mmu.c 66.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */
6 7 8 9

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
10
#include <linux/hugetlb.h>
11
#include <linux/sched/signal.h>
C
Christoffer Dall 已提交
12
#include <trace/events/kvm.h>
13
#include <asm/pgalloc.h>
14
#include <asm/cacheflush.h>
15 16
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
17
#include <asm/kvm_ras.h>
18
#include <asm/kvm_asm.h>
19
#include <asm/kvm_emulate.h>
20
#include <asm/virt.h>
21 22

#include "trace.h"
23

24
static pgd_t *boot_hyp_pgd;
25
static pgd_t *hyp_pgd;
26
static pgd_t *merged_hyp_pgd;
27 28
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

29 30 31 32
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

33 34
static unsigned long io_map_base;

35
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
36

37 38 39
#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)

40 41 42 43 44
static bool is_iomap(unsigned long flags)
{
	return flags & KVM_S2PTE_FLAG_IS_IOMAP;
}

45 46 47
static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
48 49 50 51 52 53 54 55 56 57 58
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
59
}
60

61
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
62
{
63
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
64 65
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/*
 * D-Cache management functions. They take the page table entries by
 * value, as they are flushing the cache using the kernel mapping (or
 * kmap on 32bit).
 */
static void kvm_flush_dcache_pte(pte_t pte)
{
	__kvm_flush_dcache_pte(pte);
}

static void kvm_flush_dcache_pmd(pmd_t pmd)
{
	__kvm_flush_dcache_pmd(pmd);
}

static void kvm_flush_dcache_pud(pud_t pud)
{
	__kvm_flush_dcache_pud(pud);
}

86 87 88 89 90
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

91 92 93 94 95 96
/**
 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pmd:	pmd pointer for IPA
 *
97
 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
98 99 100
 */
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
101
	if (!pmd_thp_or_huge(*pmd))
102 103 104 105 106 107 108
		return;

	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pmd));
}

109 110 111 112 113 114
/**
 * stage2_dissolve_pud() - clear and flush huge PUD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pud:	pud pointer for IPA
 *
115
 * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
116 117 118 119 120 121 122 123 124 125 126
 */
static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
{
	if (!stage2_pud_huge(kvm, *pudp))
		return;

	stage2_pud_clear(kvm, pudp);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pudp));
}

127 128 129 130 131 132 133 134 135
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
136
		page = (void *)__get_free_page(GFP_PGTABLE_USER);
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

159
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
160
{
161
	p4d_t *p4d_table __maybe_unused = stage2_p4d_offset(kvm, pgd, 0UL);
162
	stage2_pgd_clear(kvm, pgd);
163
	kvm_tlb_flush_vmid_ipa(kvm, addr);
164
	stage2_p4d_free(kvm, p4d_table);
165
	put_page(virt_to_page(pgd));
166 167
}

168 169 170 171 172 173 174 175 176
static void clear_stage2_p4d_entry(struct kvm *kvm, p4d_t *p4d, phys_addr_t addr)
{
	pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, p4d, 0);
	stage2_p4d_clear(kvm, p4d);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	stage2_pud_free(kvm, pud_table);
	put_page(virt_to_page(p4d));
}

177
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
178
{
179 180 181
	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
	VM_BUG_ON(stage2_pud_huge(kvm, *pud));
	stage2_pud_clear(kvm, pud);
182
	kvm_tlb_flush_vmid_ipa(kvm, addr);
183
	stage2_pmd_free(kvm, pmd_table);
184 185
	put_page(virt_to_page(pud));
}
186

187
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
188
{
189
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
190
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
191 192
	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
193
	free_page((unsigned long)pte_table);
194 195 196
	put_page(virt_to_page(pmd));
}

197 198 199 200 201 202 203 204 205 206 207 208
static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
{
	WRITE_ONCE(*ptep, new_pte);
	dsb(ishst);
}

static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
{
	WRITE_ONCE(*pmdp, new_pmd);
	dsb(ishst);
}

209 210 211 212 213 214 215 216 217 218 219
static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
{
	kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
}

static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
{
	WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
	dsb(ishst);
}

220
static inline void kvm_p4d_populate(p4d_t *p4dp, pud_t *pudp)
221
{
222
	WRITE_ONCE(*p4dp, kvm_mk_p4d(pudp));
223 224 225
	dsb(ishst);
}

226 227 228 229 230 231 232 233
static inline void kvm_pgd_populate(pgd_t *pgdp, p4d_t *p4dp)
{
#ifndef __PAGETABLE_P4D_FOLDED
	WRITE_ONCE(*pgdp, kvm_mk_pgd(p4dp));
	dsb(ishst);
#endif
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 * the IO subsystem will never hit in the cache.
253 254 255 256
 *
 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
 * we then fully enforce cacheability of RAM, no matter what the guest
 * does.
257
 */
258
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
259
		       phys_addr_t addr, phys_addr_t end)
260
{
261 262 263 264 265 266
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
267 268
			pte_t old_pte = *pte;

269 270
			kvm_set_pte(pte, __pte(0));
			kvm_tlb_flush_vmid_ipa(kvm, addr);
271 272

			/* No need to invalidate the cache for device mappings */
273
			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
274 275 276
				kvm_flush_dcache_pte(old_pte);

			put_page(virt_to_page(pte));
277 278 279
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

280
	if (stage2_pte_table_empty(kvm, start_pte))
281
		clear_stage2_pmd_entry(kvm, pmd, start_addr);
282 283
}

284
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
285
		       phys_addr_t addr, phys_addr_t end)
286
{
287 288
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
289

290
	start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
291
	do {
292
		next = stage2_pmd_addr_end(kvm, addr, end);
293
		if (!pmd_none(*pmd)) {
294
			if (pmd_thp_or_huge(*pmd)) {
295 296
				pmd_t old_pmd = *pmd;

297 298
				pmd_clear(pmd);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
299 300 301

				kvm_flush_dcache_pmd(old_pmd);

302 303
				put_page(virt_to_page(pmd));
			} else {
304
				unmap_stage2_ptes(kvm, pmd, addr, next);
305
			}
306
		}
307
	} while (pmd++, addr = next, addr != end);
308

309
	if (stage2_pmd_table_empty(kvm, start_pmd))
310
		clear_stage2_pud_entry(kvm, pud, start_addr);
311
}
312

313
static void unmap_stage2_puds(struct kvm *kvm, p4d_t *p4d,
314 315 316 317
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
318

319
	start_pud = pud = stage2_pud_offset(kvm, p4d, addr);
320
	do {
321 322 323
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
			if (stage2_pud_huge(kvm, *pud)) {
324 325
				pud_t old_pud = *pud;

326
				stage2_pud_clear(kvm, pud);
327
				kvm_tlb_flush_vmid_ipa(kvm, addr);
328
				kvm_flush_dcache_pud(old_pud);
329 330
				put_page(virt_to_page(pud));
			} else {
331
				unmap_stage2_pmds(kvm, pud, addr, next);
332 333
			}
		}
334
	} while (pud++, addr = next, addr != end);
335

