mmu.c 67.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */
6 7 8 9

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
10
#include <linux/hugetlb.h>
11
#include <linux/sched/signal.h>
C
Christoffer Dall 已提交
12
#include <trace/events/kvm.h>
13
#include <asm/pgalloc.h>
14
#include <asm/cacheflush.h>
15 16
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
17
#include <asm/kvm_ras.h>
18
#include <asm/kvm_asm.h>
19
#include <asm/kvm_emulate.h>
20
#include <asm/virt.h>
21 22

#include "trace.h"
23

24
static pgd_t *boot_hyp_pgd;
25
static pgd_t *hyp_pgd;
26
static pgd_t *merged_hyp_pgd;
27 28
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

29 30 31 32
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

33 34
static unsigned long io_map_base;

35
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
36

37 38 39
#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)

40 41 42 43 44
static bool is_iomap(unsigned long flags)
{
	return flags & KVM_S2PTE_FLAG_IS_IOMAP;
}

45 46 47
static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
48 49 50 51 52 53 54 55 56 57
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
58
	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
59
}
60

61 62
static void kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa,
				   int level)
63
{
64
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ipa, level);
65 66
}

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/*
 * D-Cache management functions. They take the page table entries by
 * value, as they are flushing the cache using the kernel mapping (or
 * kmap on 32bit).
 */
static void kvm_flush_dcache_pte(pte_t pte)
{
	__kvm_flush_dcache_pte(pte);
}

static void kvm_flush_dcache_pmd(pmd_t pmd)
{
	__kvm_flush_dcache_pmd(pmd);
}

static void kvm_flush_dcache_pud(pud_t pud)
{
	__kvm_flush_dcache_pud(pud);
}

87 88 89 90 91
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

92 93
/**
 * stage2_dissolve_pmd() - clear and flush huge PMD entry
94
 * @mmu:	pointer to mmu structure to operate on
95 96 97
 * @addr:	IPA
 * @pmd:	pmd pointer for IPA
 *
98
 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
99
 */
100
static void stage2_dissolve_pmd(struct kvm_s2_mmu *mmu, phys_addr_t addr, pmd_t *pmd)
101
{
102
	if (!pmd_thp_or_huge(*pmd))
103 104 105
		return;

	pmd_clear(pmd);
106
	kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
107 108 109
	put_page(virt_to_page(pmd));
}

110 111
/**
 * stage2_dissolve_pud() - clear and flush huge PUD entry
112
 * @mmu:	pointer to mmu structure to operate on
113 114 115
 * @addr:	IPA
 * @pud:	pud pointer for IPA
 *
116
 * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
117
 */
118
static void stage2_dissolve_pud(struct kvm_s2_mmu *mmu, phys_addr_t addr, pud_t *pudp)
119
{
120 121
	struct kvm *kvm = mmu->kvm;

122 123 124 125
	if (!stage2_pud_huge(kvm, *pudp))
		return;

	stage2_pud_clear(kvm, pudp);
126
	kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
127 128 129
	put_page(virt_to_page(pudp));
}

130
static void clear_stage2_pgd_entry(struct kvm_s2_mmu *mmu, pgd_t *pgd, phys_addr_t addr)
131
{
132
	struct kvm *kvm = mmu->kvm;
133
	p4d_t *p4d_table __maybe_unused = stage2_p4d_offset(kvm, pgd, 0UL);
134
	stage2_pgd_clear(kvm, pgd);
135
	kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
136
	stage2_p4d_free(kvm, p4d_table);
137
	put_page(virt_to_page(pgd));
138 139
}

140
static void clear_stage2_p4d_entry(struct kvm_s2_mmu *mmu, p4d_t *p4d, phys_addr_t addr)
141
{
142
	struct kvm *kvm = mmu->kvm;
143 144
	pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, p4d, 0);
	stage2_p4d_clear(kvm, p4d);
145
	kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
146 147 148 149
	stage2_pud_free(kvm, pud_table);
	put_page(virt_to_page(p4d));
}

150
static void clear_stage2_pud_entry(struct kvm_s2_mmu *mmu, pud_t *pud, phys_addr_t addr)
151
{
152
	struct kvm *kvm = mmu->kvm;
153
	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
154

155 156
	VM_BUG_ON(stage2_pud_huge(kvm, *pud));
	stage2_pud_clear(kvm, pud);
157
	kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
158
	stage2_pmd_free(kvm, pmd_table);
159 160
	put_page(virt_to_page(pud));
}
161

162
static void clear_stage2_pmd_entry(struct kvm_s2_mmu *mmu, pmd_t *pmd, phys_addr_t addr)
163
{
164
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
165
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
166
	pmd_clear(pmd);
167
	kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
168
	free_page((unsigned long)pte_table);
169 170 171
	put_page(virt_to_page(pmd));
}

172 173 174 175 176 177 178 179 180 181 182 183
static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
{
	WRITE_ONCE(*ptep, new_pte);
	dsb(ishst);
}

static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
{
	WRITE_ONCE(*pmdp, new_pmd);
	dsb(ishst);
}

184 185 186 187 188 189 190 191 192 193 194
static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
{
	kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
}

static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
{
	WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
	dsb(ishst);
}

195
static inline void kvm_p4d_populate(p4d_t *p4dp, pud_t *pudp)
196
{
197
	WRITE_ONCE(*p4dp, kvm_mk_p4d(pudp));
198 199 200
	dsb(ishst);
}

201 202 203 204 205 206 207 208
static inline void kvm_pgd_populate(pgd_t *pgdp, p4d_t *p4dp)
{
#ifndef __PAGETABLE_P4D_FOLDED
	WRITE_ONCE(*pgdp, kvm_mk_pgd(p4dp));
	dsb(ishst);
#endif
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 * the IO subsystem will never hit in the cache.
228 229 230 231
 *
 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
 * we then fully enforce cacheability of RAM, no matter what the guest
 * does.
232
 */
233
static void unmap_stage2_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd,
234
		       phys_addr_t addr, phys_addr_t end)
235
{
236 237 238 239 240 241
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
242 243
			pte_t old_pte = *pte;

244
			kvm_set_pte(pte, __pte(0));
245
			kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL);
246 247

			/* No need to invalidate the cache for device mappings */
248
			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
249 250 251
				kvm_flush_dcache_pte(old_pte);

			put_page(virt_to_page(pte));
252 253 254
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

255 256
	if (stage2_pte_table_empty(mmu->kvm, start_pte))
		clear_stage2_pmd_entry(mmu, pmd, start_addr);
257 258
}

259
static void unmap_stage2_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
260
		       phys_addr_t addr, phys_addr_t end)
261
{
262
	struct kvm *kvm = mmu->kvm;
263 264
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
265

266
	start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
267
	do {
268
		next = stage2_pmd_addr_end(kvm, addr, end);
269
		if (!pmd_none(*pmd)) {
270
			if (pmd_thp_or_huge(*pmd)) {
271 272
				pmd_t old_pmd = *pmd;

273
				pmd_clear(pmd);
274
				kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
275 276 277

				kvm_flush_dcache_pmd(old_pmd);

278 279
				put_page(virt_to_page(pmd));
			} else {
280
				unmap_stage2_ptes(mmu, pmd, addr, next);
281
			}
282
		}
283
	} while (pmd++, addr = next, addr != end);
284

285
	if (stage2_pmd_table_empty(kvm, start_pmd))
286
		clear_stage2_pud_entry(mmu, pud, start_addr);
287
}
288

289
static void unmap_stage2_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
290 291
		       phys_addr_t addr, phys_addr_t end)
{
292
	struct kvm *kvm = mmu->kvm;
293 294
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
295

296
	start_pud = pud = stage2_pud_offset(kvm, p4d, addr);
297
	do {
298 299 300
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
			if (stage2_pud_huge(kvm, *pud)) {
301 302
				pud_t old_pud = *pud;

