mmu.c 43.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */
6 7 8 9

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
10
#include <linux/hugetlb.h>
11
#include <linux/sched/signal.h>
C
Christoffer Dall 已提交
12
#include <trace/events/kvm.h>
13
#include <asm/pgalloc.h>
14
#include <asm/cacheflush.h>
15 16
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
17
#include <asm/kvm_pgtable.h>
18
#include <asm/kvm_ras.h>
19
#include <asm/kvm_asm.h>
20
#include <asm/kvm_emulate.h>
21
#include <asm/virt.h>
22 23

#include "trace.h"
24

25
static struct kvm_pgtable *hyp_pgtable;
26 27
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

28 29 30 31
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

32 33
static unsigned long io_map_base;

34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/*
 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
 * long will also starve other vCPUs. We have to also make sure that the page
 * tables are not freed while we released the lock.
 */
static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
			      phys_addr_t end,
			      int (*fn)(struct kvm_pgtable *, u64, u64),
			      bool resched)
{
	int ret;
	u64 next;

	do {
		struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
		if (!pgt)
			return -EINVAL;

		next = stage2_pgd_addr_end(kvm, addr, end);
		ret = fn(pgt, addr, next - addr);
		if (ret)
			break;

		if (resched && next != end)
			cond_resched_lock(&kvm->mmu_lock);
	} while (addr = next, addr != end);

	return ret;
}

67 68 69
#define stage2_apply_range_resched(kvm, addr, end, fn)			\
	stage2_apply_range(kvm, addr, end, fn, true)

70 71 72
static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
73 74 75 76 77 78 79 80 81 82
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
83
	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
84
}
85

86 87
static bool kvm_is_device_pfn(unsigned long pfn)
{
88
	return !pfn_is_map_memory(pfn);
89 90
}

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
static void *stage2_memcache_zalloc_page(void *arg)
{
	struct kvm_mmu_memory_cache *mc = arg;

	/* Allocated with __GFP_ZERO, so no need to zero */
	return kvm_mmu_memory_cache_alloc(mc);
}

static void *kvm_host_zalloc_pages_exact(size_t size)
{
	return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
}

static void kvm_host_get_page(void *addr)
{
	get_page(virt_to_page(addr));
}

static void kvm_host_put_page(void *addr)
{
	put_page(virt_to_page(addr));
}

static int kvm_host_page_count(void *addr)
{
	return page_count(virt_to_page(addr));
}

static phys_addr_t kvm_host_pa(void *addr)
{
	return __pa(addr);
}

static void *kvm_host_va(phys_addr_t phys)
{
	return __va(phys);
}

129 130 131 132 133 134 135 136 137 138
static void clean_dcache_guest_page(void *va, size_t size)
{
	__clean_dcache_guest_page(va, size);
}

static void invalidate_icache_guest_page(void *va, size_t size)
{
	__invalidate_icache_guest_page(va, size);
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
156 157
 * the corresponding TLBs, we flush to make sure the IO subsystem will
 * never hit in the cache.
158 159 160 161
 *
 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
 * we then fully enforce cacheability of RAM, no matter what the guest
 * does.
162
 */
163 164
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
165
 * @mmu:   The KVM stage-2 MMU pointer
166 167
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
168
 * @may_block: Whether or not we are permitted to block
169 170 171 172 173 174
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
175 176
static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
				 bool may_block)
177
{
178
	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
179
	phys_addr_t end = start + size;
180

181
	assert_spin_locked(&kvm->mmu_lock);
182
	WARN_ON(size & ~PAGE_MASK);
183 184
	WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
				   may_block));
185 186
}

187 188 189 190 191
static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
{
	__unmap_stage2_range(mmu, start, size, true);
}

192 193 194 195 196 197
static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;

198
	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
199 200 201 202 203 204 205 206 207
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
208
static void stage2_flush_vm(struct kvm *kvm)
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

225
/**
226
 * free_hyp_pgds - free Hyp-mode page tables
227
 */
228
void free_hyp_pgds(void)
229
{
230
	mutex_lock(&kvm_hyp_pgd_mutex);
231 232 233
	if (hyp_pgtable) {
		kvm_pgtable_hyp_destroy(hyp_pgtable);
		kfree(hyp_pgtable);
234
		hyp_pgtable = NULL;
235
	}
236 237 238
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
static bool kvm_host_owns_hyp_mappings(void)
{
	if (static_branch_likely(&kvm_protected_mode_initialized))
		return false;