336
	if (stage2_pud_table_empty(kvm, start_pud))
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
		clear_stage2_p4d_entry(kvm, p4d, start_addr);
}

static void unmap_stage2_p4ds(struct kvm *kvm, pgd_t *pgd,
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	p4d_t *p4d, *start_p4d;

	start_p4d = p4d = stage2_p4d_offset(kvm, pgd, addr);
	do {
		next = stage2_p4d_addr_end(kvm, addr, end);
		if (!stage2_p4d_none(kvm, *p4d))
			unmap_stage2_puds(kvm, p4d, addr, next);
	} while (p4d++, addr = next, addr != end);

	if (stage2_p4d_table_empty(kvm, start_p4d))
354
		clear_stage2_pgd_entry(kvm, pgd, start_addr);
355 356
}

357 358 359 360 361 362 363 364 365 366 367 368
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
369 370 371 372 373
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

374
	assert_spin_locked(&kvm->mmu_lock);
375 376
	WARN_ON(size & ~PAGE_MASK);

377
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
378
	do {
379 380 381 382 383 384 385
		/*
		 * Make sure the page table is still active, as another thread
		 * could have possibly freed the page table, while we released
		 * the lock.
		 */
		if (!READ_ONCE(kvm->arch.pgd))
			break;
386 387
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (!stage2_pgd_none(kvm, *pgd))
388
			unmap_stage2_p4ds(kvm, pgd, addr, next);
389 390 391 392 393 394
		/*
		 * If the range is too large, release the kvm->mmu_lock
		 * to prevent starvation and lockup detector warnings.
		 */
		if (next != end)
			cond_resched_lock(&kvm->mmu_lock);
395
	} while (pgd++, addr = next, addr != end);
396 397
}

398 399 400 401 402 403 404
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
405
		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
406
			kvm_flush_dcache_pte(*pte);
407 408 409 410 411 412 413 414 415
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

416
	pmd = stage2_pmd_offset(kvm, pud, addr);
417
	do {
418
		next = stage2_pmd_addr_end(kvm, addr, end);
419
		if (!pmd_none(*pmd)) {
420
			if (pmd_thp_or_huge(*pmd))
421 422
				kvm_flush_dcache_pmd(*pmd);
			else
423 424 425 426 427
				stage2_flush_ptes(kvm, pmd, addr, next);
		}
	} while (pmd++, addr = next, addr != end);
}

428
static void stage2_flush_puds(struct kvm *kvm, p4d_t *p4d,
429 430 431 432 433
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

434
	pud = stage2_pud_offset(kvm, p4d, addr);
435
	do {
436 437 438
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
			if (stage2_pud_huge(kvm, *pud))
439 440
				kvm_flush_dcache_pud(*pud);
			else
441 442 443 444 445
				stage2_flush_pmds(kvm, pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

446 447 448 449 450 451 452 453 454 455 456 457 458 459
static void stage2_flush_p4ds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	p4d_t *p4d;
	phys_addr_t next;

	p4d = stage2_p4d_offset(kvm, pgd, addr);
	do {
		next = stage2_p4d_addr_end(kvm, addr, end);
		if (!stage2_p4d_none(kvm, *p4d))
			stage2_flush_puds(kvm, p4d, addr, next);
	} while (p4d++, addr = next, addr != end);
}

460 461 462 463 464 465 466 467
static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

468
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
469
	do {
470 471
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (!stage2_pgd_none(kvm, *pgd))
472
			stage2_flush_p4ds(kvm, pgd, addr, next);
473 474 475

		if (next != end)
			cond_resched_lock(&kvm->mmu_lock);
476 477 478 479 480 481 482 483 484 485
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
486
static void stage2_flush_vm(struct kvm *kvm)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

503 504
static void clear_hyp_pgd_entry(pgd_t *pgd)
{
505
	p4d_t *p4d_table __maybe_unused = p4d_offset(pgd, 0UL);
506
	pgd_clear(pgd);
507
	p4d_free(NULL, p4d_table);
508 509 510
	put_page(virt_to_page(pgd));
}

511 512 513 514 515 516 517 518 519
static void clear_hyp_p4d_entry(p4d_t *p4d)
{
	pud_t *pud_table __maybe_unused = pud_offset(p4d, 0UL);
	VM_BUG_ON(p4d_huge(*p4d));
	p4d_clear(p4d);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(p4d));
}

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
static void clear_hyp_pud_entry(pud_t *pud)
{
	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}

static void clear_hyp_pmd_entry(pmd_t *pmd)
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
	pmd_clear(pmd);
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			kvm_set_pte(pte, __pte(0));
			put_page(virt_to_page(pte));
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

	if (hyp_pte_table_empty(start_pte))
		clear_hyp_pmd_entry(pmd);
}

static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pmd_t *pmd, *start_pmd;

	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* Hyp doesn't use huge pmds */
		if (!pmd_none(*pmd))
			unmap_hyp_ptes(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);

	if (hyp_pmd_table_empty(start_pmd))
		clear_hyp_pud_entry(pud);
}

571
static void unmap_hyp_puds(p4d_t *p4d, phys_addr_t addr, phys_addr_t end)
572 573 574 575
{
	phys_addr_t next;
	pud_t *pud, *start_pud;

576
	start_pud = pud = pud_offset(p4d, addr);
577 578 579 580 581 582 583 584
	do {
		next = pud_addr_end(addr, end);
		/* Hyp doesn't use huge puds */
		if (!pud_none(*pud))
			unmap_hyp_pmds(pud, addr, next);
	} while (pud++, addr = next, addr != end);

	if (hyp_pud_table_empty(start_pud))
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
		clear_hyp_p4d_entry(p4d);
}

static void unmap_hyp_p4ds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	p4d_t *p4d, *start_p4d;

	start_p4d = p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		/* Hyp doesn't use huge p4ds */
		if (!p4d_none(*p4d))
			unmap_hyp_puds(p4d, addr, next);
	} while (p4d++, addr = next, addr != end);

	if (hyp_p4d_table_empty(start_p4d))
602 603 604
		clear_hyp_pgd_entry(pgd);
}

605 606 607 608 609 610 611
static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
{
	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
}

static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
			      phys_addr_t start, u64 size)
612 613 614 615 616 617 618 619 620
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

	/*
	 * We don't unmap anything from HYP, except at the hyp tear down.
	 * Hence, we don't have to invalidate the TLBs here.
	 */
621
	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
622 623 624
	do {
		next = pgd_addr_end(addr, end);
		if (!pgd_none(*pgd))
625
			unmap_hyp_p4ds(pgd, addr, next);
626 627 628
	} while (pgd++, addr = next, addr != end);
}

629 630 631 632 633 634 635 636 637 638
static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
}

static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
}

639
/**
640
 * free_hyp_pgds - free Hyp-mode page tables
641
 *
642 643
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
644
 * PAGE_OFFSET), or device mappings in the idmap range.
645
 *
646 647
 * boot_hyp_pgd should only map the idmap range, and is only used in
 * the extended idmap case.
648
 */
649
void free_hyp_pgds(void)
650
{
651 652
	pgd_t *id_pgd;

