mmu.c 32.5 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19
#include <linux/sizes.h>
20

21
#include <asm/cp15.h>
22
#include <asm/cputype.h>
R
Russell King 已提交
23
#include <asm/sections.h>
24
#include <asm/cachetype.h>
25
#include <asm/setup.h>
26
#include <asm/smp_plat.h>
27
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
28
#include <asm/highmem.h>
29
#include <asm/system_info.h>
30
#include <asm/traps.h>
31 32 33 34 35 36 37 38 39 40 41

#include <asm/mach/arch.h>
#include <asm/mach/map.h>

#include "mm.h"

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
42
EXPORT_SYMBOL(empty_zero_page);
43 44 45 46 47 48

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

49 50 51 52 53 54 55 56
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
57
pgprot_t pgprot_user;
58 59
pgprot_t pgprot_kernel;

60
EXPORT_SYMBOL(pgprot_user);
61 62 63 64 65
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
66
	pmdval_t	pmd;
67
	pteval_t	pte;
68 69 70 71 72 73 74
};

static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
75
		.pte		= L_PTE_MT_UNCACHED,
76 77 78 79
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
80
		.pte		= L_PTE_MT_BUFFERABLE,
81 82 83 84
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
85
		.pte		= L_PTE_MT_WRITETHROUGH,
86 87 88 89
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
90
		.pte		= L_PTE_MT_WRITEBACK,
91 92 93 94
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
95
		.pte		= L_PTE_MT_WRITEALLOC,
96 97 98 99
	}
};

/*
S
Simon Arlott 已提交
100
 * These are useful for identifying cache coherency
101 102 103 104
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
105
static int __init early_cachepolicy(char *p)
106 107 108 109 110 111
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

112
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
113 114 115 116 117 118 119 120
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
121 122 123 124 125 126 127
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
128 129 130 131
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
132 133
	flush_cache_all();
	set_cr(cr_alignment);
134
	return 0;
135
}
136
early_param("cachepolicy", early_cachepolicy);
137

138
static int __init early_nocache(char *__unused)
139 140 141
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
142 143
	early_cachepolicy(p);
	return 0;
144
}
145
early_param("nocache", early_nocache);
146

147
static int __init early_nowrite(char *__unused)
148 149 150
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
151 152
	early_cachepolicy(p);
	return 0;
153
}
154
early_param("nowb", early_nowrite);
155

156
#ifndef CONFIG_ARM_LPAE
157
static int __init early_ecc(char *p)
158
{
159
	if (memcmp(p, "on", 2) == 0)
160
		ecc_mask = PMD_PROTECTION;
161
	else if (memcmp(p, "off", 3) == 0)
162
		ecc_mask = 0;
163
	return 0;
164
}
165
early_param("ecc", early_ecc);
166
#endif
167 168 169 170 171 172 173 174 175 176

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

197
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
198
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
199

200
static struct mem_type mem_types[] = {
201
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
202 203
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
204
		.prot_l1	= PMD_TYPE_TABLE,
205
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
206 207 208
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
209
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
210
		.prot_l1	= PMD_TYPE_TABLE,
211
		.prot_sect	= PROT_SECT_DEVICE,
212 213 214
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
215
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
216 217 218 219
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
	},	
220
	[MT_DEVICE_WC] = {	/* ioremap_wc */
221
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
222
		.prot_l1	= PMD_TYPE_TABLE,
223
		.prot_sect	= PROT_SECT_DEVICE,
224
		.domain		= DOMAIN_IO,
225
	},
226 227 228 229 230 231
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
232
	[MT_CACHECLEAN] = {
233
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
234 235
		.domain    = DOMAIN_KERNEL,
	},
236
#ifndef CONFIG_ARM_LPAE
237
	[MT_MINICLEAN] = {
238
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
239 240
		.domain    = DOMAIN_KERNEL,
	},
241
#endif
242 243
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244
				L_PTE_RDONLY,
245 246 247 248 249
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
250
				L_PTE_USER | L_PTE_RDONLY,
251 252 253 254
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_MEMORY] = {
255
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
256
		.prot_l1   = PMD_TYPE_TABLE,
257
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 259 260
		.domain    = DOMAIN_KERNEL,
	},
	[MT_ROM] = {
261
		.prot_sect = PMD_TYPE_SECT,
262 263
		.domain    = DOMAIN_KERNEL,
	},
264
	[MT_MEMORY_NONCACHED] = {
265
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
266
				L_PTE_MT_BUFFERABLE,
267
		.prot_l1   = PMD_TYPE_TABLE,
268 269 270
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
271
	[MT_MEMORY_DTCM] = {
272
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
273
				L_PTE_XN,
274 275 276
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
277 278
	},
	[MT_MEMORY_ITCM] = {
279
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
280
		.prot_l1   = PMD_TYPE_TABLE,
281
		.domain    = DOMAIN_KERNEL,
282
	},
283 284 285 286 287 288 289 290
	[MT_MEMORY_SO] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_MT_UNCACHED,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
291 292 293 294 295
	[MT_MEMORY_DMA_READY] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
296 297
};

