pci-ioda.c 103.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Support PCI/PCIe on PowerNV platforms
 *
 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

12
#undef DEBUG
13 14 15

#include <linux/kernel.h>
#include <linux/pci.h>
16
#include <linux/crash_dump.h>
17
#include <linux/debugfs.h>
18 19 20 21 22 23 24
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/msi.h>
25
#include <linux/memblock.h>
26
#include <linux/iommu.h>
27
#include <linux/rculist.h>
28
#include <linux/sizes.h>
29 30 31 32 33 34

#include <asm/sections.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
35
#include <asm/msi_bitmap.h>
36 37 38 39
#include <asm/ppc-pci.h>
#include <asm/opal.h>
#include <asm/iommu.h>
#include <asm/tce.h>
40
#include <asm/xics.h>
41
#include <asm/debug.h>
42
#include <asm/firmware.h>
43
#include <asm/pnv-pci.h>
44
#include <asm/mmzone.h>
45

46
#include <misc/cxl-base.h>
47 48 49 50

#include "powernv.h"
#include "pci.h"

51 52
#define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
#define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
53
#define PNV_IODA1_DMA32_SEGSIZE	0x10000000
54

55 56 57
#define POWERNV_IOMMU_DEFAULT_LEVELS	1
#define POWERNV_IOMMU_MAX_LEVELS	5

58
static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
59 60
static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);

61
void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
62 63 64 65 66 67 68 69 70 71 72
			    const char *fmt, ...)
{
	struct va_format vaf;
	va_list args;
	char pfix[32];

	va_start(args, fmt);

	vaf.fmt = fmt;
	vaf.va = &args;

73
	if (pe->flags & PNV_IODA_PE_DEV)
74
		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75
	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76 77
		sprintf(pfix, "%04x:%02x     ",
			pci_domain_nr(pe->pbus), pe->pbus->number);
78 79 80 81 82 83 84
#ifdef CONFIG_PCI_IOV
	else if (pe->flags & PNV_IODA_PE_VF)
		sprintf(pfix, "%04x:%02x:%2x.%d",
			pci_domain_nr(pe->parent_dev->bus),
			(pe->rid & 0xff00) >> 8,
			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
#endif /* CONFIG_PCI_IOV*/
85

86
	printk("%spci %s: [PE# %.2x] %pV",
87 88 89 90
	       level, pfix, pe->pe_number, &vaf);

	va_end(args);
}
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
static bool pnv_iommu_bypass_disabled __read_mostly;

static int __init iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;

	while (*str) {
		if (!strncmp(str, "nobypass", 8)) {
			pnv_iommu_bypass_disabled = true;
			pr_info("PowerNV: IOMMU bypass window disabled.\n");
			break;
		}
		str += strcspn(str, ",");
		if (*str == ',')
			str++;
	}

	return 0;
}
early_param("iommu", iommu_setup);

114
static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
115
{
116 117 118 119 120 121 122 123 124
	/*
	 * WARNING: We cannot rely on the resource flags. The Linux PCI
	 * allocation code sometimes decides to put a 64-bit prefetchable
	 * BAR in the 32-bit window, so we have to compare the addresses.
	 *
	 * For simplicity we only test resource start.
	 */
	return (r->start >= phb->ioda.m64_base &&
		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
125 126
}

127 128 129 130 131 132 133
static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
{
	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);

	return (resource_flags & flags) == flags;
}

134 135
static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
{
136 137
	s64 rc;

138 139 140
	phb->ioda.pe_array[pe_no].phb = phb;
	phb->ioda.pe_array[pe_no].pe_number = pe_no;

141 142 143 144 145 146 147
	/*
	 * Clear the PE frozen state as it might be put into frozen state
	 * in the last PCI remove path. It's not harmful to do so when the
	 * PE is already in unfrozen state.
	 */
	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
148
	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
149
		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
150 151
			__func__, rc, phb->hose->global_number, pe_no);

152 153 154
	return &phb->ioda.pe_array[pe_no];
}

155 156
static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
{
157
	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
158
		pr_warn("%s: Invalid PE %x on PHB#%x\n",
159 160 161 162
			__func__, pe_no, phb->hose->global_number);
		return;
	}

163
	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
164
		pr_debug("%s: PE %x was reserved on PHB#%x\n",
165
			 __func__, pe_no, phb->hose->global_number);
166

167
	pnv_ioda_init_pe(phb, pe_no);
168 169
}

170
static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
171
{
172
	long pe;
173

174 175 176 177
	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
			return pnv_ioda_init_pe(phb, pe);
	}
178

179
	return NULL;
180 181
}

182
static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
183
{
184
	struct pnv_phb *phb = pe->phb;
185
	unsigned int pe_num = pe->pe_number;
186 187

	WARN_ON(pe->pdev);
188

189
	memset(pe, 0, sizeof(struct pnv_ioda_pe));
190
	clear_bit(pe_num, phb->ioda.pe_alloc);
191 192
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
/* The default M64 BAR is shared by all PEs */
static int pnv_ioda2_init_m64(struct pnv_phb *phb)
{
	const char *desc;
	struct resource *r;
	s64 rc;

	/* Configure the default M64 BAR */
	rc = opal_pci_set_phb_mem_window(phb->opal_id,
					 OPAL_M64_WINDOW_TYPE,
					 phb->ioda.m64_bar_idx,
					 phb->ioda.m64_base,
					 0, /* unused */
					 phb->ioda.m64_size);
	if (rc != OPAL_SUCCESS) {
		desc = "configuring";
		goto fail;
	}

	/* Enable the default M64 BAR */
	rc = opal_pci_phb_mmio_enable(phb->opal_id,
				      OPAL_M64_WINDOW_TYPE,
				      phb->ioda.m64_bar_idx,
				      OPAL_ENABLE_M64_SPLIT);
	if (rc != OPAL_SUCCESS) {
		desc = "enabling";
		goto fail;
	}

	/*
223 224
	 * Exclude the segments for reserved and root bus PE, which
	 * are first or last two PEs.
225 226
	 */
	r = &phb->hose->mem_resources[1];
227
	if (phb->ioda.reserved_pe_idx == 0)
228
		r->start += (2 * phb->ioda.m64_segsize);
229
	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
230
		r->end -= (2 * phb->ioda.m64_segsize);
231
	else
232
		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
233
			phb->ioda.reserved_pe_idx);
234 235 236 237 238 239 240 241 242 243 244 245 246

	return 0;

fail:
	pr_warn("  Failure %lld %s M64 BAR#%d\n",
		rc, desc, phb->ioda.m64_bar_idx);
	opal_pci_phb_mmio_enable(phb->opal_id,
				 OPAL_M64_WINDOW_TYPE,
				 phb->ioda.m64_bar_idx,
				 OPAL_DISABLE_M64);
	return -EIO;
}

247
static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
248
					 unsigned long *pe_bitmap)
249
{
250 251
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
252
	struct resource *r;
253 254 255 256 257 258 259
	resource_size_t base, sgsz, start, end;
	int segno, i;

	base = phb->ioda.m64_base;
	sgsz = phb->ioda.m64_segsize;
	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
		r = &pdev->resource[i];
260
		if (!r->parent || !pnv_pci_is_m64(phb, r))
261
			continue;
262

263 264 265 266 267 268 269
		start = _ALIGN_DOWN(r->start - base, sgsz);
		end = _ALIGN_UP(r->end - base, sgsz);
		for (segno = start / sgsz; segno < end / sgsz; segno++) {
			if (pe_bitmap)
				set_bit(segno, pe_bitmap);
			else
				pnv_ioda_reserve_pe(phb, segno);
270 271 272 273
		}
	}
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
static int pnv_ioda1_init_m64(struct pnv_phb *phb)
{
	struct resource *r;
	int index;

