mmu.c 63.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */
6 7 8 9

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
10
#include <linux/hugetlb.h>
11
#include <linux/sched/signal.h>
C
Christoffer Dall 已提交
12
#include <trace/events/kvm.h>
13
#include <asm/pgalloc.h>
14
#include <asm/cacheflush.h>
15 16
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
17
#include <asm/kvm_ras.h>
18
#include <asm/kvm_asm.h>
19
#include <asm/kvm_emulate.h>
20
#include <asm/virt.h>
21 22

#include "trace.h"
23

24
static pgd_t *boot_hyp_pgd;
25
static pgd_t *hyp_pgd;
26
static pgd_t *merged_hyp_pgd;
27 28
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

29 30 31 32
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

33 34
static unsigned long io_map_base;

35
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
36

37 38 39
#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)

40 41 42 43 44
static bool is_iomap(unsigned long flags)
{
	return flags & KVM_S2PTE_FLAG_IS_IOMAP;
}

45 46 47
static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
48 49 50 51 52 53 54 55 56 57 58
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
59
}
60

61
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
62
{
63
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
64 65
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/*
 * D-Cache management functions. They take the page table entries by
 * value, as they are flushing the cache using the kernel mapping (or
 * kmap on 32bit).
 */
static void kvm_flush_dcache_pte(pte_t pte)
{
	__kvm_flush_dcache_pte(pte);
}

static void kvm_flush_dcache_pmd(pmd_t pmd)
{
	__kvm_flush_dcache_pmd(pmd);
}

static void kvm_flush_dcache_pud(pud_t pud)
{
	__kvm_flush_dcache_pud(pud);
}

86 87 88 89 90
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

91 92 93 94 95 96
/**
 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pmd:	pmd pointer for IPA
 *
97
 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
98 99 100
 */
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
101
	if (!pmd_thp_or_huge(*pmd))
102 103 104 105 106 107 108
		return;

	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pmd));
}

109 110 111 112 113 114
/**
 * stage2_dissolve_pud() - clear and flush huge PUD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pud:	pud pointer for IPA
 *
115
 * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
116 117 118 119 120 121 122 123 124 125 126
 */
static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
{
	if (!stage2_pud_huge(kvm, *pudp))
		return;

	stage2_pud_clear(kvm, pudp);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pudp));
}

127 128 129 130 131 132 133 134 135
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
136
		page = (void *)__get_free_page(GFP_PGTABLE_USER);
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

159
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
160
{
161 162
	pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, pgd, 0UL);
	stage2_pgd_clear(kvm, pgd);
163
	kvm_tlb_flush_vmid_ipa(kvm, addr);
164
	stage2_pud_free(kvm, pud_table);
165
	put_page(virt_to_page(pgd));
166 167
}

168
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
169
{
170 171 172
	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
	VM_BUG_ON(stage2_pud_huge(kvm, *pud));
	stage2_pud_clear(kvm, pud);
173
	kvm_tlb_flush_vmid_ipa(kvm, addr);
174
	stage2_pmd_free(kvm, pmd_table);
175 176
	put_page(virt_to_page(pud));
}
177

178
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
179
{
180
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
181
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
182 183
	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
184
	free_page((unsigned long)pte_table);
185 186 187
	put_page(virt_to_page(pmd));
}

188 189 190 191 192 193 194 195 196 197 198 199
static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
{
	WRITE_ONCE(*ptep, new_pte);
	dsb(ishst);
}

static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
{
	WRITE_ONCE(*pmdp, new_pmd);
	dsb(ishst);
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
{
	kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
}

static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
{
	WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
	dsb(ishst);
}

static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp)
{
	WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp));
	dsb(ishst);
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 * the IO subsystem will never hit in the cache.
236 237 238 239
 *
 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
 * we then fully enforce cacheability of RAM, no matter what the guest
 * does.
240
 */
241
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
242
		       phys_addr_t addr, phys_addr_t end)
243
{
244 245 246 247 248 249
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
250 251
			pte_t old_pte = *pte;

252 253
			kvm_set_pte(pte, __pte(0));
			kvm_tlb_flush_vmid_ipa(kvm, addr);
254 255

			/* No need to invalidate the cache for device mappings */
256
			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
257 258 259
				kvm_flush_dcache_pte(old_pte);

			put_page(virt_to_page(pte));
260 261 262
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

263
	if (stage2_pte_table_empty(kvm, start_pte))
264
		clear_stage2_pmd_entry(kvm, pmd, start_addr);
265 266
}

267
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
268
		       phys_addr_t addr, phys_addr_t end)
269
{
270 271
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
272

273
	start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
274
	do {
275
		next = stage2_pmd_addr_end(kvm, addr, end);
276
		if (!pmd_none(*pmd)) {
277
			if (pmd_thp_or_huge(*pmd)) {
278 279
				pmd_t old_pmd = *pmd;

280 281
				pmd_clear(pmd);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
282 283 284

				kvm_flush_dcache_pmd(old_pmd);

285 286
				put_page(virt_to_page(pmd));
			} else {
287
				unmap_stage2_ptes(kvm, pmd, addr, next);
288
			}
289
		}
290
	} while (pmd++, addr = next, addr != end);
291

292
	if (stage2_pmd_table_empty(kvm, start_pmd))
293
		clear_stage2_pud_entry(kvm, pud, start_addr);
294
}
295

296
static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
297 298 299 300
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
301

302
	start_pud = pud = stage2_pud_offset(kvm, pgd, addr);
303
	do {
304 305 306
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
			if (stage2_pud_huge(kvm, *pud)) {
307 308
				pud_t old_pud = *pud;

309
				stage2_pud_clear(kvm, pud);
310
				kvm_tlb_flush_vmid_ipa(kvm, addr);
311
				kvm_flush_dcache_pud(old_pud);
312 313
				put_page(virt_to_page(pud));
			} else {
314
				unmap_stage2_pmds(kvm, pud, addr, next);
315 316
			}
		}
317
	} while (pud++, addr = next, addr != end);
318

319
	if (stage2_pud_table_empty(kvm, start_pud))
320
		clear_stage2_pgd_entry(kvm, pgd, start_addr);
321 322
}

323 324 325 326 327 328 329 330 331 332 333 334
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
335 336 337 338 339
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

340
	assert_spin_locked(&kvm->mmu_lock);
341 342
	WARN_ON(size & ~PAGE_MASK);