	/*
	 * This can happen at boot time when __create_hyp_mappings() is called
	 * after the hyp protection has been enabled, but the static key has
	 * not been flipped yet.
	 */
	if (!hyp_pgtable && is_protected_kvm_enabled())
		return false;

	WARN_ON(!hyp_pgtable);

	return true;
}

257 258
static int __create_hyp_mappings(unsigned long start, unsigned long size,
				 unsigned long phys, enum kvm_pgtable_prot prot)
259
{
260
	int err;
261

262 263 264 265 266
	if (!kvm_host_owns_hyp_mappings()) {
		return kvm_call_hyp_nvhe(__pkvm_create_mappings,
					 start, size, phys, prot);
	}

267
	mutex_lock(&kvm_hyp_pgd_mutex);
268
	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
269
	mutex_unlock(&kvm_hyp_pgd_mutex);
270

271 272 273
	return err;
}

274 275 276 277 278 279 280 281 282 283 284
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

285
/**
286
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
287 288
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
289
 * @prot:	The protection to be applied to this range
290
 *
291 292 293
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
294
 */
295
int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
296
{
297 298
	phys_addr_t phys_addr;
	unsigned long virt_addr;
M
Marc Zyngier 已提交
299 300
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
301

302 303 304
	if (is_kernel_in_hyp_mode())
		return 0;

305 306
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
307

308 309
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
310

311
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
312
		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
313
					    prot);
314 315 316 317 318
		if (err)
			return err;
	}

	return 0;
319 320
}

321
static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
322 323
					unsigned long *haddr,
					enum kvm_pgtable_prot prot)
324
{
325 326
	unsigned long base;
	int ret = 0;
327

328 329 330 331 332 333 334 335 336 337
	if (!kvm_host_owns_hyp_mappings()) {
		base = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
					 phys_addr, size, prot);
		if (IS_ERR_OR_NULL((void *)base))
			return PTR_ERR((void *)base);
		*haddr = base;

		return 0;
	}

338
	mutex_lock(&kvm_hyp_pgd_mutex);
339

340
	/*
F
Fuad Tabba 已提交
341
	 * This assumes that we have enough space below the idmap
342 343 344 345 346 347 348 349
	 * page to allocate our VAs. If not, the check below will
	 * kick. A potential alternative would be to detect that
	 * overflow and switch to an allocation above the idmap.
	 *
	 * The allocated size is always a multiple of PAGE_SIZE.
	 */
	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
	base = io_map_base - size;
350

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	/*
	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
	 * allocating the new area, as it would indicate we've
	 * overflowed the idmap/IO address range.
	 */
	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
		ret = -ENOMEM;
	else
		io_map_base = base;

	mutex_unlock(&kvm_hyp_pgd_mutex);

	if (ret)
		goto out;

366
	ret = __create_hyp_mappings(base, size, phys_addr, prot);
367 368 369
	if (ret)
		goto out;

370
	*haddr = base + offset_in_page(phys_addr);
371
out:
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
	return ret;
}

/**
 * create_hyp_io_mappings - Map IO into both kernel and HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @kaddr:	Kernel VA for this mapping
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
			   void __iomem **kaddr,
			   void __iomem **haddr)
{
	unsigned long addr;
	int ret;

	*kaddr = ioremap(phys_addr, size);
	if (!*kaddr)
		return -ENOMEM;

	if (is_kernel_in_hyp_mode()) {
		*haddr = *kaddr;
		return 0;
	}

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_DEVICE);
400 401 402
	if (ret) {
		iounmap(*kaddr);
		*kaddr = NULL;
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
		*haddr = NULL;
		return ret;
	}

	*haddr = (void __iomem *)addr;
	return 0;
}

/**
 * create_hyp_exec_mappings - Map an executable range into HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
			     void **haddr)
{
	unsigned long addr;
	int ret;

	BUG_ON(is_kernel_in_hyp_mode());

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_EXEC);
	if (ret) {
		*haddr = NULL;
429 430 431
		return ret;
	}

432
	*haddr = (void *)addr;
433
	return 0;
434 435
}

436 437 438 439 440 441 442 443 444
static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
	.zalloc_page		= stage2_memcache_zalloc_page,
	.zalloc_pages_exact	= kvm_host_zalloc_pages_exact,
	.free_pages_exact	= free_pages_exact,
	.get_page		= kvm_host_get_page,
	.put_page		= kvm_host_put_page,
	.page_count		= kvm_host_page_count,
	.phys_to_virt		= kvm_host_va,
	.virt_to_phys		= kvm_host_pa,
445 446
	.dcache_clean_inval_poc	= clean_dcache_guest_page,
	.icache_inval_pou	= invalidate_icache_guest_page,
447 448
};