303
				stage2_pud_clear(kvm, pud);
304
				kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
305
				kvm_flush_dcache_pud(old_pud);
306 307
				put_page(virt_to_page(pud));
			} else {
308
				unmap_stage2_pmds(mmu, pud, addr, next);
309 310
			}
		}
311
	} while (pud++, addr = next, addr != end);
312

313
	if (stage2_pud_table_empty(kvm, start_pud))
314
		clear_stage2_p4d_entry(mmu, p4d, start_addr);
315 316
}

317
static void unmap_stage2_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
318 319
		       phys_addr_t addr, phys_addr_t end)
{
320
	struct kvm *kvm = mmu->kvm;
321 322 323 324 325 326 327
	phys_addr_t next, start_addr = addr;
	p4d_t *p4d, *start_p4d;

	start_p4d = p4d = stage2_p4d_offset(kvm, pgd, addr);
	do {
		next = stage2_p4d_addr_end(kvm, addr, end);
		if (!stage2_p4d_none(kvm, *p4d))
328
			unmap_stage2_puds(mmu, p4d, addr, next);
329 330 331
	} while (p4d++, addr = next, addr != end);

	if (stage2_p4d_table_empty(kvm, start_p4d))
332
		clear_stage2_pgd_entry(mmu, pgd, start_addr);
333 334
}

335 336 337 338 339 340 341 342 343 344 345
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
346
static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
347
{
348
	struct kvm *kvm = mmu->kvm;
349 350 351 352
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

353
	assert_spin_locked(&kvm->mmu_lock);
354 355
	WARN_ON(size & ~PAGE_MASK);

356
	pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
357
	do {
358 359 360 361 362
		/*
		 * Make sure the page table is still active, as another thread
		 * could have possibly freed the page table, while we released
		 * the lock.
		 */
363
		if (!READ_ONCE(mmu->pgd))
364
			break;
365 366
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (!stage2_pgd_none(kvm, *pgd))
367
			unmap_stage2_p4ds(mmu, pgd, addr, next);
368 369 370 371 372 373
		/*
		 * If the range is too large, release the kvm->mmu_lock
		 * to prevent starvation and lockup detector warnings.
		 */
		if (next != end)
			cond_resched_lock(&kvm->mmu_lock);
374
	} while (pgd++, addr = next, addr != end);
375 376
}

377
static void stage2_flush_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd,
378 379 380 381 382 383
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
384
		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
385
			kvm_flush_dcache_pte(*pte);
386 387 388
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

389
static void stage2_flush_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
390 391
			      phys_addr_t addr, phys_addr_t end)
{
392
	struct kvm *kvm = mmu->kvm;
393 394 395
	pmd_t *pmd;
	phys_addr_t next;

396
	pmd = stage2_pmd_offset(kvm, pud, addr);
397
	do {
398
		next = stage2_pmd_addr_end(kvm, addr, end);
399
		if (!pmd_none(*pmd)) {
400
			if (pmd_thp_or_huge(*pmd))
401 402
				kvm_flush_dcache_pmd(*pmd);
			else
403
				stage2_flush_ptes(mmu, pmd, addr, next);
404 405 406 407
		}
	} while (pmd++, addr = next, addr != end);
}

408
static void stage2_flush_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
409 410
			      phys_addr_t addr, phys_addr_t end)
{
411
	struct kvm *kvm = mmu->kvm;
412 413 414
	pud_t *pud;
	phys_addr_t next;

415
	pud = stage2_pud_offset(kvm, p4d, addr);
416
	do {
417 418 419
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
			if (stage2_pud_huge(kvm, *pud))
420 421
				kvm_flush_dcache_pud(*pud);
			else
422
				stage2_flush_pmds(mmu, pud, addr, next);
423 424 425 426
		}
	} while (pud++, addr = next, addr != end);
}

427
static void stage2_flush_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
428 429
			      phys_addr_t addr, phys_addr_t end)
{
430
	struct kvm *kvm = mmu->kvm;
431 432 433 434 435 436 437
	p4d_t *p4d;
	phys_addr_t next;

	p4d = stage2_p4d_offset(kvm, pgd, addr);
	do {
		next = stage2_p4d_addr_end(kvm, addr, end);
		if (!stage2_p4d_none(kvm, *p4d))
438
			stage2_flush_puds(mmu, p4d, addr, next);
439 440 441
	} while (p4d++, addr = next, addr != end);
}

442 443 444
static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
445
	struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
446 447 448 449 450
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

451
	pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
452
	do {
453 454
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (!stage2_pgd_none(kvm, *pgd))
455
			stage2_flush_p4ds(mmu, pgd, addr, next);
456 457 458

		if (next != end)
			cond_resched_lock(&kvm->mmu_lock);
459 460 461 462 463 464 465 466 467 468
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
469
static void stage2_flush_vm(struct kvm *kvm)
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

486 487
static void clear_hyp_pgd_entry(pgd_t *pgd)
{
488
	p4d_t *p4d_table __maybe_unused = p4d_offset(pgd, 0UL);
489
	pgd_clear(pgd);
490
	p4d_free(NULL, p4d_table);
491 492 493
	put_page(virt_to_page(pgd));
}

494 495 496 497 498 499 500 501 502
static void clear_hyp_p4d_entry(p4d_t *p4d)
{
	pud_t *pud_table __maybe_unused = pud_offset(p4d, 0UL);
	VM_BUG_ON(p4d_huge(*p4d));
	p4d_clear(p4d);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(p4d));
}

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
static void clear_hyp_pud_entry(pud_t *pud)
{
	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}

static void clear_hyp_pmd_entry(pmd_t *pmd)
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
	pmd_clear(pmd);
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			kvm_set_pte(pte, __pte(0));
			put_page(virt_to_page(pte));
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

	if (hyp_pte_table_empty(start_pte))
		clear_hyp_pmd_entry(pmd);
}

static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pmd_t *pmd, *start_pmd;

	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* Hyp doesn't use huge pmds */
		if (!pmd_none(*pmd))
			unmap_hyp_ptes(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);

	if (hyp_pmd_table_empty(start_pmd))
		clear_hyp_pud_entry(pud);
}

554
static void unmap_hyp_puds(p4d_t *p4d, phys_addr_t addr, phys_addr_t end)
555 556 557 558
{
	phys_addr_t next;
	pud_t *pud, *start_pud;

559
	start_pud = pud = pud_offset(p4d, addr);
560 561 562 563 564 565 566 567
	do {
		next = pud_addr_end(addr, end);
		/* Hyp doesn't use huge puds */
		if (!pud_none(*pud))
			unmap_hyp_pmds(pud, addr, next);
	} while (pud++, addr = next, addr != end);

	if (hyp_pud_table_empty(start_pud))
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
		clear_hyp_p4d_entry(p4d);
}

static void unmap_hyp_p4ds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	p4d_t *p4d, *start_p4d;

	start_p4d = p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		/* Hyp doesn't use huge p4ds */
		if (!p4d_none(*p4d))
			unmap_hyp_puds(p4d, addr, next);
	} while (p4d++, addr = next, addr != end);

	if (hyp_p4d_table_empty(start_p4d))
585 586 587
		clear_hyp_pgd_entry(pgd);
}

588 589 590 591 592 593 594
static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
{
	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
}

static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
			      phys_addr_t start, u64 size)
595 596 597 598 599 600 601 602 603
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

	/*
	 * We don't unmap anything from HYP, except at the hyp tear down.
	 * Hence, we don't have to invalidate the TLBs here.
	 */
604
	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
605 606 607
	do {
		next = pgd_addr_end(addr, end);
		if (!pgd_none(*pgd))
608
			unmap_hyp_p4ds(pgd, addr, next);
609 610 611
	} while (pgd++, addr = next, addr != end);
}

612 613 614 615 616 617 618 619 620 621
static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
}

static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
}

622
/**
623
 * free_hyp_pgds - free Hyp-mode page tables
624
 *
625 626
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
627
 * PAGE_OFFSET), or device mappings in the idmap range.
628
 *
629 630
 * boot_hyp_pgd should only map the idmap range, and is only used in
 * the extended idmap case.
631
 */
632
void free_hyp_pgds(void)
633
{
634 635
	pgd_t *id_pgd;