343
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
344
	do {
345 346 347 348 349 350 351
		/*
		 * Make sure the page table is still active, as another thread
		 * could have possibly freed the page table, while we released
		 * the lock.
		 */
		if (!READ_ONCE(kvm->arch.pgd))
			break;
352 353
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (!stage2_pgd_none(kvm, *pgd))
354
			unmap_stage2_puds(kvm, pgd, addr, next);
355 356 357 358 359 360
		/*
		 * If the range is too large, release the kvm->mmu_lock
		 * to prevent starvation and lockup detector warnings.
		 */
		if (next != end)
			cond_resched_lock(&kvm->mmu_lock);
361
	} while (pgd++, addr = next, addr != end);
362 363
}

364 365 366 367 368 369 370
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
371
		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
372
			kvm_flush_dcache_pte(*pte);
373 374 375 376 377 378 379 380 381
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

382
	pmd = stage2_pmd_offset(kvm, pud, addr);
383
	do {
384
		next = stage2_pmd_addr_end(kvm, addr, end);
385
		if (!pmd_none(*pmd)) {
386
			if (pmd_thp_or_huge(*pmd))
387 388
				kvm_flush_dcache_pmd(*pmd);
			else
389 390 391 392 393 394 395 396 397 398 399
				stage2_flush_ptes(kvm, pmd, addr, next);
		}
	} while (pmd++, addr = next, addr != end);
}

static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

400
	pud = stage2_pud_offset(kvm, pgd, addr);
401
	do {
402 403 404
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
			if (stage2_pud_huge(kvm, *pud))
405 406
				kvm_flush_dcache_pud(*pud);
			else
407 408 409 410 411 412 413 414 415 416 417 418 419
				stage2_flush_pmds(kvm, pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

420
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
421
	do {
422 423
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (!stage2_pgd_none(kvm, *pgd))
424
			stage2_flush_puds(kvm, pgd, addr, next);
425 426 427

		if (next != end)
			cond_resched_lock(&kvm->mmu_lock);
428 429 430 431 432 433 434 435 436 437
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
438
static void stage2_flush_vm(struct kvm *kvm)
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
static void clear_hyp_pgd_entry(pgd_t *pgd)
{
	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
	pgd_clear(pgd);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(pgd));
}

static void clear_hyp_pud_entry(pud_t *pud)
{
	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}

static void clear_hyp_pmd_entry(pmd_t *pmd)
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
	pmd_clear(pmd);
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			kvm_set_pte(pte, __pte(0));
			put_page(virt_to_page(pte));
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

	if (hyp_pte_table_empty(start_pte))
		clear_hyp_pmd_entry(pmd);
}

static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pmd_t *pmd, *start_pmd;

	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* Hyp doesn't use huge pmds */
		if (!pmd_none(*pmd))
			unmap_hyp_ptes(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);

	if (hyp_pmd_table_empty(start_pmd))
		clear_hyp_pud_entry(pud);
}

static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pud_t *pud, *start_pud;

	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		/* Hyp doesn't use huge puds */
		if (!pud_none(*pud))
			unmap_hyp_pmds(pud, addr, next);
	} while (pud++, addr = next, addr != end);

	if (hyp_pud_table_empty(start_pud))
		clear_hyp_pgd_entry(pgd);
}

531 532 533 534 535 536 537
static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
{
	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
}

static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
			      phys_addr_t start, u64 size)
538 539 540 541 542 543 544 545 546
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

	/*
	 * We don't unmap anything from HYP, except at the hyp tear down.
	 * Hence, we don't have to invalidate the TLBs here.
	 */
547
	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
548 549 550 551 552 553 554
	do {
		next = pgd_addr_end(addr, end);
		if (!pgd_none(*pgd))
			unmap_hyp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

555 556 557 558 559 560 561 562 563 564
static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
}

static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
}

565
/**
566
 * free_hyp_pgds - free Hyp-mode page tables
567
 *
568 569
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
570
 * PAGE_OFFSET), or device mappings in the idmap range.
571
 *
572 573
 * boot_hyp_pgd should only map the idmap range, and is only used in
 * the extended idmap case.
574
 */
575
void free_hyp_pgds(void)
576
{
577 578
	pgd_t *id_pgd;

579
	mutex_lock(&kvm_hyp_pgd_mutex);
580

581 582 583 584 585 586 587 588 589 590
	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;

	if (id_pgd) {
		/* In case we never called hyp_mmu_init() */
		if (!io_map_base)
			io_map_base = hyp_idmap_start;
		unmap_hyp_idmap_range(id_pgd, io_map_base,
				      hyp_idmap_start + PAGE_SIZE - io_map_base);
	}

591 592 593 594 595
	if (boot_hyp_pgd) {
		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
		boot_hyp_pgd = NULL;
	}

596
	if (hyp_pgd) {
597 598
		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
				(uintptr_t)high_memory - PAGE_OFFSET);
599

600
		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
601
		hyp_pgd = NULL;
602
	}
603 604 605 606 607
	if (merged_hyp_pgd) {
		clear_page(merged_hyp_pgd);
		free_page((unsigned long)merged_hyp_pgd);
		merged_hyp_pgd = NULL;
	}
608

609 610 611 612
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
613 614
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
615 616 617 618
{
	pte_t *pte;
	unsigned long addr;

619 620
	addr = start;
	do {
621
		pte = pte_offset_kernel(pmd, addr);
622
		kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
623
		get_page(virt_to_page(pte));
624
		pfn++;
625
	} while (addr += PAGE_SIZE, addr != end);
626 627 628
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
629 630
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
631 632 633 634 635
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

636 637
	addr = start;
	do {
638
		pmd = pmd_offset(pud, addr);
639 640 641 642

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
643
			pte = pte_alloc_one_kernel(NULL);
644 645 646 647
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
648
			kvm_pmd_populate(pmd, pte);
649
			get_page(virt_to_page(pmd));
650 651 652 653
		}

		next = pmd_addr_end(addr, end);

654 655
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
656
	} while (addr = next, addr != end);
657 658 659 660

	return 0;
}

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
		pud = pud_offset(pgd, addr);

		if (pud_none_or_clear_bad(pud)) {
			pmd = pmd_alloc_one(NULL, addr);
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				return -ENOMEM;
			}
680
			kvm_pud_populate(pud, pmd);
681 682 683 684 685 686 687 688 689 690 691 692 693
			get_page(virt_to_page(pud));
		}

		next = pud_addr_end(addr, end);
		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