449
/**
450 451 452
 * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
 * @kvm:	The pointer to the KVM structure
 * @mmu:	The pointer to the s2 MMU structure
453
 *
454
 * Allocates only the stage-2 HW PGD level table(s).
455 456 457
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
458
int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
459
{
460 461
	int cpu, err;
	struct kvm_pgtable *pgt;
462

463
	if (mmu->pgt != NULL) {
464 465 466 467
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

468 469
	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL);
	if (!pgt)
470 471
		return -ENOMEM;

472
	err = kvm_pgtable_stage2_init(pgt, &kvm->arch, &kvm_s2_mm_ops);
473 474
	if (err)
		goto out_free_pgtable;
475

476 477
	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
	if (!mmu->last_vcpu_ran) {
478 479
		err = -ENOMEM;
		goto out_destroy_pgtable;
480 481 482 483 484
	}

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;

485
	mmu->arch = &kvm->arch;
486 487
	mmu->pgt = pgt;
	mmu->pgd_phys = __pa(pgt->pgd);
488
	mmu->vmid.vmid_gen = 0;
489
	return 0;
490 491 492 493 494 495

out_destroy_pgtable:
	kvm_pgtable_stage2_destroy(pgt);
out_free_pgtable:
	kfree(pgt);
	return err;
496 497
}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
519
		struct vm_area_struct *vma;
520 521
		hva_t vm_start, vm_end;

522 523
		vma = find_vma_intersection(current->mm, hva, reg_end);
		if (!vma)
524 525 526 527 528 529 530 531 532 533
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
534
			unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
535 536 537 538 539 540 541 542 543
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
F
Fuad Tabba 已提交
544
 * Go through the memregions and unmap any regular RAM
545 546 547 548 549 550 551 552 553
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
554
	mmap_read_lock(current->mm);
555 556 557 558 559 560 561
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
562
	mmap_read_unlock(current->mm);
563 564 565
	srcu_read_unlock(&kvm->srcu, idx);
}

566
void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
567
{
568
	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
569
	struct kvm_pgtable *pgt = NULL;
570

571
	spin_lock(&kvm->mmu_lock);
572 573 574 575 576
	pgt = mmu->pgt;
	if (pgt) {
		mmu->pgd_phys = 0;
		mmu->pgt = NULL;
		free_percpu(mmu->last_vcpu_ran);
577
	}
578 579
	spin_unlock(&kvm->mmu_lock);

580 581 582
	if (pgt) {
		kvm_pgtable_stage2_destroy(pgt);
		kfree(pgt);
583
	}
584 585 586 587 588 589 590 591 592
}

/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
593
 * @writable:   Whether or not to create a writable mapping
594 595
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
596
			  phys_addr_t pa, unsigned long size, bool writable)
597
{
598
	phys_addr_t addr;
599
	int ret = 0;
600
	struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
601 602 603 604
	struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
				     KVM_PGTABLE_PROT_R |
				     (writable ? KVM_PGTABLE_PROT_W : 0);
605

606 607
	size += offset_in_page(guest_ipa);
	guest_ipa &= PAGE_MASK;
608

609
	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
610 611
		ret = kvm_mmu_topup_memory_cache(&cache,
						 kvm_mmu_cache_min_pages(kvm));
612
		if (ret)
613 614
			break;

615
		spin_lock(&kvm->mmu_lock);
616 617
		ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
					     &cache);
618 619
		spin_unlock(&kvm->mmu_lock);
		if (ret)
620
			break;
621

622
		pa += PAGE_SIZE;
623 624
	}

625
	kvm_mmu_free_memory_cache(&cache);
626 627 628
	return ret;
}

629 630
/**
 * stage2_wp_range() - write protect stage2 memory region range
631
 * @mmu:        The KVM stage-2 MMU pointer
632 633 634
 * @addr:	Start address of range
 * @end:	End address of range
 */
635
static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
636
{
637
	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
638
	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
639 640 641 642 643 644 645 646 647
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
648
 * all present PUD, PMD and PTEs are write protected in the memory region.
649 650 651 652 653
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
654
static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
655
{
656 657
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
658 659 660 661 662 663 664
	phys_addr_t start, end;

	if (WARN_ON_ONCE(!memslot))
		return;

	start = memslot->base_gfn << PAGE_SHIFT;
	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
665 666

	spin_lock(&kvm->mmu_lock);
667
	stage2_wp_range(&kvm->arch.mmu, start, end);
668 669 670
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
671 672