653
	mutex_lock(&kvm_hyp_pgd_mutex);
654

655 656 657 658 659 660 661 662 663 664
	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;

	if (id_pgd) {
		/* In case we never called hyp_mmu_init() */
		if (!io_map_base)
			io_map_base = hyp_idmap_start;
		unmap_hyp_idmap_range(id_pgd, io_map_base,
				      hyp_idmap_start + PAGE_SIZE - io_map_base);
	}

665 666 667 668 669
	if (boot_hyp_pgd) {
		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
		boot_hyp_pgd = NULL;
	}

670
	if (hyp_pgd) {
671 672
		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
				(uintptr_t)high_memory - PAGE_OFFSET);
673

674
		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
675
		hyp_pgd = NULL;
676
	}
677 678 679 680 681
	if (merged_hyp_pgd) {
		clear_page(merged_hyp_pgd);
		free_page((unsigned long)merged_hyp_pgd);
		merged_hyp_pgd = NULL;
	}
682

683 684 685 686
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
687 688
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
689 690 691 692
{
	pte_t *pte;
	unsigned long addr;

693 694
	addr = start;
	do {
695
		pte = pte_offset_kernel(pmd, addr);
696
		kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
697
		get_page(virt_to_page(pte));
698
		pfn++;
699
	} while (addr += PAGE_SIZE, addr != end);
700 701 702
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
703 704
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
705 706 707 708 709
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

710 711
	addr = start;
	do {
712
		pmd = pmd_offset(pud, addr);
713 714 715 716

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
717
			pte = pte_alloc_one_kernel(NULL);
718 719 720 721
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
722
			kvm_pmd_populate(pmd, pte);
723
			get_page(virt_to_page(pmd));
724 725 726 727
		}

		next = pmd_addr_end(addr, end);

728 729
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
730
	} while (addr = next, addr != end);
731 732 733 734

	return 0;
}

735
static int create_hyp_pud_mappings(p4d_t *p4d, unsigned long start,
736 737 738 739 740 741 742 743 744 745
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
746
		pud = pud_offset(p4d, addr);
747 748 749 750 751 752 753

		if (pud_none_or_clear_bad(pud)) {
			pmd = pmd_alloc_one(NULL, addr);
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				return -ENOMEM;
			}
754
			kvm_pud_populate(pud, pmd);
755 756 757 758 759 760 761 762 763 764 765 766 767
			get_page(virt_to_page(pud));
		}

		next = pud_addr_end(addr, end);
		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
static int create_hyp_p4d_mappings(pgd_t *pgd, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	p4d_t *p4d;
	pud_t *pud;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
		p4d = p4d_offset(pgd, addr);

		if (p4d_none(*p4d)) {
			pud = pud_alloc_one(NULL, addr);
			if (!pud) {
				kvm_err("Cannot allocate Hyp pud\n");
				return -ENOMEM;
			}
			kvm_p4d_populate(p4d, pud);
			get_page(virt_to_page(p4d));
		}

		next = p4d_addr_end(addr, end);
		ret = create_hyp_pud_mappings(p4d, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

801
static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
802 803
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
804 805
{
	pgd_t *pgd;
806
	p4d_t *p4d;
807 808 809 810
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
811 812 813
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
814
		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
815

816
		if (pgd_none(*pgd)) {
817 818 819
			p4d = p4d_alloc_one(NULL, addr);
			if (!p4d) {
				kvm_err("Cannot allocate Hyp p4d\n");
820 821 822
				err = -ENOMEM;
				goto out;
			}
823
			kvm_pgd_populate(pgd, p4d);
824
			get_page(virt_to_page(pgd));
825 826 827
		}

		next = pgd_addr_end(addr, end);
828
		err = create_hyp_p4d_mappings(pgd, addr, next, pfn, prot);
829 830
		if (err)
			goto out;
831
		pfn += (next - addr) >> PAGE_SHIFT;
832
	} while (addr = next, addr != end);
833 834 835 836 837
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

838 839 840 841 842 843 844 845 846 847 848
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

849
/**
850
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
851 852
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
853
 * @prot:	The protection to be applied to this range
854
 *
855 856 857
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
858
 */
859
int create_hyp_mappings(void *from, void *to, pgprot_t prot)
860
{
861 862
	phys_addr_t phys_addr;
	unsigned long virt_addr;
M
Marc Zyngier 已提交
863 864
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
865

866 867 868
	if (is_kernel_in_hyp_mode())
		return 0;

869 870
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
871

872 873
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
874

875
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
876 877
		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
					    virt_addr, virt_addr + PAGE_SIZE,
878
					    __phys_to_pfn(phys_addr),
879
					    prot);
880 881 882 883 884
		if (err)
			return err;
	}

	return 0;
885 886
}

887 888
static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
					unsigned long *haddr, pgprot_t prot)
889
{
890 891 892
	pgd_t *pgd = hyp_pgd;
	unsigned long base;
	int ret = 0;
893

894
	mutex_lock(&kvm_hyp_pgd_mutex);
895

896
	/*
F
Fuad Tabba 已提交
897
	 * This assumes that we have enough space below the idmap
898 899 900 901 902 903 904 905
	 * page to allocate our VAs. If not, the check below will
	 * kick. A potential alternative would be to detect that
	 * overflow and switch to an allocation above the idmap.
	 *
	 * The allocated size is always a multiple of PAGE_SIZE.
	 */
	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
	base = io_map_base - size;
906

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
	/*
	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
	 * allocating the new area, as it would indicate we've
	 * overflowed the idmap/IO address range.
	 */
	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
		ret = -ENOMEM;
	else
		io_map_base = base;

	mutex_unlock(&kvm_hyp_pgd_mutex);

	if (ret)
		goto out;

	if (__kvm_cpu_uses_extended_idmap())
		pgd = boot_hyp_pgd;

	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
				    base, base + size,
927
				    __phys_to_pfn(phys_addr), prot);
928 929 930
	if (ret)
		goto out;

931
	*haddr = base + offset_in_page(phys_addr);
932 933

out:
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
	return ret;
}

/**
 * create_hyp_io_mappings - Map IO into both kernel and HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @kaddr:	Kernel VA for this mapping
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
			   void __iomem **kaddr,
			   void __iomem **haddr)
{
	unsigned long addr;
	int ret;

	*kaddr = ioremap(phys_addr, size);
	if (!*kaddr)
		return -ENOMEM;

	if (is_kernel_in_hyp_mode()) {
		*haddr = *kaddr;
		return 0;
	}

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_DEVICE);
962 963 964
	if (ret) {
		iounmap(*kaddr);
		*kaddr = NULL;
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
		*haddr = NULL;
		return ret;
	}

	*haddr = (void __iomem *)addr;
	return 0;
}

/**
 * create_hyp_exec_mappings - Map an executable range into HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
			     void **haddr)
{
	unsigned long addr;
	int ret;

	BUG_ON(is_kernel_in_hyp_mode());

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_EXEC);
	if (ret) {
		*haddr = NULL;
991 992 993
		return ret;
	}