694
static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
695 696
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
697 698 699 700 701 702 703
{
	pgd_t *pgd;
	pud_t *pud;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
704 705 706
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
707
		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
708

709 710 711 712
		if (pgd_none(*pgd)) {
			pud = pud_alloc_one(NULL, addr);
			if (!pud) {
				kvm_err("Cannot allocate Hyp pud\n");
713 714 715
				err = -ENOMEM;
				goto out;
			}
716
			kvm_pgd_populate(pgd, pud);
717
			get_page(virt_to_page(pgd));
718 719 720
		}

		next = pgd_addr_end(addr, end);
721
		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
722 723
		if (err)
			goto out;
724
		pfn += (next - addr) >> PAGE_SHIFT;
725
	} while (addr = next, addr != end);
726 727 728 729 730
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

731 732 733 734 735 736 737 738 739 740 741
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

742
/**
743
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
744 745
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
746
 * @prot:	The protection to be applied to this range
747
 *
748 749 750
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
751
 */
752
int create_hyp_mappings(void *from, void *to, pgprot_t prot)
753
{
754 755
	phys_addr_t phys_addr;
	unsigned long virt_addr;
M
Marc Zyngier 已提交
756 757
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
758

759 760 761
	if (is_kernel_in_hyp_mode())
		return 0;

762 763
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
764

765 766
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
767

768
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
769 770
		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
					    virt_addr, virt_addr + PAGE_SIZE,
771
					    __phys_to_pfn(phys_addr),
772
					    prot);
773 774 775 776 777
		if (err)
			return err;
	}

	return 0;
778 779
}

780 781
static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
					unsigned long *haddr, pgprot_t prot)
782
{
783 784 785
	pgd_t *pgd = hyp_pgd;
	unsigned long base;
	int ret = 0;
786

787
	mutex_lock(&kvm_hyp_pgd_mutex);
788

789
	/*
F
Fuad Tabba 已提交
790
	 * This assumes that we have enough space below the idmap
791 792 793 794 795 796 797 798
	 * page to allocate our VAs. If not, the check below will
	 * kick. A potential alternative would be to detect that
	 * overflow and switch to an allocation above the idmap.
	 *
	 * The allocated size is always a multiple of PAGE_SIZE.
	 */
	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
	base = io_map_base - size;
799

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
	/*
	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
	 * allocating the new area, as it would indicate we've
	 * overflowed the idmap/IO address range.
	 */
	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
		ret = -ENOMEM;
	else
		io_map_base = base;

	mutex_unlock(&kvm_hyp_pgd_mutex);

	if (ret)
		goto out;

	if (__kvm_cpu_uses_extended_idmap())
		pgd = boot_hyp_pgd;

	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
				    base, base + size,
820
				    __phys_to_pfn(phys_addr), prot);
821 822 823
	if (ret)
		goto out;

824
	*haddr = base + offset_in_page(phys_addr);
825 826

out:
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	return ret;
}

/**
 * create_hyp_io_mappings - Map IO into both kernel and HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @kaddr:	Kernel VA for this mapping
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
			   void __iomem **kaddr,
			   void __iomem **haddr)
{
	unsigned long addr;
	int ret;

	*kaddr = ioremap(phys_addr, size);
	if (!*kaddr)
		return -ENOMEM;

	if (is_kernel_in_hyp_mode()) {
		*haddr = *kaddr;
		return 0;
	}

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_DEVICE);
855 856 857
	if (ret) {
		iounmap(*kaddr);
		*kaddr = NULL;
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
		*haddr = NULL;
		return ret;
	}

	*haddr = (void __iomem *)addr;
	return 0;
}

/**
 * create_hyp_exec_mappings - Map an executable range into HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
			     void **haddr)
{
	unsigned long addr;
	int ret;

	BUG_ON(is_kernel_in_hyp_mode());

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_EXEC);
	if (ret) {
		*haddr = NULL;
884 885 886
		return ret;
	}

887
	*haddr = (void *)addr;
888
	return 0;
889 890
}

891 892 893 894
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
895 896
 * Allocates only the stage-2 HW PGD level table(s) of size defined by
 * stage2_pgd_size(kvm).
897 898 899 900 901 902
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
903
	phys_addr_t pgd_phys;
904 905 906 907 908 909 910
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

911
	/* Allocate the HW PGD, making sure that each page gets its own refcount */
912
	pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
913
	if (!pgd)
914 915
		return -ENOMEM;

916 917 918 919
	pgd_phys = virt_to_phys(pgd);
	if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
		return -EINVAL;

920
	kvm->arch.pgd = pgd;
921
	kvm->arch.pgd_phys = pgd_phys;
922 923 924
	return 0;
}

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
F
Fuad Tabba 已提交
970
 * Go through the memregions and unmap any regular RAM
971 972 973 974 975 976 977 978 979
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
980
	down_read(&current->mm->mmap_sem);
981 982 983 984 985 986 987
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
988
	up_read(&current->mm->mmap_sem);
989 990 991
	srcu_read_unlock(&kvm->srcu, idx);
}

992 993 994 995 996 997 998 999 1000 1001
/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
1002
	void *pgd = NULL;
1003

1004
	spin_lock(&kvm->mmu_lock);
1005
	if (kvm->arch.pgd) {
1006
		unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
1007
		pgd = READ_ONCE(kvm->arch.pgd);
1008
		kvm->arch.pgd = NULL;
1009
		kvm->arch.pgd_phys = 0;
1010
	}
1011 1012
	spin_unlock(&kvm->mmu_lock);

1013
	/* Free the HW pgd, one page at a time */
1014
	if (pgd)
1015
		free_pages_exact(pgd, stage2_pgd_size(kvm));
1016 1017
}

1018
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1019
			     phys_addr_t addr)
1020 1021 1022 1023
{
	pgd_t *pgd;
	pud_t *pud;

1024 1025
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
	if (stage2_pgd_none(kvm, *pgd)) {
1026 1027 1028
		if (!cache)
			return NULL;
		pud = mmu_memory_cache_alloc(cache);
1029
		stage2_pgd_populate(kvm, pgd, pud);
1030 1031 1032
		get_page(virt_to_page(pgd));
	}