636
	mutex_lock(&kvm_hyp_pgd_mutex);
637

638 639 640 641 642 643 644 645 646 647
	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;

	if (id_pgd) {
		/* In case we never called hyp_mmu_init() */
		if (!io_map_base)
			io_map_base = hyp_idmap_start;
		unmap_hyp_idmap_range(id_pgd, io_map_base,
				      hyp_idmap_start + PAGE_SIZE - io_map_base);
	}

648 649 650 651 652
	if (boot_hyp_pgd) {
		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
		boot_hyp_pgd = NULL;
	}

653
	if (hyp_pgd) {
654 655
		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
				(uintptr_t)high_memory - PAGE_OFFSET);
656

657
		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
658
		hyp_pgd = NULL;
659
	}
660 661 662 663 664
	if (merged_hyp_pgd) {
		clear_page(merged_hyp_pgd);
		free_page((unsigned long)merged_hyp_pgd);
		merged_hyp_pgd = NULL;
	}
665

666 667 668 669
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
670 671
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
672 673 674 675
{
	pte_t *pte;
	unsigned long addr;

676 677
	addr = start;
	do {
678
		pte = pte_offset_kernel(pmd, addr);
679
		kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
680
		get_page(virt_to_page(pte));
681
		pfn++;
682
	} while (addr += PAGE_SIZE, addr != end);
683 684 685
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
686 687
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
688 689 690 691 692
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

693 694
	addr = start;
	do {
695
		pmd = pmd_offset(pud, addr);
696 697 698 699

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
700
			pte = pte_alloc_one_kernel(NULL);
701 702 703 704
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
705
			kvm_pmd_populate(pmd, pte);
706
			get_page(virt_to_page(pmd));
707 708 709 710
		}

		next = pmd_addr_end(addr, end);

711 712
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
713
	} while (addr = next, addr != end);
714 715 716 717

	return 0;
}

718
static int create_hyp_pud_mappings(p4d_t *p4d, unsigned long start,
719 720 721 722 723 724 725 726 727 728
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
729
		pud = pud_offset(p4d, addr);
730 731 732 733 734 735 736

		if (pud_none_or_clear_bad(pud)) {
			pmd = pmd_alloc_one(NULL, addr);
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				return -ENOMEM;
			}
737
			kvm_pud_populate(pud, pmd);
738 739 740 741 742 743 744 745 746 747 748 749 750
			get_page(virt_to_page(pud));
		}

		next = pud_addr_end(addr, end);
		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
static int create_hyp_p4d_mappings(pgd_t *pgd, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	p4d_t *p4d;
	pud_t *pud;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
		p4d = p4d_offset(pgd, addr);

		if (p4d_none(*p4d)) {
			pud = pud_alloc_one(NULL, addr);
			if (!pud) {
				kvm_err("Cannot allocate Hyp pud\n");
				return -ENOMEM;
			}
			kvm_p4d_populate(p4d, pud);
			get_page(virt_to_page(p4d));
		}

		next = p4d_addr_end(addr, end);
		ret = create_hyp_pud_mappings(p4d, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

784
static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
785 786
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
787 788
{
	pgd_t *pgd;
789
	p4d_t *p4d;
790 791 792 793
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
794 795 796
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
797
		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
798

799
		if (pgd_none(*pgd)) {
800 801 802
			p4d = p4d_alloc_one(NULL, addr);
			if (!p4d) {
				kvm_err("Cannot allocate Hyp p4d\n");
803 804 805
				err = -ENOMEM;
				goto out;
			}
806
			kvm_pgd_populate(pgd, p4d);
807
			get_page(virt_to_page(pgd));
808 809 810
		}

		next = pgd_addr_end(addr, end);
811
		err = create_hyp_p4d_mappings(pgd, addr, next, pfn, prot);
812 813
		if (err)
			goto out;
814
		pfn += (next - addr) >> PAGE_SHIFT;
815
	} while (addr = next, addr != end);
816 817 818 819 820
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

821 822 823 824 825 826 827 828 829 830 831
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

832
/**
833
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
834 835
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
836
 * @prot:	The protection to be applied to this range
837
 *
838 839 840
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
841
 */
842
int create_hyp_mappings(void *from, void *to, pgprot_t prot)
843
{
844 845
	phys_addr_t phys_addr;
	unsigned long virt_addr;
M
Marc Zyngier 已提交
846 847
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
848

849 850 851
	if (is_kernel_in_hyp_mode())
		return 0;

852 853
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
854

855 856
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
857

858
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
859 860
		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
					    virt_addr, virt_addr + PAGE_SIZE,
861
					    __phys_to_pfn(phys_addr),
862
					    prot);
863 864 865 866 867
		if (err)
			return err;
	}

	return 0;
868 869
}

870 871
static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
					unsigned long *haddr, pgprot_t prot)
872
{
873 874 875
	pgd_t *pgd = hyp_pgd;
	unsigned long base;
	int ret = 0;
876

877
	mutex_lock(&kvm_hyp_pgd_mutex);
878

879
	/*
F
Fuad Tabba 已提交
880
	 * This assumes that we have enough space below the idmap
881 882 883 884 885 886 887 888
	 * page to allocate our VAs. If not, the check below will
	 * kick. A potential alternative would be to detect that
	 * overflow and switch to an allocation above the idmap.
	 *
	 * The allocated size is always a multiple of PAGE_SIZE.
	 */
	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
	base = io_map_base - size;
889

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
	/*
	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
	 * allocating the new area, as it would indicate we've
	 * overflowed the idmap/IO address range.
	 */
	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
		ret = -ENOMEM;
	else
		io_map_base = base;

	mutex_unlock(&kvm_hyp_pgd_mutex);

	if (ret)
		goto out;

	if (__kvm_cpu_uses_extended_idmap())
		pgd = boot_hyp_pgd;

	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
				    base, base + size,
910
				    __phys_to_pfn(phys_addr), prot);
911 912 913
	if (ret)
		goto out;

914
	*haddr = base + offset_in_page(phys_addr);
915 916

out:
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
	return ret;
}

/**
 * create_hyp_io_mappings - Map IO into both kernel and HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @kaddr:	Kernel VA for this mapping
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
			   void __iomem **kaddr,
			   void __iomem **haddr)
{
	unsigned long addr;
	int ret;

	*kaddr = ioremap(phys_addr, size);
	if (!*kaddr)
		return -ENOMEM;

	if (is_kernel_in_hyp_mode()) {
		*haddr = *kaddr;
		return 0;
	}

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_DEVICE);
945 946 947
	if (ret) {
		iounmap(*kaddr);
		*kaddr = NULL;
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
		*haddr = NULL;
		return ret;
	}

	*haddr = (void __iomem *)addr;
	return 0;
}

/**
 * create_hyp_exec_mappings - Map an executable range into HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
			     void **haddr)
{
	unsigned long addr;
	int ret;

	BUG_ON(is_kernel_in_hyp_mode());

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_EXEC);
	if (ret) {
		*haddr = NULL;
974 975 976
		return ret;
	}

977
	*haddr = (void *)addr;
978
	return 0;
979 980
}

981
/**
982 983 984
 * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
 * @kvm:	The pointer to the KVM structure
 * @mmu:	The pointer to the s2 MMU structure
985
 *
986
 * Allocates only the stage-2 HW PGD level table(s) of size defined by
987
 * stage2_pgd_size(mmu->kvm).
988 989 990 991
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
992
int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
993
{
994
	phys_addr_t pgd_phys;
995
	pgd_t *pgd;
996
	int cpu;
997

998
	if (mmu->pgd != NULL) {
999 1000 1001 1002
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

1003
	/* Allocate the HW PGD, making sure that each page gets its own refcount */
1004
	pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
1005
	if (!pgd)
1006 1007
		return -ENOMEM;

1008 1009 1010 1011
	pgd_phys = virt_to_phys(pgd);
	if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
		return -EINVAL;

