mmu.c 41.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */
6 7 8 9

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
10
#include <linux/hugetlb.h>
11
#include <linux/sched/signal.h>
C
Christoffer Dall 已提交
12
#include <trace/events/kvm.h>
13
#include <asm/pgalloc.h>
14
#include <asm/cacheflush.h>
15 16
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
17
#include <asm/kvm_pgtable.h>
18
#include <asm/kvm_ras.h>
19
#include <asm/kvm_asm.h>
20
#include <asm/kvm_emulate.h>
21
#include <asm/virt.h>
22 23

#include "trace.h"
24

25
static struct kvm_pgtable *hyp_pgtable;
26 27
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

28 29 30 31
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

32 33
static unsigned long io_map_base;

34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/*
 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
 * long will also starve other vCPUs. We have to also make sure that the page
 * tables are not freed while we released the lock.
 */
static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
			      phys_addr_t end,
			      int (*fn)(struct kvm_pgtable *, u64, u64),
			      bool resched)
{
	int ret;
	u64 next;

	do {
		struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
		if (!pgt)
			return -EINVAL;

		next = stage2_pgd_addr_end(kvm, addr, end);
		ret = fn(pgt, addr, next - addr);
		if (ret)
			break;

		if (resched && next != end)
			cond_resched_lock(&kvm->mmu_lock);
	} while (addr = next, addr != end);

	return ret;
}

67 68 69
#define stage2_apply_range_resched(kvm, addr, end, fn)			\
	stage2_apply_range(kvm, addr, end, fn, true)

70 71 72
static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
73 74 75 76 77 78 79 80 81 82
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
83
	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
84
}
85

86 87 88 89 90
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
static void *stage2_memcache_zalloc_page(void *arg)
{
	struct kvm_mmu_memory_cache *mc = arg;

	/* Allocated with __GFP_ZERO, so no need to zero */
	return kvm_mmu_memory_cache_alloc(mc);
}

static void *kvm_host_zalloc_pages_exact(size_t size)
{
	return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
}

static void kvm_host_get_page(void *addr)
{
	get_page(virt_to_page(addr));
}

static void kvm_host_put_page(void *addr)
{
	put_page(virt_to_page(addr));
}

static int kvm_host_page_count(void *addr)
{
	return page_count(virt_to_page(addr));
}

static phys_addr_t kvm_host_pa(void *addr)
{
	return __pa(addr);
}

static void *kvm_host_va(phys_addr_t phys)
{
	return __va(phys);
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
146 147
 * the corresponding TLBs, we flush to make sure the IO subsystem will
 * never hit in the cache.
148 149 150 151
 *
 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
 * we then fully enforce cacheability of RAM, no matter what the guest
 * does.
152
 */
153 154
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
155
 * @mmu:   The KVM stage-2 MMU pointer
156 157
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
158
 * @may_block: Whether or not we are permitted to block
159 160 161 162 163 164
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
165 166
static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
				 bool may_block)
167
{
168
	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
169
	phys_addr_t end = start + size;
170

171
	assert_spin_locked(&kvm->mmu_lock);
172
	WARN_ON(size & ~PAGE_MASK);
173 174
	WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
				   may_block));
175 176
}

177 178 179 180 181
static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
{
	__unmap_stage2_range(mmu, start, size, true);
}

182 183 184 185 186 187
static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;

188
	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
189 190 191 192 193 194 195 196 197
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
198
static void stage2_flush_vm(struct kvm *kvm)
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

215
/**
216
 * free_hyp_pgds - free Hyp-mode page tables
217
 */
218
void free_hyp_pgds(void)
219
{
220
	mutex_lock(&kvm_hyp_pgd_mutex);
221 222 223
	if (hyp_pgtable) {
		kvm_pgtable_hyp_destroy(hyp_pgtable);
		kfree(hyp_pgtable);
224
		hyp_pgtable = NULL;
225
	}
226 227 228
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
static bool kvm_host_owns_hyp_mappings(void)
{
	if (static_branch_likely(&kvm_protected_mode_initialized))
		return false;

