memcontrol.c 194.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
70 71
EXPORT_SYMBOL(mem_cgroup_subsys);

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82 83 84 85
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
147 148 149 150
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
151
	struct mem_cgroup *last_visited;
152
	int last_dead_count;
M
Michal Hocko 已提交
153

154 155 156 157
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

158 159 160 161
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
162
	struct lruvec		lruvec;
163
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
164

165 166
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

167 168 169 170
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
171
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172
						/* use container_of	   */
173 174 175 176 177 178
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

199 200 201 202 203
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
204
/* For threshold */
205
struct mem_cgroup_threshold_ary {
206
	/* An array index points to threshold just below or equal to usage. */
207
	int current_threshold;
208 209 210 211 212
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
213 214 215 216 217 218 219 220 221 222 223 224

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
225 226 227 228 229
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
230

231 232 233
/*
 * cgroup_event represents events which userspace want to receive.
 */
234
struct mem_cgroup_event {
235
	/*
236
	 * memcg which the event belongs to.
237
	 */
238
	struct mem_cgroup *memcg;
239 240 241 242 243 244 245 246
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
247 248 249 250 251
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
252
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
253
			      struct eventfd_ctx *eventfd, const char *args);
254 255 256 257 258
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
259
	void (*unregister_event)(struct mem_cgroup *memcg,
260
				 struct eventfd_ctx *eventfd);
261 262 263 264 265 266 267 268 269 270
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

271 272
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273

B
Balbir Singh 已提交
274 275 276 277 278 279 280
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 282 283
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
284 285 286 287 288 289 290
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
291

292 293 294
	/* vmpressure notifications */
	struct vmpressure vmpressure;

295 296 297 298
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
299

300 301 302 303
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
304 305 306 307
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
308
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309 310 311

	bool		oom_lock;
	atomic_t	under_oom;
312
	atomic_t	oom_wakeups;
313

314
	int	swappiness;
315 316
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
317

318 319 320
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

321 322 323 324
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
325
	struct mem_cgroup_thresholds thresholds;
326

327
	/* thresholds for mem+swap usage. RCU-protected */
328
	struct mem_cgroup_thresholds memsw_thresholds;
329

K
KAMEZAWA Hiroyuki 已提交
330 331
	/* For oom notifier event fd */
	struct list_head oom_notify;
332

333 334 335 336
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
337
	unsigned long move_charge_at_immigrate;
338 339 340 341
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
342 343
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
344
	/*
345
	 * percpu counter.
346
	 */
347
	struct mem_cgroup_stat_cpu __percpu *stat;
348 349 350 351 352 353
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
354

M
Michal Hocko 已提交
355
	atomic_t	dead_count;
M
Michal Hocko 已提交
356
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
358
#endif
359 360 361 362 363 364 365 366
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
367 368 369 370 371 372 373

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
374

375 376 377 378
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

379 380
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
381 382
};

383 384
/* internal only representation about the status of kmem accounting. */
enum {
385
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
386
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
387 388 389 390 391 392 393
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
394 395 396 397 398 399 400 401

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
402 403 404 405 406
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
407 408 409 410 411 412 413 414 415
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
416 417
#endif

418 419
/* Stuffs for move charges at task migration. */
/*
420 421
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
422 423
 */
enum move_type {
424
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
425
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
426 427 428
	NR_MOVE_TYPE,
};

429 430
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
431
	spinlock_t	  lock; /* for from, to */
432 433
	struct mem_cgroup *from;
	struct mem_cgroup *to;
434
	unsigned long immigrate_flags;
435
	unsigned long precharge;
436
	unsigned long moved_charge;
437
	unsigned long moved_swap;
438 439 440
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
441
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
442 443
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
444

D
Daisuke Nishimura 已提交
445 446
static bool move_anon(void)
{
447
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
448 449
}

450 451
static bool move_file(void)
{
452
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
453 454
}

455 456 457 458
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
459
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
460
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
461

462 463
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
464
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
465
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
466
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
467 468 469
	NR_CHARGE_TYPE,
};

470
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
471 472 473 474
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
475
	_KMEM,
G
Glauber Costa 已提交
476 477
};

478 479
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
480
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
481 482
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
483

484 485 486 487 488 489 490 491
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

492 493 494 495 496 497 498
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

499 500
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
501
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
502 503
}

504 505 506 507 508 509 510 511 512 513 514 515 516
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

517 518 519 520 521
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

522 523 524 525 526 527
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
	/*
	 * The ID of the root cgroup is 0, but memcg treat 0 as an
	 * invalid ID, so we return (cgroup_id + 1).
	 */
	return memcg->css.cgroup->id + 1;
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

	css = css_from_id(id - 1, &mem_cgroup_subsys);
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
545
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
546
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
547 548 549

void sock_update_memcg(struct sock *sk)
{
550
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
551
		struct mem_cgroup *memcg;
552
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
553 554 555

		BUG_ON(!sk->sk_prot->proto_cgroup);

556 557 558 559 560 561 562 563 564 565
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
566
			css_get(&sk->sk_cgrp->memcg->css);
567 568 569
			return;
		}

G
Glauber Costa 已提交
570 571
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
572
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
573 574
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
575
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
576 577 578 579 580 581 582 583
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
584
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
585 586 587
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
588
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
589 590
	}
}
G
Glauber Costa 已提交
591 592 593 594 595 596

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

597
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
598 599
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
600

601 602
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
603
	if (!memcg_proto_activated(&memcg->tcp_mem))
604 605 606 607 608 609 610 611 612
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

613
#ifdef CONFIG_MEMCG_KMEM
614 615
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
616 617 618 619 620
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
621 622 623 624 625 626
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
627 628
int memcg_limited_groups_array_size;

629 630 631 632 633 634
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
635
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
636 637
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
638
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
639 640 641
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
642
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
643

644 645 646 647 648 649
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
650
struct static_key memcg_kmem_enabled_key;
651
EXPORT_SYMBOL(memcg_kmem_enabled_key);
652 653 654

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
655
	if (memcg_kmem_is_active(memcg)) {
656
		static_key_slow_dec(&memcg_kmem_enabled_key);
657 658
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
659 660 661 662 663
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
664 665 666 667 668 669 670 671 672 673 674 675 676
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

677
static void drain_all_stock_async(struct mem_cgroup *memcg);
678

679
static struct mem_cgroup_per_zone *
680
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
681
{
682
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
683
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
684 685
}

686
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
687
{
688
	return &memcg->css;
689 690
}

691
static struct mem_cgroup_per_zone *
692
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
693
{
694 695
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
696

697
	return mem_cgroup_zoneinfo(memcg, nid, zid);
698 699
}

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
	mctz = soft_limit_tree_from_page(page);

	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node(node) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
877
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
878
				 enum mem_cgroup_stat_index idx)
879
{
880
	long val = 0;
881 882
	int cpu;

883 884
	get_online_cpus();
	for_each_online_cpu(cpu)
885
		val += per_cpu(memcg->stat->count[idx], cpu);
886
#ifdef CONFIG_HOTPLUG_CPU
887 888 889
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
890 891
#endif
	put_online_cpus();
892 893 894
	return val;
}

895
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
896 897 898
					 bool charge)
{
	int val = (charge) ? 1 : -1;
899
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
900 901
}

902
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
903 904 905 906 907
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

908
	get_online_cpus();
909
	for_each_online_cpu(cpu)
910
		val += per_cpu(memcg->stat->events[idx], cpu);
911
#ifdef CONFIG_HOTPLUG_CPU
912 913 914
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
915
#endif
916
	put_online_cpus();
917 918 919
	return val;
}

920
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
921
					 struct page *page,
922
					 bool anon, int nr_pages)
923
{
924 925
	preempt_disable();

926 927 928 929 930 931
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
932
				nr_pages);
933
	else
934
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
935
				nr_pages);
936

937 938 939 940
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

941 942
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
943
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
944
	else {
945
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
946 947
		nr_pages = -nr_pages; /* for event */
	}
948

949
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
950

951
	preempt_enable();
952 953
}

954
unsigned long
955
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
956 957 958 959 960 961 962 963
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
964
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
965
			unsigned int lru_mask)
966 967
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
968
	enum lru_list lru;
969 970
	unsigned long ret = 0;

971
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
972

H
Hugh Dickins 已提交
973 974 975
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
976 977 978 979 980
	}
	return ret;
}

static unsigned long
981
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
982 983
			int nid, unsigned int lru_mask)
{
984 985 986
	u64 total = 0;
	int zid;

987
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
988 989
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
990

991 992
	return total;
}
993

994
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
995
			unsigned int lru_mask)
996
{
997
	int nid;
998 999
	u64 total = 0;

1000
	for_each_node_state(nid, N_MEMORY)
1001
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1002
	return total;
1003 1004
}

1005 1006
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
1007 1008 1009
{
	unsigned long val, next;

1010
	val = __this_cpu_read(memcg->stat->nr_page_events);
1011
	next = __this_cpu_read(memcg->stat->targets[target]);
1012
	/* from time_after() in jiffies.h */
1013 1014 1015 1016 1017
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
1018 1019 1020
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
1021 1022 1023 1024 1025 1026 1027 1028
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1029
	}
1030
	return false;
1031 1032 1033 1034 1035 1036
}

/*
 * Check events in order.
 *
 */
1037
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1038
{
1039
	preempt_disable();
1040
	/* threshold event is triggered in finer grain than soft limit */
1041 1042
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1043
		bool do_softlimit;
1044
		bool do_numainfo __maybe_unused;
1045

1046 1047
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1048 1049 1050 1051 1052 1053
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1054
		mem_cgroup_threshold(memcg);
1055 1056
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1057
#if MAX_NUMNODES > 1
1058
		if (unlikely(do_numainfo))
1059
			atomic_inc(&memcg->numainfo_events);
1060
#endif
1061 1062
	} else
		preempt_enable();
1063 1064
}

1065
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1066
{
1067 1068 1069 1070 1071 1072 1073 1074
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1075
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1076 1077
}

1078
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1079
{
1080
	struct mem_cgroup *memcg = NULL;
1081 1082 1083

	if (!mm)
		return NULL;
1084 1085 1086 1087 1088 1089 1090
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1091 1092
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1093
			break;
1094
	} while (!css_tryget(&memcg->css));
1095
	rcu_read_unlock();
1096
	return memcg;
1097 1098
}

1099 1100 1101 1102 1103 1104 1105
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1106
		struct mem_cgroup *last_visited)
1107
{
1108
	struct cgroup_subsys_state *prev_css, *next_css;
1109

1110
	prev_css = last_visited ? &last_visited->css : NULL;
1111
skip_node:
1112
	next_css = css_next_descendant_pre(prev_css, &root->css);
1113 1114 1115 1116 1117 1118 1119

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
1120 1121 1122 1123 1124 1125 1126 1127
	 *
	 * We do not take a reference on the root of the tree walk
	 * because we might race with the root removal when it would
	 * be the only node in the iterated hierarchy and mem_cgroup_iter
	 * would end up in an endless loop because it expects that at
	 * least one valid node will be returned. Root cannot disappear
	 * because caller of the iterator should hold it already so
	 * skipping css reference should be safe.
1128
	 */
1129
	if (next_css) {
1130 1131
		if ((next_css == &root->css) ||
		    ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
1132
			return mem_cgroup_from_css(next_css);
1133 1134 1135

		prev_css = next_css;
		goto skip_node;
1136 1137 1138 1139 1140
	}

	return NULL;
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
1169 1170 1171 1172 1173 1174 1175 1176 1177

		/*
		 * We cannot take a reference to root because we might race
		 * with root removal and returning NULL would end up in
		 * an endless loop on the iterator user level when root
		 * would be returned all the time.
		 */
		if (position && position != root &&
				!css_tryget(&position->css))
1178 1179 1180 1181 1182 1183 1184 1185
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
1186
				   struct mem_cgroup *root,
1187 1188
				   int sequence)
{
1189 1190
	/* root reference counting symmetric to mem_cgroup_iter_load */
	if (last_visited && last_visited != root)
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1220
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1221
				   struct mem_cgroup *prev,
1222
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1223
{
1224
	struct mem_cgroup *memcg = NULL;
1225
	struct mem_cgroup *last_visited = NULL;
1226