/**
673
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
674 675 676 677 678 679 680 681 682
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
683
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
684 685 686 687 688 689 690
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

691
	stage2_wp_range(&kvm->arch.mmu, start, end);
692
}
693

694 695 696 697 698 699 700 701 702 703 704 705 706 707
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

708
static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
709
{
710
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
711 712
}

713 714 715
static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
					       unsigned long hva,
					       unsigned long map_size)
716
{
717
	gpa_t gpa_start;
718 719 720
	hva_t uaddr_start, uaddr_end;
	size_t size;

721 722 723 724
	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
	if (map_size == PAGE_SIZE)
		return true;

725 726 727 728 729 730 731 732 733
	size = memslot->npages * PAGE_SIZE;

	gpa_start = memslot->base_gfn << PAGE_SHIFT;

	uaddr_start = memslot->userspace_addr;
	uaddr_end = uaddr_start + size;

	/*
	 * Pages belonging to memslots that don't have the same alignment
734 735
	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
736 737 738 739 740
	 *
	 * Consider a layout like the following:
	 *
	 *    memslot->userspace_addr:
	 *    +-----+--------------------+--------------------+---+
741
	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
742 743
	 *    +-----+--------------------+--------------------+---+
	 *
744
	 *    memslot->base_gfn << PAGE_SHIFT:
745
	 *      +---+--------------------+--------------------+-----+
746
	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
747 748
	 *      +---+--------------------+--------------------+-----+
	 *
749
	 * If we create those stage-2 blocks, we'll end up with this incorrect
750 751 752 753 754
	 * mapping:
	 *   d -> f
	 *   e -> g
	 *   f -> h
	 */
755
	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
756 757 758 759
		return false;

	/*
	 * Next, let's make sure we're not trying to map anything not covered
760 761
	 * by the memslot. This means we have to prohibit block size mappings
	 * for the beginning and end of a non-block aligned and non-block sized
762 763 764 765 766 767 768 769
	 * memory slot (illustrated by the head and tail parts of the
	 * userspace view above containing pages 'abcde' and 'xyz',
	 * respectively).
	 *
	 * Note that it doesn't matter if we do the check using the
	 * userspace_addr or the base_gfn, as both are equally aligned (per
	 * the check above) and equally sized.
	 */
770 771
	return (hva & ~(map_size - 1)) >= uaddr_start &&
	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
772 773
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
/*
 * Check if the given hva is backed by a transparent huge page (THP) and
 * whether it can be mapped using block mapping in stage2. If so, adjust
 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
 * supported. This will need to be updated to support other THP sizes.
 *
 * Returns the size of the mapping.
 */
static unsigned long
transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
			    unsigned long hva, kvm_pfn_t *pfnp,
			    phys_addr_t *ipap)
{
	kvm_pfn_t pfn = *pfnp;

	/*
	 * Make sure the adjustment is done only for THP pages. Also make
	 * sure that the HVA and IPA are sufficiently aligned and that the
	 * block map is contained within the memslot.
	 */
	if (kvm_is_transparent_hugepage(pfn) &&
	    fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		*ipap &= PMD_MASK;
		kvm_release_pfn_clean(pfn);
		pfn &= ~(PTRS_PER_PMD - 1);
		kvm_get_pfn(pfn);
		*pfnp = pfn;

		return PMD_SIZE;
	}

	/* Use page mapping if we cannot use block mapping. */
	return PAGE_SIZE;
}

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
{
	unsigned long pa;

	if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
		return huge_page_shift(hstate_vma(vma));

	if (!(vma->vm_flags & VM_PFNMAP))
		return PAGE_SHIFT;

	VM_BUG_ON(is_vm_hugetlb_page(vma));

	pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);

#ifndef __PAGETABLE_PMD_FOLDED
	if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
	    ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
	    ALIGN(hva, PUD_SIZE) <= vma->vm_end)
		return PUD_SHIFT;
#endif

	if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
	    ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
	    ALIGN(hva, PMD_SIZE) <= vma->vm_end)
		return PMD_SHIFT;

	return PAGE_SHIFT;
}

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
/*
 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
 * able to see the page's tags and therefore they must be initialised first. If
 * PG_mte_tagged is set, tags have already been initialised.
 *
 * The race in the test/set of the PG_mte_tagged flag is handled by:
 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
 *   racing to santise the same page
 * - mmap_lock protects between a VM faulting a page in and the VMM performing
 *   an mprotect() to add VM_MTE
 */
static int sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
			     unsigned long size)
{
	unsigned long i, nr_pages = size >> PAGE_SHIFT;
	struct page *page;

	if (!kvm_has_mte(kvm))
		return 0;