	/*
	 * This can happen at boot time when __create_hyp_mappings() is called
	 * after the hyp protection has been enabled, but the static key has
	 * not been flipped yet.
	 */
	if (!hyp_pgtable && is_protected_kvm_enabled())
		return false;

	WARN_ON(!hyp_pgtable);

	return true;
}

247 248
static int __create_hyp_mappings(unsigned long start, unsigned long size,
				 unsigned long phys, enum kvm_pgtable_prot prot)
249
{
250
	int err;
251

252 253 254 255 256
	if (!kvm_host_owns_hyp_mappings()) {
		return kvm_call_hyp_nvhe(__pkvm_create_mappings,
					 start, size, phys, prot);
	}

257
	mutex_lock(&kvm_hyp_pgd_mutex);
258
	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
259
	mutex_unlock(&kvm_hyp_pgd_mutex);
260

261 262 263
	return err;
}

264 265 266 267 268 269 270 271 272 273 274
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

275
/**
276
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
277 278
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
279
 * @prot:	The protection to be applied to this range
280
 *
281 282 283
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
284
 */
285
int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
286
{
287 288
	phys_addr_t phys_addr;
	unsigned long virt_addr;
M
Marc Zyngier 已提交
289 290
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
291

292 293 294
	if (is_kernel_in_hyp_mode())
		return 0;

295 296
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
297

298 299
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
300

301
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
302
		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
303
					    prot);
304 305 306 307 308
		if (err)
			return err;
	}

	return 0;
309 310
}

311
static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
312 313
					unsigned long *haddr,
					enum kvm_pgtable_prot prot)
314
{
315 316
	unsigned long base;
	int ret = 0;
317

318 319 320 321 322 323 324 325 326 327
	if (!kvm_host_owns_hyp_mappings()) {
		base = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
					 phys_addr, size, prot);
		if (IS_ERR_OR_NULL((void *)base))
			return PTR_ERR((void *)base);
		*haddr = base;

		return 0;
	}

328
	mutex_lock(&kvm_hyp_pgd_mutex);
329

330
	/*
F
Fuad Tabba 已提交
331
	 * This assumes that we have enough space below the idmap
332 333 334 335 336 337 338 339
	 * page to allocate our VAs. If not, the check below will
	 * kick. A potential alternative would be to detect that
	 * overflow and switch to an allocation above the idmap.
	 *
	 * The allocated size is always a multiple of PAGE_SIZE.
	 */
	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
	base = io_map_base - size;
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	/*
	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
	 * allocating the new area, as it would indicate we've
	 * overflowed the idmap/IO address range.
	 */
	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
		ret = -ENOMEM;
	else
		io_map_base = base;

	mutex_unlock(&kvm_hyp_pgd_mutex);

	if (ret)
		goto out;

356
	ret = __create_hyp_mappings(base, size, phys_addr, prot);
357 358 359
	if (ret)
		goto out;

360
	*haddr = base + offset_in_page(phys_addr);
361
out:
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	return ret;
}

/**
 * create_hyp_io_mappings - Map IO into both kernel and HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @kaddr:	Kernel VA for this mapping
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
			   void __iomem **kaddr,
			   void __iomem **haddr)
{
	unsigned long addr;
	int ret;

	*kaddr = ioremap(phys_addr, size);
	if (!*kaddr)
		return -ENOMEM;

	if (is_kernel_in_hyp_mode()) {
		*haddr = *kaddr;
		return 0;
	}

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_DEVICE);
390 391 392
	if (ret) {
		iounmap(*kaddr);
		*kaddr = NULL;
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
		*haddr = NULL;
		return ret;
	}

	*haddr = (void __iomem *)addr;
	return 0;
}

/**
 * create_hyp_exec_mappings - Map an executable range into HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
			     void **haddr)
{
	unsigned long addr;
	int ret;

	BUG_ON(is_kernel_in_hyp_mode());

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_EXEC);
	if (ret) {
		*haddr = NULL;
419 420 421
		return ret;
	}