	/*
	 * There are 16 M64 BARs, each of which has 8 segments. So
	 * there are as many M64 segments as the maximum number of
	 * PEs, which is 128.
	 */
	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
		unsigned long base, segsz = phb->ioda.m64_segsize;
		int64_t rc;

		base = phb->ioda.m64_base +
		       index * PNV_IODA1_M64_SEGS * segsz;
		rc = opal_pci_set_phb_mem_window(phb->opal_id,
				OPAL_M64_WINDOW_TYPE, index, base, 0,
				PNV_IODA1_M64_SEGS * segsz);
		if (rc != OPAL_SUCCESS) {
294
			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
295 296 297 298 299 300 301 302
				rc, phb->hose->global_number, index);
			goto fail;
		}

		rc = opal_pci_phb_mmio_enable(phb->opal_id,
				OPAL_M64_WINDOW_TYPE, index,
				OPAL_ENABLE_M64_SPLIT);
		if (rc != OPAL_SUCCESS) {
303
			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
304 305 306 307 308 309
				rc, phb->hose->global_number, index);
			goto fail;
		}
	}

	/*
310 311
	 * Exclude the segments for reserved and root bus PE, which
	 * are first or last two PEs.
312 313 314
	 */
	r = &phb->hose->mem_resources[1];
	if (phb->ioda.reserved_pe_idx == 0)
315
		r->start += (2 * phb->ioda.m64_segsize);
316
	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
317
		r->end -= (2 * phb->ioda.m64_segsize);
318
	else
319
		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
320 321 322 323 324 325 326 327 328 329 330 331
		     phb->ioda.reserved_pe_idx, phb->hose->global_number);

	return 0;

fail:
	for ( ; index >= 0; index--)
		opal_pci_phb_mmio_enable(phb->opal_id,
			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);

	return -EIO;
}

332 333 334
static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
				    unsigned long *pe_bitmap,
				    bool all)
335 336
{
	struct pci_dev *pdev;
337 338

	list_for_each_entry(pdev, &bus->devices, bus_list) {
339
		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
340 341

		if (all && pdev->subordinate)
342 343
			pnv_ioda_reserve_m64_pe(pdev->subordinate,
						pe_bitmap, all);
344 345 346
	}
}

347
static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
348
{
349 350
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
351 352
	struct pnv_ioda_pe *master_pe, *pe;
	unsigned long size, *pe_alloc;
353
	int i;
354 355 356

	/* Root bus shouldn't use M64 */
	if (pci_is_root_bus(bus))
357
		return NULL;
358 359

	/* Allocate bitmap */
360
	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
361 362 363 364
	pe_alloc = kzalloc(size, GFP_KERNEL);
	if (!pe_alloc) {
		pr_warn("%s: Out of memory !\n",
			__func__);
365
		return NULL;
366 367
	}

368
	/* Figure out reserved PE numbers by the PE */
369
	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
370 371 372 373 374 375

	/*
	 * the current bus might not own M64 window and that's all
	 * contributed by its child buses. For the case, we needn't
	 * pick M64 dependent PE#.
	 */
376
	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
377
		kfree(pe_alloc);
378
		return NULL;
379 380 381 382 383 384 385 386
	}

	/*
	 * Figure out the master PE and put all slave PEs to master
	 * PE's list to form compound PE.
	 */
	master_pe = NULL;
	i = -1;
387 388
	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
		phb->ioda.total_pe_num) {
389 390
		pe = &phb->ioda.pe_array[i];

391
		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
392 393 394 395 396 397 398 399 400
		if (!master_pe) {
			pe->flags |= PNV_IODA_PE_MASTER;
			INIT_LIST_HEAD(&pe->slaves);
			master_pe = pe;
		} else {
			pe->flags |= PNV_IODA_PE_SLAVE;
			pe->master = master_pe;
			list_add_tail(&pe->list, &master_pe->slaves);
		}
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

		/*
		 * P7IOC supports M64DT, which helps mapping M64 segment
		 * to one particular PE#. However, PHB3 has fixed mapping
		 * between M64 segment and PE#. In order to have same logic
		 * for P7IOC and PHB3, we enforce fixed mapping between M64
		 * segment and PE# on P7IOC.
		 */
		if (phb->type == PNV_PHB_IODA1) {
			int64_t rc;

			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
					pe->pe_number, OPAL_M64_WINDOW_TYPE,
					pe->pe_number / PNV_IODA1_M64_SEGS,
					pe->pe_number % PNV_IODA1_M64_SEGS);
			if (rc != OPAL_SUCCESS)
417
				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
418 419 420
					__func__, rc, phb->hose->global_number,
					pe->pe_number);
		}
421 422 423
	}

	kfree(pe_alloc);
424
	return master_pe;
425 426 427 428 429 430 431
}

static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
{
	struct pci_controller *hose = phb->hose;
	struct device_node *dn = hose->dn;
	struct resource *res;
432
	u32 m64_range[2], i;
433
	const __be32 *r;
434 435
	u64 pci_addr;

436
	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
437 438 439 440
		pr_info("  Not support M64 window\n");
		return;
	}

441
	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
442 443 444 445 446 447 448 449 450 451 452
		pr_info("  Firmware too old to support M64 window\n");
		return;
	}

	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
	if (!r) {
		pr_info("  No <ibm,opal-m64-window> on %s\n",
			dn->full_name);
		return;
	}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
	/*
	 * Find the available M64 BAR range and pickup the last one for
	 * covering the whole 64-bits space. We support only one range.
	 */
	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
				       m64_range, 2)) {
		/* In absence of the property, assume 0..15 */
		m64_range[0] = 0;
		m64_range[1] = 16;
	}
	/* We only support 64 bits in our allocator */
	if (m64_range[1] > 63) {
		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
			__func__, m64_range[1], phb->hose->global_number);
		m64_range[1] = 63;
	}
	/* Empty range, no m64 */
	if (m64_range[1] <= m64_range[0]) {
		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
			__func__, phb->hose->global_number);
		return;
	}

	/* Configure M64 informations */
477
	res = &hose->mem_resources[1];
478
	res->name = dn->full_name;
479 480 481 482 483 484 485
	res->start = of_translate_address(dn, r + 2);
	res->end = res->start + of_read_number(r + 4, 2) - 1;
	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
	pci_addr = of_read_number(r, 2);
	hose->mem_offset[1] = res->start - pci_addr;

	phb->ioda.m64_size = resource_size(res);
486
	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
487 488
	phb->ioda.m64_base = pci_addr;

489 490 491 492 493 494 495
	/* This lines up nicely with the display from processing OF ranges */
	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
		res->start, res->end, pci_addr, m64_range[0],
		m64_range[0] + m64_range[1] - 1);

	/* Mark all M64 used up by default */
	phb->ioda.m64_bar_alloc = (unsigned long)-1;
496

497
	/* Use last M64 BAR to cover M64 window */
498 499 500 501 502 503 504 505 506 507 508 509 510
	m64_range[1]--;
	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];

	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);

	/* Mark remaining ones free */
	for (i = m64_range[0]; i < m64_range[1]; i++)
		clear_bit(i, &phb->ioda.m64_bar_alloc);

	/*
	 * Setup init functions for M64 based on IODA version, IODA3 uses
	 * the IODA2 code.
	 */
511 512 513 514
	if (phb->type == PNV_PHB_IODA1)
		phb->init_m64 = pnv_ioda1_init_m64;
	else
		phb->init_m64 = pnv_ioda2_init_m64;
515 516
	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
517 518
}

G
Gavin Shan 已提交
519 520 521 522 523 524 525 526 527
static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
{
	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
	struct pnv_ioda_pe *slave;
	s64 rc;

	/* Fetch master PE */
	if (pe->flags & PNV_IODA_PE_SLAVE) {
		pe = pe->master;
528 529 530
		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
			return;

G
Gavin Shan 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		pe_no = pe->pe_number;
	}

	/* Freeze master PE */
	rc = opal_pci_eeh_freeze_set(phb->opal_id,
				     pe_no,
				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
	if (rc != OPAL_SUCCESS) {
		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
			__func__, rc, phb->hose->global_number, pe_no);
		return;
	}