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
	if (!mmu->last_vcpu_ran) {
		free_pages_exact(pgd, stage2_pgd_size(kvm));
		return -ENOMEM;
	}

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;

	mmu->kvm = kvm;
	mmu->pgd = pgd;
	mmu->pgd_phys = pgd_phys;
	mmu->vmid.vmid_gen = 0;

1026 1027 1028
	return 0;
}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
1064
			unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
1065 1066 1067 1068 1069 1070 1071 1072 1073
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
F
Fuad Tabba 已提交
1074
 * Go through the memregions and unmap any regular RAM
1075 1076 1077 1078 1079 1080 1081 1082 1083
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
1084
	mmap_read_lock(current->mm);
1085 1086 1087 1088 1089 1090 1091
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
1092
	mmap_read_unlock(current->mm);
1093 1094 1095
	srcu_read_unlock(&kvm->srcu, idx);
}

1096
void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1097
{
1098
	struct kvm *kvm = mmu->kvm;
1099
	void *pgd = NULL;
1100

1101
	spin_lock(&kvm->mmu_lock);
1102 1103 1104 1105
	if (mmu->pgd) {
		unmap_stage2_range(mmu, 0, kvm_phys_size(kvm));
		pgd = READ_ONCE(mmu->pgd);
		mmu->pgd = NULL;
1106
	}
1107 1108
	spin_unlock(&kvm->mmu_lock);

1109
	/* Free the HW pgd, one page at a time */
1110
	if (pgd) {
1111
		free_pages_exact(pgd, stage2_pgd_size(kvm));
1112 1113
		free_percpu(mmu->last_vcpu_ran);
	}
1114 1115
}

1116
static p4d_t *stage2_get_p4d(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
1117
			     phys_addr_t addr)
1118
{
1119
	struct kvm *kvm = mmu->kvm;
1120
	pgd_t *pgd;
1121
	p4d_t *p4d;
1122

1123
	pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
1124
	if (stage2_pgd_none(kvm, *pgd)) {
1125 1126
		if (!cache)
			return NULL;
1127
		p4d = kvm_mmu_memory_cache_alloc(cache);
1128
		stage2_pgd_populate(kvm, pgd, p4d);
1129 1130 1131
		get_page(virt_to_page(pgd));
	}

1132 1133 1134
	return stage2_p4d_offset(kvm, pgd, addr);
}

1135
static pud_t *stage2_get_pud(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
1136 1137
			     phys_addr_t addr)
{
1138
	struct kvm *kvm = mmu->kvm;
1139 1140 1141
	p4d_t *p4d;
	pud_t *pud;

1142
	p4d = stage2_get_p4d(mmu, cache, addr);
1143 1144 1145
	if (stage2_p4d_none(kvm, *p4d)) {
		if (!cache)
			return NULL;
1146
		pud = kvm_mmu_memory_cache_alloc(cache);
1147 1148 1149 1150 1151
		stage2_p4d_populate(kvm, p4d, pud);
		get_page(virt_to_page(p4d));
	}

	return stage2_pud_offset(kvm, p4d, addr);
1152 1153
}

1154
static pmd_t *stage2_get_pmd(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
1155 1156
			     phys_addr_t addr)
{
1157
	struct kvm *kvm = mmu->kvm;
1158 1159 1160
	pud_t *pud;
	pmd_t *pmd;

1161
	pud = stage2_get_pud(mmu, cache, addr);
1162
	if (!pud || stage2_pud_huge(kvm, *pud))
1163 1164
		return NULL;

1165
	if (stage2_pud_none(kvm, *pud)) {
1166
		if (!cache)
1167
			return NULL;
1168
		pmd = kvm_mmu_memory_cache_alloc(cache);
1169
		stage2_pud_populate(kvm, pud, pmd);
1170
		get_page(virt_to_page(pud));
1171 1172
	}

1173
	return stage2_pmd_offset(kvm, pud, addr);
1174 1175
}

1176 1177 1178
static int stage2_set_pmd_huge(struct kvm_s2_mmu *mmu,
			       struct kvm_mmu_memory_cache *cache,
			       phys_addr_t addr, const pmd_t *new_pmd)
1179 1180 1181
{
	pmd_t *pmd, old_pmd;

1182
retry:
1183
	pmd = stage2_get_pmd(mmu, cache, addr);
1184
	VM_BUG_ON(!pmd);
1185

1186
	old_pmd = *pmd;
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	/*
	 * Multiple vcpus faulting on the same PMD entry, can
	 * lead to them sequentially updating the PMD with the
	 * same value. Following the break-before-make
	 * (pmd_clear() followed by tlb_flush()) process can
	 * hinder forward progress due to refaults generated
	 * on missing translations.
	 *
	 * Skip updating the page table if the entry is
	 * unchanged.
	 */
	if (pmd_val(old_pmd) == pmd_val(*new_pmd))
		return 0;

1201
	if (pmd_present(old_pmd)) {
1202
		/*
1203 1204 1205 1206 1207 1208 1209 1210
		 * If we already have PTE level mapping for this block,
		 * we must unmap it to avoid inconsistent TLB state and
		 * leaking the table page. We could end up in this situation
		 * if the memory slot was marked for dirty logging and was
		 * reverted, leaving PTE level mappings for the pages accessed
		 * during the period. So, unmap the PTE level mapping for this
		 * block and retry, as we could have released the upper level
		 * table in the process.
1211
		 *
1212 1213
		 * Normal THP split/merge follows mmu_notifier callbacks and do
		 * get handled accordingly.
1214
		 */
1215
		if (!pmd_thp_or_huge(old_pmd)) {
1216
			unmap_stage2_range(mmu, addr & S2_PMD_MASK, S2_PMD_SIZE);
1217 1218
			goto retry;
		}
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
		/*
		 * Mapping in huge pages should only happen through a
		 * fault.  If a page is merged into a transparent huge
		 * page, the individual subpages of that huge page
		 * should be unmapped through MMU notifiers before we
		 * get here.
		 *
		 * Merging of CompoundPages is not supported; they
		 * should become splitting first, unmapped, merged,
		 * and mapped back in on-demand.
		 */
1230
		WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1231
		pmd_clear(pmd);
1232
		kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
1233
	} else {
1234
		get_page(virt_to_page(pmd));
1235 1236 1237
	}

	kvm_set_pmd(pmd, *new_pmd);
1238 1239 1240
	return 0;
}

1241 1242
static int stage2_set_pud_huge(struct kvm_s2_mmu *mmu,
			       struct kvm_mmu_memory_cache *cache,
1243 1244
			       phys_addr_t addr, const pud_t *new_pudp)
{
1245
	struct kvm *kvm = mmu->kvm;
1246 1247
	pud_t *pudp, old_pud;

1248
retry:
1249
	pudp = stage2_get_pud(mmu, cache, addr);
1250 1251 1252 1253 1254 1255
	VM_BUG_ON(!pudp);

	old_pud = *pudp;

	/*
	 * A large number of vcpus faulting on the same stage 2 entry,
1256 1257
	 * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
	 * Skip updating the page tables if there is no change.
1258 1259 1260 1261 1262
	 */
	if (pud_val(old_pud) == pud_val(*new_pudp))
		return 0;

	if (stage2_pud_present(kvm, old_pud)) {
1263 1264 1265 1266 1267
		/*
		 * If we already have table level mapping for this block, unmap
		 * the range for this block and retry.
		 */
		if (!stage2_pud_huge(kvm, old_pud)) {
1268
			unmap_stage2_range(mmu, addr & S2_PUD_MASK, S2_PUD_SIZE);
1269 1270 1271 1272
			goto retry;
		}

		WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
1273
		stage2_pud_clear(kvm, pudp);
1274
		kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
1275 1276 1277 1278 1279 1280 1281 1282
	} else {
		get_page(virt_to_page(pudp));
	}

	kvm_set_pud(pudp, *new_pudp);
	return 0;
}

1283 1284 1285 1286 1287 1288
/*
 * stage2_get_leaf_entry - walk the stage2 VM page tables and return
 * true if a valid and present leaf-entry is found. A pointer to the
 * leaf-entry is returned in the appropriate level variable - pudpp,
 * pmdpp, ptepp.
 */
1289
static bool stage2_get_leaf_entry(struct kvm_s2_mmu *mmu, phys_addr_t addr,
1290
				  pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1291
{
1292
	struct kvm *kvm = mmu->kvm;
1293
	pud_t *pudp;
1294 1295 1296
	pmd_t *pmdp;
	pte_t *ptep;

1297 1298 1299 1300
	*pudpp = NULL;
	*pmdpp = NULL;
	*ptepp = NULL;

1301
	pudp = stage2_get_pud(mmu, NULL, addr);
1302 1303 1304 1305 1306 1307 1308 1309 1310
	if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
		return false;

	if (stage2_pud_huge(kvm, *pudp)) {
		*pudpp = pudp;
		return true;
	}

	pmdp = stage2_pmd_offset(kvm, pudp, addr);
1311 1312 1313
	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
		return false;

1314 1315 1316 1317
	if (pmd_thp_or_huge(*pmdp)) {
		*pmdpp = pmdp;
		return true;
	}
1318 1319 1320 1321 1322

	ptep = pte_offset_kernel(pmdp, addr);
	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
		return false;

1323 1324 1325 1326
	*ptepp = ptep;
	return true;
}

P
Paolo Bonzini 已提交
1327
static bool stage2_is_exec(struct kvm_s2_mmu *mmu, phys_addr_t addr, unsigned long sz)
1328 1329 1330 1331 1332 1333
{
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;
	bool found;

1334
	found = stage2_get_leaf_entry(mmu, addr, &pudp, &pmdp, &ptep);
1335 1336 1337 1338
	if (!found)
		return false;

	if (pudp)
1339
		return sz <= PUD_SIZE && kvm_s2pud_exec(pudp);
1340
	else if (pmdp)
1341
		return sz <= PMD_SIZE && kvm_s2pmd_exec(pmdp);
1342
	else
1343
		return sz == PAGE_SIZE && kvm_s2pte_exec(ptep);
1344 1345
}

1346 1347
static int stage2_set_pte(struct kvm_s2_mmu *mmu,
			  struct kvm_mmu_memory_cache *cache,
1348 1349
			  phys_addr_t addr, const pte_t *new_pte,
			  unsigned long flags)
1350
{
1351
	struct kvm *kvm = mmu->kvm;
1352
	pud_t *pud;
1353 1354
	pmd_t *pmd;
	pte_t *pte, old_pte;
1355 1356 1357 1358
	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;

	VM_BUG_ON(logging_active && !cache);
1359

1360
	/* Create stage-2 page table mapping - Levels 0 and 1 */
1361
	pud = stage2_get_pud(mmu, cache, addr);
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	if (!pud) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

	/*
	 * While dirty page logging - dissolve huge PUD, then continue
	 * on to allocate page.
	 */
	if (logging_active)
1375
		stage2_dissolve_pud(mmu, addr, pud);
1376 1377 1378 1379

	if (stage2_pud_none(kvm, *pud)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
1380
		pmd = kvm_mmu_memory_cache_alloc(cache);
1381 1382 1383 1384 1385
		stage2_pud_populate(kvm, pud, pmd);
		get_page(virt_to_page(pud));
	}

	pmd = stage2_pmd_offset(kvm, pud, addr);
1386 1387 1388 1389 1390 1391 1392 1393
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

1394 1395 1396 1397 1398
	/*
	 * While dirty page logging - dissolve huge PMD, then continue on to
	 * allocate page.
	 */
	if (logging_active)
1399
		stage2_dissolve_pmd(mmu, addr, pmd);
1400

1401
	/* Create stage-2 page mappings - Level 2 */
1402 1403 1404
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
1405
		pte = kvm_mmu_memory_cache_alloc(cache);
1406
		kvm_pmd_populate(pmd, pte);
1407
		get_page(virt_to_page(pmd));
1408 1409 1410
	}

	pte = pte_offset_kernel(pmd, addr);
1411 1412 1413 1414 1415 1416

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
1417
	if (pte_present(old_pte)) {
1418 1419 1420 1421
		/* Skip page table update if there is no change */
		if (pte_val(old_pte) == pte_val(*new_pte))
			return 0;

1422
		kvm_set_pte(pte, __pte(0));
1423
		kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL);
1424
	} else {
1425
		get_page(virt_to_page(pte));
1426
	}
1427

1428
	kvm_set_pte(pte, *new_pte);
1429 1430 1431
	return 0;
}

1432 1433 1434 1435 1436 1437 1438
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	if (pte_young(*pte)) {
		*pte = pte_mkold(*pte);
		return 1;
	}
1439 1440
	return 0;
}
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
#else
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	return __ptep_test_and_clear_young(pte);
}
#endif

static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
}
1452

1453 1454 1455 1456 1457
static int stage2_pudp_test_and_clear_young(pud_t *pud)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pud);
}

1458 1459 1460 1461 1462 1463 1464 1465 1466
/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1467
			  phys_addr_t pa, unsigned long size, bool writable)
1468 1469 1470 1471
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
1472
	struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
1473 1474 1475 1476 1477

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1478
		pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1479

1480
		if (writable)
1481
			pte = kvm_s2pte_mkwrite(pte);
1482

1483 1484
		ret = kvm_mmu_topup_memory_cache(&cache,
						 kvm_mmu_cache_min_pages(kvm));
1485 1486 1487
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
1488 1489
		ret = stage2_set_pte(&kvm->arch.mmu, &cache, addr, &pte,
				     KVM_S2PTE_FLAG_IS_IOMAP);
1490 1491 1492 1493 1494 1495 1496 1497
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
1498
	kvm_mmu_free_memory_cache(&cache);
1499 1500 1501
	return ret;
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
/**
 * stage2_wp_ptes - write protect PMD range
 * @pmd:	pointer to pmd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			if (!kvm_s2pte_readonly(pte))
				kvm_set_s2pte_readonly(pte);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

/**
 * stage2_wp_pmds - write protect PUD range
1523
 * kvm:		kvm instance for the VM
1524 1525 1526 1527
 * @pud:	pointer to pud entry
 * @addr:	range start address
 * @end:	range end address
 */
1528
static void stage2_wp_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
1529
			   phys_addr_t addr, phys_addr_t end)
1530
{
1531
	struct kvm *kvm = mmu->kvm;
1532 1533 1534
	pmd_t *pmd;
	phys_addr_t next;

1535
	pmd = stage2_pmd_offset(kvm, pud, addr);
1536 1537

	do {
1538
		next = stage2_pmd_addr_end(kvm, addr, end);
1539
		if (!pmd_none(*pmd)) {
1540
			if (pmd_thp_or_huge(*pmd)) {
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
				if (!kvm_s2pmd_readonly(pmd))
					kvm_set_s2pmd_readonly(pmd);
			} else {
				stage2_wp_ptes(pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

/**
1551
 * stage2_wp_puds - write protect P4D range
1552
 * @p4d:	pointer to p4d entry
1553 1554 1555
 * @addr:	range start address
 * @end:	range end address
 */
1556
static void  stage2_wp_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
1557
			    phys_addr_t addr, phys_addr_t end)
1558
{
1559
	struct kvm *kvm = mmu->kvm;
1560 1561 1562
	pud_t *pud;
	phys_addr_t next;

1563
	pud = stage2_pud_offset(kvm, p4d, addr);
1564
	do {
1565 1566
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
1567 1568 1569 1570
			if (stage2_pud_huge(kvm, *pud)) {
				if (!kvm_s2pud_readonly(pud))
					kvm_set_s2pud_readonly(pud);
			} else {
1571
				stage2_wp_pmds(mmu, pud, addr, next);
1572
			}
1573 1574 1575 1576
		}
	} while (pud++, addr = next, addr != end);
}