	/*
	 * pfn_to_online_page() is used to reject ZONE_DEVICE pages
	 * that may not support tags.
	 */
	page = pfn_to_online_page(pfn);

	if (!page)
		return -EFAULT;

	for (i = 0; i < nr_pages; i++, page++) {
		if (!test_bit(PG_mte_tagged, &page->flags)) {
			mte_clear_page_tags(page_address(page));
			set_bit(PG_mte_tagged, &page->flags);
		}
	}

	return 0;
}

895
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
896
			  struct kvm_memory_slot *memslot, unsigned long hva,
897 898
			  unsigned long fault_status)
{
899
	int ret = 0;
900
	bool write_fault, writable, force_pte = false;
901 902
	bool exec_fault;
	bool device = false;
903
	bool shared;
904
	unsigned long mmu_seq;
905
	struct kvm *kvm = vcpu->kvm;
906
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
907
	struct vm_area_struct *vma;
908
	short vma_shift;
909
	gfn_t gfn;
D
Dan Williams 已提交
910
	kvm_pfn_t pfn;
911
	bool logging_active = memslot_is_logging(memslot);
912 913
	unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
	unsigned long vma_pagesize, fault_granule;
914 915
	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
	struct kvm_pgtable *pgt;
916

917
	fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
918
	write_fault = kvm_is_write_fault(vcpu);
919
	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
920 921 922
	VM_BUG_ON(write_fault && exec_fault);

	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
923 924 925 926
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

927 928 929 930
	/*
	 * Let's check if we will get back a huge page backed by hugetlbfs, or
	 * get block mapping for device MMIO region.
	 */
931
	mmap_read_lock(current->mm);
932
	vma = vma_lookup(current->mm, hva);
933 934
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
935
		mmap_read_unlock(current->mm);
936 937 938
		return -EFAULT;
	}

939 940 941 942 943
	/*
	 * logging_active is guaranteed to never be true for VM_PFNMAP
	 * memslots.
	 */
	if (logging_active) {
944
		force_pte = true;
945
		vma_shift = PAGE_SHIFT;
946 947
	} else {
		vma_shift = get_vma_page_shift(vma, hva);
948 949
	}

950 951
	shared = (vma->vm_flags & VM_PFNMAP);

952
	switch (vma_shift) {
953
#ifndef __PAGETABLE_PMD_FOLDED
954 955 956 957
	case PUD_SHIFT:
		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
			break;
		fallthrough;
958
#endif
959 960 961 962 963 964 965 966
	case CONT_PMD_SHIFT:
		vma_shift = PMD_SHIFT;
		fallthrough;
	case PMD_SHIFT:
		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
			break;
		fallthrough;
	case CONT_PTE_SHIFT:
967
		vma_shift = PAGE_SHIFT;
968 969 970 971 972 973
		force_pte = true;
		fallthrough;
	case PAGE_SHIFT:
		break;
	default:
		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
974 975
	}

976
	vma_pagesize = 1UL << vma_shift;
977
	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
978
		fault_ipa &= ~(vma_pagesize - 1);
979 980

	gfn = fault_ipa >> PAGE_SHIFT;
981
	mmap_read_unlock(current->mm);
982

983 984 985 986 987 988 989 990 991 992 993 994
	/*
	 * Permission faults just need to update the existing leaf entry,
	 * and so normally don't require allocations from the memcache. The
	 * only exception to this is when dirty logging is enabled at runtime
	 * and a write fault needs to collapse a block entry into a table.
	 */
	if (fault_status != FSC_PERM || (logging_active && write_fault)) {
		ret = kvm_mmu_topup_memory_cache(memcache,
						 kvm_mmu_cache_min_pages(kvm));
		if (ret)
			return ret;
	}
995 996 997 998 999 1000 1001

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
1002
	 * unmapped afterwards, the call to kvm_unmap_gfn will take it away
1003 1004
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1005 1006 1007 1008
	 *
	 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is
	 * used to avoid unnecessary overhead introduced to locate the memory
	 * slot because it's always fixed even @gfn is adjusted for huge pages.
1009 1010 1011
	 */
	smp_rmb();