	/* Freeze slave PEs */
	if (!(pe->flags & PNV_IODA_PE_MASTER))
		return;

	list_for_each_entry(slave, &pe->slaves, list) {
		rc = opal_pci_eeh_freeze_set(phb->opal_id,
					     slave->pe_number,
					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
		if (rc != OPAL_SUCCESS)
			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
				__func__, rc, phb->hose->global_number,
				slave->pe_number);
	}
}

559
static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
G
Gavin Shan 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
{
	struct pnv_ioda_pe *pe, *slave;
	s64 rc;

	/* Find master PE */
	pe = &phb->ioda.pe_array[pe_no];
	if (pe->flags & PNV_IODA_PE_SLAVE) {
		pe = pe->master;
		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
		pe_no = pe->pe_number;
	}

	/* Clear frozen state for master PE */
	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
	if (rc != OPAL_SUCCESS) {
		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
			__func__, rc, opt, phb->hose->global_number, pe_no);
		return -EIO;
	}

	if (!(pe->flags & PNV_IODA_PE_MASTER))
		return 0;

	/* Clear frozen state for slave PEs */
	list_for_each_entry(slave, &pe->slaves, list) {
		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
					     slave->pe_number,
					     opt);
		if (rc != OPAL_SUCCESS) {
			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
				__func__, rc, opt, phb->hose->global_number,
				slave->pe_number);
			return -EIO;
		}
	}

	return 0;
}

static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
{
	struct pnv_ioda_pe *slave, *pe;
	u8 fstate, state;
	__be16 pcierr;
	s64 rc;

	/* Sanity check on PE number */
607
	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
G
Gavin Shan 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
		return OPAL_EEH_STOPPED_PERM_UNAVAIL;

	/*
	 * Fetch the master PE and the PE instance might be
	 * not initialized yet.
	 */
	pe = &phb->ioda.pe_array[pe_no];
	if (pe->flags & PNV_IODA_PE_SLAVE) {
		pe = pe->master;
		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
		pe_no = pe->pe_number;
	}

	/* Check the master PE */
	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
					&state, &pcierr, NULL);
	if (rc != OPAL_SUCCESS) {
		pr_warn("%s: Failure %lld getting "
			"PHB#%x-PE#%x state\n",
			__func__, rc,
			phb->hose->global_number, pe_no);
		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
	}

	/* Check the slave PE */
	if (!(pe->flags & PNV_IODA_PE_MASTER))
		return state;

	list_for_each_entry(slave, &pe->slaves, list) {
		rc = opal_pci_eeh_freeze_status(phb->opal_id,
						slave->pe_number,
						&fstate,
						&pcierr,
						NULL);
		if (rc != OPAL_SUCCESS) {
			pr_warn("%s: Failure %lld getting "
				"PHB#%x-PE#%x state\n",
				__func__, rc,
				phb->hose->global_number, slave->pe_number);
			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
		}

		/*
		 * Override the result based on the ascending
		 * priority.
		 */
		if (fstate > state)
			state = fstate;
	}

	return state;
}

661 662 663 664
/* Currently those 2 are only used when MSIs are enabled, this will change
 * but in the meantime, we need to protect them to avoid warnings
 */
#ifdef CONFIG_PCI_MSI
665
struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
666 667 668
{
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
669
	struct pci_dn *pdn = pci_get_pdn(dev);
670 671 672 673 674 675 676 677 678

	if (!pdn)
		return NULL;
	if (pdn->pe_number == IODA_INVALID_PE)
		return NULL;
	return &phb->ioda.pe_array[pdn->pe_number];
}
#endif /* CONFIG_PCI_MSI */

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
				  struct pnv_ioda_pe *parent,
				  struct pnv_ioda_pe *child,
				  bool is_add)
{
	const char *desc = is_add ? "adding" : "removing";
	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
			      OPAL_REMOVE_PE_FROM_DOMAIN;
	struct pnv_ioda_pe *slave;
	long rc;

	/* Parent PE affects child PE */
	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
				child->pe_number, op);
	if (rc != OPAL_SUCCESS) {
		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
			rc, desc);
		return -ENXIO;
	}

	if (!(child->flags & PNV_IODA_PE_MASTER))
		return 0;

	/* Compound case: parent PE affects slave PEs */
	list_for_each_entry(slave, &child->slaves, list) {
		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
					slave->pe_number, op);
		if (rc != OPAL_SUCCESS) {
			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
				rc, desc);
			return -ENXIO;
		}
	}

	return 0;
}

static int pnv_ioda_set_peltv(struct pnv_phb *phb,
			      struct pnv_ioda_pe *pe,
			      bool is_add)
{
	struct pnv_ioda_pe *slave;
721
	struct pci_dev *pdev = NULL;
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
	int ret;

	/*
	 * Clear PE frozen state. If it's master PE, we need
	 * clear slave PE frozen state as well.
	 */
	if (is_add) {
		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
		if (pe->flags & PNV_IODA_PE_MASTER) {
			list_for_each_entry(slave, &pe->slaves, list)
				opal_pci_eeh_freeze_clear(phb->opal_id,
							  slave->pe_number,
							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
		}
	}

	/*
	 * Associate PE in PELT. We need add the PE into the
	 * corresponding PELT-V as well. Otherwise, the error
	 * originated from the PE might contribute to other
	 * PEs.
	 */
	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
	if (ret)
		return ret;

	/* For compound PEs, any one affects all of them */
	if (pe->flags & PNV_IODA_PE_MASTER) {
		list_for_each_entry(slave, &pe->slaves, list) {
			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
			if (ret)
				return ret;
		}
	}

	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
		pdev = pe->pbus->self;
760
	else if (pe->flags & PNV_IODA_PE_DEV)
761
		pdev = pe->pdev->bus->self;
762 763
#ifdef CONFIG_PCI_IOV
	else if (pe->flags & PNV_IODA_PE_VF)
764
		pdev = pe->parent_dev;
765
#endif /* CONFIG_PCI_IOV */
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
	while (pdev) {
		struct pci_dn *pdn = pci_get_pdn(pdev);
		struct pnv_ioda_pe *parent;

		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
			parent = &phb->ioda.pe_array[pdn->pe_number];
			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
			if (ret)
				return ret;
		}

		pdev = pdev->bus->self;
	}

	return 0;
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
{
	struct pci_dev *parent;
	uint8_t bcomp, dcomp, fcomp;
	int64_t rc;
	long rid_end, rid;

	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
	if (pe->pbus) {
		int count;

		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
		parent = pe->pbus->self;
		if (pe->flags & PNV_IODA_PE_BUS_ALL)
			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
		else
			count = 1;

		switch(count) {
		case  1: bcomp = OpalPciBusAll;         break;
		case  2: bcomp = OpalPciBus7Bits;       break;
		case  4: bcomp = OpalPciBus6Bits;       break;
		case  8: bcomp = OpalPciBus5Bits;       break;
		case 16: bcomp = OpalPciBus4Bits;       break;
		case 32: bcomp = OpalPciBus3Bits;       break;
		default:
			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
			        count);
			/* Do an exact match only */
			bcomp = OpalPciBusAll;
		}
		rid_end = pe->rid + (count << 8);
	} else {
817
#ifdef CONFIG_PCI_IOV
818 819 820
		if (pe->flags & PNV_IODA_PE_VF)
			parent = pe->parent_dev;
		else
821
#endif
822 823 824 825 826 827 828 829 830
			parent = pe->pdev->bus->self;
		bcomp = OpalPciBusAll;
		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
		rid_end = pe->rid + 1;
	}

	/* Clear the reverse map */
	for (rid = pe->rid; rid < rid_end; rid++)
831
		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
832 833 834 835 836 837 838 839 840 841 842 843

	/* Release from all parents PELT-V */
	while (parent) {
		struct pci_dn *pdn = pci_get_pdn(parent);
		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
			/* XXX What to do in case of error ? */
		}
		parent = parent->bus->self;
	}

844
	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
845 846 847 848 849 850 851 852 853 854 855 856 857 858
				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);