422
	*haddr = (void *)addr;
423
	return 0;
424 425
}

426 427 428 429 430 431 432 433 434 435 436
static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
	.zalloc_page		= stage2_memcache_zalloc_page,
	.zalloc_pages_exact	= kvm_host_zalloc_pages_exact,
	.free_pages_exact	= free_pages_exact,
	.get_page		= kvm_host_get_page,
	.put_page		= kvm_host_put_page,
	.page_count		= kvm_host_page_count,
	.phys_to_virt		= kvm_host_va,
	.virt_to_phys		= kvm_host_pa,
};

437
/**
438 439 440
 * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
 * @kvm:	The pointer to the KVM structure
 * @mmu:	The pointer to the s2 MMU structure
441
 *
442
 * Allocates only the stage-2 HW PGD level table(s).
443 444 445
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
446
int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
447
{
448 449
	int cpu, err;
	struct kvm_pgtable *pgt;
450

451
	if (mmu->pgt != NULL) {
452 453 454 455
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

456 457
	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL);
	if (!pgt)
458 459
		return -ENOMEM;

460
	err = kvm_pgtable_stage2_init(pgt, &kvm->arch, &kvm_s2_mm_ops);
461 462
	if (err)
		goto out_free_pgtable;
463

464 465
	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
	if (!mmu->last_vcpu_ran) {
466 467
		err = -ENOMEM;
		goto out_destroy_pgtable;
468 469 470 471 472
	}

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;

473
	mmu->arch = &kvm->arch;
474 475
	mmu->pgt = pgt;
	mmu->pgd_phys = __pa(pgt->pgd);
476
	mmu->vmid.vmid_gen = 0;
477
	return 0;
478 479 480 481 482 483

out_destroy_pgtable:
	kvm_pgtable_stage2_destroy(pgt);
out_free_pgtable:
	kfree(pgt);
	return err;
484 485
}

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
507
		struct vm_area_struct *vma;
508 509
		hva_t vm_start, vm_end;

510 511
		vma = find_vma_intersection(current->mm, hva, reg_end);
		if (!vma)
512 513 514 515 516 517 518 519 520 521
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
522
			unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
523 524 525 526 527 528 529 530 531
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
F
Fuad Tabba 已提交
532
 * Go through the memregions and unmap any regular RAM
533 534 535 536 537 538 539 540 541
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
542
	mmap_read_lock(current->mm);
543 544 545 546 547 548 549
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
550
	mmap_read_unlock(current->mm);
551 552 553
	srcu_read_unlock(&kvm->srcu, idx);
}

554
void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
555
{
556
	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
557
	struct kvm_pgtable *pgt = NULL;
558

559
	spin_lock(&kvm->mmu_lock);
560 561 562 563 564
	pgt = mmu->pgt;
	if (pgt) {
		mmu->pgd_phys = 0;
		mmu->pgt = NULL;
		free_percpu(mmu->last_vcpu_ran);
565
	}
566 567
	spin_unlock(&kvm->mmu_lock);

568 569 570
	if (pgt) {
		kvm_pgtable_stage2_destroy(pgt);
		kfree(pgt);
571
	}
572 573 574 575 576 577 578 579 580
}

/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
581
 * @writable:   Whether or not to create a writable mapping
582 583
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
584
			  phys_addr_t pa, unsigned long size, bool writable)
585
{
586
	phys_addr_t addr;
587
	int ret = 0;
588
	struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
589 590 591 592
	struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
				     KVM_PGTABLE_PROT_R |
				     (writable ? KVM_PGTABLE_PROT_W : 0);
593

594 595
	size += offset_in_page(guest_ipa);
	guest_ipa &= PAGE_MASK;
596

597
	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
598 599
		ret = kvm_mmu_topup_memory_cache(&cache,
						 kvm_mmu_cache_min_pages(kvm));
600
		if (ret)
601 602
			break;

603
		spin_lock(&kvm->mmu_lock);
604 605
		ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
					     &cache);
606 607
		spin_unlock(&kvm->mmu_lock);
		if (ret)
608
			break;
609