1577 1578 1579 1580 1581 1582
/**
 * stage2_wp_p4ds - write protect PGD range
 * @pgd:	pointer to pgd entry
 * @addr:	range start address
 * @end:	range end address
 */
1583
static void  stage2_wp_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
1584 1585
			    phys_addr_t addr, phys_addr_t end)
{
1586
	struct kvm *kvm = mmu->kvm;
1587 1588 1589 1590 1591 1592 1593
	p4d_t *p4d;
	phys_addr_t next;

	p4d = stage2_p4d_offset(kvm, pgd, addr);
	do {
		next = stage2_p4d_addr_end(kvm, addr, end);
		if (!stage2_p4d_none(kvm, *p4d))
1594
			stage2_wp_puds(mmu, p4d, addr, next);
1595 1596 1597
	} while (p4d++, addr = next, addr != end);
}

1598 1599 1600 1601 1602 1603
/**
 * stage2_wp_range() - write protect stage2 memory region range
 * @kvm:	The KVM pointer
 * @addr:	Start address of range
 * @end:	End address of range
 */
1604
static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1605
{
1606
	struct kvm *kvm = mmu->kvm;
1607 1608 1609
	pgd_t *pgd;
	phys_addr_t next;

1610
	pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
1611 1612 1613 1614
	do {
		/*
		 * Release kvm_mmu_lock periodically if the memory region is
		 * large. Otherwise, we may see kernel panics with
1615 1616
		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1617 1618 1619
		 * will also starve other vCPUs. We have to also make sure
		 * that the page tables are not freed while we released
		 * the lock.
1620
		 */
1621
		cond_resched_lock(&kvm->mmu_lock);
1622
		if (!READ_ONCE(mmu->pgd))
1623
			break;
1624 1625
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (stage2_pgd_present(kvm, *pgd))
1626
			stage2_wp_p4ds(mmu, pgd, addr, next);
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
	} while (pgd++, addr = next, addr != end);
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1637
 * all present PUD, PMD and PTEs are write protected in the memory region.
1638 1639 1640 1641 1642 1643 1644
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
1645 1646
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1647 1648 1649 1650 1651 1652 1653
	phys_addr_t start, end;

	if (WARN_ON_ONCE(!memslot))
		return;

	start = memslot->base_gfn << PAGE_SHIFT;
	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1654 1655

	spin_lock(&kvm->mmu_lock);
1656
	stage2_wp_range(&kvm->arch.mmu, start, end);
1657 1658 1659
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
1660 1661

/**
1662
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1663 1664 1665 1666 1667 1668 1669 1670 1671
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
1672
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1673 1674 1675 1676 1677 1678 1679
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

1680
	stage2_wp_range(&kvm->arch.mmu, start, end);
1681
}
1682

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

1697
static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1698
{
1699
	__clean_dcache_guest_page(pfn, size);
1700 1701
}

1702
static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1703
{
1704
	__invalidate_icache_guest_page(pfn, size);
1705 1706
}

1707
static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1708
{
1709
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1710 1711
}

1712 1713 1714
static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
					       unsigned long hva,
					       unsigned long map_size)
1715
{
1716
	gpa_t gpa_start;
1717 1718 1719
	hva_t uaddr_start, uaddr_end;
	size_t size;

1720 1721 1722 1723
	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
	if (map_size == PAGE_SIZE)
		return true;

1724 1725 1726 1727 1728 1729 1730 1731 1732
	size = memslot->npages * PAGE_SIZE;

	gpa_start = memslot->base_gfn << PAGE_SHIFT;

	uaddr_start = memslot->userspace_addr;
	uaddr_end = uaddr_start + size;

	/*
	 * Pages belonging to memslots that don't have the same alignment
1733 1734
	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1735 1736 1737 1738 1739
	 *
	 * Consider a layout like the following:
	 *
	 *    memslot->userspace_addr:
	 *    +-----+--------------------+--------------------+---+
1740
	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1741 1742
	 *    +-----+--------------------+--------------------+---+
	 *
1743
	 *    memslot->base_gfn << PAGE_SHIFT:
1744
	 *      +---+--------------------+--------------------+-----+
1745
	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1746 1747
	 *      +---+--------------------+--------------------+-----+
	 *
1748
	 * If we create those stage-2 blocks, we'll end up with this incorrect
1749 1750 1751 1752 1753
	 * mapping:
	 *   d -> f
	 *   e -> g
	 *   f -> h
	 */
1754
	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1755 1756 1757 1758
		return false;

	/*
	 * Next, let's make sure we're not trying to map anything not covered
1759 1760
	 * by the memslot. This means we have to prohibit block size mappings
	 * for the beginning and end of a non-block aligned and non-block sized
1761 1762 1763 1764 1765 1766 1767 1768
	 * memory slot (illustrated by the head and tail parts of the
	 * userspace view above containing pages 'abcde' and 'xyz',
	 * respectively).
	 *
	 * Note that it doesn't matter if we do the check using the
	 * userspace_addr or the base_gfn, as both are equally aligned (per
	 * the check above) and equally sized.
	 */
1769 1770
	return (hva & ~(map_size - 1)) >= uaddr_start &&
	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1771 1772
}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
/*
 * Check if the given hva is backed by a transparent huge page (THP) and
 * whether it can be mapped using block mapping in stage2. If so, adjust
 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
 * supported. This will need to be updated to support other THP sizes.
 *
 * Returns the size of the mapping.
 */
static unsigned long
transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
			    unsigned long hva, kvm_pfn_t *pfnp,
			    phys_addr_t *ipap)
{
	kvm_pfn_t pfn = *pfnp;

	/*
	 * Make sure the adjustment is done only for THP pages. Also make
	 * sure that the HVA and IPA are sufficiently aligned and that the
	 * block map is contained within the memslot.
	 */
	if (kvm_is_transparent_hugepage(pfn) &&
	    fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		*ipap &= PMD_MASK;
		kvm_release_pfn_clean(pfn);
		pfn &= ~(PTRS_PER_PMD - 1);
		kvm_get_pfn(pfn);
		*pfnp = pfn;

		return PMD_SIZE;
	}

	/* Use page mapping if we cannot use block mapping. */
	return PAGE_SIZE;
}

1826
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1827
			  struct kvm_memory_slot *memslot, unsigned long hva,
1828 1829 1830
			  unsigned long fault_status)
{
	int ret;
1831 1832
	bool write_fault, writable, force_pte = false;
	bool exec_fault, needs_exec;
1833
	unsigned long mmu_seq;
1834 1835
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
1836
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1837
	struct vm_area_struct *vma;
1838
	short vma_shift;
D
Dan Williams 已提交
1839
	kvm_pfn_t pfn;
1840
	pgprot_t mem_type = PAGE_S2;
1841
	bool logging_active = memslot_is_logging(memslot);
1842
	unsigned long vma_pagesize, flags = 0;
1843
	struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu;
1844

1845
	write_fault = kvm_is_write_fault(vcpu);
1846 1847 1848 1849
	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
	VM_BUG_ON(write_fault && exec_fault);

	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1850 1851 1852 1853
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

1854
	/* Let's check if we will get back a huge page backed by hugetlbfs */
1855
	mmap_read_lock(current->mm);
1856
	vma = find_vma_intersection(current->mm, hva, hva + 1);
1857 1858
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1859
		mmap_read_unlock(current->mm);
1860 1861 1862
		return -EFAULT;
	}

1863 1864 1865 1866 1867 1868
	if (is_vm_hugetlb_page(vma))
		vma_shift = huge_page_shift(hstate_vma(vma));
	else
		vma_shift = PAGE_SHIFT;

	vma_pagesize = 1ULL << vma_shift;
1869
	if (logging_active ||
1870
	    (vma->vm_flags & VM_PFNMAP) ||
1871 1872 1873 1874 1875
	    !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
		force_pte = true;
		vma_pagesize = PAGE_SIZE;
	}