	/* Disassociate PE in PELT */
	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
	if (rc)
		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
	if (rc)
		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);

	pe->pbus = NULL;
	pe->pdev = NULL;
859
#ifdef CONFIG_PCI_IOV
860
	pe->parent_dev = NULL;
861
#endif
862 863 864 865

	return 0;
}

866
static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
867 868 869 870 871 872 873 874 875 876 877 878
{
	struct pci_dev *parent;
	uint8_t bcomp, dcomp, fcomp;
	long rc, rid_end, rid;

	/* Bus validation ? */
	if (pe->pbus) {
		int count;

		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
		parent = pe->pbus->self;
879 880 881 882 883
		if (pe->flags & PNV_IODA_PE_BUS_ALL)
			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
		else
			count = 1;

884 885 886 887 888 889 890 891
		switch(count) {
		case  1: bcomp = OpalPciBusAll;		break;
		case  2: bcomp = OpalPciBus7Bits;	break;
		case  4: bcomp = OpalPciBus6Bits;	break;
		case  8: bcomp = OpalPciBus5Bits;	break;
		case 16: bcomp = OpalPciBus4Bits;	break;
		case 32: bcomp = OpalPciBus3Bits;	break;
		default:
892 893
			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
			        count);
894 895 896 897 898
			/* Do an exact match only */
			bcomp = OpalPciBusAll;
		}
		rid_end = pe->rid + (count << 8);
	} else {
899 900 901 902 903 904
#ifdef CONFIG_PCI_IOV
		if (pe->flags & PNV_IODA_PE_VF)
			parent = pe->parent_dev;
		else
#endif /* CONFIG_PCI_IOV */
			parent = pe->pdev->bus->self;
905 906 907 908 909 910
		bcomp = OpalPciBusAll;
		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
		rid_end = pe->rid + 1;
	}

911 912 913 914 915 916
	/*
	 * Associate PE in PELT. We need add the PE into the
	 * corresponding PELT-V as well. Otherwise, the error
	 * originated from the PE might contribute to other
	 * PEs.
	 */
917 918 919 920 921 922
	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
	if (rc) {
		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
		return -ENXIO;
	}
923

924 925 926 927 928 929
	/*
	 * Configure PELTV. NPUs don't have a PELTV table so skip
	 * configuration on them.
	 */
	if (phb->type != PNV_PHB_NPU)
		pnv_ioda_set_peltv(phb, pe, true);
930 931 932 933 934 935

	/* Setup reverse map */
	for (rid = pe->rid; rid < rid_end; rid++)
		phb->ioda.pe_rmap[rid] = pe->pe_number;

	/* Setup one MVTs on IODA1 */
936 937 938 939 940 941 942 943
	if (phb->type != PNV_PHB_IODA1) {
		pe->mve_number = 0;
		goto out;
	}

	pe->mve_number = pe->pe_number;
	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
	if (rc != OPAL_SUCCESS) {
944
		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
945 946 947 948 949
		       rc, pe->mve_number);
		pe->mve_number = -1;
	} else {
		rc = opal_pci_set_mve_enable(phb->opal_id,
					     pe->mve_number, OPAL_ENABLE_MVE);
950
		if (rc) {
951
			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
952 953 954
			       rc, pe->mve_number);
			pe->mve_number = -1;
		}
955
	}
956

957
out:
958 959 960
	return 0;
}

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
#ifdef CONFIG_PCI_IOV
static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
{
	struct pci_dn *pdn = pci_get_pdn(dev);
	int i;
	struct resource *res, res2;
	resource_size_t size;
	u16 num_vfs;

	if (!dev->is_physfn)
		return -EINVAL;

	/*
	 * "offset" is in VFs.  The M64 windows are sized so that when they
	 * are segmented, each segment is the same size as the IOV BAR.
	 * Each segment is in a separate PE, and the high order bits of the
	 * address are the PE number.  Therefore, each VF's BAR is in a
	 * separate PE, and changing the IOV BAR start address changes the
	 * range of PEs the VFs are in.
	 */
	num_vfs = pdn->num_vfs;
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &dev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || !res->parent)
			continue;

		/*
		 * The actual IOV BAR range is determined by the start address
		 * and the actual size for num_vfs VFs BAR.  This check is to
		 * make sure that after shifting, the range will not overlap
		 * with another device.
		 */
		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
		res2.flags = res->flags;
		res2.start = res->start + (size * offset);
		res2.end = res2.start + (size * num_vfs) - 1;

		if (res2.end > res->end) {
			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
				i, &res2, res, num_vfs, offset);
			return -EBUSY;
		}
	}

	/*
	 * After doing so, there would be a "hole" in the /proc/iomem when
	 * offset is a positive value. It looks like the device return some
	 * mmio back to the system, which actually no one could use it.
	 */
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &dev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || !res->parent)
			continue;

		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
		res2 = *res;
		res->start += size * offset;

1019 1020 1021
		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
			 i, &res2, res, (offset > 0) ? "En" : "Dis",
			 num_vfs, offset);
1022 1023 1024 1025 1026 1027
		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
	}
	return 0;
}
#endif /* CONFIG_PCI_IOV */

1028
static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1029 1030 1031
{
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
1032
	struct pci_dn *pdn = pci_get_pdn(dev);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	struct pnv_ioda_pe *pe;

	if (!pdn) {
		pr_err("%s: Device tree node not associated properly\n",
			   pci_name(dev));
		return NULL;
	}
	if (pdn->pe_number != IODA_INVALID_PE)
		return NULL;

1043 1044
	pe = pnv_ioda_alloc_pe(phb);
	if (!pe) {
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
		pr_warning("%s: Not enough PE# available, disabling device\n",
			   pci_name(dev));
		return NULL;
	}

	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
	 * pointer in the PE data structure, both should be destroyed at the
	 * same time. However, this needs to be looked at more closely again
	 * once we actually start removing things (Hotplug, SR-IOV, ...)
	 *
	 * At some point we want to remove the PDN completely anyways
	 */
	pci_dev_get(dev);
	pdn->pcidev = dev;
1059
	pdn->pe_number = pe->pe_number;
1060
	pe->flags = PNV_IODA_PE_DEV;
1061 1062 1063 1064 1065 1066 1067 1068 1069
	pe->pdev = dev;
	pe->pbus = NULL;
	pe->mve_number = -1;
	pe->rid = dev->bus->number << 8 | pdn->devfn;

	pe_info(pe, "Associated device to PE\n");

	if (pnv_ioda_configure_pe(phb, pe)) {
		/* XXX What do we do here ? */
1070
		pnv_ioda_free_pe(pe);
1071 1072 1073 1074 1075 1076
		pdn->pe_number = IODA_INVALID_PE;
		pe->pdev = NULL;
		pci_dev_put(dev);
		return NULL;
	}

1077 1078 1079
	/* Put PE to the list */
	list_add_tail(&pe->list, &phb->ioda.pe_list);

1080 1081 1082 1083 1084 1085 1086 1087
	return pe;
}

static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
1088
		struct pci_dn *pdn = pci_get_pdn(dev);
1089 1090 1091 1092 1093 1094

		if (pdn == NULL) {
			pr_warn("%s: No device node associated with device !\n",
				pci_name(dev));
			continue;
		}
1095 1096 1097 1098 1099 1100 1101 1102 1103

		/*
		 * In partial hotplug case, the PCI device might be still
		 * associated with the PE and needn't attach it to the PE
		 * again.
		 */
		if (pdn->pe_number != IODA_INVALID_PE)
			continue;

1104
		pe->device_count++;
1105
		pdn->pcidev = dev;
1106
		pdn->pe_number = pe->pe_number;
1107
		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1108 1109 1110 1111
			pnv_ioda_setup_same_PE(dev->subordinate, pe);
	}
}

1112 1113 1114 1115 1116 1117
/*
 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
 * single PCI bus. Another one that contains the primary PCI bus and its
 * subordinate PCI devices and buses. The second type of PE is normally
 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
 */
1118
static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1119
{
1120
	struct pci_controller *hose = pci_bus_to_host(bus);
1121
	struct pnv_phb *phb = hose->private_data;
1122
	struct pnv_ioda_pe *pe = NULL;
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	unsigned int pe_num;