1033
	return stage2_pud_offset(kvm, pgd, addr);
1034 1035 1036 1037 1038 1039 1040 1041 1042
}

static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pud = stage2_get_pud(kvm, cache, addr);
1043
	if (!pud || stage2_pud_huge(kvm, *pud))
1044 1045
		return NULL;

1046
	if (stage2_pud_none(kvm, *pud)) {
1047
		if (!cache)
1048
			return NULL;
1049
		pmd = mmu_memory_cache_alloc(cache);
1050
		stage2_pud_populate(kvm, pud, pmd);
1051
		get_page(virt_to_page(pud));
1052 1053
	}

1054
	return stage2_pmd_offset(kvm, pud, addr);
1055 1056 1057 1058 1059 1060 1061
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

1062
retry:
1063 1064
	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
1065

1066
	old_pmd = *pmd;
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	/*
	 * Multiple vcpus faulting on the same PMD entry, can
	 * lead to them sequentially updating the PMD with the
	 * same value. Following the break-before-make
	 * (pmd_clear() followed by tlb_flush()) process can
	 * hinder forward progress due to refaults generated
	 * on missing translations.
	 *
	 * Skip updating the page table if the entry is
	 * unchanged.
	 */
	if (pmd_val(old_pmd) == pmd_val(*new_pmd))
		return 0;

1081
	if (pmd_present(old_pmd)) {
1082
		/*
1083 1084 1085 1086 1087 1088 1089 1090
		 * If we already have PTE level mapping for this block,
		 * we must unmap it to avoid inconsistent TLB state and
		 * leaking the table page. We could end up in this situation
		 * if the memory slot was marked for dirty logging and was
		 * reverted, leaving PTE level mappings for the pages accessed
		 * during the period. So, unmap the PTE level mapping for this
		 * block and retry, as we could have released the upper level
		 * table in the process.
1091
		 *
1092 1093
		 * Normal THP split/merge follows mmu_notifier callbacks and do
		 * get handled accordingly.
1094
		 */
1095 1096 1097 1098
		if (!pmd_thp_or_huge(old_pmd)) {
			unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE);
			goto retry;
		}
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		/*
		 * Mapping in huge pages should only happen through a
		 * fault.  If a page is merged into a transparent huge
		 * page, the individual subpages of that huge page
		 * should be unmapped through MMU notifiers before we
		 * get here.
		 *
		 * Merging of CompoundPages is not supported; they
		 * should become splitting first, unmapped, merged,
		 * and mapped back in on-demand.
		 */
1110
		WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1111
		pmd_clear(pmd);
1112
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1113
	} else {
1114
		get_page(virt_to_page(pmd));
1115 1116 1117
	}

	kvm_set_pmd(pmd, *new_pmd);
1118 1119 1120
	return 0;
}

1121 1122 1123 1124 1125
static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			       phys_addr_t addr, const pud_t *new_pudp)
{
	pud_t *pudp, old_pud;

1126
retry:
1127 1128 1129 1130 1131 1132 1133
	pudp = stage2_get_pud(kvm, cache, addr);
	VM_BUG_ON(!pudp);

	old_pud = *pudp;

	/*
	 * A large number of vcpus faulting on the same stage 2 entry,
1134 1135
	 * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
	 * Skip updating the page tables if there is no change.
1136 1137 1138 1139 1140
	 */
	if (pud_val(old_pud) == pud_val(*new_pudp))
		return 0;

	if (stage2_pud_present(kvm, old_pud)) {
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		/*
		 * If we already have table level mapping for this block, unmap
		 * the range for this block and retry.
		 */
		if (!stage2_pud_huge(kvm, old_pud)) {
			unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE);
			goto retry;
		}

		WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
		stage2_pud_clear(kvm, pudp);
		kvm_tlb_flush_vmid_ipa(kvm, addr);
	} else {
		get_page(virt_to_page(pudp));
	}

	kvm_set_pud(pudp, *new_pudp);
	return 0;
}

1161 1162 1163 1164 1165 1166 1167 1168
/*
 * stage2_get_leaf_entry - walk the stage2 VM page tables and return
 * true if a valid and present leaf-entry is found. A pointer to the
 * leaf-entry is returned in the appropriate level variable - pudpp,
 * pmdpp, ptepp.
 */
static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
				  pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1169
{
1170
	pud_t *pudp;
1171 1172 1173
	pmd_t *pmdp;
	pte_t *ptep;

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	*pudpp = NULL;
	*pmdpp = NULL;
	*ptepp = NULL;

	pudp = stage2_get_pud(kvm, NULL, addr);
	if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
		return false;

	if (stage2_pud_huge(kvm, *pudp)) {
		*pudpp = pudp;
		return true;
	}

	pmdp = stage2_pmd_offset(kvm, pudp, addr);
1188 1189 1190
	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
		return false;

1191 1192 1193 1194
	if (pmd_thp_or_huge(*pmdp)) {
		*pmdpp = pmdp;
		return true;
	}
1195 1196 1197 1198 1199

	ptep = pte_offset_kernel(pmdp, addr);
	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
		return false;

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	*ptepp = ptep;
	return true;
}

static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
{
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;
	bool found;

	found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
	if (!found)
		return false;

	if (pudp)
		return kvm_s2pud_exec(pudp);
	else if (pmdp)
		return kvm_s2pmd_exec(pmdp);
	else
		return kvm_s2pte_exec(ptep);
1221 1222
}

1223
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1224 1225
			  phys_addr_t addr, const pte_t *new_pte,
			  unsigned long flags)
1226
{
1227
	pud_t *pud;
1228 1229
	pmd_t *pmd;
	pte_t *pte, old_pte;
1230 1231 1232 1233
	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;

	VM_BUG_ON(logging_active && !cache);
1234

1235
	/* Create stage-2 page table mapping - Levels 0 and 1 */
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	pud = stage2_get_pud(kvm, cache, addr);
	if (!pud) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

	/*
	 * While dirty page logging - dissolve huge PUD, then continue
	 * on to allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pud(kvm, addr, pud);

	if (stage2_pud_none(kvm, *pud)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pmd = mmu_memory_cache_alloc(cache);
		stage2_pud_populate(kvm, pud, pmd);
		get_page(virt_to_page(pud));
	}

	pmd = stage2_pmd_offset(kvm, pud, addr);
1261 1262 1263 1264 1265 1266 1267 1268
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