1876
	/*
1877 1878 1879 1880 1881
	 * The stage2 has a minimum of 2 level table (For arm64 see
	 * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
	 * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
	 * As for PUD huge maps, we must make sure that we have at least
	 * 3 levels, i.e, PMD is not folded.
1882
	 */
1883 1884
	if (vma_pagesize == PMD_SIZE ||
	    (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
1885
		gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1886
	mmap_read_unlock(current->mm);
1887

1888
	/* We need minimum second+third level pages */
1889
	ret = kvm_mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm));
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

1905
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1906
	if (pfn == KVM_PFN_ERR_HWPOISON) {
1907
		kvm_send_hwpoison_signal(hva, vma_shift);
1908 1909
		return 0;
	}
1910
	if (is_error_noslot_pfn(pfn))
1911 1912
		return -EFAULT;

1913
	if (kvm_is_device_pfn(pfn)) {
1914
		mem_type = PAGE_S2_DEVICE;
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
	} else if (logging_active) {
		/*
		 * Faults on pages in a memslot with logging enabled
		 * should not be mapped with huge pages (it introduces churn
		 * and performance degradation), so force a pte mapping.
		 */
		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;

		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
		if (!write_fault)
			writable = false;
	}
1931

1932 1933 1934
	if (exec_fault && is_iomap(flags))
		return -ENOEXEC;

1935 1936
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
1937
		goto out_unlock;
1938

1939 1940 1941 1942 1943 1944 1945
	/*
	 * If we are not forced to use page mapping, check if we are
	 * backed by a THP and thus use block mapping if possible.
	 */
	if (vma_pagesize == PAGE_SIZE && !force_pte)
		vma_pagesize = transparent_hugepage_adjust(memslot, hva,
							   &pfn, &fault_ipa);
1946 1947
	if (writable)
		kvm_set_pfn_dirty(pfn);
1948

1949
	if (fault_status != FSC_PERM && !is_iomap(flags))
1950 1951 1952 1953 1954
		clean_dcache_guest_page(pfn, vma_pagesize);

	if (exec_fault)
		invalidate_icache_guest_page(pfn, vma_pagesize);

1955 1956 1957 1958 1959 1960 1961 1962 1963
	/*
	 * If we took an execution fault we have made the
	 * icache/dcache coherent above and should now let the s2
	 * mapping be executable.
	 *
	 * Write faults (!exec_fault && FSC_PERM) are orthogonal to
	 * execute permissions, and we preserve whatever we have.
	 */
	needs_exec = exec_fault ||
1964
		(fault_status == FSC_PERM &&
P
Paolo Bonzini 已提交
1965
		 stage2_is_exec(mmu, fault_ipa, vma_pagesize));
1966

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	if (vma_pagesize == PUD_SIZE) {
		pud_t new_pud = kvm_pfn_pud(pfn, mem_type);

		new_pud = kvm_pud_mkhuge(new_pud);
		if (writable)
			new_pud = kvm_s2pud_mkwrite(new_pud);

		if (needs_exec)
			new_pud = kvm_s2pud_mkexec(new_pud);

1977
		ret = stage2_set_pud_huge(mmu, memcache, fault_ipa, &new_pud);
1978
	} else if (vma_pagesize == PMD_SIZE) {
1979 1980 1981 1982
		pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);

		new_pmd = kvm_pmd_mkhuge(new_pmd);

1983
		if (writable)
1984
			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1985

1986
		if (needs_exec)
1987
			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1988

1989
		ret = stage2_set_pmd_huge(mmu, memcache, fault_ipa, &new_pmd);
1990
	} else {
1991
		pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1992

1993
		if (writable) {
1994
			new_pte = kvm_s2pte_mkwrite(new_pte);
1995
			mark_page_dirty(kvm, gfn);
1996
		}
1997

1998
		if (needs_exec)
1999
			new_pte = kvm_s2pte_mkexec(new_pte);
2000

2001
		ret = stage2_set_pte(mmu, memcache, fault_ipa, &new_pte, flags);
2002
	}
2003

2004
out_unlock:
2005
	spin_unlock(&kvm->mmu_lock);
2006
	kvm_set_pfn_accessed(pfn);
2007
	kvm_release_pfn_clean(pfn);
2008
	return ret;
2009 2010
}

2011 2012 2013 2014
/*
 * Resolve the access fault by making the page young again.
 * Note that because the faulting entry is guaranteed not to be
 * cached in the TLB, we don't need to invalidate anything.
2015 2016
 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
 * so there is no need for atomic (pte|pmd)_mkyoung operations.
2017 2018 2019
 */
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
2020
	pud_t *pud;
2021 2022
	pmd_t *pmd;
	pte_t *pte;
D
Dan Williams 已提交
2023
	kvm_pfn_t pfn;
2024 2025 2026 2027 2028 2029
	bool pfn_valid = false;

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);

2030
	if (!stage2_get_leaf_entry(vcpu->arch.hw_mmu, fault_ipa, &pud, &pmd, &pte))
2031 2032
		goto out;

2033 2034 2035 2036 2037
	if (pud) {		/* HugeTLB */
		*pud = kvm_s2pud_mkyoung(*pud);
		pfn = kvm_pud_pfn(*pud);
		pfn_valid = true;
	} else	if (pmd) {	/* THP, HugeTLB */
2038 2039 2040
		*pmd = pmd_mkyoung(*pmd);
		pfn = pmd_pfn(*pmd);
		pfn_valid = true;
2041 2042 2043 2044
	} else {
		*pte = pte_mkyoung(*pte);	/* Just a page... */
		pfn = pte_pfn(*pte);
		pfn_valid = true;
2045 2046 2047 2048 2049 2050 2051 2052
	}

out:
	spin_unlock(&vcpu->kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
}

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
2064
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
2065
{
2066 2067 2068
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
2069 2070
	unsigned long hva;
	bool is_iabt, write_fault, writable;
2071 2072 2073
	gfn_t gfn;
	int ret, idx;

2074 2075 2076
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);

	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
2077
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
2078

2079
	/* Synchronous External Abort? */
2080
	if (kvm_vcpu_abt_issea(vcpu)) {
2081 2082 2083 2084
		/*
		 * For RAS the host kernel may handle this abort.
		 * There is no need to pass the error into the guest.
		 */
2085
		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
2086
			kvm_inject_vabt(vcpu);
2087 2088

		return 1;
2089 2090
	}

G
Gavin Shan 已提交
2091
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
2092
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
2093 2094

	/* Check the stage-2 fault is trans. fault or write fault */
2095 2096
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
2097 2098 2099
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
G
Gavin Shan 已提交
2100
			(unsigned long)kvm_vcpu_get_esr(vcpu));
2101 2102 2103 2104 2105 2106
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
2107 2108
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
2109
	write_fault = kvm_is_write_fault(vcpu);
2110
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
2111 2112 2113 2114 2115 2116
		/*
		 * The guest has put either its instructions or its page-tables
		 * somewhere it shouldn't have. Userspace won't be able to do
		 * anything about this (there's no syndrome for a start), so
		 * re-inject the abort back into the guest.
		 */
2117
		if (is_iabt) {
2118 2119
			ret = -ENOEXEC;
			goto out;
2120 2121
		}

2122 2123 2124 2125 2126 2127
		if (kvm_vcpu_dabt_iss1tw(vcpu)) {
			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
			ret = 1;
			goto out_unlock;
		}

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
2138
		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
2139 2140 2141 2142 2143
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
2144 2145 2146 2147 2148 2149 2150
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
2151
		ret = io_mem_abort(vcpu, fault_ipa);
2152 2153 2154
		goto out_unlock;
	}

2155
	/* Userspace should not be able to register out-of-bounds IPAs */
2156
	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
2157

2158 2159 2160 2161 2162 2163
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

2164
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
2165 2166
	if (ret == 0)
		ret = 1;
2167 2168 2169 2170 2171
out:
	if (ret == -ENOEXEC) {
		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
		ret = 1;
	}
2172 2173 2174
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
2175 2176
}