1227 1228
	if (mem_cgroup_disabled())
		return NULL;
1229

1230 1231
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1232

1233
	if (prev && !reclaim)
1234
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1235

1236 1237
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1238
			goto out_css_put;
1239
		return root;
1240
	}
K
KAMEZAWA Hiroyuki 已提交
1241

1242
	rcu_read_lock();
1243
	while (!memcg) {
1244
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1245
		int uninitialized_var(seq);
1246

1247 1248 1249 1250 1251 1252 1253
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1254
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1255
				iter->last_visited = NULL;
1256 1257
				goto out_unlock;
			}
M
Michal Hocko 已提交
1258

1259
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1260
		}
K
KAMEZAWA Hiroyuki 已提交
1261

1262
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1263

1264
		if (reclaim) {
1265 1266
			mem_cgroup_iter_update(iter, last_visited, memcg, root,
					seq);
1267

M
Michal Hocko 已提交
1268
			if (!memcg)
1269 1270 1271 1272
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1273

1274
		if (prev && !memcg)
1275
			goto out_unlock;
1276
	}
1277 1278
out_unlock:
	rcu_read_unlock();
1279 1280 1281 1282
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1283
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1284
}
K
KAMEZAWA Hiroyuki 已提交
1285

1286 1287 1288 1289 1290 1291 1292
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1293 1294 1295 1296 1297 1298
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1299

1300 1301 1302 1303 1304 1305
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1306
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1307
	     iter != NULL;				\
1308
	     iter = mem_cgroup_iter(root, iter, NULL))
1309

1310
#define for_each_mem_cgroup(iter)			\
1311
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1312
	     iter != NULL;				\
1313
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1314

1315
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1316
{
1317
	struct mem_cgroup *memcg;
1318 1319

	rcu_read_lock();
1320 1321
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1322 1323 1324 1325
		goto out;

	switch (idx) {
	case PGFAULT:
1326 1327 1328 1329
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1330 1331 1332 1333 1334 1335 1336
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1337
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1338

1339 1340 1341
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1342
 * @memcg: memcg of the wanted lruvec
1343 1344 1345 1346 1347 1348 1349 1350 1351
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1352
	struct lruvec *lruvec;
1353

1354 1355 1356 1357
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1358 1359

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1370 1371
}

K
KAMEZAWA Hiroyuki 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1385

1386
/**
1387
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1388
 * @page: the page
1389
 * @zone: zone of the page
1390
 */
1391
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1392 1393
{
	struct mem_cgroup_per_zone *mz;
1394 1395
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1396
	struct lruvec *lruvec;
1397

1398 1399 1400 1401
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1402

K
KAMEZAWA Hiroyuki 已提交
1403
	pc = lookup_page_cgroup(page);
1404
	memcg = pc->mem_cgroup;
1405 1406

	/*
1407
	 * Surreptitiously switch any uncharged offlist page to root:
1408 1409 1410 1411 1412 1413 1414
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1415
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1416 1417
		pc->mem_cgroup = memcg = root_mem_cgroup;

1418
	mz = page_cgroup_zoneinfo(memcg, page);
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1429
}
1430

1431
/**
1432 1433 1434 1435
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1436
 *
1437 1438
 * This function must be called when a page is added to or removed from an
 * lru list.
1439
 */
1440 1441
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1442 1443
{
	struct mem_cgroup_per_zone *mz;
1444
	unsigned long *lru_size;
1445 1446 1447 1448

	if (mem_cgroup_disabled())
		return;

1449 1450 1451 1452
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1453
}
1454

1455
/*
1456
 * Checks whether given mem is same or in the root_mem_cgroup's
1457 1458
 * hierarchy subtree
 */
1459 1460
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1461
{
1462 1463
	if (root_memcg == memcg)
		return true;
1464
	if (!root_memcg->use_hierarchy || !memcg)
1465
		return false;
1466
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1467 1468 1469 1470 1471 1472 1473
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1474
	rcu_read_lock();
1475
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1476 1477
	rcu_read_unlock();
	return ret;
1478 1479
}

1480 1481
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1482
{
1483
	struct mem_cgroup *curr = NULL;
1484
	struct task_struct *p;
1485
	bool ret;
1486

1487
	p = find_lock_task_mm(task);
1488 1489 1490 1491 1492 1493 1494 1495 1496
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1497
		rcu_read_lock();
1498 1499 1500
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1501
		rcu_read_unlock();
1502
	}
1503
	if (!curr)
1504
		return false;
1505
	/*
1506
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1507
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1508 1509
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1510
	 */
1511
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1512
	css_put(&curr->css);
1513 1514 1515
	return ret;
}

1516
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1517
{
1518
	unsigned long inactive_ratio;
1519
	unsigned long inactive;
1520
	unsigned long active;
1521
	unsigned long gb;
1522

1523 1524
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1525

1526 1527 1528 1529 1530 1531
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1532
	return inactive * inactive_ratio < active;
1533 1534
}

1535 1536 1537
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1538
/**
1539
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1540
 * @memcg: the memory cgroup
1541
 *
1542
 * Returns the maximum amount of memory @mem can be charged with, in
1543
 * pages.
1544
 */
1545
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1546
{
1547 1548
	unsigned long long margin;

1549
	margin = res_counter_margin(&memcg->res);
1550
	if (do_swap_account)
1551
		margin = min(margin, res_counter_margin(&memcg->memsw));
1552
	return margin >> PAGE_SHIFT;
1553 1554
}

1555
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1556 1557
{
	/* root ? */
T
Tejun Heo 已提交
1558
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1559 1560
		return vm_swappiness;

1561
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1562 1563
}

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1578 1579 1580 1581

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1582
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1583
{
1584
	atomic_inc(&memcg_moving);
1585
	atomic_inc(&memcg->moving_account);
1586 1587 1588
	synchronize_rcu();
}

1589
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1590
{
1591 1592 1593 1594
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1595 1596
	if (memcg) {
		atomic_dec(&memcg_moving);
1597
		atomic_dec(&memcg->moving_account);
1598
	}
1599
}
1600

1601 1602 1603
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1604 1605
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1606 1607 1608 1609 1610 1611 1612
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1613
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1614 1615
{
	VM_BUG_ON(!rcu_read_lock_held());
1616
	return atomic_read(&memcg->moving_account) > 0;
1617
}
1618

1619
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1620
{
1621 1622
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1623
	bool ret = false;
1624 1625 1626 1627 1628 1629 1630 1631 1632
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1633

1634 1635
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1636 1637
unlock:
	spin_unlock(&mc.lock);
1638 1639 1640
	return ret;
}

1641
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1642 1643
{
	if (mc.moving_task && current != mc.moving_task) {
1644
		if (mem_cgroup_under_move(memcg)) {
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1657 1658 1659 1660
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1661
 * see mem_cgroup_stolen(), too.
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1675
#define K(x) ((x) << (PAGE_SHIFT-10))
1676
/**
1677
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1678 1679 1680 1681 1682 1683 1684 1685 1686
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	/*
1687 1688
	 * protects memcg_name and makes sure that parallel ooms do not
	 * interleave
1689
	 */
1690
	static DEFINE_MUTEX(oom_info_lock);
1691 1692
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
1693 1694
	static char memcg_name[PATH_MAX];
	int ret;
1695 1696
	struct mem_cgroup *iter;
	unsigned int i;
1697

1698
	if (!p)
1699 1700
		return;

1701
	mutex_lock(&oom_info_lock);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1718
	pr_info("Task in %s killed", memcg_name);
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1731
	pr_cont(" as a result of limit of %s\n", memcg_name);
1732 1733
done:

1734
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1735 1736 1737
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1738
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1739 1740 1741
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1742
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1743 1744 1745
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1770
	mutex_unlock(&oom_info_lock);
1771 1772
}

1773 1774 1775 1776
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1777
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1778 1779
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1780 1781
	struct mem_cgroup *iter;

1782
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1783
		num++;
1784 1785 1786
	return num;
}

D
David Rientjes 已提交
1787 1788 1789
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1790
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1791 1792 1793
{
	u64 limit;

1794 1795
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1796
	/*
1797
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1798
	 */
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1813 1814
}

1815 1816
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1817 1818 1819 1820 1821 1822 1823
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1824
	/*
1825 1826 1827
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1828
	 */
1829
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1830 1831 1832 1833 1834
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1835 1836
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1837
		struct css_task_iter it;
1838 1839
		struct task_struct *task;

1840 1841
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1854
				css_task_iter_end(&it);
1855 1856 1857 1858 1859 1860 1861 1862
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1875
		}
1876
		css_task_iter_end(&it);
1877 1878 1879 1880 1881 1882 1883 1884 1885
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1922 1923
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1924
 * @memcg: the target memcg
1925 1926 1927 1928 1929 1930 1931
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1932
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1933 1934
		int nid, bool noswap)
{
1935
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1936 1937 1938
		return true;
	if (noswap || !total_swap_pages)
		return false;
1939
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1940 1941 1942 1943
		return true;
	return false;

}
1944
#if MAX_NUMNODES > 1
1945 1946 1947 1948 1949 1950 1951

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1952
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1953 1954
{
	int nid;
1955 1956 1957 1958
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1959
	if (!atomic_read(&memcg->numainfo_events))
1960
		return;
1961
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1962 1963 1964
		return;

	/* make a nodemask where this memcg uses memory from */
1965
	memcg->scan_nodes = node_states[N_MEMORY];
1966

1967
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1968

1969 1970
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1971
	}
1972

1973 1974
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1989
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1990 1991 1992
{
	int node;

1993 1994
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1995

1996
	node = next_node(node, memcg->scan_nodes);
1997
	if (node == MAX_NUMNODES)
1998
		node = first_node(memcg->scan_nodes);
1999 2000 2001 2002 2003 2004 2005 2006 2007
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

2008
	memcg->last_scanned_node = node;
2009 2010 2011
	return node;
}

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

2047
#else
2048
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2049 2050 2051
{
	return 0;
}
2052

2053 2054 2055 2056
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
2057 2058
#endif

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2107
	}
2108 2109
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2110 2111
}

2112 2113 2114 2115 2116 2117
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2118 2119
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2120 2121 2122 2123
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2124
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2125
{
2126
	struct mem_cgroup *iter, *failed = NULL;
2127

2128 2129
	spin_lock(&memcg_oom_lock);

2130
	for_each_mem_cgroup_tree(iter, memcg) {
2131
		if (iter->oom_lock) {
2132 2133 2134 2135 2136
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2137 2138
			mem_cgroup_iter_break(memcg, iter);
			break;
2139 2140
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2141
	}
K
KAMEZAWA Hiroyuki 已提交
2142

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2154
		}
2155 2156
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2157 2158 2159 2160

	spin_unlock(&memcg_oom_lock);

	return !failed;
2161
}
2162

2163
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2164
{
K
KAMEZAWA Hiroyuki 已提交
2165 2166
	struct mem_cgroup *iter;

2167
	spin_lock(&memcg_oom_lock);
2168
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2169
	for_each_mem_cgroup_tree(iter, memcg)
2170
		iter->oom_lock = false;
2171
	spin_unlock(&memcg_oom_lock);
2172 2173
}

2174
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2175 2176 2177
{
	struct mem_cgroup *iter;

2178
	for_each_mem_cgroup_tree(iter, memcg)
2179 2180 2181
		atomic_inc(&iter->under_oom);
}

2182
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2183 2184 2185
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2186 2187 2188 2189 2190
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2191
	for_each_mem_cgroup_tree(iter, memcg)
2192
		atomic_add_unless(&iter->under_oom, -1, 0);
2193 2194
}