1269 1270 1271 1272 1273 1274 1275
	/*
	 * While dirty page logging - dissolve huge PMD, then continue on to
	 * allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pmd(kvm, addr, pmd);

1276
	/* Create stage-2 page mappings - Level 2 */
1277 1278 1279 1280
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
1281
		kvm_pmd_populate(pmd, pte);
1282
		get_page(virt_to_page(pmd));
1283 1284 1285
	}

	pte = pte_offset_kernel(pmd, addr);
1286 1287 1288 1289 1290 1291

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
1292
	if (pte_present(old_pte)) {
1293 1294 1295 1296
		/* Skip page table update if there is no change */
		if (pte_val(old_pte) == pte_val(*new_pte))
			return 0;

1297
		kvm_set_pte(pte, __pte(0));
1298
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1299
	} else {
1300
		get_page(virt_to_page(pte));
1301
	}
1302

1303
	kvm_set_pte(pte, *new_pte);
1304 1305 1306
	return 0;
}

1307 1308 1309 1310 1311 1312 1313
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	if (pte_young(*pte)) {
		*pte = pte_mkold(*pte);
		return 1;
	}
1314 1315
	return 0;
}
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
#else
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	return __ptep_test_and_clear_young(pte);
}
#endif

static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
}
1327

1328 1329 1330 1331 1332
static int stage2_pudp_test_and_clear_young(pud_t *pud)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pud);
}

1333 1334 1335 1336 1337 1338 1339 1340 1341
/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1342
			  phys_addr_t pa, unsigned long size, bool writable)
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1353
		pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1354

1355
		if (writable)
1356
			pte = kvm_s2pte_mkwrite(pte);
1357

1358 1359 1360
		ret = mmu_topup_memory_cache(&cache,
					     kvm_mmu_cache_min_pages(kvm),
					     KVM_NR_MEM_OBJS);
1361 1362 1363
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
1364 1365
		ret = stage2_set_pte(kvm, &cache, addr, &pte,
						KVM_S2PTE_FLAG_IS_IOMAP);
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
/**
 * stage2_wp_ptes - write protect PMD range
 * @pmd:	pointer to pmd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			if (!kvm_s2pte_readonly(pte))
				kvm_set_s2pte_readonly(pte);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

/**
 * stage2_wp_pmds - write protect PUD range
1399
 * kvm:		kvm instance for the VM
1400 1401 1402 1403
 * @pud:	pointer to pud entry
 * @addr:	range start address
 * @end:	range end address
 */
1404 1405
static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
			   phys_addr_t addr, phys_addr_t end)
1406 1407 1408 1409
{
	pmd_t *pmd;
	phys_addr_t next;

1410
	pmd = stage2_pmd_offset(kvm, pud, addr);
1411 1412

	do {
1413
		next = stage2_pmd_addr_end(kvm, addr, end);
1414
		if (!pmd_none(*pmd)) {
1415
			if (pmd_thp_or_huge(*pmd)) {
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
				if (!kvm_s2pmd_readonly(pmd))
					kvm_set_s2pmd_readonly(pmd);
			} else {
				stage2_wp_ptes(pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

/**
1426 1427 1428 1429 1430
 * stage2_wp_puds - write protect PGD range
 * @pgd:	pointer to pgd entry
 * @addr:	range start address
 * @end:	range end address
 */
1431 1432
static void  stage2_wp_puds(struct kvm *kvm, pgd_t *pgd,
			    phys_addr_t addr, phys_addr_t end)
1433 1434 1435 1436
{
	pud_t *pud;
	phys_addr_t next;

1437
	pud = stage2_pud_offset(kvm, pgd, addr);
1438
	do {
1439 1440
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
1441 1442 1443 1444 1445 1446
			if (stage2_pud_huge(kvm, *pud)) {
				if (!kvm_s2pud_readonly(pud))
					kvm_set_s2pud_readonly(pud);
			} else {
				stage2_wp_pmds(kvm, pud, addr, next);
			}
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
		}
	} while (pud++, addr = next, addr != end);
}

/**
 * stage2_wp_range() - write protect stage2 memory region range
 * @kvm:	The KVM pointer
 * @addr:	Start address of range
 * @end:	End address of range
 */
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
	pgd_t *pgd;
	phys_addr_t next;

1462
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1463 1464 1465 1466
	do {
		/*
		 * Release kvm_mmu_lock periodically if the memory region is
		 * large. Otherwise, we may see kernel panics with
1467 1468
		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1469 1470 1471
		 * will also starve other vCPUs. We have to also make sure
		 * that the page tables are not freed while we released
		 * the lock.
1472
		 */
1473 1474 1475
		cond_resched_lock(&kvm->mmu_lock);
		if (!READ_ONCE(kvm->arch.pgd))
			break;
1476 1477 1478
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (stage2_pgd_present(kvm, *pgd))
			stage2_wp_puds(kvm, pgd, addr, next);
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	} while (pgd++, addr = next, addr != end);
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1489
 * all present PUD, PMD and PTEs are write protected in the memory region.
1490 1491 1492 1493 1494 1495 1496
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
1497 1498
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1499 1500 1501 1502 1503 1504 1505
	phys_addr_t start, end;

	if (WARN_ON_ONCE(!memslot))
		return;

	start = memslot->base_gfn << PAGE_SHIFT;
	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1506 1507 1508 1509 1510 1511

	spin_lock(&kvm->mmu_lock);
	stage2_wp_range(kvm, start, end);
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
1512 1513

/**
1514
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1515 1516 1517 1518 1519 1520 1521 1522 1523
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
1524
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1525 1526 1527 1528 1529 1530 1531 1532 1533
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

	stage2_wp_range(kvm, start, end);
}
1534

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

1549
static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1550
{
1551
	__clean_dcache_guest_page(pfn, size);
1552 1553
}

1554
static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1555
{
1556
	__invalidate_icache_guest_page(pfn, size);
1557 1558
}

1559
static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1560
{
1561
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1562 1563
}

1564 1565 1566
static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
					       unsigned long hva,
					       unsigned long map_size)
1567
{
1568
	gpa_t gpa_start;
1569 1570 1571
	hva_t uaddr_start, uaddr_end;
	size_t size;

1572 1573 1574 1575
	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
	if (map_size == PAGE_SIZE)
		return true;