298 299 300 301
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
302
EXPORT_SYMBOL(get_mem_type);
303

304 305 306 307 308 309 310
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
311
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
312 313 314
	int cpu_arch = cpu_architecture();
	int i;

315
	if (cpu_arch < CPU_ARCH_ARMv6) {
316
#if defined(CONFIG_CPU_DCACHE_DISABLE)
317 318
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
319
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
320 321
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
322
#endif
323
	}
324 325 326 327 328
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
329 330
	if (is_smp())
		cachepolicy = CPOLICY_WRITEALLOC;
331

332
	/*
333 334 335
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
336
	 */
337 338 339 340 341 342
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
343 344

	/*
345 346 347
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
348
	 */
349
	if (cpu_is_xscale() || cpu_is_xsc3()) {
350
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
351
			mem_types[i].prot_sect &= ~PMD_BIT4;
352 353 354 355
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
356 357
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
358 359 360 361
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
421
	cp = &cache_policies[cachepolicy];
422 423
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;

424 425 426 427
	/*
	 * Enable CPU-specific coherency if supported.
	 * (Only available on XSC3 at the moment.)
	 */
428
	if (arch_is_coherent() && cpu_is_xsc3()) {
429
		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
430
		mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
431
		mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
432 433 434
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
		mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
	}
435 436 437 438
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
439
#ifndef CONFIG_ARM_LPAE
440 441 442 443 444 445 446
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
447
#endif
448

449 450 451 452 453 454 455 456 457 458 459 460 461 462
		if (is_smp()) {
			/*
			 * Mark memory with the "shared" attribute
			 * for SMP systems
			 */
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
463
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
464 465 466
			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
		}
467 468
	}

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_TEX(1);
		}
	} else {
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
	}

487 488 489 490 491 492
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
493 494
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
495 496 497 498 499
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
#endif

500 501
	for (i = 0; i < 16; i++) {
		unsigned long v = pgprot_val(protection_map[i]);
502
		protection_map[i] = __pgprot(v | user_pgprot);
503 504
	}

505 506
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
507

508
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
509
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
510
				 L_PTE_DIRTY | kern_pgprot);
511 512 513 514

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
515
	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
516
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
517
	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
518 519 520 521 522 523 524 525 526 527 528 529 530
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
	printk("Memory policy: ECC %sabled, Data cache %s\n",
		ecc_mask ? "en" : "dis", cp->policy);
531 532 533 534 535 536 537 538

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
539 540
}

541 542 543 544 545 546 547 548 549 550 551 552 553
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

554 555
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

556
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
557
{
558
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
559 560
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
561 562
}

563 564 565 566 567
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

R
Russell King 已提交
568
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
569
{
570
	if (pmd_none(*pmd)) {
571
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
572
		__pmd_populate(pmd, __pa(pte), prot);
573
	}
R
Russell King 已提交
574 575 576
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
577

R
Russell King 已提交
578 579 580 581 582
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
583
	do {
584
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
585 586
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
587 588
}

R
Russell King 已提交
589
static void __init alloc_init_section(pud_t *pud, unsigned long addr,
590
				      unsigned long end, phys_addr_t phys,
591
				      const struct mem_type *type)
592
{
R
Russell King 已提交
593
	pmd_t *pmd = pmd_offset(pud, addr);
594

595 596 597 598 599 600
	/*
	 * Try a section mapping - end, addr and phys must all be aligned
	 * to a section boundary.  Note that PMDs refer to the individual
	 * L1 entries, whereas PGDs refer to a group of L1 entries making
	 * up one logical pointer to an L2 table.
	 */
601
	if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
602
		pmd_t *p = pmd;
603

604
#ifndef CONFIG_ARM_LPAE
605 606
		if (addr & SECTION_SIZE)
			pmd++;
607
#endif
608 609 610 611 612

		do {
			*pmd = __pmd(phys | type->prot_sect);
			phys += SECTION_SIZE;
		} while (pmd++, addr += SECTION_SIZE, addr != end);
613

614 615 616 617 618 619 620 621
		flush_pmd_entry(p);
	} else {
		/*
		 * No need to loop; pte's aren't interested in the
		 * individual L1 entries.
		 */
		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
	}
622 623
}

624 625
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
	unsigned long end, unsigned long phys, const struct mem_type *type)
R
Russell King 已提交
626 627 628 629 630 631 632 633 634 635 636
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
		alloc_init_section(pud, addr, next, phys, type);
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