K
KAMEZAWA Hiroyuki 已提交
2195 2196
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2197
struct oom_wait_info {
2198
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2199 2200 2201 2202 2203 2204
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2205 2206
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2207 2208 2209
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2210
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2211 2212

	/*
2213
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2214 2215
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2216 2217
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2218 2219 2220 2221
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2222
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2223
{
2224
	atomic_inc(&memcg->oom_wakeups);
2225 2226
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2227 2228
}

2229
static void memcg_oom_recover(struct mem_cgroup *memcg)
2230
{
2231 2232
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2233 2234
}

2235
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2236
{
2237 2238
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2239
	/*
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2252
	 */
2253 2254 2255 2256
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2257 2258 2259 2260
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2261
 * @handle: actually kill/wait or just clean up the OOM state
2262
 *
2263 2264
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2265
 *
2266
 * Memcg supports userspace OOM handling where failed allocations must
2267 2268 2269 2270
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2271
 * the end of the page fault to complete the OOM handling.
2272 2273
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2274
 * completed, %false otherwise.
2275
 */
2276
bool mem_cgroup_oom_synchronize(bool handle)
2277
{
2278
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2279
	struct oom_wait_info owait;
2280
	bool locked;
2281 2282 2283

	/* OOM is global, do not handle */
	if (!memcg)
2284
		return false;
2285

2286 2287
	if (!handle)
		goto cleanup;
2288 2289 2290 2291 2292 2293

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2294

2295
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2309
		schedule();
2310 2311 2312 2313 2314
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2315 2316 2317 2318 2319 2320 2321 2322
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2323 2324
cleanup:
	current->memcg_oom.memcg = NULL;
2325
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2326
	return true;
2327 2328
}

2329 2330 2331
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2349 2350
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2351
 */
2352

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2366
	 * need to take move_lock_mem_cgroup(). Because we already hold
2367
	 * rcu_read_lock(), any calls to move_account will be delayed until
2368
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2369
	 */
2370
	if (!mem_cgroup_stolen(memcg))
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2388
	 * should take move_lock_mem_cgroup().
2389 2390 2391 2392
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2393
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2394
				 enum mem_cgroup_stat_index idx, int val)
2395
{
2396
	struct mem_cgroup *memcg;
2397
	struct page_cgroup *pc = lookup_page_cgroup(page);
2398
	unsigned long uninitialized_var(flags);
2399

2400
	if (mem_cgroup_disabled())
2401
		return;
2402

2403
	VM_BUG_ON(!rcu_read_lock_held());
2404 2405
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2406
		return;
2407

2408
	this_cpu_add(memcg->stat->count[idx], val);
2409
}
2410

2411 2412 2413 2414
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2415
#define CHARGE_BATCH	32U
2416 2417
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2418
	unsigned int nr_pages;
2419
	struct work_struct work;
2420
	unsigned long flags;
2421
#define FLUSHING_CACHED_CHARGE	0
2422 2423
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2424
static DEFINE_MUTEX(percpu_charge_mutex);
2425

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2436
 */
2437
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2438 2439 2440 2441
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2442 2443 2444
	if (nr_pages > CHARGE_BATCH)
		return false;

2445
	stock = &get_cpu_var(memcg_stock);
2446 2447
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2461 2462 2463 2464
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2465
		if (do_swap_account)
2466 2467
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2480
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2481 2482
}

2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2494 2495
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2496
 * This will be consumed by consume_stock() function, later.
2497
 */
2498
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2499 2500 2501
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2502
	if (stock->cached != memcg) { /* reset if necessary */
2503
		drain_stock(stock);
2504
		stock->cached = memcg;
2505
	}
2506
	stock->nr_pages += nr_pages;
2507 2508 2509 2510
	put_cpu_var(memcg_stock);
}

/*
2511
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2512 2513
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2514
 */
2515
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2516
{
2517
	int cpu, curcpu;
2518

2519 2520
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2521
	curcpu = get_cpu();
2522 2523
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2524
		struct mem_cgroup *memcg;
2525

2526 2527
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2528
			continue;
2529
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2530
			continue;
2531 2532 2533 2534 2535 2536
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2537
	}
2538
	put_cpu();
2539 2540 2541 2542 2543 2544

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2545
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2546 2547 2548
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2549
	put_online_cpus();
2550 2551 2552 2553 2554 2555 2556 2557
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2558
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2559
{
2560 2561 2562 2563 2564
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2565
	drain_all_stock(root_memcg, false);
2566
	mutex_unlock(&percpu_charge_mutex);
2567 2568 2569
}

/* This is a synchronous drain interface. */
2570
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2571 2572
{
	/* called when force_empty is called */
2573
	mutex_lock(&percpu_charge_mutex);
2574
	drain_all_stock(root_memcg, true);
2575
	mutex_unlock(&percpu_charge_mutex);
2576 2577
}

2578 2579 2580 2581
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2582
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2583 2584 2585
{
	int i;

2586
	spin_lock(&memcg->pcp_counter_lock);
2587
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2588
		long x = per_cpu(memcg->stat->count[i], cpu);
2589

2590 2591
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2592
	}
2593
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2594
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2595

2596 2597
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2598
	}
2599
	spin_unlock(&memcg->pcp_counter_lock);
2600 2601
}

2602
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2603 2604 2605 2606 2607
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2608
	struct mem_cgroup *iter;
2609

2610
	if (action == CPU_ONLINE)
2611 2612
		return NOTIFY_OK;

2613
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2614
		return NOTIFY_OK;
2615

2616
	for_each_mem_cgroup(iter)
2617 2618
		mem_cgroup_drain_pcp_counter(iter, cpu);

2619 2620 2621 2622 2623
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2624 2625 2626 2627 2628 2629 2630 2631 2632

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2633
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2634
				unsigned int nr_pages, unsigned int min_pages,
2635
				bool invoke_oom)
2636
{
2637
	unsigned long csize = nr_pages * PAGE_SIZE;
2638 2639 2640 2641 2642
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2643
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2644 2645 2646 2647

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2648
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2649 2650 2651
		if (likely(!ret))
			return CHARGE_OK;

2652
		res_counter_uncharge(&memcg->res, csize);
2653 2654 2655 2656
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2657 2658 2659 2660
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2661
	if (nr_pages > min_pages)
2662 2663 2664 2665 2666
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2667 2668 2669
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2670
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2671
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2672
		return CHARGE_RETRY;
2673
	/*
2674 2675 2676 2677 2678 2679 2680
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2681
	 */
2682
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2683 2684 2685 2686 2687 2688 2689 2690 2691
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2692 2693
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2694

2695
	return CHARGE_NOMEM;
2696 2697
}

2698
/*
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2718
 */
2719
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2720
				   gfp_t gfp_mask,
2721
				   unsigned int nr_pages,
2722
				   struct mem_cgroup **ptr,
2723
				   bool oom)
2724
{
2725
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2726
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2727
	struct mem_cgroup *memcg = NULL;
2728
	int ret;
2729

K
KAMEZAWA Hiroyuki 已提交
2730 2731 2732 2733 2734 2735 2736 2737
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2738

2739
	if (unlikely(task_in_memcg_oom(current)))
2740
		goto nomem;
2741

2742 2743 2744
	if (gfp_mask & __GFP_NOFAIL)
		oom = false;

2745
	/*
2746 2747
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2748
	 * thread group leader migrates. It's possible that mm is not
2749
	 * set, if so charge the root memcg (happens for pagecache usage).
2750
	 */
2751
	if (!*ptr && !mm)
2752
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2753
again:
2754 2755 2756
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2757
			goto done;
2758
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2759
			goto done;
2760
		css_get(&memcg->css);
2761
	} else {
K
KAMEZAWA Hiroyuki 已提交
2762
		struct task_struct *p;
2763

K
KAMEZAWA Hiroyuki 已提交
2764 2765 2766
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2767
		 * Because we don't have task_lock(), "p" can exit.
2768
		 * In that case, "memcg" can point to root or p can be NULL with
2769 2770 2771 2772 2773 2774
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2775
		 */
2776
		memcg = mem_cgroup_from_task(p);
2777 2778 2779
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2780 2781 2782
			rcu_read_unlock();
			goto done;
		}
2783
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2796
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2797 2798 2799 2800 2801
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2802

2803
	do {
2804
		bool invoke_oom = oom && !nr_oom_retries;
2805

2806
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2807
		if (fatal_signal_pending(current)) {
2808
			css_put(&memcg->css);
2809
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2810
		}
2811

2812 2813
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2814 2815 2816 2817
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2818
			batch = nr_pages;
2819 2820
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2821
			goto again;
2822
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2823
			css_put(&memcg->css);
2824 2825
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2826
			if (!oom || invoke_oom) {
2827
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2828
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2829
			}
2830 2831
			nr_oom_retries--;
			break;
2832
		}
2833 2834
	} while (ret != CHARGE_OK);

2835
	if (batch > nr_pages)
2836 2837
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2838
done:
2839
	*ptr = memcg;
2840 2841
	return 0;
nomem:
2842 2843 2844 2845
	if (!(gfp_mask & __GFP_NOFAIL)) {
		*ptr = NULL;
		return -ENOMEM;
	}
K
KAMEZAWA Hiroyuki 已提交
2846
bypass:
2847 2848
	*ptr = root_mem_cgroup;
	return -EINTR;
2849
}
2850

2851 2852 2853 2854 2855
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2856
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2857
				       unsigned int nr_pages)
2858
{
2859
	if (!mem_cgroup_is_root(memcg)) {
2860 2861
		unsigned long bytes = nr_pages * PAGE_SIZE;

2862
		res_counter_uncharge(&memcg->res, bytes);
2863
		if (do_swap_account)
2864
			res_counter_uncharge(&memcg->memsw, bytes);
2865
	}
2866 2867
}

2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2886 2887
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2888 2889 2890
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2891 2892 2893 2894 2895 2896
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2897
	return mem_cgroup_from_id(id);
2898 2899
}

2900
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2901
{
2902
	struct mem_cgroup *memcg = NULL;
2903
	struct page_cgroup *pc;
2904
	unsigned short id;
2905 2906
	swp_entry_t ent;

2907
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2908 2909

	pc = lookup_page_cgroup(page);
2910
	lock_page_cgroup(pc);
2911
	if (PageCgroupUsed(pc)) {
2912 2913 2914
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2915
	} else if (PageSwapCache(page)) {
2916
		ent.val = page_private(page);
2917
		id = lookup_swap_cgroup_id(ent);
2918
		rcu_read_lock();
2919 2920 2921
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2922
		rcu_read_unlock();
2923
	}
2924
	unlock_page_cgroup(pc);
2925
	return memcg;
2926 2927
}

2928
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2929
				       struct page *page,
2930
				       unsigned int nr_pages,
2931 2932
				       enum charge_type ctype,
				       bool lrucare)
2933
{
2934
	struct page_cgroup *pc = lookup_page_cgroup(page);
2935
	struct zone *uninitialized_var(zone);
2936
	struct lruvec *lruvec;
2937
	bool was_on_lru = false;
2938
	bool anon;
2939

2940
	lock_page_cgroup(pc);
2941
	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2942 2943 2944 2945
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2946 2947 2948 2949 2950 2951 2952 2953 2954

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2955
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2956
			ClearPageLRU(page);
2957
			del_page_from_lru_list(page, lruvec, page_lru(page));
2958 2959 2960 2961
			was_on_lru = true;
		}
	}

2962
	pc->mem_cgroup = memcg;
2963 2964 2965 2966 2967 2968
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2969
	 */
K
KAMEZAWA Hiroyuki 已提交
2970
	smp_wmb();
2971
	SetPageCgroupUsed(pc);
2972