610
		pa += PAGE_SIZE;
611 612
	}

613
	kvm_mmu_free_memory_cache(&cache);
614 615 616
	return ret;
}

617 618
/**
 * stage2_wp_range() - write protect stage2 memory region range
619
 * @mmu:        The KVM stage-2 MMU pointer
620 621 622
 * @addr:	Start address of range
 * @end:	End address of range
 */
623
static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
624
{
625
	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
626
	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
627 628 629 630 631 632 633 634 635
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
636
 * all present PUD, PMD and PTEs are write protected in the memory region.
637 638 639 640 641
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
642
static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
643
{
644 645
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
646 647 648 649 650 651 652
	phys_addr_t start, end;

	if (WARN_ON_ONCE(!memslot))
		return;

	start = memslot->base_gfn << PAGE_SHIFT;
	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
653 654

	spin_lock(&kvm->mmu_lock);
655
	stage2_wp_range(&kvm->arch.mmu, start, end);
656 657 658
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
659 660

/**
661
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
662 663 664 665 666 667 668 669 670
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
671
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
672 673 674 675 676 677 678
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

679
	stage2_wp_range(&kvm->arch.mmu, start, end);
680
}
681

682 683 684 685 686 687 688 689 690 691 692 693 694 695
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

696
static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
697
{
698
	__clean_dcache_guest_page(pfn, size);
699 700
}

701
static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
702
{
703
	__invalidate_icache_guest_page(pfn, size);
704 705
}

706
static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
707
{
708
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
709 710
}

711 712 713
static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
					       unsigned long hva,
					       unsigned long map_size)
714
{
715
	gpa_t gpa_start;
716 717 718
	hva_t uaddr_start, uaddr_end;
	size_t size;

719 720 721 722
	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
	if (map_size == PAGE_SIZE)
		return true;

723 724 725 726 727 728 729 730 731
	size = memslot->npages * PAGE_SIZE;

	gpa_start = memslot->base_gfn << PAGE_SHIFT;

	uaddr_start = memslot->userspace_addr;
	uaddr_end = uaddr_start + size;

	/*
	 * Pages belonging to memslots that don't have the same alignment
732 733
	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
734 735 736 737 738
	 *
	 * Consider a layout like the following:
	 *
	 *    memslot->userspace_addr:
	 *    +-----+--------------------+--------------------+---+
739
	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
740 741
	 *    +-----+--------------------+--------------------+---+
	 *
742
	 *    memslot->base_gfn << PAGE_SHIFT:
743
	 *      +---+--------------------+--------------------+-----+
744
	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
745 746
	 *      +---+--------------------+--------------------+-----+
	 *
747
	 * If we create those stage-2 blocks, we'll end up with this incorrect
748 749 750 751 752
	 * mapping:
	 *   d -> f
	 *   e -> g
	 *   f -> h
	 */
753
	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
754 755 756 757
		return false;

	/*
	 * Next, let's make sure we're not trying to map anything not covered
758 759
	 * by the memslot. This means we have to prohibit block size mappings
	 * for the beginning and end of a non-block aligned and non-block sized
760 761 762 763 764 765 766 767
	 * memory slot (illustrated by the head and tail parts of the
	 * userspace view above containing pages 'abcde' and 'xyz',
	 * respectively).
	 *
	 * Note that it doesn't matter if we do the check using the
	 * userspace_addr or the base_gfn, as both are equally aligned (per
	 * the check above) and equally sized.
	 */
768 769
	return (hva & ~(map_size - 1)) >= uaddr_start &&
	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
770 771
}

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
/*
 * Check if the given hva is backed by a transparent huge page (THP) and
 * whether it can be mapped using block mapping in stage2. If so, adjust
 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
 * supported. This will need to be updated to support other THP sizes.
 *
 * Returns the size of the mapping.
 */
static unsigned long
transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
			    unsigned long hva, kvm_pfn_t *pfnp,
			    phys_addr_t *ipap)
{
	kvm_pfn_t pfn = *pfnp;