994
	*haddr = (void *)addr;
995
	return 0;
996 997
}

998 999 1000 1001
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
1002 1003
 * Allocates only the stage-2 HW PGD level table(s) of size defined by
 * stage2_pgd_size(kvm).
1004 1005 1006 1007 1008 1009
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
1010
	phys_addr_t pgd_phys;
1011 1012 1013 1014 1015 1016 1017
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

1018
	/* Allocate the HW PGD, making sure that each page gets its own refcount */
1019
	pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
1020
	if (!pgd)
1021 1022
		return -ENOMEM;

1023 1024 1025 1026
	pgd_phys = virt_to_phys(pgd);
	if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
		return -EINVAL;

1027
	kvm->arch.pgd = pgd;
1028
	kvm->arch.pgd_phys = pgd_phys;
1029 1030 1031
	return 0;
}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
F
Fuad Tabba 已提交
1077
 * Go through the memregions and unmap any regular RAM
1078 1079 1080 1081 1082 1083 1084 1085 1086
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
1087
	mmap_read_lock(current->mm);
1088 1089 1090 1091 1092 1093 1094
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
1095
	mmap_read_unlock(current->mm);
1096 1097 1098
	srcu_read_unlock(&kvm->srcu, idx);
}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
1109
	void *pgd = NULL;
1110

1111
	spin_lock(&kvm->mmu_lock);
1112
	if (kvm->arch.pgd) {
1113
		unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
1114
		pgd = READ_ONCE(kvm->arch.pgd);
1115
		kvm->arch.pgd = NULL;
1116
		kvm->arch.pgd_phys = 0;
1117
	}
1118 1119
	spin_unlock(&kvm->mmu_lock);

1120
	/* Free the HW pgd, one page at a time */
1121
	if (pgd)
1122
		free_pages_exact(pgd, stage2_pgd_size(kvm));
1123 1124
}

1125
static p4d_t *stage2_get_p4d(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1126
			     phys_addr_t addr)
1127 1128
{
	pgd_t *pgd;
1129
	p4d_t *p4d;
1130

1131 1132
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
	if (stage2_pgd_none(kvm, *pgd)) {
1133 1134
		if (!cache)
			return NULL;
1135 1136
		p4d = mmu_memory_cache_alloc(cache);
		stage2_pgd_populate(kvm, pgd, p4d);
1137 1138 1139
		get_page(virt_to_page(pgd));
	}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	return stage2_p4d_offset(kvm, pgd, addr);
}

static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
{
	p4d_t *p4d;
	pud_t *pud;

	p4d = stage2_get_p4d(kvm, cache, addr);
	if (stage2_p4d_none(kvm, *p4d)) {
		if (!cache)
			return NULL;
		pud = mmu_memory_cache_alloc(cache);
		stage2_p4d_populate(kvm, p4d, pud);
		get_page(virt_to_page(p4d));
	}

	return stage2_pud_offset(kvm, p4d, addr);
1159 1160 1161 1162 1163 1164 1165 1166 1167
}

static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pud = stage2_get_pud(kvm, cache, addr);
1168
	if (!pud || stage2_pud_huge(kvm, *pud))
1169 1170
		return NULL;

1171
	if (stage2_pud_none(kvm, *pud)) {
1172
		if (!cache)
1173
			return NULL;
1174
		pmd = mmu_memory_cache_alloc(cache);
1175
		stage2_pud_populate(kvm, pud, pmd);
1176
		get_page(virt_to_page(pud));
1177 1178
	}

1179
	return stage2_pmd_offset(kvm, pud, addr);
1180 1181 1182 1183 1184 1185 1186
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

1187
retry:
1188 1189
	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
1190

1191
	old_pmd = *pmd;
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	/*
	 * Multiple vcpus faulting on the same PMD entry, can
	 * lead to them sequentially updating the PMD with the
	 * same value. Following the break-before-make
	 * (pmd_clear() followed by tlb_flush()) process can
	 * hinder forward progress due to refaults generated
	 * on missing translations.
	 *
	 * Skip updating the page table if the entry is
	 * unchanged.
	 */
	if (pmd_val(old_pmd) == pmd_val(*new_pmd))
		return 0;

1206
	if (pmd_present(old_pmd)) {
1207
		/*
1208 1209 1210 1211 1212 1213 1214 1215
		 * If we already have PTE level mapping for this block,
		 * we must unmap it to avoid inconsistent TLB state and
		 * leaking the table page. We could end up in this situation
		 * if the memory slot was marked for dirty logging and was
		 * reverted, leaving PTE level mappings for the pages accessed
		 * during the period. So, unmap the PTE level mapping for this
		 * block and retry, as we could have released the upper level
		 * table in the process.
1216
		 *
1217 1218
		 * Normal THP split/merge follows mmu_notifier callbacks and do
		 * get handled accordingly.
1219
		 */
1220 1221 1222 1223
		if (!pmd_thp_or_huge(old_pmd)) {
			unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE);
			goto retry;
		}
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
		/*
		 * Mapping in huge pages should only happen through a
		 * fault.  If a page is merged into a transparent huge
		 * page, the individual subpages of that huge page
		 * should be unmapped through MMU notifiers before we
		 * get here.
		 *
		 * Merging of CompoundPages is not supported; they
		 * should become splitting first, unmapped, merged,
		 * and mapped back in on-demand.
		 */
1235
		WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1236
		pmd_clear(pmd);
1237
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1238
	} else {
1239
		get_page(virt_to_page(pmd));
1240 1241 1242
	}

	kvm_set_pmd(pmd, *new_pmd);
1243 1244 1245
	return 0;
}

1246 1247 1248 1249 1250
static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			       phys_addr_t addr, const pud_t *new_pudp)
{
	pud_t *pudp, old_pud;

1251
retry:
1252 1253 1254 1255 1256 1257 1258
	pudp = stage2_get_pud(kvm, cache, addr);
	VM_BUG_ON(!pudp);

	old_pud = *pudp;

	/*
	 * A large number of vcpus faulting on the same stage 2 entry,
1259 1260
	 * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
	 * Skip updating the page tables if there is no change.
1261 1262 1263 1264 1265
	 */
	if (pud_val(old_pud) == pud_val(*new_pudp))
		return 0;

	if (stage2_pud_present(kvm, old_pud)) {
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
		/*
		 * If we already have table level mapping for this block, unmap
		 * the range for this block and retry.
		 */
		if (!stage2_pud_huge(kvm, old_pud)) {
			unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE);
			goto retry;
		}

		WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
		stage2_pud_clear(kvm, pudp);
		kvm_tlb_flush_vmid_ipa(kvm, addr);
	} else {
		get_page(virt_to_page(pudp));
	}

	kvm_set_pud(pudp, *new_pudp);
	return 0;
}

1286 1287 1288 1289 1290 1291 1292 1293
/*
 * stage2_get_leaf_entry - walk the stage2 VM page tables and return
 * true if a valid and present leaf-entry is found. A pointer to the
 * leaf-entry is returned in the appropriate level variable - pudpp,
 * pmdpp, ptepp.
 */
static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
				  pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1294
{
1295
	pud_t *pudp;
1296 1297 1298
	pmd_t *pmdp;
	pte_t *ptep;