1012 1013
	pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
				   write_fault, &writable, NULL);
1014
	if (pfn == KVM_PFN_ERR_HWPOISON) {
1015
		kvm_send_hwpoison_signal(hva, vma_shift);
1016 1017
		return 0;
	}
1018
	if (is_error_noslot_pfn(pfn))
1019 1020
		return -EFAULT;

1021
	if (kvm_is_device_pfn(pfn)) {
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
		/*
		 * If the page was identified as device early by looking at
		 * the VMA flags, vma_pagesize is already representing the
		 * largest quantity we can map.  If instead it was mapped
		 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
		 * and must not be upgraded.
		 *
		 * In both cases, we don't let transparent_hugepage_adjust()
		 * change things at the last minute.
		 */
1032 1033
		device = true;
	} else if (logging_active && !write_fault) {
1034 1035 1036 1037
		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
1038
		writable = false;
1039
	}
1040

1041
	if (exec_fault && device)
1042 1043
		return -ENOEXEC;

1044
	spin_lock(&kvm->mmu_lock);
1045
	pgt = vcpu->arch.hw_mmu->pgt;
1046
	if (mmu_notifier_retry(kvm, mmu_seq))
1047
		goto out_unlock;
1048

1049 1050 1051 1052
	/*
	 * If we are not forced to use page mapping, check if we are
	 * backed by a THP and thus use block mapping if possible.
	 */
1053
	if (vma_pagesize == PAGE_SIZE && !(force_pte || device))
1054 1055
		vma_pagesize = transparent_hugepage_adjust(memslot, hva,
							   &pfn, &fault_ipa);
1056

1057
	if (fault_status != FSC_PERM && !device && kvm_has_mte(kvm)) {
1058
		/* Check the VMM hasn't introduced a new VM_SHARED VMA */
1059 1060 1061
		if (!shared)
			ret = sanitise_mte_tags(kvm, pfn, vma_pagesize);
		else
1062 1063 1064 1065
			ret = -EFAULT;
		if (ret)
			goto out_unlock;
	}
1066

1067
	if (writable)
1068
		prot |= KVM_PGTABLE_PROT_W;
1069

1070
	if (exec_fault)
1071
		prot |= KVM_PGTABLE_PROT_X;
1072

1073 1074 1075 1076
	if (device)
		prot |= KVM_PGTABLE_PROT_DEVICE;
	else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
		prot |= KVM_PGTABLE_PROT_X;
1077

1078 1079 1080 1081 1082 1083
	/*
	 * Under the premise of getting a FSC_PERM fault, we just need to relax
	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
	 * kvm_pgtable_stage2_map() should be called to change block size.
	 */
	if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
1084
		ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1085
	} else {
1086 1087 1088
		ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
					     __pfn_to_phys(pfn), prot,
					     memcache);
1089
	}
1090

1091 1092 1093
	/* Mark the page dirty only if the fault is handled successfully */
	if (writable && !ret) {
		kvm_set_pfn_dirty(pfn);
1094
		mark_page_dirty_in_slot(kvm, memslot, gfn);
1095 1096
	}

1097
out_unlock:
1098
	spin_unlock(&kvm->mmu_lock);
1099
	kvm_set_pfn_accessed(pfn);
1100
	kvm_release_pfn_clean(pfn);
1101
	return ret != -EAGAIN ? ret : 0;
1102 1103
}

1104
/* Resolve the access fault by making the page young again. */
1105 1106
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
1107 1108 1109
	pte_t pte;
	kvm_pte_t kpte;
	struct kvm_s2_mmu *mmu;
1110 1111 1112 1113

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);
1114 1115
	mmu = vcpu->arch.hw_mmu;
	kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1116
	spin_unlock(&vcpu->kvm->mmu_lock);
1117 1118 1119 1120

	pte = __pte(kpte);
	if (pte_valid(pte))
		kvm_set_pfn_accessed(pte_pfn(pte));
1121 1122
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
1134
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1135
{
1136 1137 1138
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
1139 1140
	unsigned long hva;
	bool is_iabt, write_fault, writable;
1141 1142 1143
	gfn_t gfn;
	int ret, idx;

1144 1145 1146
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);

	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1147
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1148

1149
	/* Synchronous External Abort? */
1150
	if (kvm_vcpu_abt_issea(vcpu)) {
1151 1152 1153 1154
		/*
		 * For RAS the host kernel may handle this abort.
		 * There is no need to pass the error into the guest.
		 */
1155
		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1156
			kvm_inject_vabt(vcpu);
1157 1158

		return 1;
1159 1160
	}

G
Gavin Shan 已提交
1161
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1162
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1163 1164