	/*
	 * In partial hotplug case, the PE instance might be still alive.
	 * We should reuse it instead of allocating a new one.
	 */
	pe_num = phb->ioda.pe_rmap[bus->number << 8];
	if (pe_num != IODA_INVALID_PE) {
		pe = &phb->ioda.pe_array[pe_num];
		pnv_ioda_setup_same_PE(bus, pe);
		return NULL;
	}
1135

1136 1137 1138 1139 1140
	/* PE number for root bus should have been reserved */
	if (pci_is_root_bus(bus) &&
	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];

1141
	/* Check if PE is determined by M64 */
1142
	if (!pe && phb->pick_m64_pe)
1143
		pe = phb->pick_m64_pe(bus, all);
1144 1145

	/* The PE number isn't pinned by M64 */
1146 1147
	if (!pe)
		pe = pnv_ioda_alloc_pe(phb);
1148

1149
	if (!pe) {
1150 1151
		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
			__func__, pci_domain_nr(bus), bus->number);
1152
		return NULL;
1153 1154
	}

1155
	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1156 1157 1158
	pe->pbus = bus;
	pe->pdev = NULL;
	pe->mve_number = -1;
1159
	pe->rid = bus->busn_res.start << 8;
1160

1161
	if (all)
1162
		pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1163
			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1164
	else
1165
		pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1166
			bus->busn_res.start, pe->pe_number);
1167 1168 1169

	if (pnv_ioda_configure_pe(phb, pe)) {
		/* XXX What do we do here ? */
1170
		pnv_ioda_free_pe(pe);
1171
		pe->pbus = NULL;
1172
		return NULL;
1173 1174 1175 1176 1177
	}

	/* Associate it with all child devices */
	pnv_ioda_setup_same_PE(bus, pe);

1178 1179
	/* Put PE to the list */
	list_add_tail(&pe->list, &phb->ioda.pe_list);
1180 1181

	return pe;
1182 1183
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
{
	int pe_num, found_pe = false, rc;
	long rid;
	struct pnv_ioda_pe *pe;
	struct pci_dev *gpu_pdev;
	struct pci_dn *npu_pdn;
	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
	struct pnv_phb *phb = hose->private_data;

	/*
	 * Due to a hardware errata PE#0 on the NPU is reserved for
	 * error handling. This means we only have three PEs remaining
	 * which need to be assigned to four links, implying some
	 * links must share PEs.
	 *
	 * To achieve this we assign PEs such that NPUs linking the
	 * same GPU get assigned the same PE.
	 */
	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1204
	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		pe = &phb->ioda.pe_array[pe_num];
		if (!pe->pdev)
			continue;

		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
			/*
			 * This device has the same peer GPU so should
			 * be assigned the same PE as the existing
			 * peer NPU.
			 */
			dev_info(&npu_pdev->dev,
1216
				"Associating to existing PE %x\n", pe_num);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
			pci_dev_get(npu_pdev);
			npu_pdn = pci_get_pdn(npu_pdev);
			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
			npu_pdn->pcidev = npu_pdev;
			npu_pdn->pe_number = pe_num;
			phb->ioda.pe_rmap[rid] = pe->pe_number;

			/* Map the PE to this link */
			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
					OpalPciBusAll,
					OPAL_COMPARE_RID_DEVICE_NUMBER,
					OPAL_COMPARE_RID_FUNCTION_NUMBER,
					OPAL_MAP_PE);
			WARN_ON(rc != OPAL_SUCCESS);
			found_pe = true;
			break;
		}
	}

	if (!found_pe)
		/*
		 * Could not find an existing PE so allocate a new
		 * one.
		 */
		return pnv_ioda_setup_dev_PE(npu_pdev);
	else
		return pe;
}

static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1247 1248 1249 1250
{
	struct pci_dev *pdev;

	list_for_each_entry(pdev, &bus->devices, bus_list)
1251
		pnv_ioda_setup_npu_PE(pdev);
1252 1253
}

1254
static void pnv_pci_ioda_setup_PEs(void)
1255 1256
{
	struct pci_controller *hose, *tmp;
1257
	struct pnv_phb *phb;
1258 1259

	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1260
		phb = hose->private_data;
1261 1262 1263
		if (phb->type == PNV_PHB_NPU) {
			/* PE#0 is needed for error reporting */
			pnv_ioda_reserve_pe(phb, 0);
1264
			pnv_ioda_setup_npu_PEs(hose->bus);
1265
		}
1266 1267 1268
	}
}

G
Gavin Shan 已提交
1269
#ifdef CONFIG_PCI_IOV
1270
static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1271 1272 1273 1274 1275
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
	struct pci_dn         *pdn;
1276
	int                    i, j;
1277
	int                    m64_bars;
1278 1279 1280 1281 1282 1283

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);

1284 1285 1286 1287 1288
	if (pdn->m64_single_mode)
		m64_bars = num_vfs;
	else
		m64_bars = 1;

1289
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1290 1291
		for (j = 0; j < m64_bars; j++) {
			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1292 1293
				continue;
			opal_pci_phb_mmio_enable(phb->opal_id,
1294 1295 1296
				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
			pdn->m64_map[j][i] = IODA_INVALID_M64;
1297
		}
1298

1299
	kfree(pdn->m64_map);
1300 1301 1302
	return 0;
}

1303
static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1304 1305 1306 1307 1308 1309 1310
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
	struct pci_dn         *pdn;
	unsigned int           win;
	struct resource       *res;
1311
	int                    i, j;
1312
	int64_t                rc;
1313 1314 1315
	int                    total_vfs;
	resource_size_t        size, start;
	int                    pe_num;
1316
	int                    m64_bars;
1317 1318 1319 1320 1321

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);
1322
	total_vfs = pci_sriov_get_totalvfs(pdev);
1323

1324 1325 1326 1327 1328
	if (pdn->m64_single_mode)
		m64_bars = num_vfs;
	else
		m64_bars = 1;

1329 1330 1331
	pdn->m64_map = kmalloc_array(m64_bars,
				     sizeof(*pdn->m64_map),
				     GFP_KERNEL);
1332 1333 1334 1335 1336 1337
	if (!pdn->m64_map)
		return -ENOMEM;
	/* Initialize the m64_map to IODA_INVALID_M64 */
	for (i = 0; i < m64_bars ; i++)
		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
			pdn->m64_map[i][j] = IODA_INVALID_M64;
1338

1339 1340 1341 1342 1343 1344

	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &pdev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || !res->parent)
			continue;

1345
		for (j = 0; j < m64_bars; j++) {
1346 1347 1348 1349 1350 1351 1352 1353
			do {
				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
						phb->ioda.m64_bar_idx + 1, 0);

				if (win >= phb->ioda.m64_bar_idx + 1)
					goto m64_failed;
			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));

1354
			pdn->m64_map[j][i] = win;
1355

1356
			if (pdn->m64_single_mode) {
1357 1358 1359 1360 1361 1362 1363 1364 1365
				size = pci_iov_resource_size(pdev,
							PCI_IOV_RESOURCES + i);
				start = res->start + size * j;
			} else {
				size = resource_size(res);
				start = res->start;
			}

			/* Map the M64 here */
1366
			if (pdn->m64_single_mode) {
1367
				pe_num = pdn->pe_num_map[j];
1368 1369
				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
						pe_num, OPAL_M64_WINDOW_TYPE,
1370
						pdn->m64_map[j][i], 0);
1371 1372 1373 1374
			}

			rc = opal_pci_set_phb_mem_window(phb->opal_id,
						 OPAL_M64_WINDOW_TYPE,
1375
						 pdn->m64_map[j][i],
1376 1377 1378
						 start,
						 0, /* unused */
						 size);
1379 1380


1381 1382 1383 1384 1385
			if (rc != OPAL_SUCCESS) {
				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
					win, rc);
				goto m64_failed;
			}
1386

1387
			if (pdn->m64_single_mode)
1388
				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1389
				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1390 1391
			else
				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1392
				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1393