	/*
	 * Make sure the adjustment is done only for THP pages. Also make
	 * sure that the HVA and IPA are sufficiently aligned and that the
	 * block map is contained within the memslot.
	 */
	if (kvm_is_transparent_hugepage(pfn) &&
	    fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		*ipap &= PMD_MASK;
		kvm_release_pfn_clean(pfn);
		pfn &= ~(PTRS_PER_PMD - 1);
		kvm_get_pfn(pfn);
		*pfnp = pfn;

		return PMD_SIZE;
	}

	/* Use page mapping if we cannot use block mapping. */
	return PAGE_SIZE;
}

825
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
826
			  struct kvm_memory_slot *memslot, unsigned long hva,
827 828
			  unsigned long fault_status)
{
829
	int ret = 0;
830
	bool write_fault, writable, force_pte = false;
831 832
	bool exec_fault;
	bool device = false;
833
	unsigned long mmu_seq;
834
	struct kvm *kvm = vcpu->kvm;
835
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
836
	struct vm_area_struct *vma;
837
	short vma_shift;
838
	gfn_t gfn;
D
Dan Williams 已提交
839
	kvm_pfn_t pfn;
840
	bool logging_active = memslot_is_logging(memslot);
841 842
	unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
	unsigned long vma_pagesize, fault_granule;
843 844
	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
	struct kvm_pgtable *pgt;
845

846
	fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
847
	write_fault = kvm_is_write_fault(vcpu);
848
	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
849 850 851
	VM_BUG_ON(write_fault && exec_fault);

	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
852 853 854 855
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

856
	/* Let's check if we will get back a huge page backed by hugetlbfs */
857
	mmap_read_lock(current->mm);
858
	vma = find_vma_intersection(current->mm, hva, hva + 1);
859 860
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
861
		mmap_read_unlock(current->mm);
862 863 864
		return -EFAULT;
	}

865 866 867 868 869
	if (is_vm_hugetlb_page(vma))
		vma_shift = huge_page_shift(hstate_vma(vma));
	else
		vma_shift = PAGE_SHIFT;

870
	if (logging_active ||
871
	    (vma->vm_flags & VM_PFNMAP)) {
872
		force_pte = true;
873 874 875
		vma_shift = PAGE_SHIFT;
	}

876
	switch (vma_shift) {
877
#ifndef __PAGETABLE_PMD_FOLDED
878 879 880 881
	case PUD_SHIFT:
		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
			break;
		fallthrough;
882
#endif
883 884 885 886 887 888 889 890
	case CONT_PMD_SHIFT:
		vma_shift = PMD_SHIFT;
		fallthrough;
	case PMD_SHIFT:
		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
			break;
		fallthrough;
	case CONT_PTE_SHIFT:
891
		vma_shift = PAGE_SHIFT;
892 893 894 895 896 897
		force_pte = true;
		fallthrough;
	case PAGE_SHIFT:
		break;
	default:
		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
898 899
	}

900
	vma_pagesize = 1UL << vma_shift;
901
	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
902
		fault_ipa &= ~(vma_pagesize - 1);
903 904

	gfn = fault_ipa >> PAGE_SHIFT;
905
	mmap_read_unlock(current->mm);
906

907 908 909 910 911 912 913 914 915 916 917 918
	/*
	 * Permission faults just need to update the existing leaf entry,
	 * and so normally don't require allocations from the memcache. The
	 * only exception to this is when dirty logging is enabled at runtime
	 * and a write fault needs to collapse a block entry into a table.
	 */
	if (fault_status != FSC_PERM || (logging_active && write_fault)) {
		ret = kvm_mmu_topup_memory_cache(memcache,
						 kvm_mmu_cache_min_pages(kvm));
		if (ret)
			return ret;
	}
919 920 921 922 923 924 925

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
926
	 * unmapped afterwards, the call to kvm_unmap_gfn will take it away
927 928
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
929 930 931 932
	 *
	 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is
	 * used to avoid unnecessary overhead introduced to locate the memory
	 * slot because it's always fixed even @gfn is adjusted for huge pages.
933 934 935
	 */
	smp_rmb();

936 937
	pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
				   write_fault, &writable, NULL);
938
	if (pfn == KVM_PFN_ERR_HWPOISON) {
939
		kvm_send_hwpoison_signal(hva, vma_shift);
940 941
		return 0;
	}
942
	if (is_error_noslot_pfn(pfn))
943 944
		return -EFAULT;