2973 2974
	if (lrucare) {
		if (was_on_lru) {
2975
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2976
			VM_BUG_ON_PAGE(PageLRU(page), page);
2977
			SetPageLRU(page);
2978
			add_page_to_lru_list(page, lruvec, page_lru(page));
2979 2980 2981 2982
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2983
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2984 2985 2986 2987
		anon = true;
	else
		anon = false;

2988
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2989
	unlock_page_cgroup(pc);
2990

2991
	/*
2992 2993 2994
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2995
	 */
2996
	memcg_check_events(memcg, page);
2997
}
2998

2999 3000
static DEFINE_MUTEX(set_limit_mutex);

3001
#ifdef CONFIG_MEMCG_KMEM
3002 3003
static DEFINE_MUTEX(activate_kmem_mutex);

3004 3005 3006
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
3007
		memcg_kmem_is_active(memcg);
3008 3009
}

G
Glauber Costa 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
3020
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
3021 3022
}

3023
#ifdef CONFIG_SLABINFO
3024
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
3025
{
3026
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3055
				      &_memcg, oom_gfp_allowed(gfp));
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3089 3090 3091 3092 3093

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3094 3095 3096 3097 3098 3099 3100 3101
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3102
	if (memcg_kmem_test_and_clear_dead(memcg))
3103
		css_put(&memcg->css);
3104 3105
}

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3142 3143
static void kmem_cache_destroy_work_func(struct work_struct *w);

3144 3145 3146 3147
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

3148
	VM_BUG_ON(!is_root_cache(s));
3149 3150 3151

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
3152
		struct memcg_cache_params *new_params;
3153 3154 3155
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3156
		size += offsetof(struct memcg_cache_params, memcg_caches);
3157

3158 3159
		new_params = kzalloc(size, GFP_KERNEL);
		if (!new_params)
3160 3161
			return -ENOMEM;

3162
		new_params->is_root_cache = true;
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
3176
			new_params->memcg_caches[i] =
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
3189 3190 3191
		rcu_assign_pointer(s->memcg_params, new_params);
		if (cur_params)
			kfree_rcu(cur_params, rcu_head);
3192 3193 3194 3195
	}
	return 0;
}

3196 3197
int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
			     struct kmem_cache *root_cache)
3198
{
3199
	size_t size;
3200 3201 3202 3203

	if (!memcg_kmem_enabled())
		return 0;

3204 3205
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3206
		size += memcg_limited_groups_array_size * sizeof(void *);
3207 3208
	} else
		size = sizeof(struct memcg_cache_params);
3209

3210 3211 3212 3213
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3214
	if (memcg) {
3215
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3216
		s->memcg_params->root_cache = root_cache;
3217 3218
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3219 3220 3221
	} else
		s->memcg_params->is_root_cache = true;

3222 3223 3224
	return 0;
}

3225 3226 3227 3228 3229
void memcg_free_cache_params(struct kmem_cache *s)
{
	kfree(s->memcg_params);
}

3230
void memcg_register_cache(struct kmem_cache *s)
3231
{
3232 3233 3234 3235
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

3236 3237 3238
	if (is_root_cache(s))
		return;

3239 3240 3241 3242 3243 3244
	/*
	 * Holding the slab_mutex assures nobody will touch the memcg_caches
	 * array while we are modifying it.
	 */
	lockdep_assert_held(&slab_mutex);

3245 3246 3247 3248 3249 3250 3251
	root = s->memcg_params->root_cache;
	memcg = s->memcg_params->memcg;
	id = memcg_cache_id(memcg);

	css_get(&memcg->css);


3252
	/*
3253 3254 3255
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
3256
	 */
3257 3258
	smp_wmb();

3259 3260 3261 3262 3263
	/*
	 * Initialize the pointer to this cache in its parent's memcg_params
	 * before adding it to the memcg_slab_caches list, otherwise we can
	 * fail to convert memcg_params_to_cache() while traversing the list.
	 */
3264
	VM_BUG_ON(root->memcg_params->memcg_caches[id]);
3265
	root->memcg_params->memcg_caches[id] = s;
3266 3267 3268 3269

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
3270
}
3271

3272 3273 3274 3275 3276 3277 3278 3279
void memcg_unregister_cache(struct kmem_cache *s)
{
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	if (is_root_cache(s))
		return;
3280

3281 3282 3283 3284 3285 3286
	/*
	 * Holding the slab_mutex assures nobody will touch the memcg_caches
	 * array while we are modifying it.
	 */
	lockdep_assert_held(&slab_mutex);

3287
	root = s->memcg_params->root_cache;
3288 3289
	memcg = s->memcg_params->memcg;
	id = memcg_cache_id(memcg);
3290 3291 3292 3293 3294

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3295 3296 3297 3298 3299
	/*
	 * Clear the pointer to this cache in its parent's memcg_params only
	 * after removing it from the memcg_slab_caches list, otherwise we can
	 * fail to convert memcg_params_to_cache() while traversing the list.
	 */
3300
	VM_BUG_ON(!root->memcg_params->memcg_caches[id]);
3301 3302
	root->memcg_params->memcg_caches[id] = NULL;

3303
	css_put(&memcg->css);
3304 3305
}

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3337 3338 3339 3340 3341 3342 3343 3344 3345
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
3362
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0)
G
Glauber Costa 已提交
3363
		kmem_cache_shrink(cachep);
3364
	else
G
Glauber Costa 已提交
3365 3366 3367 3368 3369 3370 3371 3372
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3393 3394 3395 3396 3397 3398 3399
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3400 3401
static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *s)
3402
{
3403
	struct kmem_cache *new = NULL;
3404
	static char *tmp_name = NULL;
3405
	static DEFINE_MUTEX(mutex);	/* protects tmp_name */
3406

3407
	BUG_ON(!memcg_can_account_kmem(memcg));
3408

3409
	mutex_lock(&mutex);
3410 3411 3412 3413 3414 3415 3416 3417 3418
	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
3419
			goto out;
3420 3421 3422 3423 3424 3425
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3426

3427
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3428
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3429 3430
	if (new)
		new->allocflags |= __GFP_KMEMCG;
3431 3432
	else
		new = s;
3433
out:
3434
	mutex_unlock(&mutex);
3435 3436 3437
	return new;
}

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
3455 3456
	 * we'll take the activate_kmem_mutex to protect ourselves against
	 * this.
3457
	 */
3458
	mutex_lock(&activate_kmem_mutex);
3459 3460
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3478
		cancel_work_sync(&c->memcg_params->destroy);
3479 3480
		kmem_cache_destroy(c);
	}
3481
	mutex_unlock(&activate_kmem_mutex);
3482 3483
}

3484 3485 3486 3487 3488 3489
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3507 3508 3509 3510 3511 3512
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3513
	css_put(&cw->memcg->css);
3514 3515 3516 3517 3518 3519
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3520 3521
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3522 3523 3524 3525
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3526 3527
	if (cw == NULL) {
		css_put(&memcg->css);
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
3573
	struct kmem_cache *memcg_cachep;
3574 3575 3576 3577

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3578 3579 3580
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3581 3582 3583 3584
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3585
		goto out;
3586

3587 3588 3589
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3590
		goto out;
3591 3592
	}

3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3620 3621 3622
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3659 3660 3661
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

3743
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3744 3745
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3746 3747 3748 3749
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3750 3751
#endif /* CONFIG_MEMCG_KMEM */

3752 3753
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3754
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3755 3756
/*
 * Because tail pages are not marked as "used", set it. We're under
3757 3758 3759
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3760
 */
3761
void mem_cgroup_split_huge_fixup(struct page *head)
3762 3763
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3764
	struct page_cgroup *pc;
3765
	struct mem_cgroup *memcg;
3766
	int i;
3767

3768 3769
	if (mem_cgroup_disabled())
		return;
3770 3771

	memcg = head_pc->mem_cgroup;
3772 3773
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3774
		pc->mem_cgroup = memcg;
3775 3776 3777
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3778 3779
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3780
}
3781
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3782

3783 3784 3785 3786 3787 3788 3789 3790
static inline
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
					struct mem_cgroup *to,
					unsigned int nr_pages,
					enum mem_cgroup_stat_index idx)
{
	/* Update stat data for mem_cgroup */
	preempt_disable();
3791
	__this_cpu_sub(from->stat->count[idx], nr_pages);
3792 3793 3794 3795
	__this_cpu_add(to->stat->count[idx], nr_pages);
	preempt_enable();
}

3796
/**
3797
 * mem_cgroup_move_account - move account of the page
3798
 * @page: the page
3799
 * @nr_pages: number of regular pages (>1 for huge pages)
3800 3801 3802 3803 3804
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3805
 * - page is not on LRU (isolate_page() is useful.)
3806
 * - compound_lock is held when nr_pages > 1
3807
 *
3808 3809
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3810
 */
3811 3812 3813 3814
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3815
				   struct mem_cgroup *to)
3816
{
3817 3818
	unsigned long flags;
	int ret;
3819
	bool anon = PageAnon(page);
3820

3821
	VM_BUG_ON(from == to);
3822
	VM_BUG_ON_PAGE(PageLRU(page), page);
3823 3824 3825 3826 3827 3828 3829
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3830
	if (nr_pages > 1 && !PageTransHuge(page))
3831 3832 3833 3834 3835 3836 3837 3838
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3839
	move_lock_mem_cgroup(from, &flags);
3840

3841 3842 3843 3844 3845 3846 3847 3848
	if (!anon && page_mapped(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_FILE_MAPPED);

	if (PageWriteback(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_WRITEBACK);

3849
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3850

3851
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3852
	pc->mem_cgroup = to;
3853
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3854
	move_unlock_mem_cgroup(from, &flags);
3855 3856
	ret = 0;
unlock:
3857
	unlock_page_cgroup(pc);
3858 3859 3860
	/*
	 * check events
	 */
3861 3862
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3863
out:
3864 3865 3866
	return ret;
}

3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3887
 */
3888 3889
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3890
				  struct mem_cgroup *child)
3891 3892
{
	struct mem_cgroup *parent;
3893
	unsigned int nr_pages;
3894
	unsigned long uninitialized_var(flags);
3895 3896
	int ret;

3897
	VM_BUG_ON(mem_cgroup_is_root(child));
3898

3899 3900 3901 3902 3903
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3904

3905
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3906

3907 3908 3909 3910 3911 3912
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3913

3914
	if (nr_pages > 1) {
3915
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3916
		flags = compound_lock_irqsave(page);
3917
	}
3918

3919
	ret = mem_cgroup_move_account(page, nr_pages,
3920
				pc, child, parent);
3921 3922
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3923

3924
	if (nr_pages > 1)
3925
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3926
	putback_lru_page(page);
3927
put:
3928
	put_page(page);
3929
out:
3930 3931 3932
	return ret;
}

3933 3934 3935 3936 3937 3938 3939
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3940
				gfp_t gfp_mask, enum charge_type ctype)
3941
{
3942
	struct mem_cgroup *memcg = NULL;
3943
	unsigned int nr_pages = 1;
3944
	bool oom = true;
3945
	int ret;
A
Andrea Arcangeli 已提交
3946

A
Andrea Arcangeli 已提交
3947
	if (PageTransHuge(page)) {
3948
		nr_pages <<= compound_order(page);
3949
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3950 3951 3952 3953 3954
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3955
	}
3956

3957
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3958
	if (ret == -ENOMEM)
3959
		return ret;
3960
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3961 3962 3963
	return 0;
}

3964 3965
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3966
{
3967
	if (mem_cgroup_disabled())
3968
		return 0;
3969 3970
	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3971
	VM_BUG_ON(!mm);
3972
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3973
					MEM_CGROUP_CHARGE_TYPE_ANON);
3974 3975
}

3976 3977 3978
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3979
 * struct page_cgroup is acquired. This refcnt will be consumed by
3980 3981
 * "commit()" or removed by "cancel()"
 */
3982 3983 3984 3985
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3986
{
3987
	struct mem_cgroup *memcg;
3988
	struct page_cgroup *pc;
3989
	int ret;
3990