1576 1577 1578 1579 1580 1581 1582 1583 1584
	size = memslot->npages * PAGE_SIZE;

	gpa_start = memslot->base_gfn << PAGE_SHIFT;

	uaddr_start = memslot->userspace_addr;
	uaddr_end = uaddr_start + size;

	/*
	 * Pages belonging to memslots that don't have the same alignment
1585 1586
	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1587 1588 1589 1590 1591
	 *
	 * Consider a layout like the following:
	 *
	 *    memslot->userspace_addr:
	 *    +-----+--------------------+--------------------+---+
1592
	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1593 1594
	 *    +-----+--------------------+--------------------+---+
	 *
1595
	 *    memslot->base_gfn << PAGE_SHIFT:
1596
	 *      +---+--------------------+--------------------+-----+
1597
	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1598 1599
	 *      +---+--------------------+--------------------+-----+
	 *
1600
	 * If we create those stage-2 blocks, we'll end up with this incorrect
1601 1602 1603 1604 1605
	 * mapping:
	 *   d -> f
	 *   e -> g
	 *   f -> h
	 */
1606
	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1607 1608 1609 1610
		return false;

	/*
	 * Next, let's make sure we're not trying to map anything not covered
1611 1612
	 * by the memslot. This means we have to prohibit block size mappings
	 * for the beginning and end of a non-block aligned and non-block sized
1613 1614 1615 1616 1617 1618 1619 1620
	 * memory slot (illustrated by the head and tail parts of the
	 * userspace view above containing pages 'abcde' and 'xyz',
	 * respectively).
	 *
	 * Note that it doesn't matter if we do the check using the
	 * userspace_addr or the base_gfn, as both are equally aligned (per
	 * the check above) and equally sized.
	 */
1621 1622
	return (hva & ~(map_size - 1)) >= uaddr_start &&
	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1623 1624
}

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
/*
 * Check if the given hva is backed by a transparent huge page (THP) and
 * whether it can be mapped using block mapping in stage2. If so, adjust
 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
 * supported. This will need to be updated to support other THP sizes.
 *
 * Returns the size of the mapping.
 */
static unsigned long
transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
			    unsigned long hva, kvm_pfn_t *pfnp,
			    phys_addr_t *ipap)
{
	kvm_pfn_t pfn = *pfnp;

	/*
	 * Make sure the adjustment is done only for THP pages. Also make
	 * sure that the HVA and IPA are sufficiently aligned and that the
	 * block map is contained within the memslot.
	 */
	if (kvm_is_transparent_hugepage(pfn) &&
	    fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		*ipap &= PMD_MASK;
		kvm_release_pfn_clean(pfn);
		pfn &= ~(PTRS_PER_PMD - 1);
		kvm_get_pfn(pfn);
		*pfnp = pfn;

		return PMD_SIZE;
	}

	/* Use page mapping if we cannot use block mapping. */
	return PAGE_SIZE;
}

1678
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1679
			  struct kvm_memory_slot *memslot, unsigned long hva,
1680 1681 1682
			  unsigned long fault_status)
{
	int ret;
1683 1684
	bool write_fault, writable, force_pte = false;
	bool exec_fault, needs_exec;
1685
	unsigned long mmu_seq;
1686 1687
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
1688
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1689
	struct vm_area_struct *vma;
1690
	short vma_shift;
D
Dan Williams 已提交
1691
	kvm_pfn_t pfn;
1692
	pgprot_t mem_type = PAGE_S2;
1693
	bool logging_active = memslot_is_logging(memslot);
1694
	unsigned long vma_pagesize, flags = 0;
1695

1696
	write_fault = kvm_is_write_fault(vcpu);
1697 1698 1699 1700
	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
	VM_BUG_ON(write_fault && exec_fault);

	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1701 1702 1703 1704
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

1705 1706 1707
	/* Let's check if we will get back a huge page backed by hugetlbfs */
	down_read(&current->mm->mmap_sem);
	vma = find_vma_intersection(current->mm, hva, hva + 1);
1708 1709 1710 1711 1712 1713
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
		up_read(&current->mm->mmap_sem);
		return -EFAULT;
	}

1714 1715 1716 1717 1718 1719
	if (is_vm_hugetlb_page(vma))
		vma_shift = huge_page_shift(hstate_vma(vma));
	else
		vma_shift = PAGE_SHIFT;

	vma_pagesize = 1ULL << vma_shift;
1720
	if (logging_active ||
1721
	    (vma->vm_flags & VM_PFNMAP) ||
1722 1723 1724 1725 1726
	    !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
		force_pte = true;
		vma_pagesize = PAGE_SIZE;
	}

1727
	/*
1728 1729 1730 1731 1732
	 * The stage2 has a minimum of 2 level table (For arm64 see
	 * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
	 * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
	 * As for PUD huge maps, we must make sure that we have at least
	 * 3 levels, i.e, PMD is not folded.
1733
	 */
1734 1735
	if (vma_pagesize == PMD_SIZE ||
	    (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
1736
		gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1737 1738
	up_read(&current->mm->mmap_sem);

1739
	/* We need minimum second+third level pages */
1740
	ret = mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm),
1741
				     KVM_NR_MEM_OBJS);
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

1757
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1758
	if (pfn == KVM_PFN_ERR_HWPOISON) {
1759
		kvm_send_hwpoison_signal(hva, vma_shift);
1760 1761
		return 0;
	}
1762
	if (is_error_noslot_pfn(pfn))
1763 1764
		return -EFAULT;

1765
	if (kvm_is_device_pfn(pfn)) {
1766
		mem_type = PAGE_S2_DEVICE;
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
	} else if (logging_active) {
		/*
		 * Faults on pages in a memslot with logging enabled
		 * should not be mapped with huge pages (it introduces churn
		 * and performance degradation), so force a pte mapping.
		 */
		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;

		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
		if (!write_fault)
			writable = false;
	}
1783

1784 1785 1786
	if (exec_fault && is_iomap(flags))
		return -ENOEXEC;

1787 1788
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
1789
		goto out_unlock;
1790

1791 1792 1793 1794 1795 1796 1797
	/*
	 * If we are not forced to use page mapping, check if we are
	 * backed by a THP and thus use block mapping if possible.
	 */
	if (vma_pagesize == PAGE_SIZE && !force_pte)
		vma_pagesize = transparent_hugepage_adjust(memslot, hva,
							   &pfn, &fault_ipa);
1798 1799
	if (writable)
		kvm_set_pfn_dirty(pfn);
1800

