323 324 325 326
		pr_debug("buf1 (dso):\n");
		dump_buf(buf1, len);
		pr_debug("buf2 (objdump):\n");
		dump_buf(buf2, len);
327 328 329 330 331 332 333 334 335
		return -1;
	}
	pr_debug("Bytes read match those read by objdump\n");

	return 0;
}

static int process_sample_event(struct machine *machine,
				struct perf_evlist *evlist,
336
				union perf_event *event, struct state *state)
337 338 339
{
	struct perf_sample sample;
	struct thread *thread;
340
	int ret;
341 342 343 344 345 346

	if (perf_evlist__parse_sample(evlist, event, &sample)) {
		pr_debug("perf_evlist__parse_sample failed\n");
		return -1;
	}

347
	thread = machine__findnew_thread(machine, sample.pid, sample.tid);
348 349 350 351 352
	if (!thread) {
		pr_debug("machine__findnew_thread failed\n");
		return -1;
	}

353
	ret = read_object_code(sample.ip, READLEN, sample.cpumode, thread, state);
354 355
	thread__put(thread);
	return ret;
356 357 358
}

static int process_event(struct machine *machine, struct perf_evlist *evlist,
359
			 union perf_event *event, struct state *state)
360 361
{
	if (event->header.type == PERF_RECORD_SAMPLE)
362
		return process_sample_event(machine, evlist, event, state);
363

364 365 366 367 368 369 370 371 372 373 374 375 376
	if (event->header.type == PERF_RECORD_THROTTLE ||
	    event->header.type == PERF_RECORD_UNTHROTTLE)
		return 0;

	if (event->header.type < PERF_RECORD_MAX) {
		int ret;

		ret = machine__process_event(machine, event, NULL);
		if (ret < 0)
			pr_debug("machine__process_event failed, event type %u\n",
				 event->header.type);
		return ret;
	}
377 378 379 380

	return 0;
}

381 382
static int process_events(struct machine *machine, struct perf_evlist *evlist,
			  struct state *state)
383 384 385 386 387 388
{
	union perf_event *event;
	int i, ret;

	for (i = 0; i < evlist->nr_mmaps; i++) {
		while ((event = perf_evlist__mmap_read(evlist, i)) != NULL) {
389
			ret = process_event(machine, evlist, event, state);
390
			perf_evlist__mmap_consume(evlist, i);
391 392 393 394 395 396 397 398 399 400 401 402 403 404
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

static int comp(const void *a, const void *b)
{
	return *(int *)a - *(int *)b;
}

static void do_sort_something(void)
{
405
	int buf[40960], i;
406

407 408
	for (i = 0; i < (int)ARRAY_SIZE(buf); i++)
		buf[i] = ARRAY_SIZE(buf) - i - 1;
409

410
	qsort(buf, ARRAY_SIZE(buf), sizeof(int), comp);
411

412
	for (i = 0; i < (int)ARRAY_SIZE(buf); i++) {
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
		if (buf[i] != i) {
			pr_debug("qsort failed\n");
			break;
		}
	}
}

static void sort_something(void)
{
	int i;

	for (i = 0; i < 10; i++)
		do_sort_something();
}

static void syscall_something(void)
{
	int pipefd[2];
	int i;

	for (i = 0; i < 1000; i++) {
		if (pipe(pipefd) < 0) {
			pr_debug("pipe failed\n");
			break;
		}
		close(pipefd[1]);
		close(pipefd[0]);
	}
}

static void fs_something(void)
{
	const char *test_file_name = "temp-perf-code-reading-test-file--";
	FILE *f;
	int i;

	for (i = 0; i < 1000; i++) {
		f = fopen(test_file_name, "w+");
		if (f) {
			fclose(f);
			unlink(test_file_name);
		}
	}
}

static void do_something(void)
{
	fs_something();

	sort_something();

	syscall_something();
}

enum {
	TEST_CODE_READING_OK,
	TEST_CODE_READING_NO_VMLINUX,
470
	TEST_CODE_READING_NO_KCORE,
471
	TEST_CODE_READING_NO_ACCESS,
472
	TEST_CODE_READING_NO_KERNEL_OBJ,
473 474
};

475
static int do_test_code_reading(bool try_kcore)
476 477 478
{
	struct machine *machine;
	struct thread *thread;
479
	struct record_opts opts = {
480 481 482
		.mmap_pages	     = UINT_MAX,
		.user_freq	     = UINT_MAX,
		.user_interval	     = ULLONG_MAX,
483
		.freq		     = 500,
484 485 486 487
		.target		     = {
			.uses_mmap   = true,
		},
	};
488 489 490
	struct state state = {
		.done_cnt = 0,
	};
491 492 493 494 495 496 497
	struct thread_map *threads = NULL;
	struct cpu_map *cpus = NULL;
	struct perf_evlist *evlist = NULL;
	struct perf_evsel *evsel = NULL;
	int err = -1, ret;
	pid_t pid;
	struct map *map;
498
	bool have_vmlinux, have_kcore, excl_kernel = false;
499 500 501

	pid = getpid();

502
	machine = machine__new_host();
503 504 505 506 507 508 509

	ret = machine__create_kernel_maps(machine);
	if (ret < 0) {
		pr_debug("machine__create_kernel_maps failed\n");
		goto out_err;
	}

510 511 512 513
	/* Force the use of kallsyms instead of vmlinux to try kcore */
	if (try_kcore)
		symbol_conf.kallsyms_name = "/proc/kallsyms";