3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
4001 4002
	if (!do_swap_account)
		goto charge_cur_mm;
4003 4004
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
4005
		goto charge_cur_mm;
4006 4007
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4008
	css_put(&memcg->css);
4009 4010
	if (ret == -EINTR)
		ret = 0;
4011
	return ret;
4012
charge_cur_mm:
4013 4014 4015 4016
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
4017 4018
}

4019 4020 4021 4022 4023 4024
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4039 4040 4041
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4042 4043 4044 4045 4046 4047 4048 4049 4050
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4051
static void
4052
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4053
					enum charge_type ctype)
4054
{
4055
	if (mem_cgroup_disabled())
4056
		return;
4057
	if (!memcg)
4058
		return;
4059

4060
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4061 4062 4063
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4064 4065 4066
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4067
	 */
4068
	if (do_swap_account && PageSwapCache(page)) {
4069
		swp_entry_t ent = {.val = page_private(page)};
4070
		mem_cgroup_uncharge_swap(ent);
4071
	}
4072 4073
}

4074 4075
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4076
{
4077
	__mem_cgroup_commit_charge_swapin(page, memcg,
4078
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4079 4080
}

4081 4082
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4083
{
4084 4085 4086 4087
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4088
	if (mem_cgroup_disabled())
4089 4090 4091 4092 4093 4094 4095
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4096 4097
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4098 4099 4100 4101
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4102 4103
}

4104
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4105 4106
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4107 4108 4109
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4110

4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4122
		batch->memcg = memcg;
4123 4124
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4125
	 * In those cases, all pages freed continuously can be expected to be in
4126 4127 4128 4129 4130 4131 4132 4133
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4134
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4135 4136
		goto direct_uncharge;

4137 4138 4139 4140 4141
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4142
	if (batch->memcg != memcg)
4143 4144
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4145
	batch->nr_pages++;
4146
	if (uncharge_memsw)
4147
		batch->memsw_nr_pages++;
4148 4149
	return;
direct_uncharge:
4150
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4151
	if (uncharge_memsw)
4152 4153 4154
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4155
}
4156

4157
/*
4158
 * uncharge if !page_mapped(page)
4159
 */
4160
static struct mem_cgroup *
4161 4162
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4163
{
4164
	struct mem_cgroup *memcg = NULL;
4165 4166
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4167
	bool anon;
4168

4169
	if (mem_cgroup_disabled())
4170
		return NULL;
4171

A
Andrea Arcangeli 已提交
4172
	if (PageTransHuge(page)) {
4173
		nr_pages <<= compound_order(page);
4174
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
A
Andrea Arcangeli 已提交
4175
	}
4176
	/*
4177
	 * Check if our page_cgroup is valid
4178
	 */
4179
	pc = lookup_page_cgroup(page);
4180
	if (unlikely(!PageCgroupUsed(pc)))
4181
		return NULL;
4182

4183
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4184

4185
	memcg = pc->mem_cgroup;
4186

K
KAMEZAWA Hiroyuki 已提交
4187 4188 4189
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4190 4191
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4192
	switch (ctype) {
4193
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4194 4195 4196 4197 4198
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4199 4200
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4201
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4202
		/* See mem_cgroup_prepare_migration() */
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4224
	}
K
KAMEZAWA Hiroyuki 已提交
4225

4226
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4227

4228
	ClearPageCgroupUsed(pc);
4229 4230 4231 4232 4233 4234
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4235

4236
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4237
	/*
4238
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4239
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4240
	 */
4241
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4242
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4243
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4244
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4245
	}
4246 4247 4248 4249 4250 4251
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4252
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4253

4254
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4255 4256 4257

unlock_out:
	unlock_page_cgroup(pc);
4258
	return NULL;
4259 4260
}

4261 4262
void mem_cgroup_uncharge_page(struct page *page)
{
4263 4264 4265
	/* early check. */
	if (page_mapped(page))
		return;
4266
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4279 4280
	if (PageSwapCache(page))
		return;
4281
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4282 4283 4284 4285
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
4286 4287
	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping, page);
4288
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4289 4290
}

4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4305 4306
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4327 4328 4329 4330 4331 4332
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4333
	memcg_oom_recover(batch->memcg);
4334 4335 4336 4337
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4338
#ifdef CONFIG_SWAP
4339
/*
4340
 * called after __delete_from_swap_cache() and drop "page" account.
4341 4342
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4343 4344
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4345 4346
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4347 4348 4349 4350 4351
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4352
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4353

K
KAMEZAWA Hiroyuki 已提交
4354 4355
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4356
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4357 4358
	 */
	if (do_swap_account && swapout && memcg)
L
Li Zefan 已提交
4359
		swap_cgroup_record(ent, mem_cgroup_id(memcg));
4360
}
4361
#endif
4362

A
Andrew Morton 已提交
4363
#ifdef CONFIG_MEMCG_SWAP
4364 4365 4366 4367 4368
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4369
{
4370
	struct mem_cgroup *memcg;
4371
	unsigned short id;
4372 4373 4374 4375

	if (!do_swap_account)
		return;

4376 4377 4378
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4379
	if (memcg) {
4380 4381 4382 4383
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4384
		if (!mem_cgroup_is_root(memcg))
4385
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4386
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4387
		css_put(&memcg->css);
4388
	}
4389
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4390
}
4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4407
				struct mem_cgroup *from, struct mem_cgroup *to)
4408 4409 4410
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
4411 4412
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
4413 4414 4415

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4416
		mem_cgroup_swap_statistics(to, true);
4417
		/*
4418 4419 4420
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4421 4422 4423 4424 4425 4426
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4427
		 */
L
Li Zefan 已提交
4428
		css_get(&to->css);
4429 4430 4431 4432 4433 4434
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4435
				struct mem_cgroup *from, struct mem_cgroup *to)
4436 4437 4438
{
	return -EINVAL;
}
4439
#endif
K
KAMEZAWA Hiroyuki 已提交
4440

4441
/*
4442 4443
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4444
 */
4445 4446
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4447
{
4448
	struct mem_cgroup *memcg = NULL;
4449
	unsigned int nr_pages = 1;
4450
	struct page_cgroup *pc;
4451
	enum charge_type ctype;
4452

4453
	*memcgp = NULL;
4454

4455
	if (mem_cgroup_disabled())
4456
		return;
4457

4458 4459 4460
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4461 4462 4463
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4464 4465
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4497
	}
4498
	unlock_page_cgroup(pc);
4499 4500 4501 4502
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4503
	if (!memcg)
4504
		return;
4505

4506
	*memcgp = memcg;
4507 4508 4509 4510 4511 4512 4513
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4514
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4515
	else
4516
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4517 4518 4519 4520 4521
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4522
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4523
}
4524

4525
/* remove redundant charge if migration failed*/
4526
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4527
	struct page *oldpage, struct page *newpage, bool migration_ok)
4528
{
4529
	struct page *used, *unused;
4530
	struct page_cgroup *pc;
4531
	bool anon;
4532

4533
	if (!memcg)
4534
		return;
4535

4536
	if (!migration_ok) {
4537 4538
		used = oldpage;
		unused = newpage;
4539
	} else {
4540
		used = newpage;
4541 4542
		unused = oldpage;
	}
4543
	anon = PageAnon(used);
4544 4545 4546 4547
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4548
	css_put(&memcg->css);
4549
	/*
4550 4551 4552
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4553
	 */
4554 4555 4556 4557 4558
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4559
	/*
4560 4561 4562 4563 4564 4565
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4566
	 */
4567
	if (anon)
4568
		mem_cgroup_uncharge_page(used);
4569
}
4570

4571 4572 4573 4574 4575 4576 4577 4578
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4579
	struct mem_cgroup *memcg = NULL;
4580 4581 4582 4583 4584 4585 4586 4587 4588
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4589 4590
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4591
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4592 4593
		ClearPageCgroupUsed(pc);
	}
4594 4595
	unlock_page_cgroup(pc);

4596 4597 4598 4599 4600 4601
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4602 4603 4604 4605 4606
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4607
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4608 4609
}

4610 4611 4612 4613 4614 4615
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4616 4617 4618 4619 4620
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4640 4641
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4642 4643 4644 4645
	}
}
#endif

4646
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4647
				unsigned long long val)
4648
{
4649
	int retry_count;
4650
	u64 memswlimit, memlimit;
4651
	int ret = 0;
4652 4653
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4654
	int enlarge;
4655 4656 4657 4658 4659 4660 4661 4662 4663

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4664

4665
	enlarge = 0;
4666
	while (retry_count) {
4667 4668 4669 4670
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4671 4672 4673
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4674
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4675 4676 4677 4678 4679 4680
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4681 4682
			break;
		}
4683 4684 4685 4686 4687

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4688
		ret = res_counter_set_limit(&memcg->res, val);
4689 4690 4691 4692 4693 4694
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4695 4696 4697 4698 4699
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4700 4701
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4702 4703
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4704
		if (curusage >= oldusage)
4705 4706 4707
			retry_count--;
		else
			oldusage = curusage;
4708
	}
4709 4710
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4711

4712 4713 4714
	return ret;
}

L
Li Zefan 已提交
4715 4716
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4717
{
4718
	int retry_count;
4719
	u64 memlimit, memswlimit, oldusage, curusage;
4720 4721
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4722
	int enlarge = 0;
4723

4724
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4725
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4726
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4727 4728 4729 4730 4731 4732 4733 4734
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4735
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4736 4737 4738 4739 4740 4741 4742 4743
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4744 4745 4746
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4747
		ret = res_counter_set_limit(&memcg->memsw, val);
4748 4749 4750 4751 4752 4753
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4754 4755 4756 4757 4758
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4759 4760 4761
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4762
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4763
		/* Usage is reduced ? */
4764
		if (curusage >= oldusage)
4765
			retry_count--;
4766 4767
		else
			oldusage = curusage;
4768
	}
4769 4770
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4771 4772 4773
	return ret;
}

4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4866 4867 4868 4869 4870 4871 4872
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4873
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4874 4875
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4876
 */
4877
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4878
				int node, int zid, enum lru_list lru)
4879
{
4880
	struct lruvec *lruvec;
4881
	unsigned long flags;
4882
	struct list_head *list;
4883 4884
	struct page *busy;
	struct zone *zone;
4885

K
KAMEZAWA Hiroyuki 已提交
4886
	zone = &NODE_DATA(node)->node_zones[zid];
4887 4888
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4889

4890
	busy = NULL;
4891
	do {
4892
		struct page_cgroup *pc;
4893 4894
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4895
		spin_lock_irqsave(&zone->lru_lock, flags);
4896
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4897
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4898
			break;
4899
		}
4900 4901 4902
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4903
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4904
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4905 4906
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4907
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4908

4909
		pc = lookup_page_cgroup(page);
4910

4911
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4912
			/* found lock contention or "pc" is obsolete. */
4913
			busy = page;
4914 4915 4916
			cond_resched();
		} else
			busy = NULL;
4917
	} while (!list_empty(list));
4918 4919 4920
}

/*
4921 4922
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4923
 * This enables deleting this mem_cgroup.
4924 4925
 *
 * Caller is responsible for holding css reference on the memcg.
4926
 */
4927
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4928
{
4929
	int node, zid;
4930
	u64 usage;
4931

4932
	do {
4933 4934
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4935 4936
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4937
		for_each_node_state(node, N_MEMORY) {
4938
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4939 4940
				enum lru_list lru;
				for_each_lru(lru) {
4941
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4942
							node, zid, lru);
4943
				}
4944
			}
4945
		}
4946 4947
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4948
		cond_resched();
4949

4950
		/*
4951 4952 4953 4954 4955
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4956 4957 4958 4959 4960 4961
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4962 4963 4964
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4965 4966
}