637
#ifndef CONFIG_ARM_LPAE
638 639 640
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
641 642
	unsigned long addr, length, end;
	phys_addr_t phys;
643 644 645
	pgd_t *pgd;

	addr = md->virtual;
646
	phys = __pfn_to_phys(md->pfn);
647 648 649 650 651
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
652
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
653 654 655 656 657 658 659 660 661 662 663 664
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
665
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
666 667 668 669
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
670 671 672
		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
		       " at 0x%08lx invalid alignment\n",
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
673 674 675 676 677 678 679 680 681 682 683 684
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
685 686
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
687 688 689 690 691 692 693 694 695 696
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
697
#endif	/* !CONFIG_ARM_LPAE */
698

699 700 701 702 703 704 705
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
706
static void __init create_mapping(struct map_desc *md)
707
{
708 709
	unsigned long addr, length, end;
	phys_addr_t phys;
710
	const struct mem_type *type;
711
	pgd_t *pgd;
712 713

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
714 715 716
		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
		       " at 0x%08lx in user region\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
717 718 719 720
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
721 722
	    md->virtual >= PAGE_OFFSET &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
723
		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
724
		       " at 0x%08lx out of vmalloc space\n",
725
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
726 727
	}

728
	type = &mem_types[md->type];
729

730
#ifndef CONFIG_ARM_LPAE
731 732 733
	/*
	 * Catch 36-bit addresses
	 */
734 735 736
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
737
	}
738
#endif
739

740
	addr = md->virtual & PAGE_MASK;
741
	phys = __pfn_to_phys(md->pfn);
742
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
743

744
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
745
		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
746
		       "be mapped using pages, ignoring.\n",
747
		       (long long)__pfn_to_phys(md->pfn), addr);
748 749 750
		return;
	}

751 752 753 754
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
755

R
Russell King 已提交
756
		alloc_init_pud(pgd, addr, next, phys, type);
757

758 759 760
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
761 762 763 764 765 766 767
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
768 769 770 771 772
	struct map_desc *md;
	struct vm_struct *vm;

	if (!nr)
		return;
773

774 775 776 777 778 779 780
	vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
		vm->phys_addr = __pfn_to_phys(md->pfn); 
781 782
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; 
		vm->flags |= VM_ARM_MTYPE(md->type);
783 784 785
		vm->caller = iotable_init;
		vm_area_add_early(vm++);
	}
786 787
}

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
	struct vm_struct *vm;

	vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm));
	vm->addr = (void *)addr;
	vm->size = SECTION_SIZE;
810
	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
811 812 813 814 815 816 817 818 819 820 821 822
	vm->caller = pmd_empty_section_gap;
	vm_area_add_early(vm);
}

static void __init fill_pmd_gaps(void)
{
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

	/* we're still single threaded hence no lock needed here */
	for (vm = vmlist; vm; vm = vm->next) {
823
		if (!(vm->flags & (VM_ARM_STATIC_MAPPING | VM_ARM_EMPTY_MAPPING)))
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
			continue;
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

861 862
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
863 864 865 866

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
867
 * area - the default is 240m.
868
 */
869
static int __init early_vmalloc(char *arg)
870
{
R
Russell King 已提交
871
	unsigned long vmalloc_reserve = memparse(arg, NULL);
872 873 874 875 876 877 878

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
879 880 881 882 883 884 885

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
886 887

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
888
	return 0;
889
}
890
early_param("vmalloc", early_vmalloc);
891

892
phys_addr_t arm_lowmem_limit __initdata = 0;
893

894
void __init sanity_check_meminfo(void)
895
{
R
Russell King 已提交
896
	int i, j, highmem = 0;
897

898
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
899 900
		struct membank *bank = &meminfo.bank[j];
		*bank = meminfo.bank[i];
901

902 903 904
		if (bank->start > ULONG_MAX)
			highmem = 1;

905
#ifdef CONFIG_HIGHMEM
906
		if (__va(bank->start) >= vmalloc_min ||
R
Russell King 已提交
907 908 909 910 911
		    __va(bank->start) < (void *)PAGE_OFFSET)
			highmem = 1;

		bank->highmem = highmem;

912 913 914 915
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
916
		if (!highmem && __va(bank->start) < vmalloc_min &&
R
Russell King 已提交
917
		    bank->size > vmalloc_min - __va(bank->start)) {
918 919 920 921 922 923 924 925
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
R
Russell King 已提交
926 927
				bank[1].size -= vmalloc_min - __va(bank->start);
				bank[1].start = __pa(vmalloc_min - 1) + 1;
R
Russell King 已提交
928
				bank[1].highmem = highmem = 1;
929 930
				j++;
			}
R
Russell King 已提交
931
			bank->size = vmalloc_min - __va(bank->start);
932 933
		}
#else
934 935
		bank->highmem = highmem;