514
	/* Load kernel map */
515
	map = machine__kernel_map(machine);
516
	ret = map__load(map);
517 518 519 520
	if (ret < 0) {
		pr_debug("map__load failed\n");
		goto out_err;
	}
521 522 523 524 525 526 527 528 529
	have_vmlinux = dso__is_vmlinux(map->dso);
	have_kcore = dso__is_kcore(map->dso);

	/* 2nd time through we just try kcore */
	if (try_kcore && !have_kcore)
		return TEST_CODE_READING_NO_KCORE;

	/* No point getting kernel events if there is no kernel object */
	if (!have_vmlinux && !have_kcore)
530 531 532 533 534 535 536 537 538
		excl_kernel = true;

	threads = thread_map__new_by_tid(pid);
	if (!threads) {
		pr_debug("thread_map__new_by_tid failed\n");
		goto out_err;
	}

	ret = perf_event__synthesize_thread_map(NULL, threads,
539
						perf_event__process, machine, false, 500);
540 541 542 543 544
	if (ret < 0) {
		pr_debug("perf_event__synthesize_thread_map failed\n");
		goto out_err;
	}

545
	thread = machine__findnew_thread(machine, pid, pid);
546 547
	if (!thread) {
		pr_debug("machine__findnew_thread failed\n");
548
		goto out_put;
549 550 551 552 553
	}

	cpus = cpu_map__new(NULL);
	if (!cpus) {
		pr_debug("cpu_map__new failed\n");
554
		goto out_put;
555 556 557 558 559 560 561 562
	}

	while (1) {
		const char *str;

		evlist = perf_evlist__new();
		if (!evlist) {
			pr_debug("perf_evlist__new failed\n");
563
			goto out_put;
564 565 566 567 568 569 570 571 572
		}

		perf_evlist__set_maps(evlist, cpus, threads);

		if (excl_kernel)
			str = "cycles:u";
		else
			str = "cycles";
		pr_debug("Parsing event '%s'\n", str);
573
		ret = parse_events(evlist, str, NULL);
574 575
		if (ret < 0) {
			pr_debug("parse_events failed\n");
576
			goto out_put;
577 578
		}

579
		perf_evlist__config(evlist, &opts, NULL);
580 581 582 583 584 585 586 587 588 589 590

		evsel = perf_evlist__first(evlist);

		evsel->attr.comm = 1;
		evsel->attr.disabled = 1;
		evsel->attr.enable_on_exec = 0;

		ret = perf_evlist__open(evlist);
		if (ret < 0) {
			if (!excl_kernel) {
				excl_kernel = true;
591 592 593 594 595 596 597
				/*
				 * Both cpus and threads are now owned by evlist
				 * and will be freed by following perf_evlist__set_maps
				 * call. Getting refference to keep them alive.
				 */
				cpu_map__get(cpus);
				thread_map__get(threads);
598
				perf_evlist__set_maps(evlist, NULL, NULL);
599 600 601 602
				perf_evlist__delete(evlist);
				evlist = NULL;
				continue;
			}
603

604
			if (verbose > 0) {
605 606 607 608 609
				char errbuf[512];
				perf_evlist__strerror_open(evlist, errno, errbuf, sizeof(errbuf));
				pr_debug("perf_evlist__open() failed!\n%s\n", errbuf);
			}

610
			goto out_put;
611 612 613 614 615 616 617
		}
		break;
	}

	ret = perf_evlist__mmap(evlist, UINT_MAX, false);
	if (ret < 0) {
		pr_debug("perf_evlist__mmap failed\n");
618
		goto out_put;
619 620 621 622 623 624 625 626
	}

	perf_evlist__enable(evlist);

	do_something();

	perf_evlist__disable(evlist);

627
	ret = process_events(machine, evlist, &state);
628
	if (ret < 0)
629
		goto out_put;
630

631 632 633
	if (!have_vmlinux && !have_kcore && !try_kcore)
		err = TEST_CODE_READING_NO_KERNEL_OBJ;
	else if (!have_vmlinux && !try_kcore)
634 635 636 637 638
		err = TEST_CODE_READING_NO_VMLINUX;
	else if (excl_kernel)
		err = TEST_CODE_READING_NO_ACCESS;
	else
		err = TEST_CODE_READING_OK;
639 640
out_put:
	thread__put(thread);
641
out_err:
642

643 644
	if (evlist) {
		perf_evlist__delete(evlist);
645
	} else {
646
		cpu_map__put(cpus);
647
		thread_map__put(threads);
648
	}
649
	machine__delete_threads(machine);
650
	machine__delete(machine);
651 652 653 654

	return err;
}

655
int test__code_reading(int subtest __maybe_unused)
656 657 658
{
	int ret;

659 660 661
	ret = do_test_code_reading(false);
	if (!ret)
		ret = do_test_code_reading(true);
662 663 664 665 666

	switch (ret) {
	case TEST_CODE_READING_OK:
		return 0;
	case TEST_CODE_READING_NO_VMLINUX:
667
		pr_debug("no vmlinux\n");
668
		return 0;
669
	case TEST_CODE_READING_NO_KCORE:
670
		pr_debug("no kcore\n");
671
		return 0;
672
	case TEST_CODE_READING_NO_ACCESS:
673
		pr_debug("no access\n");
674
		return 0;
675
	case TEST_CODE_READING_NO_KERNEL_OBJ:
676
		pr_debug("no kernel obj\n");
677
		return 0;
678 679 680 681
	default:
		return -1;
	};
}