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	*pudpp = NULL;
	*pmdpp = NULL;
	*ptepp = NULL;

	pudp = stage2_get_pud(kvm, NULL, addr);
	if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
		return false;

	if (stage2_pud_huge(kvm, *pudp)) {
		*pudpp = pudp;
		return true;
	}

	pmdp = stage2_pmd_offset(kvm, pudp, addr);
1313 1314 1315
	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
		return false;

1316 1317 1318 1319
	if (pmd_thp_or_huge(*pmdp)) {
		*pmdpp = pmdp;
		return true;
	}
1320 1321 1322 1323 1324

	ptep = pte_offset_kernel(pmdp, addr);
	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
		return false;

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	*ptepp = ptep;
	return true;
}

static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
{
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;
	bool found;

	found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
	if (!found)
		return false;

	if (pudp)
		return kvm_s2pud_exec(pudp);
	else if (pmdp)
		return kvm_s2pmd_exec(pmdp);
	else
		return kvm_s2pte_exec(ptep);
1346 1347
}

1348
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1349 1350
			  phys_addr_t addr, const pte_t *new_pte,
			  unsigned long flags)
1351
{
1352
	pud_t *pud;
1353 1354
	pmd_t *pmd;
	pte_t *pte, old_pte;
1355 1356 1357 1358
	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;

	VM_BUG_ON(logging_active && !cache);
1359

1360
	/* Create stage-2 page table mapping - Levels 0 and 1 */
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	pud = stage2_get_pud(kvm, cache, addr);
	if (!pud) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

	/*
	 * While dirty page logging - dissolve huge PUD, then continue
	 * on to allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pud(kvm, addr, pud);

	if (stage2_pud_none(kvm, *pud)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pmd = mmu_memory_cache_alloc(cache);
		stage2_pud_populate(kvm, pud, pmd);
		get_page(virt_to_page(pud));
	}

	pmd = stage2_pmd_offset(kvm, pud, addr);
1386 1387 1388 1389 1390 1391 1392 1393
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

1394 1395 1396 1397 1398 1399 1400
	/*
	 * While dirty page logging - dissolve huge PMD, then continue on to
	 * allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pmd(kvm, addr, pmd);

1401
	/* Create stage-2 page mappings - Level 2 */
1402 1403 1404 1405
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
1406
		kvm_pmd_populate(pmd, pte);
1407
		get_page(virt_to_page(pmd));
1408 1409 1410
	}

	pte = pte_offset_kernel(pmd, addr);
1411 1412 1413 1414 1415 1416

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
1417
	if (pte_present(old_pte)) {
1418 1419 1420 1421
		/* Skip page table update if there is no change */
		if (pte_val(old_pte) == pte_val(*new_pte))
			return 0;

1422
		kvm_set_pte(pte, __pte(0));
1423
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1424
	} else {
1425
		get_page(virt_to_page(pte));
1426
	}
1427

1428
	kvm_set_pte(pte, *new_pte);
1429 1430 1431
	return 0;
}

1432 1433 1434 1435 1436 1437 1438
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	if (pte_young(*pte)) {
		*pte = pte_mkold(*pte);
		return 1;
	}
1439 1440
	return 0;
}
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
#else
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	return __ptep_test_and_clear_young(pte);
}
#endif

static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
}
1452

1453 1454 1455 1456 1457
static int stage2_pudp_test_and_clear_young(pud_t *pud)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pud);
}

1458 1459 1460 1461 1462 1463 1464 1465 1466
/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1467
			  phys_addr_t pa, unsigned long size, bool writable)
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1478
		pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1479

1480
		if (writable)
1481
			pte = kvm_s2pte_mkwrite(pte);
1482

1483 1484 1485
		ret = mmu_topup_memory_cache(&cache,
					     kvm_mmu_cache_min_pages(kvm),
					     KVM_NR_MEM_OBJS);
1486 1487 1488
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
1489 1490
		ret = stage2_set_pte(kvm, &cache, addr, &pte,
						KVM_S2PTE_FLAG_IS_IOMAP);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
/**
 * stage2_wp_ptes - write protect PMD range
 * @pmd:	pointer to pmd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			if (!kvm_s2pte_readonly(pte))
				kvm_set_s2pte_readonly(pte);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

/**
 * stage2_wp_pmds - write protect PUD range
1524
 * kvm:		kvm instance for the VM
1525 1526 1527 1528
 * @pud:	pointer to pud entry
 * @addr:	range start address
 * @end:	range end address
 */
1529 1530
static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
			   phys_addr_t addr, phys_addr_t end)
1531 1532 1533 1534
{
	pmd_t *pmd;
	phys_addr_t next;

1535
	pmd = stage2_pmd_offset(kvm, pud, addr);
1536 1537

	do {
1538
		next = stage2_pmd_addr_end(kvm, addr, end);
1539
		if (!pmd_none(*pmd)) {
1540
			if (pmd_thp_or_huge(*pmd)) {
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
				if (!kvm_s2pmd_readonly(pmd))
					kvm_set_s2pmd_readonly(pmd);
			} else {
				stage2_wp_ptes(pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

/**
1551
 * stage2_wp_puds - write protect P4D range
1552 1553 1554 1555
 * @pgd:	pointer to pgd entry
 * @addr:	range start address
 * @end:	range end address
 */
1556
static void  stage2_wp_puds(struct kvm *kvm, p4d_t *p4d,
1557
			    phys_addr_t addr, phys_addr_t end)
1558 1559 1560 1561
{
	pud_t *pud;
	phys_addr_t next;

1562
	pud = stage2_pud_offset(kvm, p4d, addr);
1563
	do {
1564 1565
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
1566 1567 1568 1569 1570 1571
			if (stage2_pud_huge(kvm, *pud)) {
				if (!kvm_s2pud_readonly(pud))
					kvm_set_s2pud_readonly(pud);
			} else {
				stage2_wp_pmds(kvm, pud, addr, next);
			}
1572 1573 1574 1575
		}
	} while (pud++, addr = next, addr != end);
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
/**
 * stage2_wp_p4ds - write protect PGD range
 * @pgd:	pointer to pgd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void  stage2_wp_p4ds(struct kvm *kvm, pgd_t *pgd,
			    phys_addr_t addr, phys_addr_t end)
{
	p4d_t *p4d;
	phys_addr_t next;

	p4d = stage2_p4d_offset(kvm, pgd, addr);
	do {
		next = stage2_p4d_addr_end(kvm, addr, end);
		if (!stage2_p4d_none(kvm, *p4d))
			stage2_wp_puds(kvm, p4d, addr, next);
	} while (p4d++, addr = next, addr != end);
}

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
/**
 * stage2_wp_range() - write protect stage2 memory region range
 * @kvm:	The KVM pointer
 * @addr:	Start address of range
 * @end:	End address of range
 */
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
	pgd_t *pgd;
	phys_addr_t next;