4967 4968
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
	lockdep_assert_held(&memcg_create_mutex);
	/*
	 * The lock does not prevent addition or deletion to the list
	 * of children, but it prevents a new child from being
	 * initialized based on this parent in css_online(), so it's
	 * enough to decide whether hierarchically inherited
	 * attributes can still be changed or not.
	 */
	return memcg->use_hierarchy &&
		!list_empty(&memcg->css.cgroup->children);
4979 4980
}

4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4991

4992
	/* returns EBUSY if there is a task or if we come here twice. */
4993 4994 4995
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4996 4997
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4998
	/* try to free all pages in this cgroup */
4999
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5000
		int progress;
5001

5002 5003 5004
		if (signal_pending(current))
			return -EINTR;

5005
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5006
						false);
5007
		if (!progress) {
5008
			nr_retries--;
5009
			/* maybe some writeback is necessary */
5010
			congestion_wait(BLK_RW_ASYNC, HZ/10);
5011
		}
5012 5013

	}
K
KAMEZAWA Hiroyuki 已提交
5014
	lru_add_drain();
5015 5016 5017
	mem_cgroup_reparent_charges(memcg);

	return 0;
5018 5019
}

5020 5021
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
5022
{
5023
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5024

5025 5026
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
5027
	return mem_cgroup_force_empty(memcg);
5028 5029
}

5030 5031
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
5032
{
5033
	return mem_cgroup_from_css(css)->use_hierarchy;
5034 5035
}

5036 5037
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
5038 5039
{
	int retval = 0;
5040
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5041
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5042

5043
	mutex_lock(&memcg_create_mutex);
5044 5045 5046 5047

	if (memcg->use_hierarchy == val)
		goto out;

5048
	/*
5049
	 * If parent's use_hierarchy is set, we can't make any modifications
5050 5051 5052 5053 5054 5055
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5056
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5057
				(val == 1 || val == 0)) {
5058
		if (list_empty(&memcg->css.cgroup->children))
5059
			memcg->use_hierarchy = val;
5060 5061 5062 5063
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5064 5065

out:
5066
	mutex_unlock(&memcg_create_mutex);
5067 5068 5069 5070

	return retval;
}

5071

5072
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5073
					       enum mem_cgroup_stat_index idx)
5074
{
K
KAMEZAWA Hiroyuki 已提交
5075
	struct mem_cgroup *iter;
5076
	long val = 0;
5077

5078
	/* Per-cpu values can be negative, use a signed accumulator */
5079
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5080 5081 5082 5083 5084
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5085 5086
}

5087
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5088
{
K
KAMEZAWA Hiroyuki 已提交
5089
	u64 val;
5090

5091
	if (!mem_cgroup_is_root(memcg)) {
5092
		if (!swap)
5093
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5094
		else
5095
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5096 5097
	}

5098 5099 5100 5101
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5102 5103
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5104

K
KAMEZAWA Hiroyuki 已提交
5105
	if (swap)
5106
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5107 5108 5109 5110

	return val << PAGE_SHIFT;
}

5111 5112
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
B
Balbir Singh 已提交
5113
{
5114
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5115
	u64 val;
5116
	int name;
G
Glauber Costa 已提交
5117
	enum res_type type;
5118 5119 5120

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5121

5122 5123
	switch (type) {
	case _MEM:
5124
		if (name == RES_USAGE)
5125
			val = mem_cgroup_usage(memcg, false);
5126
		else
5127
			val = res_counter_read_u64(&memcg->res, name);
5128 5129
		break;
	case _MEMSWAP:
5130
		if (name == RES_USAGE)
5131
			val = mem_cgroup_usage(memcg, true);
5132
		else
5133
			val = res_counter_read_u64(&memcg->memsw, name);
5134
		break;
5135 5136 5137
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5138 5139 5140
	default:
		BUG();
	}
5141

5142
	return val;
B
Balbir Singh 已提交
5143
}
5144 5145

#ifdef CONFIG_MEMCG_KMEM
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
/* should be called with activate_kmem_mutex held */
static int __memcg_activate_kmem(struct mem_cgroup *memcg,
				 unsigned long long limit)
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5174
	mutex_lock(&memcg_create_mutex);
5175 5176 5177 5178 5179
	if (cgroup_task_count(memcg->css.cgroup) || memcg_has_children(memcg))
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
5180

5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
	memcg_id = ida_simple_get(&kmem_limited_groups,
				  0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
	 * Make sure we have enough space for this cgroup in each root cache's
	 * memcg_params.
	 */
	err = memcg_update_all_caches(memcg_id + 1);
	if (err)
		goto out_rmid;

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
	err = res_counter_set_limit(&memcg->kmem, limit);
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
5214
out:
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
	memcg_resume_kmem_account();
	return err;

out_rmid:
	ida_simple_remove(&kmem_limited_groups, memcg_id);
	goto out;
}

static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long long limit)
{
	int ret;

	mutex_lock(&activate_kmem_mutex);
	ret = __memcg_activate_kmem(memcg, limit);
	mutex_unlock(&activate_kmem_mutex);
	return ret;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	int ret;

	if (!memcg_kmem_is_active(memcg))
		ret = memcg_activate_kmem(memcg, val);
	else
		ret = res_counter_set_limit(&memcg->kmem, val);
5243 5244 5245
	return ret;
}

5246
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5247
{
5248
	int ret = 0;
5249
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5250

5251 5252
	if (!parent)
		return 0;
5253

5254
	mutex_lock(&activate_kmem_mutex);
5255
	/*
5256 5257
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
5258
	 */
5259 5260 5261
	if (memcg_kmem_is_active(parent))
		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
	mutex_unlock(&activate_kmem_mutex);
5262
	return ret;
5263
}
5264 5265 5266 5267 5268 5269
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	return -EINVAL;
}
5270
#endif /* CONFIG_MEMCG_KMEM */
5271

5272 5273 5274 5275
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5276
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5277
			    const char *buffer)
B
Balbir Singh 已提交
5278
{
5279
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5280 5281
	enum res_type type;
	int name;
5282 5283 5284
	unsigned long long val;
	int ret;

5285 5286
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5287

5288
	switch (name) {
5289
	case RES_LIMIT:
5290 5291 5292 5293
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5294 5295
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5296 5297 5298
		if (ret)
			break;
		if (type == _MEM)
5299
			ret = mem_cgroup_resize_limit(memcg, val);
5300
		else if (type == _MEMSWAP)
5301
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5302
		else if (type == _KMEM)
5303
			ret = memcg_update_kmem_limit(memcg, val);
5304 5305
		else
			return -EINVAL;
5306
		break;
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5321 5322 5323 5324 5325
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5326 5327
}

5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5338 5339
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5352
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5353
{
5354
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5355 5356
	int name;
	enum res_type type;
5357

5358 5359
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5360

5361
	switch (name) {
5362
	case RES_MAX_USAGE:
5363
		if (type == _MEM)
5364
			res_counter_reset_max(&memcg->res);
5365
		else if (type == _MEMSWAP)
5366
			res_counter_reset_max(&memcg->memsw);
5367 5368 5369 5370
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5371 5372
		break;
	case RES_FAILCNT:
5373
		if (type == _MEM)
5374
			res_counter_reset_failcnt(&memcg->res);
5375
		else if (type == _MEMSWAP)
5376
			res_counter_reset_failcnt(&memcg->memsw);
5377 5378 5379 5380
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5381 5382
		break;
	}
5383

5384
	return 0;
5385 5386
}

5387
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5388 5389
					struct cftype *cft)
{
5390
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5391 5392
}

5393
#ifdef CONFIG_MMU
5394
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5395 5396
					struct cftype *cft, u64 val)
{
5397
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5398 5399 5400

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5401

5402
	/*
5403 5404 5405 5406
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5407
	 */
5408
	memcg->move_charge_at_immigrate = val;
5409 5410
	return 0;
}
5411
#else
5412
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5413 5414 5415 5416 5417
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5418

5419
#ifdef CONFIG_NUMA
5420
static int memcg_numa_stat_show(struct seq_file *m, void *v)
5421
{
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
5434
	int nid;
5435
	unsigned long nr;
5436
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5437

5438 5439 5440 5441 5442 5443 5444 5445 5446
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5447 5448
	}

5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5464 5465 5466 5467 5468 5469
	}

	return 0;
}
#endif /* CONFIG_NUMA */

5470 5471 5472 5473 5474
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5475
static int memcg_stat_show(struct seq_file *m, void *v)
5476
{
5477
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5478 5479
	struct mem_cgroup *mi;
	unsigned int i;
5480

5481
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5482
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5483
			continue;
5484 5485
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5486
	}
L
Lee Schermerhorn 已提交
5487

5488 5489 5490 5491 5492 5493 5494 5495
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5496
	/* Hierarchical information */
5497 5498
	{
		unsigned long long limit, memsw_limit;
5499
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5500
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5501
		if (do_swap_account)
5502 5503
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5504
	}
K
KOSAKI Motohiro 已提交
5505

5506 5507 5508
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5509
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5510
			continue;
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5531
	}
K
KAMEZAWA Hiroyuki 已提交
5532

K
KOSAKI Motohiro 已提交
5533 5534 5535 5536
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5537
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5538 5539 5540 5541 5542
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5543
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5544
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5545

5546 5547 5548 5549
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5550
			}
5551 5552 5553 5554
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5555 5556 5557
	}
#endif

5558 5559 5560
	return 0;
}

5561 5562
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5563
{
5564
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5565

5566
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5567 5568
}

5569 5570
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5571
{
5572
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5573
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5574

T
Tejun Heo 已提交
5575
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5576 5577
		return -EINVAL;

5578
	mutex_lock(&memcg_create_mutex);
5579

K
KOSAKI Motohiro 已提交
5580
	/* If under hierarchy, only empty-root can set this value */
5581
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5582
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5583
		return -EINVAL;
5584
	}
K
KOSAKI Motohiro 已提交
5585 5586 5587

	memcg->swappiness = val;

5588
	mutex_unlock(&memcg_create_mutex);
5589

K
KOSAKI Motohiro 已提交
5590 5591 5592
	return 0;
}

5593 5594 5595 5596 5597 5598 5599 5600
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5601
		t = rcu_dereference(memcg->thresholds.primary);
5602
	else
5603
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5604 5605 5606 5607 5608 5609 5610

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5611
	 * current_threshold points to threshold just below or equal to usage.
5612 5613 5614
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5615
	i = t->current_threshold;
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5639
	t->current_threshold = i - 1;
5640 5641 5642 5643 5644 5645
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5646 5647 5648 5649 5650 5651 5652
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5653 5654 5655 5656 5657 5658 5659
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5660 5661 5662 5663 5664 5665 5666
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5667 5668
}

5669
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5670 5671 5672
{
	struct mem_cgroup_eventfd_list *ev;

5673
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5674 5675 5676 5677
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5678
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5679
{
K
KAMEZAWA Hiroyuki 已提交
5680 5681
	struct mem_cgroup *iter;

5682
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5683
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5684 5685
}

5686
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5687
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5688
{
5689 5690
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5691
	u64 threshold, usage;
5692
	int i, size, ret;
5693 5694 5695 5696 5697 5698

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5699

5700
	if (type == _MEM)
5701
		thresholds = &memcg->thresholds;
5702
	else if (type == _MEMSWAP)
5703
		thresholds = &memcg->memsw_thresholds;
5704 5705 5706 5707 5708 5709
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5710
	if (thresholds->primary)
5711 5712
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5713
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5714 5715

	/* Allocate memory for new array of thresholds */
5716
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5717
			GFP_KERNEL);
5718
	if (!new) {
5719 5720 5721
		ret = -ENOMEM;
		goto unlock;
	}
5722
	new->size = size;
5723 5724

	/* Copy thresholds (if any) to new array */
5725 5726
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5727
				sizeof(struct mem_cgroup_threshold));
5728 5729
	}

5730
	/* Add new threshold */
5731 5732
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5733 5734

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5735
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5736 5737 5738
			compare_thresholds, NULL);