936 937 938 939 940 941 942 943 944 945 946
		/*
		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
		 */
		if (highmem) {
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
			       "(!CONFIG_HIGHMEM).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
			continue;
		}

947 948 949 950
		/*
		 * Check whether this memory bank would entirely overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
951
		if (__va(bank->start) >= vmalloc_min ||
952
		    __va(bank->start) < (void *)PAGE_OFFSET) {
953
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
954
			       "(vmalloc region overlap).\n",
955 956
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
957 958
			continue;
		}
959

960 961 962 963
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
964
		if (__va(bank->start + bank->size) > vmalloc_min ||
965
		    __va(bank->start + bank->size) < __va(bank->start)) {
R
Russell King 已提交
966
			unsigned long newsize = vmalloc_min - __va(bank->start);
967 968 969 970 971
			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
			       "to -%.8llx (vmalloc region overlap).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1,
			       (unsigned long long)bank->start + newsize - 1);
972 973 974
			bank->size = newsize;
		}
#endif
975 976
		if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
			arm_lowmem_limit = bank->start + bank->size;
977

978
		j++;
979
	}
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
#ifdef CONFIG_HIGHMEM
	if (highmem) {
		const char *reason = NULL;

		if (cache_is_vipt_aliasing()) {
			/*
			 * Interactions between kmap and other mappings
			 * make highmem support with aliasing VIPT caches
			 * rather difficult.
			 */
			reason = "with VIPT aliasing cache";
		}
		if (reason) {
			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
				reason);
			while (j > 0 && meminfo.bank[j - 1].highmem)
				j--;
		}
	}
#endif
1000
	meminfo.nr_banks = j;
1001 1002
	high_memory = __va(arm_lowmem_limit - 1) + 1;
	memblock_set_current_limit(arm_lowmem_limit);
1003 1004
}

1005
static inline void prepare_page_table(void)
1006 1007
{
	unsigned long addr;
1008
	phys_addr_t end;
1009 1010 1011 1012

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1013
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1014 1015 1016 1017
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1018
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1019
#endif
1020
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1021 1022
		pmd_clear(pmd_off_k(addr));

1023 1024 1025 1026
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1027 1028
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1029

1030 1031
	/*
	 * Clear out all the kernel space mappings, except for the first
1032
	 * memory bank, up to the vmalloc region.
1033
	 */
1034
	for (addr = __phys_to_virt(end);
1035
	     addr < VMALLOC_START; addr += PMD_SIZE)
1036 1037 1038
		pmd_clear(pmd_off_k(addr));
}

1039 1040 1041 1042 1043
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1044
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1045
#endif
1046

1047
/*
R
Russell King 已提交
1048
 * Reserve the special regions of memory
1049
 */
R
Russell King 已提交
1050
void __init arm_mm_memblock_reserve(void)
1051 1052 1053 1054 1055
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1056
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1057 1058 1059 1060 1061 1062

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
1063
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1064 1065 1066 1067
#endif
}

/*
1068 1069
 * Set up the device mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_START, we will remove any debug device mappings.
1070 1071 1072 1073 1074 1075 1076 1077
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
static void __init devicemaps_init(struct machine_desc *mdesc)
{
	struct map_desc map;
	unsigned long addr;
1078
	void *vectors;
1079 1080 1081 1082

	/*
	 * Allocate the vector page early.
	 */
1083 1084 1085
	vectors = early_alloc(PAGE_SIZE);

	early_trap_init(vectors);
1086

1087
	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1088 1089 1090 1091 1092 1093 1094 1095
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1096
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
1097
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1125
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
	map.type = MT_HIGH_VECTORS;
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1142
	fill_pmd_gaps();
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
1154 1155 1156
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1157 1158
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1159 1160 1161
#endif
}

1162 1163
static void __init map_lowmem(void)
{
1164
	struct memblock_region *reg;
1165 1166

	/* Map all the lowmem memory banks. */
1167 1168 1169 1170 1171
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

1172 1173
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1174 1175 1176 1177 1178 1179 1180
		if (start >= end)
			break;

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY;
1181

1182
		create_mapping(&map);
1183 1184 1185
	}
}

1186 1187 1188 1189
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1190
void __init paging_init(struct machine_desc *mdesc)
1191 1192 1193
{
	void *zero_page;

1194
	memblock_set_current_limit(arm_lowmem_limit);
1195

1196
	build_mem_type_table();
1197
	prepare_page_table();
1198
	map_lowmem();
1199
	dma_contiguous_remap();
1200
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1201
	kmap_init();
1202 1203 1204

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1205 1206
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1207

1208
	bootmem_init();
R
Russell King 已提交
1209

1210
	empty_zero_page = virt_to_page(zero_page);
1211
	__flush_dcache_page(NULL, empty_zero_page);
1212
}