1607
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1608 1609 1610 1611
	do {
		/*
		 * Release kvm_mmu_lock periodically if the memory region is
		 * large. Otherwise, we may see kernel panics with
1612 1613
		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1614 1615 1616
		 * will also starve other vCPUs. We have to also make sure
		 * that the page tables are not freed while we released
		 * the lock.
1617
		 */
1618 1619 1620
		cond_resched_lock(&kvm->mmu_lock);
		if (!READ_ONCE(kvm->arch.pgd))
			break;
1621 1622
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (stage2_pgd_present(kvm, *pgd))
1623
			stage2_wp_p4ds(kvm, pgd, addr, next);
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	} while (pgd++, addr = next, addr != end);
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1634
 * all present PUD, PMD and PTEs are write protected in the memory region.
1635 1636 1637 1638 1639 1640 1641
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
1642 1643
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1644 1645 1646 1647 1648 1649 1650
	phys_addr_t start, end;

	if (WARN_ON_ONCE(!memslot))
		return;

	start = memslot->base_gfn << PAGE_SHIFT;
	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1651 1652 1653 1654 1655 1656

	spin_lock(&kvm->mmu_lock);
	stage2_wp_range(kvm, start, end);
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
1657 1658

/**
1659
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1660 1661 1662 1663 1664 1665 1666 1667 1668
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
1669
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1670 1671 1672 1673 1674 1675 1676 1677 1678
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

	stage2_wp_range(kvm, start, end);
}
1679

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

1694
static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1695
{
1696
	__clean_dcache_guest_page(pfn, size);
1697 1698
}

1699
static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1700
{
1701
	__invalidate_icache_guest_page(pfn, size);
1702 1703
}

1704
static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1705
{
1706
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1707 1708
}

1709 1710 1711
static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
					       unsigned long hva,
					       unsigned long map_size)
1712
{
1713
	gpa_t gpa_start;
1714 1715 1716
	hva_t uaddr_start, uaddr_end;
	size_t size;

1717 1718 1719 1720
	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
	if (map_size == PAGE_SIZE)
		return true;

1721 1722 1723 1724 1725 1726 1727 1728 1729
	size = memslot->npages * PAGE_SIZE;

	gpa_start = memslot->base_gfn << PAGE_SHIFT;

	uaddr_start = memslot->userspace_addr;
	uaddr_end = uaddr_start + size;

	/*
	 * Pages belonging to memslots that don't have the same alignment
1730 1731
	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1732 1733 1734 1735 1736
	 *
	 * Consider a layout like the following:
	 *
	 *    memslot->userspace_addr:
	 *    +-----+--------------------+--------------------+---+
1737
	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1738 1739
	 *    +-----+--------------------+--------------------+---+
	 *
1740
	 *    memslot->base_gfn << PAGE_SHIFT:
1741
	 *      +---+--------------------+--------------------+-----+
1742
	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1743 1744
	 *      +---+--------------------+--------------------+-----+
	 *
1745
	 * If we create those stage-2 blocks, we'll end up with this incorrect
1746 1747 1748 1749 1750
	 * mapping:
	 *   d -> f
	 *   e -> g
	 *   f -> h
	 */
1751
	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1752 1753 1754 1755
		return false;

	/*
	 * Next, let's make sure we're not trying to map anything not covered
1756 1757
	 * by the memslot. This means we have to prohibit block size mappings
	 * for the beginning and end of a non-block aligned and non-block sized
1758 1759 1760 1761 1762 1763 1764 1765
	 * memory slot (illustrated by the head and tail parts of the
	 * userspace view above containing pages 'abcde' and 'xyz',
	 * respectively).
	 *
	 * Note that it doesn't matter if we do the check using the
	 * userspace_addr or the base_gfn, as both are equally aligned (per
	 * the check above) and equally sized.
	 */
1766 1767
	return (hva & ~(map_size - 1)) >= uaddr_start &&
	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1768 1769
}

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
/*
 * Check if the given hva is backed by a transparent huge page (THP) and
 * whether it can be mapped using block mapping in stage2. If so, adjust
 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
 * supported. This will need to be updated to support other THP sizes.
 *
 * Returns the size of the mapping.
 */
static unsigned long
transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
			    unsigned long hva, kvm_pfn_t *pfnp,
			    phys_addr_t *ipap)
{
	kvm_pfn_t pfn = *pfnp;

	/*
	 * Make sure the adjustment is done only for THP pages. Also make
	 * sure that the HVA and IPA are sufficiently aligned and that the
	 * block map is contained within the memslot.
	 */
	if (kvm_is_transparent_hugepage(pfn) &&
	    fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		*ipap &= PMD_MASK;
		kvm_release_pfn_clean(pfn);
		pfn &= ~(PTRS_PER_PMD - 1);
		kvm_get_pfn(pfn);
		*pfnp = pfn;

		return PMD_SIZE;
	}

	/* Use page mapping if we cannot use block mapping. */
	return PAGE_SIZE;
}

1823
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1824
			  struct kvm_memory_slot *memslot, unsigned long hva,
1825 1826 1827
			  unsigned long fault_status)
{
	int ret;
1828 1829
	bool write_fault, writable, force_pte = false;
	bool exec_fault, needs_exec;
1830
	unsigned long mmu_seq;
1831 1832
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
1833
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1834
	struct vm_area_struct *vma;
1835
	short vma_shift;
D
Dan Williams 已提交
1836
	kvm_pfn_t pfn;
1837
	pgprot_t mem_type = PAGE_S2;
1838
	bool logging_active = memslot_is_logging(memslot);
1839
	unsigned long vma_pagesize, flags = 0;
1840

1841
	write_fault = kvm_is_write_fault(vcpu);
1842 1843 1844 1845
	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
	VM_BUG_ON(write_fault && exec_fault);

	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1846 1847 1848 1849
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

1850
	/* Let's check if we will get back a huge page backed by hugetlbfs */
1851
	mmap_read_lock(current->mm);
1852
	vma = find_vma_intersection(current->mm, hva, hva + 1);
1853 1854
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1855
		mmap_read_unlock(current->mm);
1856 1857 1858
		return -EFAULT;
	}

1859 1860 1861 1862 1863 1864
	if (is_vm_hugetlb_page(vma))
		vma_shift = huge_page_shift(hstate_vma(vma));
	else
		vma_shift = PAGE_SHIFT;

	vma_pagesize = 1ULL << vma_shift;
1865
	if (logging_active ||
1866
	    (vma->vm_flags & VM_PFNMAP) ||
1867 1868 1869 1870 1871
	    !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
		force_pte = true;
		vma_pagesize = PAGE_SIZE;
	}

1872
	/*
1873 1874 1875 1876 1877
	 * The stage2 has a minimum of 2 level table (For arm64 see
	 * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
	 * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
	 * As for PUD huge maps, we must make sure that we have at least
	 * 3 levels, i.e, PMD is not folded.
1878
	 */
1879 1880
	if (vma_pagesize == PMD_SIZE ||
	    (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
1881
		gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1882
	mmap_read_unlock(current->mm);
1883

1884
	/* We need minimum second+third level pages */
1885
	ret = mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm),
1886
				     KVM_NR_MEM_OBJS);
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