2177 2178 2179 2180
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
2181 2182
					    gpa_t gpa, u64 size,
					    void *data),
2183
			     void *data)
2184 2185 2186
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
2187
	int ret = 0;
2188 2189 2190 2191 2192 2193

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
2194
		gfn_t gpa;
2195 2196 2197 2198 2199 2200 2201

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

2202 2203
		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
2204
	}
2205 2206

	return ret;
2207 2208
}

2209
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2210
{
2211
	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
2212
	return 0;
2213 2214 2215
}

int kvm_unmap_hva_range(struct kvm *kvm,
2216
			unsigned long start, unsigned long end, unsigned flags)
2217
{
2218
	if (!kvm->arch.mmu.pgd)
2219 2220 2221 2222 2223 2224 2225
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

2226
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2227 2228 2229
{
	pte_t *pte = (pte_t *)data;

2230
	WARN_ON(size != PAGE_SIZE);
2231 2232 2233 2234 2235 2236 2237
	/*
	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
	 * flag clear because MMU notifiers will have unmapped a huge PMD before
	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore stage2_set_pte() never needs to clear out a huge PMD
	 * through this calling path.
	 */
2238
	stage2_set_pte(&kvm->arch.mmu, NULL, gpa, pte, 0);
2239
	return 0;
2240 2241 2242
}


2243
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2244 2245
{
	unsigned long end = hva + PAGE_SIZE;
2246
	kvm_pfn_t pfn = pte_pfn(pte);
2247 2248
	pte_t stage2_pte;

2249
	if (!kvm->arch.mmu.pgd)
2250
		return 0;
2251 2252

	trace_kvm_set_spte_hva(hva);
2253 2254 2255 2256 2257 2258

	/*
	 * We've moved a page around, probably through CoW, so let's treat it
	 * just like a translation fault and clean the cache to the PoC.
	 */
	clean_dcache_guest_page(pfn, PAGE_SIZE);
2259
	stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2260
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
2261 2262

	return 0;
2263 2264
}

2265
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2266
{
2267
	pud_t *pud;
2268 2269 2270
	pmd_t *pmd;
	pte_t *pte;

2271
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2272
	if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte))
2273 2274
		return 0;

2275 2276 2277
	if (pud)
		return stage2_pudp_test_and_clear_young(pud);
	else if (pmd)
2278
		return stage2_pmdp_test_and_clear_young(pmd);
2279 2280
	else
		return stage2_ptep_test_and_clear_young(pte);
2281 2282
}

2283
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2284
{
2285
	pud_t *pud;
2286 2287 2288
	pmd_t *pmd;
	pte_t *pte;

2289
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2290
	if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte))
2291 2292
		return 0;

2293 2294 2295
	if (pud)
		return kvm_s2pud_young(*pud);
	else if (pmd)
2296
		return pmd_young(*pmd);
2297
	else
2298 2299 2300 2301 2302
		return pte_young(*pte);
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
2303
	if (!kvm->arch.mmu.pgd)
2304
		return 0;
2305 2306 2307 2308 2309 2310
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
2311
	if (!kvm->arch.mmu.pgd)
2312
		return 0;
2313
	trace_kvm_test_age_hva(hva);
2314 2315
	return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
				 kvm_test_age_hva_handler, NULL);
2316 2317
}

2318 2319
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
2320
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
2321 2322
}

2323 2324
phys_addr_t kvm_mmu_get_httbr(void)
{
2325 2326 2327 2328
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(hyp_pgd);
2329 2330
}

2331 2332 2333 2334 2335
phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

2336 2337 2338 2339 2340
static int kvm_map_idmap_text(pgd_t *pgd)
{
	int err;

	/* Create the idmap in the boot page tables */
2341
	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP_EXEC);
	if (err)
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);

	return err;
}

2352 2353
int kvm_mmu_init(void)
{
2354 2355
	int err;

2356
	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
2357
	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2358
	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
2359
	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2360
	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
2361

2362 2363 2364 2365 2366
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2367

2368 2369 2370 2371
	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
	kvm_debug("HYP VA range: %lx:%lx\n",
		  kern_hyp_va(PAGE_OFFSET),
		  kern_hyp_va((unsigned long)high_memory - 1));
2372

M
Marc Zyngier 已提交
2373
	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2374
	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2375
	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2376 2377 2378 2379 2380 2381 2382 2383 2384
		/*
		 * The idmap page is intersecting with the VA space,
		 * it is not safe to continue further.
		 */
		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
		err = -EINVAL;
		goto out;
	}

2385
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2386
	if (!hyp_pgd) {
2387
		kvm_err("Hyp mode PGD not allocated\n");
2388 2389 2390 2391
		err = -ENOMEM;
		goto out;
	}

2392 2393 2394 2395 2396 2397 2398 2399
	if (__kvm_cpu_uses_extended_idmap()) {
		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
							 hyp_pgd_order);
		if (!boot_hyp_pgd) {
			kvm_err("Hyp boot PGD not allocated\n");
			err = -ENOMEM;
			goto out;
		}
2400

2401 2402 2403
		err = kvm_map_idmap_text(boot_hyp_pgd);
		if (err)
			goto out;
2404

2405 2406 2407 2408 2409 2410 2411
		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		if (!merged_hyp_pgd) {
			kvm_err("Failed to allocate extra HYP pgd\n");
			goto out;
		}
		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
				    hyp_idmap_start);
2412 2413 2414 2415
	} else {
		err = kvm_map_idmap_text(hyp_pgd);
		if (err)
			goto out;
2416 2417
	}

2418
	io_map_base = hyp_idmap_start;
2419
	return 0;
2420
out:
2421
	free_hyp_pgds();
2422
	return err;
2423
}
2424 2425

void kvm_arch_commit_memory_region(struct kvm *kvm,
2426
				   const struct kvm_userspace_memory_region *mem,
2427
				   struct kvm_memory_slot *old,
2428
				   const struct kvm_memory_slot *new,
2429 2430
				   enum kvm_mr_change change)
{
2431 2432
	/*
	 * At this point memslot has been committed and there is an
F
Fuad Tabba 已提交
2433
	 * allocated dirty_bitmap[], dirty pages will be tracked while the
2434 2435
	 * memory slot is write protected.
	 */
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
		/*
		 * If we're with initial-all-set, we don't need to write
		 * protect any pages because they're all reported as dirty.
		 * Huge pages and normal pages will be write protect gradually.
		 */
		if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
			kvm_mmu_wp_memory_region(kvm, mem->slot);
		}
	}
2446 2447 2448 2449
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2450
				   const struct kvm_userspace_memory_region *mem,
2451 2452
				   enum kvm_mr_change change)
{
2453 2454 2455 2456 2457
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

2458 2459
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
2460 2461
		return 0;

2462 2463 2464 2465 2466
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
2467
	    (kvm_phys_size(kvm) >> PAGE_SHIFT))
2468 2469
		return -EFAULT;

2470
	mmap_read_lock(current->mm);
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
2499 2500 2501 2502
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
2503

2504
			/* IO region dirty page logging not allowed */
2505 2506 2507 2508
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
				ret = -EINVAL;
				goto out;
			}
2509

2510 2511 2512 2513 2514 2515 2516 2517 2518
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

2519
	if (change == KVM_MR_FLAGS_ONLY)
2520
		goto out;
2521

2522 2523
	spin_lock(&kvm->mmu_lock);
	if (ret)
2524
		unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size);
2525 2526 2527
	else
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
2528
out:
2529
	mmap_read_unlock(current->mm);
2530
	return ret;
2531 2532
}

2533
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2534 2535 2536
{
}

2537
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2538 2539 2540 2541 2542
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
2543
	kvm_free_stage2_pgd(&kvm->arch.mmu);
2544 2545 2546 2547 2548
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
2549 2550 2551 2552
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
2553
	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
2554
	spin_unlock(&kvm->mmu_lock);
2555
}
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
2587
	unsigned long hcr = *vcpu_hcr(vcpu);
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
2602
		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
2620
		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2621 2622 2623

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}