1394 1395 1396 1397 1398
			if (rc != OPAL_SUCCESS) {
				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
					win, rc);
				goto m64_failed;
			}
1399 1400 1401 1402 1403
		}
	}
	return 0;

m64_failed:
1404
	pnv_pci_vf_release_m64(pdev, num_vfs);
1405 1406 1407
	return -EBUSY;
}

1408 1409 1410 1411
static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
		int num);
static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);

1412 1413 1414 1415 1416
static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
{
	struct iommu_table    *tbl;
	int64_t               rc;

1417
	tbl = pe->table_group.tables[0];
1418
	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1419 1420 1421
	if (rc)
		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);

1422
	pnv_pci_ioda2_set_bypass(pe, false);
1423 1424 1425
	if (pe->table_group.group) {
		iommu_group_put(pe->table_group.group);
		BUG_ON(pe->table_group.group);
1426
	}
1427
	pnv_pci_ioda2_table_free_pages(tbl);
1428 1429 1430
	iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
}

1431
static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
	struct pnv_ioda_pe    *pe, *pe_n;
	struct pci_dn         *pdn;

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
1442
	pdn = pci_get_pdn(pdev);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

	if (!pdev->is_physfn)
		return;

	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
		if (pe->parent_dev != pdev)
			continue;

		pnv_pci_ioda2_release_dma_pe(pdev, pe);

		/* Remove from list */
		mutex_lock(&phb->ioda.pe_list_mutex);
		list_del(&pe->list);
		mutex_unlock(&phb->ioda.pe_list_mutex);

		pnv_ioda_deconfigure_pe(phb, pe);

1460
		pnv_ioda_free_pe(pe);
1461 1462 1463 1464 1465 1466 1467 1468
	}
}

void pnv_pci_sriov_disable(struct pci_dev *pdev)
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
1469
	struct pnv_ioda_pe    *pe;
1470
	struct pci_dn         *pdn;
1471
	u16                    num_vfs, i;
1472 1473 1474 1475 1476 1477 1478 1479

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);
	num_vfs = pdn->num_vfs;

	/* Release VF PEs */
1480
	pnv_ioda_release_vf_PE(pdev);
1481 1482

	if (phb->type == PNV_PHB_IODA2) {
1483
		if (!pdn->m64_single_mode)
1484
			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1485 1486

		/* Release M64 windows */
1487
		pnv_pci_vf_release_m64(pdev, num_vfs);
1488 1489

		/* Release PE numbers */
1490 1491
		if (pdn->m64_single_mode) {
			for (i = 0; i < num_vfs; i++) {
1492 1493 1494 1495 1496
				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
					continue;

				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
				pnv_ioda_free_pe(pe);
1497 1498 1499 1500 1501
			}
		} else
			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
		/* Releasing pe_num_map */
		kfree(pdn->pe_num_map);
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	}
}

static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
				       struct pnv_ioda_pe *pe);
static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
	struct pnv_ioda_pe    *pe;
	int                    pe_num;
	u16                    vf_index;
	struct pci_dn         *pdn;

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);

	if (!pdev->is_physfn)
		return;

	/* Reserve PE for each VF */
	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1527 1528 1529 1530
		if (pdn->m64_single_mode)
			pe_num = pdn->pe_num_map[vf_index];
		else
			pe_num = *pdn->pe_num_map + vf_index;
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

		pe = &phb->ioda.pe_array[pe_num];
		pe->pe_number = pe_num;
		pe->phb = phb;
		pe->flags = PNV_IODA_PE_VF;
		pe->pbus = NULL;
		pe->parent_dev = pdev;
		pe->mve_number = -1;
		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
			   pci_iov_virtfn_devfn(pdev, vf_index);

1542
		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1543 1544 1545 1546 1547 1548
			hose->global_number, pdev->bus->number,
			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);

		if (pnv_ioda_configure_pe(phb, pe)) {
			/* XXX What do we do here ? */
1549
			pnv_ioda_free_pe(pe);
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
			pe->pdev = NULL;
			continue;
		}

		/* Put PE to the list */
		mutex_lock(&phb->ioda.pe_list_mutex);
		list_add_tail(&pe->list, &phb->ioda.pe_list);
		mutex_unlock(&phb->ioda.pe_list_mutex);

		pnv_pci_ioda2_setup_dma_pe(phb, pe);
	}
}

int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
1568
	struct pnv_ioda_pe    *pe;
1569 1570
	struct pci_dn         *pdn;
	int                    ret;
1571
	u16                    i;
1572 1573 1574 1575 1576 1577 1578

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);

	if (phb->type == PNV_PHB_IODA2) {
1579 1580 1581 1582 1583 1584
		if (!pdn->vfs_expanded) {
			dev_info(&pdev->dev, "don't support this SRIOV device"
				" with non 64bit-prefetchable IOV BAR\n");
			return -ENOSPC;
		}

1585 1586 1587 1588 1589 1590 1591 1592 1593
		/*
		 * When M64 BARs functions in Single PE mode, the number of VFs
		 * could be enabled must be less than the number of M64 BARs.
		 */
		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
			return -EBUSY;
		}

1594 1595
		/* Allocating pe_num_map */
		if (pdn->m64_single_mode)
1596 1597 1598
			pdn->pe_num_map = kmalloc_array(num_vfs,
							sizeof(*pdn->pe_num_map),
							GFP_KERNEL);
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
		else
			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);

		if (!pdn->pe_num_map)
			return -ENOMEM;

		if (pdn->m64_single_mode)
			for (i = 0; i < num_vfs; i++)
				pdn->pe_num_map[i] = IODA_INVALID_PE;

1609
		/* Calculate available PE for required VFs */
1610 1611
		if (pdn->m64_single_mode) {
			for (i = 0; i < num_vfs; i++) {
1612 1613
				pe = pnv_ioda_alloc_pe(phb);
				if (!pe) {
1614 1615 1616
					ret = -EBUSY;
					goto m64_failed;
				}
1617 1618

				pdn->pe_num_map[i] = pe->pe_number;
1619 1620 1621 1622
			}
		} else {
			mutex_lock(&phb->ioda.pe_alloc_mutex);
			*pdn->pe_num_map = bitmap_find_next_zero_area(
1623
				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1624
				0, num_vfs, 0);
1625
			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1626 1627 1628 1629 1630 1631
				mutex_unlock(&phb->ioda.pe_alloc_mutex);
				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
				kfree(pdn->pe_num_map);
				return -EBUSY;
			}
			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1632 1633 1634 1635 1636
			mutex_unlock(&phb->ioda.pe_alloc_mutex);
		}
		pdn->num_vfs = num_vfs;

		/* Assign M64 window accordingly */
1637
		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
		if (ret) {
			dev_info(&pdev->dev, "Not enough M64 window resources\n");
			goto m64_failed;
		}

		/*
		 * When using one M64 BAR to map one IOV BAR, we need to shift
		 * the IOV BAR according to the PE# allocated to the VFs.
		 * Otherwise, the PE# for the VF will conflict with others.
		 */
1648
		if (!pdn->m64_single_mode) {
1649
			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1650 1651 1652
			if (ret)
				goto m64_failed;
		}
1653 1654 1655 1656 1657 1658 1659 1660
	}

	/* Setup VF PEs */
	pnv_ioda_setup_vf_PE(pdev, num_vfs);

	return 0;

m64_failed:
1661 1662
	if (pdn->m64_single_mode) {
		for (i = 0; i < num_vfs; i++) {
1663 1664 1665 1666 1667
			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
				continue;

			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
			pnv_ioda_free_pe(pe);
1668 1669 1670 1671 1672 1673
		}
	} else
		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);

	/* Releasing pe_num_map */
	kfree(pdn->pe_num_map);
1674 1675 1676 1677

	return ret;
}

G
Gavin Shan 已提交
1678 1679
int pcibios_sriov_disable(struct pci_dev *pdev)
{
1680 1681
	pnv_pci_sriov_disable(pdev);

G
Gavin Shan 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690
	/* Release PCI data */
	remove_dev_pci_data(pdev);
	return 0;
}

int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
{
	/* Allocate PCI data */
	add_dev_pci_data(pdev);
1691