	/* Find current threshold */
5739
	new->current_threshold = -1;
5740
	for (i = 0; i < size; i++) {
5741
		if (new->entries[i].threshold <= usage) {
5742
			/*
5743 5744
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5745 5746
			 * it here.
			 */
5747
			++new->current_threshold;
5748 5749
		} else
			break;
5750 5751
	}

5752 5753 5754 5755 5756
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5757

5758
	/* To be sure that nobody uses thresholds */
5759 5760 5761 5762 5763 5764 5765 5766
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5767
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5768 5769
	struct eventfd_ctx *eventfd, const char *args)
{
5770
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
5771 5772
}

5773
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5774 5775
	struct eventfd_ctx *eventfd, const char *args)
{
5776
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
5777 5778
}

5779
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5780
	struct eventfd_ctx *eventfd, enum res_type type)
5781
{
5782 5783
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5784
	u64 usage;
5785
	int i, j, size;
5786 5787 5788

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5789
		thresholds = &memcg->thresholds;
5790
	else if (type == _MEMSWAP)
5791
		thresholds = &memcg->memsw_thresholds;
5792 5793 5794
	else
		BUG();

5795 5796 5797
	if (!thresholds->primary)
		goto unlock;

5798 5799 5800 5801 5802 5803
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5804 5805 5806
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5807 5808 5809
			size++;
	}

5810
	new = thresholds->spare;
5811

5812 5813
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5814 5815
		kfree(new);
		new = NULL;
5816
		goto swap_buffers;
5817 5818
	}

5819
	new->size = size;
5820 5821

	/* Copy thresholds and find current threshold */
5822 5823 5824
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5825 5826
			continue;

5827
		new->entries[j] = thresholds->primary->entries[i];
5828
		if (new->entries[j].threshold <= usage) {
5829
			/*
5830
			 * new->current_threshold will not be used
5831 5832 5833
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5834
			++new->current_threshold;
5835 5836 5837 5838
		}
		j++;
	}

5839
swap_buffers:
5840 5841
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5842 5843 5844 5845 5846 5847
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5848
	rcu_assign_pointer(thresholds->primary, new);
5849

5850
	/* To be sure that nobody uses thresholds */
5851
	synchronize_rcu();
5852
unlock:
5853 5854
	mutex_unlock(&memcg->thresholds_lock);
}
5855

5856
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5857 5858
	struct eventfd_ctx *eventfd)
{
5859
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
5860 5861
}

5862
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5863 5864
	struct eventfd_ctx *eventfd)
{
5865
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
5866 5867
}

5868
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5869
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
5870 5871 5872 5873 5874 5875 5876
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5877
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5878 5879 5880 5881 5882

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5883
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5884
		eventfd_signal(eventfd, 1);
5885
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5886 5887 5888 5889

	return 0;
}

5890
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5891
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
5892 5893 5894
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

5895
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5896

5897
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5898 5899 5900 5901 5902 5903
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5904
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5905 5906
}

5907
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5908
{
5909
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5910

5911 5912
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5913 5914 5915
	return 0;
}

5916
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5917 5918
	struct cftype *cft, u64 val)
{
5919
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5920
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5921 5922

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5923
	if (!parent || !((val == 0) || (val == 1)))
5924 5925
		return -EINVAL;

5926
	mutex_lock(&memcg_create_mutex);
5927
	/* oom-kill-disable is a flag for subhierarchy. */
5928
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5929
		mutex_unlock(&memcg_create_mutex);
5930 5931
		return -EINVAL;
	}
5932
	memcg->oom_kill_disable = val;
5933
	if (!val)
5934
		memcg_oom_recover(memcg);
5935
	mutex_unlock(&memcg_create_mutex);
5936 5937 5938
	return 0;
}

A
Andrew Morton 已提交
5939
#ifdef CONFIG_MEMCG_KMEM
5940
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5941
{
5942 5943
	int ret;

5944
	memcg->kmemcg_id = -1;
5945 5946 5947
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5948

5949
	return mem_cgroup_sockets_init(memcg, ss);
5950
}
5951

5952
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5953
{
5954
	mem_cgroup_sockets_destroy(memcg);
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5981 5982 5983 5984 5985 5986 5987

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5988
		css_put(&memcg->css);
G
Glauber Costa 已提交
5989
}
5990
#else
5991
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5992 5993 5994
{
	return 0;
}
G
Glauber Costa 已提交
5995

5996 5997 5998 5999 6000
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
6001 6002
{
}
6003 6004
#endif

6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

6018 6019 6020 6021 6022
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
6023
static void memcg_event_remove(struct work_struct *work)
6024
{
6025 6026
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
6027
	struct mem_cgroup *memcg = event->memcg;
6028 6029 6030

	remove_wait_queue(event->wqh, &event->wait);

6031
	event->unregister_event(memcg, event->eventfd);
6032 6033 6034 6035 6036 6037

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
6038
	css_put(&memcg->css);
6039 6040 6041 6042 6043 6044 6045
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
6046 6047
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
6048
{
6049 6050
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
6051
	struct mem_cgroup *memcg = event->memcg;
6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
6064
		spin_lock(&memcg->event_list_lock);
6065 6066 6067 6068 6069 6070 6071 6072
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
6073
		spin_unlock(&memcg->event_list_lock);
6074 6075 6076 6077 6078
	}

	return 0;
}

6079
static void memcg_event_ptable_queue_proc(struct file *file,
6080 6081
		wait_queue_head_t *wqh, poll_table *pt)
{
6082 6083
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
6084 6085 6086 6087 6088 6089

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
6090 6091
 * DO NOT USE IN NEW FILES.
 *
6092 6093 6094 6095 6096
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
6097 6098
static int memcg_write_event_control(struct cgroup_subsys_state *css,
				     struct cftype *cft, const char *buffer)
6099
{
6100
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6101
	struct mem_cgroup_event *event;
6102 6103 6104 6105
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
6106
	const char *name;
6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

6124
	event->memcg = memcg;
6125
	INIT_LIST_HEAD(&event->list);
6126 6127 6128
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

6154 6155 6156 6157 6158
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
6159 6160
	 *
	 * DO NOT ADD NEW FILES.
6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
6174 6175
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
6176 6177 6178 6179 6180
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

6181
	/*
6182 6183 6184
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
6185 6186 6187 6188
	 */
	rcu_read_lock();

	ret = -EINVAL;
6189 6190 6191
	cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
				 &mem_cgroup_subsys);
	if (cfile_css == css && css_tryget(css))
6192 6193 6194 6195 6196 6197
		ret = 0;

	rcu_read_unlock();
	if (ret)
		goto out_put_cfile;

6198
	ret = event->register_event(memcg, event->eventfd, buffer);
6199 6200 6201 6202 6203
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

6204 6205 6206
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
6207 6208 6209 6210 6211 6212 6213

	fdput(cfile);
	fdput(efile);

	return 0;

out_put_css:
6214
	css_put(css);
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
6227 6228
static struct cftype mem_cgroup_files[] = {
	{
6229
		.name = "usage_in_bytes",
6230
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6231
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6232
	},
6233 6234
	{
		.name = "max_usage_in_bytes",
6235
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6236
		.trigger = mem_cgroup_reset,
6237
		.read_u64 = mem_cgroup_read_u64,
6238
	},
B
Balbir Singh 已提交
6239
	{
6240
		.name = "limit_in_bytes",
6241
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6242
		.write_string = mem_cgroup_write,
6243
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6244
	},
6245 6246 6247 6248
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
6249
		.read_u64 = mem_cgroup_read_u64,
6250
	},
B
Balbir Singh 已提交
6251 6252
	{
		.name = "failcnt",
6253
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6254
		.trigger = mem_cgroup_reset,
6255
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6256
	},
6257 6258
	{
		.name = "stat",
6259
		.seq_show = memcg_stat_show,
6260
	},
6261 6262 6263 6264
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
6265 6266
	{
		.name = "use_hierarchy",
6267
		.flags = CFTYPE_INSANE,
6268 6269 6270
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
6271
	{
6272 6273
		.name = "cgroup.event_control",		/* XXX: for compat */
		.write_string = memcg_write_event_control,
6274 6275 6276
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
6277 6278 6279 6280 6281
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6282 6283 6284 6285 6286
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6287 6288
	{
		.name = "oom_control",
6289
		.seq_show = mem_cgroup_oom_control_read,
6290
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6291 6292
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6293 6294 6295
	{
		.name = "pressure_level",
	},
6296 6297 6298
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6299
		.seq_show = memcg_numa_stat_show,
6300 6301
	},
#endif
6302 6303 6304 6305 6306
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
6307
		.read_u64 = mem_cgroup_read_u64,
6308 6309 6310 6311
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6312
		.read_u64 = mem_cgroup_read_u64,
6313 6314 6315 6316 6317
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6318
		.read_u64 = mem_cgroup_read_u64,
6319 6320 6321 6322 6323
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6324
		.read_u64 = mem_cgroup_read_u64,
6325
	},
6326 6327 6328
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
6329
		.seq_show = mem_cgroup_slabinfo_read,
6330 6331
	},
#endif
6332
#endif
6333
	{ },	/* terminate */
6334
};
6335

6336 6337 6338 6339 6340
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6341
		.read_u64 = mem_cgroup_read_u64,
6342 6343 6344 6345 6346
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6347
		.read_u64 = mem_cgroup_read_u64,
6348 6349 6350 6351 6352
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
6353
		.read_u64 = mem_cgroup_read_u64,
6354 6355 6356 6357 6358
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6359
		.read_u64 = mem_cgroup_read_u64,
6360 6361 6362 6363
	},
	{ },	/* terminate */
};
#endif
6364
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6365 6366
{
	struct mem_cgroup_per_node *pn;
6367
	struct mem_cgroup_per_zone *mz;
6368
	int zone, tmp = node;
6369 6370 6371 6372 6373 6374 6375 6376
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6377 6378
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6379
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6380 6381
	if (!pn)
		return 1;
6382 6383 6384

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6385
		lruvec_init(&mz->lruvec);
6386 6387
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6388
		mz->memcg = memcg;
6389
	}
6390
	memcg->nodeinfo[node] = pn;
6391 6392 6393
	return 0;
}

6394
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6395
{
6396
	kfree(memcg->nodeinfo[node]);
6397 6398
}

6399 6400
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6401
	struct mem_cgroup *memcg;
6402
	size_t size;
6403

6404 6405
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6406

6407
	memcg = kzalloc(size, GFP_KERNEL);
6408
	if (!memcg)
6409 6410
		return NULL;

6411 6412
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6413
		goto out_free;
6414 6415
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6416 6417

out_free:
6418
	kfree(memcg);
6419
	return NULL;
6420 6421
}

6422
/*
6423 6424 6425 6426 6427 6428 6429 6430
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6431
 */
6432 6433

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6434
{
6435
	int node;
6436

6437
	mem_cgroup_remove_from_trees(memcg);
6438 6439 6440 6441 6442 6443

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6455
	disarm_static_keys(memcg);
6456
	kfree(memcg);
6457
}
6458

6459 6460 6461
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6462
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6463
{
6464
	if (!memcg->res.parent)
6465
		return NULL;
6466
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6467
}
G
Glauber Costa 已提交
6468
EXPORT_SYMBOL(parent_mem_cgroup);
6469

6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6493
static struct cgroup_subsys_state * __ref
6494
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6495
{
6496
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6497
	long error = -ENOMEM;
6498
	int node;
B
Balbir Singh 已提交
6499

6500 6501
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6502
		return ERR_PTR(error);
6503

B
Bob Liu 已提交
6504
	for_each_node(node)
6505
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6506
			goto free_out;
6507

6508
	/* root ? */
6509
	if (parent_css == NULL) {
6510
		root_mem_cgroup = memcg;
6511 6512 6513
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6514
	}
6515