1902
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1903
	if (pfn == KVM_PFN_ERR_HWPOISON) {
1904
		kvm_send_hwpoison_signal(hva, vma_shift);
1905 1906
		return 0;
	}
1907
	if (is_error_noslot_pfn(pfn))
1908 1909
		return -EFAULT;

1910
	if (kvm_is_device_pfn(pfn)) {
1911
		mem_type = PAGE_S2_DEVICE;
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
	} else if (logging_active) {
		/*
		 * Faults on pages in a memslot with logging enabled
		 * should not be mapped with huge pages (it introduces churn
		 * and performance degradation), so force a pte mapping.
		 */
		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;

		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
		if (!write_fault)
			writable = false;
	}
1928

1929 1930 1931
	if (exec_fault && is_iomap(flags))
		return -ENOEXEC;

1932 1933
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
1934
		goto out_unlock;
1935

1936 1937 1938 1939 1940 1941 1942
	/*
	 * If we are not forced to use page mapping, check if we are
	 * backed by a THP and thus use block mapping if possible.
	 */
	if (vma_pagesize == PAGE_SIZE && !force_pte)
		vma_pagesize = transparent_hugepage_adjust(memslot, hva,
							   &pfn, &fault_ipa);
1943 1944
	if (writable)
		kvm_set_pfn_dirty(pfn);
1945

1946
	if (fault_status != FSC_PERM && !is_iomap(flags))
1947 1948 1949 1950 1951
		clean_dcache_guest_page(pfn, vma_pagesize);

	if (exec_fault)
		invalidate_icache_guest_page(pfn, vma_pagesize);

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
	/*
	 * If we took an execution fault we have made the
	 * icache/dcache coherent above and should now let the s2
	 * mapping be executable.
	 *
	 * Write faults (!exec_fault && FSC_PERM) are orthogonal to
	 * execute permissions, and we preserve whatever we have.
	 */
	needs_exec = exec_fault ||
		(fault_status == FSC_PERM && stage2_is_exec(kvm, fault_ipa));

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	if (vma_pagesize == PUD_SIZE) {
		pud_t new_pud = kvm_pfn_pud(pfn, mem_type);

		new_pud = kvm_pud_mkhuge(new_pud);
		if (writable)
			new_pud = kvm_s2pud_mkwrite(new_pud);

		if (needs_exec)
			new_pud = kvm_s2pud_mkexec(new_pud);

		ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
	} else if (vma_pagesize == PMD_SIZE) {
1975 1976 1977 1978
		pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);

		new_pmd = kvm_pmd_mkhuge(new_pmd);

1979
		if (writable)
1980
			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1981

1982
		if (needs_exec)
1983
			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1984

1985 1986
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
1987
		pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1988

1989
		if (writable) {
1990
			new_pte = kvm_s2pte_mkwrite(new_pte);
1991
			mark_page_dirty(kvm, gfn);
1992
		}
1993

1994
		if (needs_exec)
1995
			new_pte = kvm_s2pte_mkexec(new_pte);
1996

1997
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1998
	}
1999

2000
out_unlock:
2001
	spin_unlock(&kvm->mmu_lock);
2002
	kvm_set_pfn_accessed(pfn);
2003
	kvm_release_pfn_clean(pfn);
2004
	return ret;
2005 2006
}

2007 2008 2009 2010
/*
 * Resolve the access fault by making the page young again.
 * Note that because the faulting entry is guaranteed not to be
 * cached in the TLB, we don't need to invalidate anything.
2011 2012
 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
 * so there is no need for atomic (pte|pmd)_mkyoung operations.
2013 2014 2015
 */
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
2016
	pud_t *pud;
2017 2018
	pmd_t *pmd;
	pte_t *pte;
D
Dan Williams 已提交
2019
	kvm_pfn_t pfn;
2020 2021 2022 2023 2024 2025
	bool pfn_valid = false;

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);

2026
	if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
2027 2028
		goto out;

2029 2030 2031 2032 2033
	if (pud) {		/* HugeTLB */
		*pud = kvm_s2pud_mkyoung(*pud);
		pfn = kvm_pud_pfn(*pud);
		pfn_valid = true;
	} else	if (pmd) {	/* THP, HugeTLB */
2034 2035 2036
		*pmd = pmd_mkyoung(*pmd);
		pfn = pmd_pfn(*pmd);
		pfn_valid = true;
2037 2038 2039 2040
	} else {
		*pte = pte_mkyoung(*pte);	/* Just a page... */
		pfn = pte_pfn(*pte);
		pfn_valid = true;
2041 2042 2043 2044 2045 2046 2047 2048
	}

out:
	spin_unlock(&vcpu->kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
2061 2062
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
2063 2064 2065
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
2066 2067
	unsigned long hva;
	bool is_iabt, write_fault, writable;
2068 2069 2070
	gfn_t gfn;
	int ret, idx;

2071 2072 2073
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);

	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
2074
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
2075

2076
	/* Synchronous External Abort? */
2077
	if (kvm_vcpu_abt_issea(vcpu)) {
2078 2079 2080 2081
		/*
		 * For RAS the host kernel may handle this abort.
		 * There is no need to pass the error into the guest.
		 */
2082
		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
2083
			kvm_inject_vabt(vcpu);
2084 2085

		return 1;
2086 2087
	}

G
Gavin Shan 已提交
2088
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
2089
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
2090 2091

	/* Check the stage-2 fault is trans. fault or write fault */
2092 2093
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
2094 2095 2096
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
G
Gavin Shan 已提交
2097
			(unsigned long)kvm_vcpu_get_esr(vcpu));
2098 2099 2100 2101 2102 2103
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
2104 2105
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
2106
	write_fault = kvm_is_write_fault(vcpu);
2107
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
2108 2109
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
2110 2111
			ret = -ENOEXEC;
			goto out;
2112 2113
		}

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
		if (kvm_vcpu_dabt_is_cm(vcpu)) {
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
2130 2131 2132 2133 2134 2135 2136
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
2137
		ret = io_mem_abort(vcpu, run, fault_ipa);
2138 2139 2140
		goto out_unlock;
	}

2141
	/* Userspace should not be able to register out-of-bounds IPAs */
2142
	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
2143

2144 2145 2146 2147 2148 2149
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

2150
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
2151 2152
	if (ret == 0)
		ret = 1;
2153 2154 2155 2156 2157
out:
	if (ret == -ENOEXEC) {
		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
		ret = 1;
	}
2158 2159 2160
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
2161 2162
}

2163 2164 2165 2166
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
2167 2168
					    gpa_t gpa, u64 size,
					    void *data),
2169
			     void *data)
2170 2171 2172
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
2173
	int ret = 0;
2174 2175 2176 2177 2178 2179

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
2180
		gfn_t gpa;
2181 2182 2183 2184 2185 2186 2187

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

2188 2189
		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
2190
	}
2191 2192

	return ret;
2193 2194
}

2195
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2196
{
2197
	unmap_stage2_range(kvm, gpa, size);
2198
	return 0;
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

2212
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2213 2214 2215
{
	pte_t *pte = (pte_t *)data;