1692
	return pnv_pci_sriov_enable(pdev, num_vfs);
G
Gavin Shan 已提交
1693 1694 1695
}
#endif /* CONFIG_PCI_IOV */

1696
static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1697
{
1698
	struct pci_dn *pdn = pci_get_pdn(pdev);
1699
	struct pnv_ioda_pe *pe;
1700

1701 1702 1703 1704 1705 1706 1707
	/*
	 * The function can be called while the PE#
	 * hasn't been assigned. Do nothing for the
	 * case.
	 */
	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
		return;
1708

1709
	pe = &phb->ioda.pe_array[pdn->pe_number];
1710
	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1711
	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1712
	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1713 1714 1715 1716 1717 1718
	/*
	 * Note: iommu_add_device() will fail here as
	 * for physical PE: the device is already added by now;
	 * for virtual PE: sysfs entries are not ready yet and
	 * tce_iommu_bus_notifier will add the device to a group later.
	 */
1719 1720
}

1721
static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1722
{
1723 1724
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	struct pci_dn *pdn = pci_get_pdn(pdev);
	struct pnv_ioda_pe *pe;
	uint64_t top;
	bool bypass = false;

	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
		return -ENODEV;;

	pe = &phb->ioda.pe_array[pdn->pe_number];
	if (pe->tce_bypass_enabled) {
		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
		bypass = (dma_mask >= top);
	}

	if (bypass) {
		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
		set_dma_ops(&pdev->dev, &dma_direct_ops);
	} else {
		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
		set_dma_ops(&pdev->dev, &dma_iommu_ops);
	}
1746
	*pdev->dev.dma_mask = dma_mask;
1747 1748

	/* Update peer npu devices */
1749
	pnv_npu_try_dma_set_bypass(pdev, bypass);
1750

1751 1752 1753
	return 0;
}

1754
static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1755
{
1756 1757
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	struct pci_dn *pdn = pci_get_pdn(pdev);
	struct pnv_ioda_pe *pe;
	u64 end, mask;

	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
		return 0;

	pe = &phb->ioda.pe_array[pdn->pe_number];
	if (!pe->tce_bypass_enabled)
		return __dma_get_required_mask(&pdev->dev);


	end = pe->tce_bypass_base + memblock_end_of_DRAM();
	mask = 1ULL << (fls64(end) - 1);
	mask += mask - 1;

	return mask;
}

1777
static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1778 1779
				   struct pci_bus *bus,
				   bool add_to_group)
1780 1781 1782 1783
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
1784
		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1785
		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1786 1787
		if (add_to_group)
			iommu_add_device(&dev->dev);
1788

1789
		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1790 1791
			pnv_ioda_setup_bus_dma(pe, dev->subordinate,
					add_to_group);
1792 1793 1794
	}
}

1795 1796 1797 1798 1799 1800 1801
static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
						     bool real_mode)
{
	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
		(phb->regs + 0x210);
}

1802
static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1803
		unsigned long index, unsigned long npages, bool rm)
1804
{
1805 1806 1807 1808
	struct iommu_table_group_link *tgl = list_first_entry_or_null(
			&tbl->it_group_list, struct iommu_table_group_link,
			next);
	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1809
			struct pnv_ioda_pe, table_group);
1810
	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1811 1812
	unsigned long start, end, inc;

1813 1814 1815
	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
			npages - 1);
1816

1817 1818 1819 1820
	/* p7ioc-style invalidation, 2 TCEs per write */
	start |= (1ull << 63);
	end |= (1ull << 63);
	inc = 16;
1821 1822 1823 1824
        end |= inc - 1;	/* round up end to be different than start */

        mb(); /* Ensure above stores are visible */
        while (start <= end) {
1825
		if (rm)
1826
			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1827
		else
1828
			__raw_writeq(cpu_to_be64(start), invalidate);
1829 1830 1831 1832 1833 1834 1835 1836 1837
                start += inc;
        }

	/*
	 * The iommu layer will do another mb() for us on build()
	 * and we don't care on free()
	 */
}

1838 1839 1840
static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
		long npages, unsigned long uaddr,
		enum dma_data_direction direction,
1841
		unsigned long attrs)
1842 1843 1844 1845
{
	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
			attrs);

1846
	if (!ret)
1847
		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1848 1849 1850 1851

	return ret;
}

1852 1853 1854 1855 1856 1857
#ifdef CONFIG_IOMMU_API
static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
		unsigned long *hpa, enum dma_data_direction *direction)
{
	long ret = pnv_tce_xchg(tbl, index, hpa, direction);

1858
	if (!ret)
1859
		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1860 1861 1862 1863 1864

	return ret;
}
#endif

1865 1866 1867 1868 1869
static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
		long npages)
{
	pnv_tce_free(tbl, index, npages);

1870
	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1871 1872
}

1873
static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1874
	.set = pnv_ioda1_tce_build,
1875 1876 1877
#ifdef CONFIG_IOMMU_API
	.exchange = pnv_ioda1_tce_xchg,
#endif
1878
	.clear = pnv_ioda1_tce_free,
1879 1880 1881
	.get = pnv_tce_get,
};

1882 1883 1884
#define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
#define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
#define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1885

1886
void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1887
{
1888
	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1889
	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1890 1891 1892

	mb(); /* Ensure previous TCE table stores are visible */
	if (rm)
1893
		__raw_rm_writeq(cpu_to_be64(val), invalidate);
1894
	else
1895
		__raw_writeq(cpu_to_be64(val), invalidate);
1896 1897
}

1898
static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1899 1900
{
	/* 01xb - invalidate TCEs that match the specified PE# */
1901
	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1902
	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1903 1904

	mb(); /* Ensure above stores are visible */
1905
	__raw_writeq(cpu_to_be64(val), invalidate);
1906 1907
}

1908 1909 1910
static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
					unsigned shift, unsigned long index,
					unsigned long npages)
1911
{
1912
	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1913 1914 1915
	unsigned long start, end, inc;

	/* We'll invalidate DMA address in PE scope */
1916
	start = PHB3_TCE_KILL_INVAL_ONE;
1917
	start |= (pe->pe_number & 0xFF);
1918 1919 1920
	end = start;

	/* Figure out the start, end and step */
1921 1922
	start |= (index << shift);
	end |= ((index + npages - 1) << shift);
1923
	inc = (0x1ull << shift);
1924 1925 1926
	mb();

	while (start <= end) {
1927
		if (rm)
1928
			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1929
		else
1930
			__raw_writeq(cpu_to_be64(start), invalidate);
1931 1932 1933 1934
		start += inc;
	}
}

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
{
	struct pnv_phb *phb = pe->phb;

	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
		pnv_pci_phb3_tce_invalidate_pe(pe);
	else
		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
				  pe->pe_number, 0, 0, 0);
}

1946 1947 1948 1949 1950 1951 1952 1953
static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
		unsigned long index, unsigned long npages, bool rm)
{
	struct iommu_table_group_link *tgl;

	list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
				struct pnv_ioda_pe, table_group);
1954 1955 1956
		struct pnv_phb *phb = pe->phb;
		unsigned int shift = tbl->it_page_shift;

1957 1958 1959 1960 1961 1962
		/*
		 * NVLink1 can use the TCE kill register directly as
		 * it's the same as PHB3. NVLink2 is different and
		 * should go via the OPAL call.
		 */
		if (phb->model == PNV_PHB_MODEL_NPU) {
1963 1964 1965 1966 1967
			/*
			 * The NVLink hardware does not support TCE kill
			 * per TCE entry so we have to invalidate
			 * the entire cache for it.
			 */
1968
			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1969 1970
			continue;
		}
1971 1972 1973 1974 1975 1976 1977 1978
		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
						    index, npages);
		else
			opal_pci_tce_kill(phb->opal_id,
					  OPAL_PCI_TCE_KILL_PAGES,
					  pe->pe_number, 1u << shift,
					  index << shift, npages);
1979 1980 1981
	}
}

1982 1983 1984
static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
		long npages, unsigned long uaddr,
		enum dma_data_direction direction,
1985
		unsigned long attrs)
1986
{
1987 1988
	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
			attrs);
1989