	/* Check the stage-2 fault is trans. fault or write fault */
1165 1166
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
1167 1168 1169
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
G
Gavin Shan 已提交
1170
			(unsigned long)kvm_vcpu_get_esr(vcpu));
1171 1172 1173 1174 1175 1176
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
1177 1178
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1179
	write_fault = kvm_is_write_fault(vcpu);
1180
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1181 1182 1183 1184 1185 1186
		/*
		 * The guest has put either its instructions or its page-tables
		 * somewhere it shouldn't have. Userspace won't be able to do
		 * anything about this (there's no syndrome for a start), so
		 * re-inject the abort back into the guest.
		 */
1187
		if (is_iabt) {
1188 1189
			ret = -ENOEXEC;
			goto out;
1190 1191
		}

1192
		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1193 1194 1195 1196 1197
			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
			ret = 1;
			goto out_unlock;
		}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
1208
		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1209
			kvm_incr_pc(vcpu);
1210 1211 1212 1213
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1214 1215 1216 1217 1218 1219 1220
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1221
		ret = io_mem_abort(vcpu, fault_ipa);
1222 1223 1224
		goto out_unlock;
	}

1225
	/* Userspace should not be able to register out-of-bounds IPAs */
1226
	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1227

1228 1229 1230 1231 1232 1233
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

1234
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1235 1236
	if (ret == 0)
		ret = 1;
1237 1238 1239 1240 1241
out:
	if (ret == -ENOEXEC) {
		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
		ret = 1;
	}
1242 1243 1244
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
1245 1246
}

1247
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1248
{
1249
	if (!kvm->arch.mmu.pgt)
1250
		return false;
1251

1252 1253 1254
	__unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
			     (range->end - range->start) << PAGE_SHIFT,
			     range->may_block);
1255

1256
	return false;
1257 1258
}

1259
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1260
{
1261
	kvm_pfn_t pfn = pte_pfn(range->pte);
1262
	int ret;
1263

1264
	if (!kvm->arch.mmu.pgt)
1265
		return false;
1266

1267
	WARN_ON(range->end - range->start != 1);
1268

1269 1270 1271 1272
	ret = sanitise_mte_tags(kvm, pfn, PAGE_SIZE);
	if (ret)
		return false;

1273
	/*
1274 1275 1276 1277
	 * We've moved a page around, probably through CoW, so let's treat
	 * it just like a translation fault and the map handler will clean
	 * the cache to the PoC.
	 *
1278
	 * The MMU notifiers will have unmapped a huge PMD before calling
1279
	 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1280 1281
	 * therefore we never need to clear out a huge PMD through this
	 * calling path and a memcache is not required.
1282
	 */
1283 1284 1285 1286
	kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
			       PAGE_SIZE, __pfn_to_phys(pfn),
			       KVM_PGTABLE_PROT_R, NULL);

1287
	return false;
1288 1289
}

1290
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1291
{
1292 1293 1294
	u64 size = (range->end - range->start) << PAGE_SHIFT;
	kvm_pte_t kpte;
	pte_t pte;
1295

1296
	if (!kvm->arch.mmu.pgt)
1297
		return false;
1298

1299
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1300 1301 1302

	kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt,
					range->start << PAGE_SHIFT);
1303 1304
	pte = __pte(kpte);
	return pte_valid(pte) && pte_young(pte);
1305 1306
}

1307
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1308
{
1309
	if (!kvm->arch.mmu.pgt)
1310
		return false;
1311

1312 1313
	return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt,
					   range->start << PAGE_SHIFT);
1314 1315
}

1316 1317
phys_addr_t kvm_mmu_get_httbr(void)
{
1318
	return __pa(hyp_pgtable->pgd);
1319 1320
}

1321 1322 1323 1324 1325
phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

1326
static int kvm_map_idmap_text(void)
1327
{
1328 1329 1330
	unsigned long size = hyp_idmap_end - hyp_idmap_start;
	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
					PAGE_HYP_EXEC);
1331 1332 1333 1334 1335 1336 1337
	if (err)
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);

	return err;
}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
static void *kvm_hyp_zalloc_page(void *arg)
{
	return (void *)get_zeroed_page(GFP_KERNEL);
}

static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
	.zalloc_page		= kvm_hyp_zalloc_page,
	.get_page		= kvm_host_get_page,
	.put_page		= kvm_host_put_page,
	.phys_to_virt		= kvm_host_va,
	.virt_to_phys		= kvm_host_pa,
};