945
	if (kvm_is_device_pfn(pfn)) {
946
		device = true;
947
		force_pte = true;
948
	} else if (logging_active && !write_fault) {
949 950 951 952
		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
953
		writable = false;
954
	}
955

956
	if (exec_fault && device)
957 958
		return -ENOEXEC;

959
	spin_lock(&kvm->mmu_lock);
960
	pgt = vcpu->arch.hw_mmu->pgt;
961
	if (mmu_notifier_retry(kvm, mmu_seq))
962
		goto out_unlock;
963

964 965 966 967 968 969 970
	/*
	 * If we are not forced to use page mapping, check if we are
	 * backed by a THP and thus use block mapping if possible.
	 */
	if (vma_pagesize == PAGE_SIZE && !force_pte)
		vma_pagesize = transparent_hugepage_adjust(memslot, hva,
							   &pfn, &fault_ipa);
971
	if (writable)
972
		prot |= KVM_PGTABLE_PROT_W;
973

974
	if (fault_status != FSC_PERM && !device)
975 976
		clean_dcache_guest_page(pfn, vma_pagesize);

977 978
	if (exec_fault) {
		prot |= KVM_PGTABLE_PROT_X;
979
		invalidate_icache_guest_page(pfn, vma_pagesize);
980
	}
981

982 983 984 985
	if (device)
		prot |= KVM_PGTABLE_PROT_DEVICE;
	else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
		prot |= KVM_PGTABLE_PROT_X;
986

987 988 989 990 991 992
	/*
	 * Under the premise of getting a FSC_PERM fault, we just need to relax
	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
	 * kvm_pgtable_stage2_map() should be called to change block size.
	 */
	if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
993
		ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
994
	} else {
995 996 997
		ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
					     __pfn_to_phys(pfn), prot,
					     memcache);
998
	}
999

1000 1001 1002
	/* Mark the page dirty only if the fault is handled successfully */
	if (writable && !ret) {
		kvm_set_pfn_dirty(pfn);
1003
		mark_page_dirty_in_slot(kvm, memslot, gfn);
1004 1005
	}

1006
out_unlock:
1007
	spin_unlock(&kvm->mmu_lock);
1008
	kvm_set_pfn_accessed(pfn);
1009
	kvm_release_pfn_clean(pfn);
1010
	return ret != -EAGAIN ? ret : 0;
1011 1012
}

1013
/* Resolve the access fault by making the page young again. */
1014 1015
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
1016 1017 1018
	pte_t pte;
	kvm_pte_t kpte;
	struct kvm_s2_mmu *mmu;
1019 1020 1021 1022

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);
1023 1024
	mmu = vcpu->arch.hw_mmu;
	kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1025
	spin_unlock(&vcpu->kvm->mmu_lock);
1026 1027 1028 1029

	pte = __pte(kpte);
	if (pte_valid(pte))
		kvm_set_pfn_accessed(pte_pfn(pte));
1030 1031
}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
1043
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1044
{
1045 1046 1047
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
1048 1049
	unsigned long hva;
	bool is_iabt, write_fault, writable;
1050 1051 1052
	gfn_t gfn;
	int ret, idx;

1053 1054 1055
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);

	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1056
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1057

1058
	/* Synchronous External Abort? */
1059
	if (kvm_vcpu_abt_issea(vcpu)) {
1060 1061 1062 1063
		/*
		 * For RAS the host kernel may handle this abort.
		 * There is no need to pass the error into the guest.
		 */
1064
		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1065
			kvm_inject_vabt(vcpu);
1066 1067

		return 1;
1068 1069
	}

G
Gavin Shan 已提交
1070
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1071
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1072 1073