6516 6517 6518 6519 6520
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6521
	vmpressure_init(&memcg->vmpressure);
6522 6523
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
6524 6525 6526 6527 6528 6529 6530 6531 6532

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6533
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6534
{
6535 6536
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6537

6538 6539 6540
	if (css->cgroup->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;

T
Tejun Heo 已提交
6541
	if (!parent)
6542 6543
		return 0;

6544
	mutex_lock(&memcg_create_mutex);
6545 6546 6547 6548 6549 6550

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6551 6552
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6553
		res_counter_init(&memcg->kmem, &parent->kmem);
6554

6555
		/*
6556 6557
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6558
		 */
6559
	} else {
6560 6561
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6562
		res_counter_init(&memcg->kmem, NULL);
6563 6564 6565 6566 6567
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6568
		if (parent != root_mem_cgroup)
6569
			mem_cgroup_subsys.broken_hierarchy = true;
6570
	}
6571
	mutex_unlock(&memcg_create_mutex);
6572 6573

	return memcg_init_kmem(memcg, &mem_cgroup_subsys);
B
Balbir Singh 已提交
6574 6575
}

M
Michal Hocko 已提交
6576 6577 6578 6579 6580 6581 6582 6583
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6584
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6585 6586 6587 6588 6589 6590

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6591
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6592 6593
}

6594
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6595
{
6596
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6597
	struct mem_cgroup_event *event, *tmp;
6598 6599 6600 6601 6602 6603

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
6604 6605
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6606 6607 6608
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
6609
	spin_unlock(&memcg->event_list_lock);
6610

6611 6612
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6613
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6614
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6615
	mem_cgroup_destroy_all_caches(memcg);
6616
	vmpressure_cleanup(&memcg->vmpressure);
6617 6618
}

6619
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6620
{
6621
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657
	/*
	 * XXX: css_offline() would be where we should reparent all
	 * memory to prepare the cgroup for destruction.  However,
	 * memcg does not do css_tryget() and res_counter charging
	 * under the same RCU lock region, which means that charging
	 * could race with offlining.  Offlining only happens to
	 * cgroups with no tasks in them but charges can show up
	 * without any tasks from the swapin path when the target
	 * memcg is looked up from the swapout record and not from the
	 * current task as it usually is.  A race like this can leak
	 * charges and put pages with stale cgroup pointers into
	 * circulation:
	 *
	 * #0                        #1
	 *                           lookup_swap_cgroup_id()
	 *                           rcu_read_lock()
	 *                           mem_cgroup_lookup()
	 *                           css_tryget()
	 *                           rcu_read_unlock()
	 * disable css_tryget()
	 * call_rcu()
	 *   offline_css()
	 *     reparent_charges()
	 *                           res_counter_charge()
	 *                           css_put()
	 *                             css_free()
	 *                           pc->mem_cgroup = dead memcg
	 *                           add page to lru
	 *
	 * The bulk of the charges are still moved in offline_css() to
	 * avoid pinning a lot of pages in case a long-term reference
	 * like a swapout record is deferring the css_free() to long
	 * after offlining.  But this makes sure we catch any charges
	 * made after offlining:
	 */
	mem_cgroup_reparent_charges(memcg);
6658

6659
	memcg_destroy_kmem(memcg);
6660
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6661 6662
}

6663
#ifdef CONFIG_MMU
6664
/* Handlers for move charge at task migration. */
6665 6666
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6667
{
6668 6669
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6670
	struct mem_cgroup *memcg = mc.to;
6671

6672
	if (mem_cgroup_is_root(memcg)) {
6673 6674 6675 6676 6677 6678 6679 6680
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6681
		 * "memcg" cannot be under rmdir() because we've already checked
6682 6683 6684 6685
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6686
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6687
			goto one_by_one;
6688
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6689
						PAGE_SIZE * count, &dummy)) {
6690
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6707 6708
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6709
		if (ret)
6710
			/* mem_cgroup_clear_mc() will do uncharge later */
6711
			return ret;
6712 6713
		mc.precharge++;
	}
6714 6715 6716 6717
	return ret;
}

/**
6718
 * get_mctgt_type - get target type of moving charge
6719 6720 6721
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6722
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6723 6724 6725 6726 6727 6728
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6729 6730 6731
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6732 6733 6734 6735 6736
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6737
	swp_entry_t	ent;
6738 6739 6740
};

enum mc_target_type {
6741
	MC_TARGET_NONE = 0,
6742
	MC_TARGET_PAGE,
6743
	MC_TARGET_SWAP,
6744 6745
};

D
Daisuke Nishimura 已提交
6746 6747
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6748
{
D
Daisuke Nishimura 已提交
6749
	struct page *page = vm_normal_page(vma, addr, ptent);
6750

D
Daisuke Nishimura 已提交
6751 6752 6753 6754
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6755
		if (!move_anon())
D
Daisuke Nishimura 已提交
6756
			return NULL;
6757 6758
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6759 6760 6761 6762 6763 6764 6765
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6766
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6767 6768 6769 6770 6771 6772 6773 6774
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6775 6776 6777 6778
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6779
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6780 6781 6782 6783 6784
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6785 6786 6787 6788 6789 6790 6791
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6792

6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6812 6813 6814 6815 6816 6817
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6818
		if (do_swap_account)
6819
			*entry = swap;
6820
		page = find_get_page(swap_address_space(swap), swap.val);
6821
	}
6822
#endif
6823 6824 6825
	return page;
}

6826
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6827 6828 6829 6830
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6831
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6832 6833 6834 6835 6836 6837
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6838 6839
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6840 6841

	if (!page && !ent.val)
6842
		return ret;
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6858 6859
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
6860
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6861 6862 6863
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6864 6865 6866 6867
	}
	return ret;
}

6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
6882
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6903 6904 6905 6906 6907 6908 6909 6910
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6911
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6912 6913
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
6914
		spin_unlock(ptl);
6915
		return 0;
6916
	}
6917

6918 6919
	if (pmd_trans_unstable(pmd))
		return 0;
6920 6921
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6922
		if (get_mctgt_type(vma, addr, *pte, NULL))
6923 6924 6925 6926
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6927 6928 6929
	return 0;
}

6930 6931 6932 6933 6934
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6935
	down_read(&mm->mmap_sem);
6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6947
	up_read(&mm->mmap_sem);
6948 6949 6950 6951 6952 6953 6954 6955 6956

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6957 6958 6959 6960 6961
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6962 6963
}

6964 6965
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6966
{
6967 6968
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6969
	int i;
6970

6971
	/* we must uncharge all the leftover precharges from mc.to */
6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6983
	}
6984 6985 6986 6987 6988 6989
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6990 6991 6992

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6993 6994 6995 6996 6997 6998 6999 7000 7001

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
7002
		/* we've already done css_get(mc.to) */
7003 7004
		mc.moved_swap = 0;
	}
7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
7020
	spin_lock(&mc.lock);
7021 7022
	mc.from = NULL;
	mc.to = NULL;
7023
	spin_unlock(&mc.lock);
7024
	mem_cgroup_end_move(from);
7025 7026
}

7027
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7028
				 struct cgroup_taskset *tset)
7029
{
7030
	struct task_struct *p = cgroup_taskset_first(tset);
7031
	int ret = 0;
7032
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7033
	unsigned long move_charge_at_immigrate;
7034

7035 7036 7037 7038 7039 7040 7041
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
7042 7043 7044
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

7045
		VM_BUG_ON(from == memcg);
7046 7047 7048 7049 7050

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
7051 7052 7053 7054
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
7055
			VM_BUG_ON(mc.moved_charge);
7056
			VM_BUG_ON(mc.moved_swap);
7057
			mem_cgroup_start_move(from);
7058
			spin_lock(&mc.lock);
7059
			mc.from = from;
7060
			mc.to = memcg;
7061
			mc.immigrate_flags = move_charge_at_immigrate;
7062
			spin_unlock(&mc.lock);
7063
			/* We set mc.moving_task later */
7064 7065 7066 7067

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
7068 7069
		}
		mmput(mm);
7070 7071 7072 7073
	}
	return ret;
}

7074
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7075
				     struct cgroup_taskset *tset)
7076
{
7077
	mem_cgroup_clear_mc();
7078 7079
}

7080 7081 7082
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
7083
{
7084 7085 7086 7087
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
7088 7089 7090 7091
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
7092

7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
7103
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
7104
		if (mc.precharge < HPAGE_PMD_NR) {
7105
			spin_unlock(ptl);
7106 7107 7108 7109 7110 7111 7112 7113
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7114
							pc, mc.from, mc.to)) {
7115 7116 7117 7118 7119 7120 7121
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
7122
		spin_unlock(ptl);
7123
		return 0;
7124 7125
	}

7126 7127
	if (pmd_trans_unstable(pmd))
		return 0;
7128 7129 7130 7131
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
7132
		swp_entry_t ent;
7133 7134 7135 7136

		if (!mc.precharge)
			break;

7137
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
7138 7139 7140 7141 7142
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
7143
			if (!mem_cgroup_move_account(page, 1, pc,
7144
						     mc.from, mc.to)) {
7145
				mc.precharge--;
7146 7147
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
7148 7149
			}
			putback_lru_page(page);
7150
put:			/* get_mctgt_type() gets the page */
7151 7152
			put_page(page);
			break;
7153 7154
		case MC_TARGET_SWAP:
			ent = target.ent;
7155
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7156
				mc.precharge--;
7157 7158 7159
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
7160
			break;
7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
7175
		ret = mem_cgroup_do_precharge(1);
7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
7219
	up_read(&mm->mmap_sem);
7220 7221
}

7222
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7223
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
7224
{
7225
	struct task_struct *p = cgroup_taskset_first(tset);
7226
	struct mm_struct *mm = get_task_mm(p);
7227 7228

	if (mm) {
7229 7230
		if (mc.to)
			mem_cgroup_move_charge(mm);
7231 7232
		mmput(mm);
	}
7233 7234
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
7235
}
7236
#else	/* !CONFIG_MMU */
7237
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7238
				 struct cgroup_taskset *tset)
7239 7240 7241
{
	return 0;
}
7242
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7243
				     struct cgroup_taskset *tset)
7244 7245
{
}
7246
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7247
				 struct cgroup_taskset *tset)
7248 7249 7250
{
}
#endif
B
Balbir Singh 已提交
7251

7252 7253 7254 7255
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
7256
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7257 7258 7259 7260 7261 7262
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
7263 7264
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7265 7266
}

B
Balbir Singh 已提交
7267 7268 7269
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
7270
	.css_alloc = mem_cgroup_css_alloc,
7271
	.css_online = mem_cgroup_css_online,
7272 7273
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
7274 7275
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
7276
	.attach = mem_cgroup_move_task,
7277
	.bind = mem_cgroup_bind,
7278
	.base_cftypes = mem_cgroup_files,
7279
	.early_init = 0,
B
Balbir Singh 已提交
7280
};
7281

A
Andrew Morton 已提交
7282
#ifdef CONFIG_MEMCG_SWAP
7283 7284
static int __init enable_swap_account(char *s)
{
7285
	if (!strcmp(s, "1"))
7286
		really_do_swap_account = 1;
7287
	else if (!strcmp(s, "0"))
7288 7289 7290
		really_do_swap_account = 0;
	return 1;
}
7291
__setup("swapaccount=", enable_swap_account);
7292

7293 7294
static void __init memsw_file_init(void)
{
7295 7296 7297 7298 7299 7300 7301 7302 7303
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7304
}
7305

7306
#else
7307
static void __init enable_swap_cgroup(void)
7308 7309
{
}
7310
#endif
7311 7312

/*
7313 7314 7315 7316 7317 7318
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7319 7320 7321 7322
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7323
	enable_swap_cgroup();
7324
	mem_cgroup_soft_limit_tree_init();
7325
	memcg_stock_init();
7326 7327 7328
	return 0;
}
subsys_initcall(mem_cgroup_init);