2216
	WARN_ON(size != PAGE_SIZE);
2217 2218 2219 2220 2221 2222 2223 2224
	/*
	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
	 * flag clear because MMU notifiers will have unmapped a huge PMD before
	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore stage2_set_pte() never needs to clear out a huge PMD
	 * through this calling path.
	 */
	stage2_set_pte(kvm, NULL, gpa, pte, 0);
2225
	return 0;
2226 2227 2228
}


2229
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2230 2231
{
	unsigned long end = hva + PAGE_SIZE;
2232
	kvm_pfn_t pfn = pte_pfn(pte);
2233 2234 2235
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
2236
		return 0;
2237 2238

	trace_kvm_set_spte_hva(hva);
2239 2240 2241 2242 2243 2244

	/*
	 * We've moved a page around, probably through CoW, so let's treat it
	 * just like a translation fault and clean the cache to the PoC.
	 */
	clean_dcache_guest_page(pfn, PAGE_SIZE);
2245
	stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2246
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
2247 2248

	return 0;
2249 2250
}

2251
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2252
{
2253
	pud_t *pud;
2254 2255 2256
	pmd_t *pmd;
	pte_t *pte;

2257 2258
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2259 2260
		return 0;

2261 2262 2263
	if (pud)
		return stage2_pudp_test_and_clear_young(pud);
	else if (pmd)
2264
		return stage2_pmdp_test_and_clear_young(pmd);
2265 2266
	else
		return stage2_ptep_test_and_clear_young(pte);
2267 2268
}

2269
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2270
{
2271
	pud_t *pud;
2272 2273 2274
	pmd_t *pmd;
	pte_t *pte;

2275 2276
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2277 2278
		return 0;

2279 2280 2281
	if (pud)
		return kvm_s2pud_young(*pud);
	else if (pmd)
2282
		return pmd_young(*pmd);
2283
	else
2284 2285 2286 2287 2288
		return pte_young(*pte);
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
2289 2290
	if (!kvm->arch.pgd)
		return 0;
2291 2292 2293 2294 2295 2296
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
2297 2298
	if (!kvm->arch.pgd)
		return 0;
2299
	trace_kvm_test_age_hva(hva);
2300 2301
	return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
				 kvm_test_age_hva_handler, NULL);
2302 2303
}

2304 2305 2306 2307 2308
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

2309 2310
phys_addr_t kvm_mmu_get_httbr(void)
{
2311 2312 2313 2314
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(hyp_pgd);
2315 2316
}

2317 2318 2319 2320 2321
phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

2322 2323 2324 2325 2326
static int kvm_map_idmap_text(pgd_t *pgd)
{
	int err;

	/* Create the idmap in the boot page tables */
2327
	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP_EXEC);
	if (err)
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);

	return err;
}

2338 2339
int kvm_mmu_init(void)
{
2340 2341
	int err;

2342
	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
2343
	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2344
	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
2345
	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2346
	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
2347

2348 2349 2350 2351 2352
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2353

2354 2355 2356 2357
	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
	kvm_debug("HYP VA range: %lx:%lx\n",
		  kern_hyp_va(PAGE_OFFSET),
		  kern_hyp_va((unsigned long)high_memory - 1));
2358

M
Marc Zyngier 已提交
2359
	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2360
	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2361
	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2362 2363 2364 2365 2366 2367 2368 2369 2370
		/*
		 * The idmap page is intersecting with the VA space,
		 * it is not safe to continue further.
		 */
		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
		err = -EINVAL;
		goto out;
	}

2371
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2372
	if (!hyp_pgd) {
2373
		kvm_err("Hyp mode PGD not allocated\n");
2374 2375 2376 2377
		err = -ENOMEM;
		goto out;
	}

2378 2379 2380 2381 2382 2383 2384 2385
	if (__kvm_cpu_uses_extended_idmap()) {
		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
							 hyp_pgd_order);
		if (!boot_hyp_pgd) {
			kvm_err("Hyp boot PGD not allocated\n");
			err = -ENOMEM;
			goto out;
		}
2386

2387 2388 2389
		err = kvm_map_idmap_text(boot_hyp_pgd);
		if (err)
			goto out;
2390

2391 2392 2393 2394 2395 2396 2397
		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		if (!merged_hyp_pgd) {
			kvm_err("Failed to allocate extra HYP pgd\n");
			goto out;
		}
		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
				    hyp_idmap_start);
2398 2399 2400 2401
	} else {
		err = kvm_map_idmap_text(hyp_pgd);
		if (err)
			goto out;
2402 2403
	}

2404
	io_map_base = hyp_idmap_start;
2405
	return 0;
2406
out:
2407
	free_hyp_pgds();
2408
	return err;
2409
}
2410 2411

void kvm_arch_commit_memory_region(struct kvm *kvm,
2412
				   const struct kvm_userspace_memory_region *mem,
2413
				   struct kvm_memory_slot *old,
2414
				   const struct kvm_memory_slot *new,
2415 2416
				   enum kvm_mr_change change)
{
2417 2418
	/*
	 * At this point memslot has been committed and there is an
F
Fuad Tabba 已提交
2419
	 * allocated dirty_bitmap[], dirty pages will be tracked while the
2420 2421
	 * memory slot is write protected.
	 */
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
		/*
		 * If we're with initial-all-set, we don't need to write
		 * protect any pages because they're all reported as dirty.
		 * Huge pages and normal pages will be write protect gradually.
		 */
		if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
			kvm_mmu_wp_memory_region(kvm, mem->slot);
		}
	}
2432 2433 2434 2435
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2436
				   const struct kvm_userspace_memory_region *mem,
2437 2438
				   enum kvm_mr_change change)
{
2439 2440 2441 2442 2443
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

2444 2445
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
2446 2447
		return 0;

2448 2449 2450 2451 2452
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
2453
	    (kvm_phys_size(kvm) >> PAGE_SHIFT))
2454 2455
		return -EFAULT;

2456
	mmap_read_lock(current->mm);
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
2485 2486 2487 2488
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
2489

2490
			/* IO region dirty page logging not allowed */
2491 2492 2493 2494
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
				ret = -EINVAL;
				goto out;
			}
2495

2496 2497 2498 2499 2500 2501 2502 2503 2504
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

2505
	if (change == KVM_MR_FLAGS_ONLY)
2506
		goto out;
2507

2508 2509
	spin_lock(&kvm->mmu_lock);
	if (ret)
2510
		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2511 2512 2513
	else
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
2514
out:
2515
	mmap_read_unlock(current->mm);
2516
	return ret;
2517 2518
}

2519
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2520 2521 2522
{
}

2523
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2524 2525 2526 2527 2528
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
2529
	kvm_free_stage2_pgd(kvm);
2530 2531 2532 2533 2534
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
2535 2536 2537 2538 2539 2540
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	unmap_stage2_range(kvm, gpa, size);
	spin_unlock(&kvm->mmu_lock);
2541
}
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
2573
	unsigned long hcr = *vcpu_hcr(vcpu);
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
2588
		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
2606
		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2607 2608 2609

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}