	/* Check the stage-2 fault is trans. fault or write fault */
1074 1075
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
1076 1077 1078
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
G
Gavin Shan 已提交
1079
			(unsigned long)kvm_vcpu_get_esr(vcpu));
1080 1081 1082 1083 1084 1085
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
1086 1087
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1088
	write_fault = kvm_is_write_fault(vcpu);
1089
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1090 1091 1092 1093 1094 1095
		/*
		 * The guest has put either its instructions or its page-tables
		 * somewhere it shouldn't have. Userspace won't be able to do
		 * anything about this (there's no syndrome for a start), so
		 * re-inject the abort back into the guest.
		 */
1096
		if (is_iabt) {
1097 1098
			ret = -ENOEXEC;
			goto out;
1099 1100
		}

1101
		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1102 1103 1104 1105 1106
			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
			ret = 1;
			goto out_unlock;
		}

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
1117
		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1118
			kvm_incr_pc(vcpu);
1119 1120 1121 1122
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1123 1124 1125 1126 1127 1128 1129
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1130
		ret = io_mem_abort(vcpu, fault_ipa);
1131 1132 1133
		goto out_unlock;
	}

1134
	/* Userspace should not be able to register out-of-bounds IPAs */
1135
	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1136

1137 1138 1139 1140 1141 1142
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

1143
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1144 1145
	if (ret == 0)
		ret = 1;
1146 1147 1148 1149 1150
out:
	if (ret == -ENOEXEC) {
		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
		ret = 1;
	}
1151 1152 1153
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
1154 1155
}

1156
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1157
{
1158
	if (!kvm->arch.mmu.pgt)
1159
		return false;
1160

1161 1162 1163
	__unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
			     (range->end - range->start) << PAGE_SHIFT,
			     range->may_block);
1164

1165
	return false;
1166 1167
}

1168
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1169
{
1170 1171
	kvm_pfn_t pfn = pte_pfn(range->pte);

1172
	if (!kvm->arch.mmu.pgt)
1173
		return false;
1174

1175
	WARN_ON(range->end - range->start != 1);
1176

1177 1178 1179 1180 1181
	/*
	 * We've moved a page around, probably through CoW, so let's treat it
	 * just like a translation fault and clean the cache to the PoC.
	 */
	clean_dcache_guest_page(pfn, PAGE_SIZE);
1182

1183
	/*
1184
	 * The MMU notifiers will have unmapped a huge PMD before calling
1185
	 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1186 1187
	 * therefore we never need to clear out a huge PMD through this
	 * calling path and a memcache is not required.
1188
	 */
1189 1190 1191 1192
	kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
			       PAGE_SIZE, __pfn_to_phys(pfn),
			       KVM_PGTABLE_PROT_R, NULL);

1193
	return false;
1194 1195
}

1196
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1197
{
1198 1199 1200
	u64 size = (range->end - range->start) << PAGE_SHIFT;
	kvm_pte_t kpte;
	pte_t pte;
1201

1202
	if (!kvm->arch.mmu.pgt)
1203
		return false;
1204

1205
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1206 1207 1208

	kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt,
					range->start << PAGE_SHIFT);
1209 1210
	pte = __pte(kpte);
	return pte_valid(pte) && pte_young(pte);
1211 1212
}

1213
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1214
{
1215
	if (!kvm->arch.mmu.pgt)
1216
		return false;
1217

1218 1219
	return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt,
					   range->start << PAGE_SHIFT);
1220 1221
}

1222 1223
phys_addr_t kvm_mmu_get_httbr(void)
{
1224
	return __pa(hyp_pgtable->pgd);
1225 1226
}

1227 1228 1229 1230 1231
phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

1232
static int kvm_map_idmap_text(void)
1233
{
1234 1235 1236
	unsigned long size = hyp_idmap_end - hyp_idmap_start;
	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
					PAGE_HYP_EXEC);
1237 1238 1239 1240 1241 1242 1243
	if (err)
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);

	return err;
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
static void *kvm_hyp_zalloc_page(void *arg)
{
	return (void *)get_zeroed_page(GFP_KERNEL);
}

static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
	.zalloc_page		= kvm_hyp_zalloc_page,
	.get_page		= kvm_host_get_page,
	.put_page		= kvm_host_put_page,
	.phys_to_virt		= kvm_host_va,
	.virt_to_phys		= kvm_host_pa,
};

1257
int kvm_mmu_init(u32 *hyp_va_bits)
1258
{
1259 1260
	int err;