1801
	if (fault_status != FSC_PERM && !is_iomap(flags))
1802 1803 1804 1805 1806
		clean_dcache_guest_page(pfn, vma_pagesize);

	if (exec_fault)
		invalidate_icache_guest_page(pfn, vma_pagesize);

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	/*
	 * If we took an execution fault we have made the
	 * icache/dcache coherent above and should now let the s2
	 * mapping be executable.
	 *
	 * Write faults (!exec_fault && FSC_PERM) are orthogonal to
	 * execute permissions, and we preserve whatever we have.
	 */
	needs_exec = exec_fault ||
		(fault_status == FSC_PERM && stage2_is_exec(kvm, fault_ipa));

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	if (vma_pagesize == PUD_SIZE) {
		pud_t new_pud = kvm_pfn_pud(pfn, mem_type);

		new_pud = kvm_pud_mkhuge(new_pud);
		if (writable)
			new_pud = kvm_s2pud_mkwrite(new_pud);

		if (needs_exec)
			new_pud = kvm_s2pud_mkexec(new_pud);

		ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
	} else if (vma_pagesize == PMD_SIZE) {
1830 1831 1832 1833
		pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);

		new_pmd = kvm_pmd_mkhuge(new_pmd);

1834
		if (writable)
1835
			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1836

1837
		if (needs_exec)
1838
			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1839

1840 1841
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
1842
		pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1843

1844
		if (writable) {
1845
			new_pte = kvm_s2pte_mkwrite(new_pte);
1846
			mark_page_dirty(kvm, gfn);
1847
		}
1848

1849
		if (needs_exec)
1850
			new_pte = kvm_s2pte_mkexec(new_pte);
1851

1852
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1853
	}
1854

1855
out_unlock:
1856
	spin_unlock(&kvm->mmu_lock);
1857
	kvm_set_pfn_accessed(pfn);
1858
	kvm_release_pfn_clean(pfn);
1859
	return ret;
1860 1861
}

1862 1863 1864 1865
/*
 * Resolve the access fault by making the page young again.
 * Note that because the faulting entry is guaranteed not to be
 * cached in the TLB, we don't need to invalidate anything.
1866 1867
 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1868 1869 1870
 */
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
1871
	pud_t *pud;
1872 1873
	pmd_t *pmd;
	pte_t *pte;
D
Dan Williams 已提交
1874
	kvm_pfn_t pfn;
1875 1876 1877 1878 1879 1880
	bool pfn_valid = false;

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);

1881
	if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
1882 1883
		goto out;

1884 1885 1886 1887 1888
	if (pud) {		/* HugeTLB */
		*pud = kvm_s2pud_mkyoung(*pud);
		pfn = kvm_pud_pfn(*pud);
		pfn_valid = true;
	} else	if (pmd) {	/* THP, HugeTLB */
1889 1890 1891
		*pmd = pmd_mkyoung(*pmd);
		pfn = pmd_pfn(*pmd);
		pfn_valid = true;
1892 1893 1894 1895
	} else {
		*pte = pte_mkyoung(*pte);	/* Just a page... */
		pfn = pte_pfn(*pte);
		pfn_valid = true;
1896 1897 1898 1899 1900 1901 1902 1903
	}

out:
	spin_unlock(&vcpu->kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
}

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
1916 1917
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
1918 1919 1920
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
1921 1922
	unsigned long hva;
	bool is_iabt, write_fault, writable;
1923 1924 1925
	gfn_t gfn;
	int ret, idx;

1926 1927 1928
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);

	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1929
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1930

1931 1932 1933 1934 1935 1936
	/* Synchronous External Abort? */
	if (kvm_vcpu_dabt_isextabt(vcpu)) {
		/*
		 * For RAS the host kernel may handle this abort.
		 * There is no need to pass the error into the guest.
		 */
1937
		if (!kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1938 1939
			return 1;

1940 1941 1942 1943
		if (unlikely(!is_iabt)) {
			kvm_inject_vabt(vcpu);
			return 1;
		}
1944 1945
	}

1946 1947
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1948 1949

	/* Check the stage-2 fault is trans. fault or write fault */
1950 1951
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
1952 1953 1954 1955
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1956 1957 1958 1959 1960 1961
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
1962 1963
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1964
	write_fault = kvm_is_write_fault(vcpu);
1965
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1966 1967
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
1968 1969
			ret = -ENOEXEC;
			goto out;
1970 1971
		}

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
		if (kvm_vcpu_dabt_is_cm(vcpu)) {
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1988 1989 1990 1991 1992 1993 1994
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
1995
		ret = io_mem_abort(vcpu, run, fault_ipa);
1996 1997 1998
		goto out_unlock;
	}

1999
	/* Userspace should not be able to register out-of-bounds IPAs */
2000
	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
2001

2002 2003 2004 2005 2006 2007
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

2008
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
2009 2010
	if (ret == 0)
		ret = 1;
2011 2012 2013 2014 2015
out:
	if (ret == -ENOEXEC) {
		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
		ret = 1;
	}
2016 2017 2018
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
2019 2020
}

2021 2022 2023 2024
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
2025 2026
					    gpa_t gpa, u64 size,
					    void *data),
2027
			     void *data)
2028 2029 2030
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
2031
	int ret = 0;
2032 2033 2034 2035 2036 2037

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
2038
		gfn_t gpa;
2039 2040 2041 2042 2043 2044 2045

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

2046 2047
		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
2048
	}
2049 2050

	return ret;
2051 2052
}

2053
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2054
{
2055
	unmap_stage2_range(kvm, gpa, size);
2056
	return 0;
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

2070
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2071 2072 2073
{
	pte_t *pte = (pte_t *)data;

2074
	WARN_ON(size != PAGE_SIZE);
2075 2076 2077 2078 2079 2080 2081 2082
	/*
	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
	 * flag clear because MMU notifiers will have unmapped a huge PMD before
	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore stage2_set_pte() never needs to clear out a huge PMD
	 * through this calling path.
	 */
	stage2_set_pte(kvm, NULL, gpa, pte, 0);
2083
	return 0;
2084 2085 2086
}