1351
int kvm_mmu_init(u32 *hyp_va_bits)
1352
{
1353 1354
	int err;

1355
	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1356
	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1357
	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1358
	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1359
	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1360

1361 1362 1363 1364 1365
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1366

1367 1368
	*hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
	kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1369 1370 1371 1372
	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
	kvm_debug("HYP VA range: %lx:%lx\n",
		  kern_hyp_va(PAGE_OFFSET),
		  kern_hyp_va((unsigned long)high_memory - 1));
1373

M
Marc Zyngier 已提交
1374
	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1375
	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1376
	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1377 1378 1379 1380 1381 1382 1383 1384 1385
		/*
		 * The idmap page is intersecting with the VA space,
		 * it is not safe to continue further.
		 */
		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
		err = -EINVAL;
		goto out;
	}

1386 1387 1388
	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
	if (!hyp_pgtable) {
		kvm_err("Hyp mode page-table not allocated\n");
1389 1390 1391 1392
		err = -ENOMEM;
		goto out;
	}

1393
	err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1394 1395
	if (err)
		goto out_free_pgtable;
1396

1397 1398 1399
	err = kvm_map_idmap_text();
	if (err)
		goto out_destroy_pgtable;
1400

1401
	io_map_base = hyp_idmap_start;
1402
	return 0;
1403 1404 1405 1406 1407 1408

out_destroy_pgtable:
	kvm_pgtable_hyp_destroy(hyp_pgtable);
out_free_pgtable:
	kfree(hyp_pgtable);
	hyp_pgtable = NULL;
1409 1410
out:
	return err;
1411
}
1412 1413

void kvm_arch_commit_memory_region(struct kvm *kvm,
1414
				   const struct kvm_userspace_memory_region *mem,
1415
				   struct kvm_memory_slot *old,
1416
				   const struct kvm_memory_slot *new,
1417 1418
				   enum kvm_mr_change change)
{
1419 1420
	/*
	 * At this point memslot has been committed and there is an
F
Fuad Tabba 已提交
1421
	 * allocated dirty_bitmap[], dirty pages will be tracked while the
1422 1423
	 * memory slot is write protected.
	 */
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
		/*
		 * If we're with initial-all-set, we don't need to write
		 * protect any pages because they're all reported as dirty.
		 * Huge pages and normal pages will be write protect gradually.
		 */
		if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
			kvm_mmu_wp_memory_region(kvm, mem->slot);
		}
	}
1434 1435 1436 1437
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
1438
				   const struct kvm_userspace_memory_region *mem,
1439 1440
				   enum kvm_mr_change change)
{
1441 1442 1443 1444
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	int ret = 0;

1445 1446
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
1447 1448
		return 0;

1449 1450 1451 1452
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
1453
	if ((memslot->base_gfn + memslot->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1454 1455
		return -EFAULT;

1456
	mmap_read_lock(current->mm);
1457 1458
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
1459
	 * between them, so iterate over all of them.
1460 1461 1462 1463 1464 1465 1466 1467 1468
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
1469
		struct vm_area_struct *vma;
1470

1471 1472
		vma = find_vma_intersection(current->mm, hva, reg_end);
		if (!vma)
1473 1474
			break;

1475 1476 1477 1478 1479 1480 1481 1482
		/*
		 * VM_SHARED mappings are not allowed with MTE to avoid races
		 * when updating the PG_mte_tagged page flag, see
		 * sanitise_mte_tags for more details.
		 */
		if (kvm_has_mte(kvm) && vma->vm_flags & VM_SHARED)
			return -EINVAL;

1483
		if (vma->vm_flags & VM_PFNMAP) {
1484
			/* IO region dirty page logging not allowed */
1485 1486
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
				ret = -EINVAL;
1487
				break;
1488
			}
1489
		}
1490
		hva = min(reg_end, vma->vm_end);
1491 1492
	} while (hva < reg_end);

1493
	mmap_read_unlock(current->mm);
1494
	return ret;
1495 1496
}

1497
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1498 1499 1500
{
}

1501
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1502 1503 1504 1505 1506
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
1507
	kvm_free_stage2_pgd(&kvm->arch.mmu);
1508 1509 1510 1511 1512
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
1513 1514 1515 1516
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
1517
	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1518
	spin_unlock(&kvm->mmu_lock);
1519
}
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
1551
	unsigned long hcr = *vcpu_hcr(vcpu);
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
1566
		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
1584
		*vcpu_hcr(vcpu) &= ~HCR_TVM;
1585 1586 1587

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}