1261
	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1262
	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1263
	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1264
	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1265
	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1266

1267 1268 1269 1270 1271
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1272

1273 1274
	*hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
	kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1275 1276 1277 1278
	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
	kvm_debug("HYP VA range: %lx:%lx\n",
		  kern_hyp_va(PAGE_OFFSET),
		  kern_hyp_va((unsigned long)high_memory - 1));
1279

M
Marc Zyngier 已提交
1280
	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1281
	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1282
	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1283 1284 1285 1286 1287 1288 1289 1290 1291
		/*
		 * The idmap page is intersecting with the VA space,
		 * it is not safe to continue further.
		 */
		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
		err = -EINVAL;
		goto out;
	}

1292 1293 1294
	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
	if (!hyp_pgtable) {
		kvm_err("Hyp mode page-table not allocated\n");
1295 1296 1297 1298
		err = -ENOMEM;
		goto out;
	}

1299
	err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1300 1301
	if (err)
		goto out_free_pgtable;
1302

1303 1304 1305
	err = kvm_map_idmap_text();
	if (err)
		goto out_destroy_pgtable;
1306

1307
	io_map_base = hyp_idmap_start;
1308
	return 0;
1309 1310 1311 1312 1313 1314

out_destroy_pgtable:
	kvm_pgtable_hyp_destroy(hyp_pgtable);
out_free_pgtable:
	kfree(hyp_pgtable);
	hyp_pgtable = NULL;
1315 1316
out:
	return err;
1317
}
1318 1319

void kvm_arch_commit_memory_region(struct kvm *kvm,
1320
				   const struct kvm_userspace_memory_region *mem,
1321
				   struct kvm_memory_slot *old,
1322
				   const struct kvm_memory_slot *new,
1323 1324
				   enum kvm_mr_change change)
{
1325 1326
	/*
	 * At this point memslot has been committed and there is an
F
Fuad Tabba 已提交
1327
	 * allocated dirty_bitmap[], dirty pages will be tracked while the
1328 1329
	 * memory slot is write protected.
	 */
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
		/*
		 * If we're with initial-all-set, we don't need to write
		 * protect any pages because they're all reported as dirty.
		 * Huge pages and normal pages will be write protect gradually.
		 */
		if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
			kvm_mmu_wp_memory_region(kvm, mem->slot);
		}
	}
1340 1341 1342 1343
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
1344
				   const struct kvm_userspace_memory_region *mem,
1345 1346
				   enum kvm_mr_change change)
{
1347 1348 1349 1350 1351
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

1352 1353
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
1354 1355
		return 0;

1356 1357 1358 1359
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
1360
	if ((memslot->base_gfn + memslot->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1361 1362
		return -EFAULT;

1363
	mmap_read_lock(current->mm);
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
1377
		struct vm_area_struct *vma;
1378 1379
		hva_t vm_start, vm_end;

1380 1381
		vma = find_vma_intersection(current->mm, hva, reg_end);
		if (!vma)
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
1393 1394 1395 1396
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
1397

1398
			/* IO region dirty page logging not allowed */
1399 1400 1401 1402
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
				ret = -EINVAL;
				goto out;
			}
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

1413
	if (change == KVM_MR_FLAGS_ONLY)
1414
		goto out;
1415

1416 1417
	spin_lock(&kvm->mmu_lock);
	if (ret)
1418
		unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size);
1419
	else if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1420 1421
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
1422
out:
1423
	mmap_read_unlock(current->mm);
1424
	return ret;
1425 1426
}

1427
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1428 1429 1430
{
}

1431
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1432 1433 1434 1435 1436
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
1437
	kvm_free_stage2_pgd(&kvm->arch.mmu);
1438 1439 1440 1441 1442
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
1443 1444 1445 1446
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
1447
	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1448
	spin_unlock(&kvm->mmu_lock);
1449
}
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
1481
	unsigned long hcr = *vcpu_hcr(vcpu);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
1496
		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
1514
		*vcpu_hcr(vcpu) &= ~HCR_TVM;
1515 1516 1517

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}