2087
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2088 2089
{
	unsigned long end = hva + PAGE_SIZE;
2090
	kvm_pfn_t pfn = pte_pfn(pte);
2091 2092 2093
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
2094
		return 0;
2095 2096

	trace_kvm_set_spte_hva(hva);
2097 2098 2099 2100 2101 2102

	/*
	 * We've moved a page around, probably through CoW, so let's treat it
	 * just like a translation fault and clean the cache to the PoC.
	 */
	clean_dcache_guest_page(pfn, PAGE_SIZE);
2103
	stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2104
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
2105 2106

	return 0;
2107 2108
}

2109
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2110
{
2111
	pud_t *pud;
2112 2113 2114
	pmd_t *pmd;
	pte_t *pte;

2115 2116
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2117 2118
		return 0;

2119 2120 2121
	if (pud)
		return stage2_pudp_test_and_clear_young(pud);
	else if (pmd)
2122
		return stage2_pmdp_test_and_clear_young(pmd);
2123 2124
	else
		return stage2_ptep_test_and_clear_young(pte);
2125 2126
}

2127
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2128
{
2129
	pud_t *pud;
2130 2131 2132
	pmd_t *pmd;
	pte_t *pte;

2133 2134
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2135 2136
		return 0;

2137 2138 2139
	if (pud)
		return kvm_s2pud_young(*pud);
	else if (pmd)
2140
		return pmd_young(*pmd);
2141
	else
2142 2143 2144 2145 2146
		return pte_young(*pte);
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
2147 2148
	if (!kvm->arch.pgd)
		return 0;
2149 2150 2151 2152 2153 2154
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
2155 2156
	if (!kvm->arch.pgd)
		return 0;
2157
	trace_kvm_test_age_hva(hva);
2158 2159
	return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
				 kvm_test_age_hva_handler, NULL);
2160 2161
}

2162 2163 2164 2165 2166
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

2167 2168
phys_addr_t kvm_mmu_get_httbr(void)
{
2169 2170 2171 2172
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(hyp_pgd);
2173 2174
}

2175 2176 2177 2178 2179
phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

2180 2181 2182 2183 2184
static int kvm_map_idmap_text(pgd_t *pgd)
{
	int err;

	/* Create the idmap in the boot page tables */
2185
	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP_EXEC);
	if (err)
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);

	return err;
}

2196 2197
int kvm_mmu_init(void)
{
2198 2199
	int err;

2200
	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
2201
	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2202
	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
2203
	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2204
	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
2205

2206 2207 2208 2209 2210
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2211

2212 2213 2214 2215
	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
	kvm_debug("HYP VA range: %lx:%lx\n",
		  kern_hyp_va(PAGE_OFFSET),
		  kern_hyp_va((unsigned long)high_memory - 1));
2216

M
Marc Zyngier 已提交
2217
	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2218
	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2219
	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2220 2221 2222 2223 2224 2225 2226 2227 2228
		/*
		 * The idmap page is intersecting with the VA space,
		 * it is not safe to continue further.
		 */
		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
		err = -EINVAL;
		goto out;
	}

2229
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2230
	if (!hyp_pgd) {
2231
		kvm_err("Hyp mode PGD not allocated\n");
2232 2233 2234 2235
		err = -ENOMEM;
		goto out;
	}

2236 2237 2238 2239 2240 2241 2242 2243
	if (__kvm_cpu_uses_extended_idmap()) {
		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
							 hyp_pgd_order);
		if (!boot_hyp_pgd) {
			kvm_err("Hyp boot PGD not allocated\n");
			err = -ENOMEM;
			goto out;
		}
2244

2245 2246 2247
		err = kvm_map_idmap_text(boot_hyp_pgd);
		if (err)
			goto out;
2248

2249 2250 2251 2252 2253 2254 2255
		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		if (!merged_hyp_pgd) {
			kvm_err("Failed to allocate extra HYP pgd\n");
			goto out;
		}
		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
				    hyp_idmap_start);
2256 2257 2258 2259
	} else {
		err = kvm_map_idmap_text(hyp_pgd);
		if (err)
			goto out;
2260 2261
	}

2262
	io_map_base = hyp_idmap_start;
2263
	return 0;
2264
out:
2265
	free_hyp_pgds();
2266
	return err;
2267
}
2268 2269

void kvm_arch_commit_memory_region(struct kvm *kvm,
2270
				   const struct kvm_userspace_memory_region *mem,
2271
				   struct kvm_memory_slot *old,
2272
				   const struct kvm_memory_slot *new,
2273 2274
				   enum kvm_mr_change change)
{
2275 2276
	/*
	 * At this point memslot has been committed and there is an
F
Fuad Tabba 已提交
2277
	 * allocated dirty_bitmap[], dirty pages will be tracked while the
2278 2279 2280 2281
	 * memory slot is write protected.
	 */
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
		kvm_mmu_wp_memory_region(kvm, mem->slot);
2282 2283 2284 2285
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2286
				   const struct kvm_userspace_memory_region *mem,
2287 2288
				   enum kvm_mr_change change)
{
2289 2290 2291 2292 2293
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

2294 2295
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
2296 2297
		return 0;

2298 2299 2300 2301 2302
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
2303
	    (kvm_phys_size(kvm) >> PAGE_SHIFT))
2304 2305
		return -EFAULT;

2306
	down_read(&current->mm->mmap_sem);
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
2335 2336 2337 2338
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
2339

2340
			/* IO region dirty page logging not allowed */
2341 2342 2343 2344
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
				ret = -EINVAL;
				goto out;
			}
2345

2346 2347 2348 2349 2350 2351 2352 2353 2354
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

2355
	if (change == KVM_MR_FLAGS_ONLY)
2356
		goto out;
2357

2358 2359
	spin_lock(&kvm->mmu_lock);
	if (ret)
2360
		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2361 2362 2363
	else
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
2364 2365
out:
	up_read(&current->mm->mmap_sem);
2366
	return ret;
2367 2368
}

2369
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2370 2371 2372
{
}

2373
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2374 2375 2376 2377 2378
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
2379
	kvm_free_stage2_pgd(kvm);
2380 2381 2382 2383 2384
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
2385 2386 2387 2388 2389 2390
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	unmap_stage2_range(kvm, gpa, size);
	spin_unlock(&kvm->mmu_lock);
2391
}
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
2423
	unsigned long hcr = *vcpu_hcr(vcpu);
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
2438
		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
2456
		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2457 2458 2459

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}