1990
	if (!ret)
1991 1992 1993 1994 1995
		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);

	return ret;
}

1996 1997 1998 1999 2000 2001
#ifdef CONFIG_IOMMU_API
static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
		unsigned long *hpa, enum dma_data_direction *direction)
{
	long ret = pnv_tce_xchg(tbl, index, hpa, direction);

2002
	if (!ret)
2003 2004 2005 2006 2007 2008
		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);

	return ret;
}
#endif

2009 2010 2011 2012 2013
static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
		long npages)
{
	pnv_tce_free(tbl, index, npages);

2014
	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2015 2016
}

2017 2018 2019 2020 2021 2022
static void pnv_ioda2_table_free(struct iommu_table *tbl)
{
	pnv_pci_ioda2_table_free_pages(tbl);
	iommu_free_table(tbl, "pnv");
}

2023
static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2024
	.set = pnv_ioda2_tce_build,
2025 2026 2027
#ifdef CONFIG_IOMMU_API
	.exchange = pnv_ioda2_tce_xchg,
#endif
2028
	.clear = pnv_ioda2_tce_free,
2029
	.get = pnv_tce_get,
2030
	.free = pnv_ioda2_table_free,
2031 2032
};

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
{
	unsigned int *weight = (unsigned int *)data;

	/* This is quite simplistic. The "base" weight of a device
	 * is 10. 0 means no DMA is to be accounted for it.
	 */
	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
		return 0;

	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
		*weight += 3;
	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
		*weight += 15;
	else
		*weight += 10;

	return 0;
}

static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
{
	unsigned int weight = 0;

	/* SRIOV VF has same DMA32 weight as its PF */
#ifdef CONFIG_PCI_IOV
	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
		return weight;
	}
#endif

	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
		struct pci_dev *pdev;

		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
	}

	return weight;
}

2081
static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2082
				       struct pnv_ioda_pe *pe)
2083 2084 2085 2086
{

	struct page *tce_mem = NULL;
	struct iommu_table *tbl;
2087 2088
	unsigned int weight, total_weight = 0;
	unsigned int tce32_segsz, base, segs, avail, i;
2089 2090 2091 2092 2093 2094
	int64_t rc;
	void *addr;

	/* XXX FIXME: Handle 64-bit only DMA devices */
	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2095 2096 2097 2098 2099 2100 2101 2102 2103
	weight = pnv_pci_ioda_pe_dma_weight(pe);
	if (!weight)
		return;

	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
		     &total_weight);
	segs = (weight * phb->ioda.dma32_count) / total_weight;
	if (!segs)
		segs = 1;
2104

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	/*
	 * Allocate contiguous DMA32 segments. We begin with the expected
	 * number of segments. With one more attempt, the number of DMA32
	 * segments to be allocated is decreased by one until one segment
	 * is allocated successfully.
	 */
	do {
		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
			for (avail = 0, i = base; i < base + segs; i++) {
				if (phb->ioda.dma32_segmap[i] ==
				    IODA_INVALID_PE)
					avail++;
			}

			if (avail == segs)
				goto found;
		}
	} while (--segs);

	if (!segs) {
		pe_warn(pe, "No available DMA32 segments\n");
		return;
	}

found:
2130
	tbl = pnv_pci_table_alloc(phb->hose->node);
2131 2132
	iommu_register_group(&pe->table_group, phb->hose->global_number,
			pe->pe_number);
2133
	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2134

2135
	/* Grab a 32-bit TCE table */
2136 2137
	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
		weight, total_weight, base, segs);
2138
	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2139 2140
		base * PNV_IODA1_DMA32_SEGSIZE,
		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2141 2142 2143 2144 2145

	/* XXX Currently, we allocate one big contiguous table for the
	 * TCEs. We only really need one chunk per 256M of TCE space
	 * (ie per segment) but that's an optimization for later, it
	 * requires some added smarts with our get/put_tce implementation
2146 2147 2148
	 *
	 * Each TCE page is 4KB in size and each TCE entry occupies 8
	 * bytes
2149
	 */
2150
	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2151
	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2152
				   get_order(tce32_segsz * segs));
2153 2154 2155 2156 2157
	if (!tce_mem) {
		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
		goto fail;
	}
	addr = page_address(tce_mem);
2158
	memset(addr, 0, tce32_segsz * segs);
2159 2160 2161 2162 2163 2164

	/* Configure HW */
	for (i = 0; i < segs; i++) {
		rc = opal_pci_map_pe_dma_window(phb->opal_id,
					      pe->pe_number,
					      base + i, 1,
2165 2166
					      __pa(addr) + tce32_segsz * i,
					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2167 2168 2169 2170 2171 2172 2173
		if (rc) {
			pe_err(pe, " Failed to configure 32-bit TCE table,"
			       " err %ld\n", rc);
			goto fail;
		}
	}

2174 2175 2176 2177
	/* Setup DMA32 segment mapping */
	for (i = base; i < base + segs; i++)
		phb->ioda.dma32_segmap[i] = pe->pe_number;

2178
	/* Setup linux iommu table */
2179 2180 2181
	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
				  base * PNV_IODA1_DMA32_SEGSIZE,
				  IOMMU_PAGE_SHIFT_4K);
2182

2183
	tbl->it_ops = &pnv_ioda1_iommu_ops;
2184 2185
	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2186 2187
	iommu_init_table(tbl, phb->hose->node);

2188
	if (pe->flags & PNV_IODA_PE_DEV) {
2189 2190 2191 2192 2193 2194 2195
		/*
		 * Setting table base here only for carrying iommu_group
		 * further down to let iommu_add_device() do the job.
		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
		 */
		set_iommu_table_base(&pe->pdev->dev, tbl);
		iommu_add_device(&pe->pdev->dev);
2196
	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2197
		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2198

2199 2200 2201 2202
	return;
 fail:
	/* XXX Failure: Try to fallback to 64-bit only ? */
	if (tce_mem)
2203
		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2204 2205 2206 2207
	if (tbl) {
		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
		iommu_free_table(tbl, "pnv");
	}
2208 2209
}

2210 2211 2212 2213 2214 2215 2216
static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
		int num, struct iommu_table *tbl)
{
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
			table_group);
	struct pnv_phb *phb = pe->phb;
	int64_t rc;
2217 2218
	const unsigned long size = tbl->it_indirect_levels ?
			tbl->it_level_size : tbl->it_size;
2219 2220 2221
	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
	const __u64 win_size = tbl->it_size << tbl->it_page_shift;

2222
	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2223 2224 2225 2226 2227 2228 2229 2230 2231
			start_addr, start_addr + win_size - 1,
			IOMMU_PAGE_SIZE(tbl));

	/*
	 * Map TCE table through TVT. The TVE index is the PE number
	 * shifted by 1 bit for 32-bits DMA space.
	 */
	rc = opal_pci_map_pe_dma_window(phb->opal_id,
			pe->pe_number,
2232
			(pe->pe_number << 1) + num,
2233
			tbl->it_indirect_levels + 1,
2234
			__pa(tbl->it_base),
2235
			size << 3,
2236 2237 2238 2239 2240 2241 2242 2243
			IOMMU_PAGE_SIZE(tbl));
	if (rc) {
		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
		return rc;
	}

	pnv_pci_link_table_and_group(phb->hose->node, num,
			tbl, &pe->table_group);
2244
	pnv_pci_ioda2_tce_invalidate_pe(pe);
2245 2246 2247 2248

	return 0;
}

2249
static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
{
	uint16_t window_id = (pe->pe_number << 1 ) + 1;
	int64_t rc;

	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
	if (enable) {
		phys_addr_t top = memblock_end_of_DRAM();

		top = roundup_pow_of_two(top);
		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
						     pe->pe_number,
						     window_id,
						     pe->tce_bypass_base,
						     top);
	} else {
		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
						     pe->pe_number,
						     window_id,
						     pe->tce_bypass_base,
						     0);
	}
	if (rc)
		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
	else
		pe->tce_bypass_enabled = enable;
}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
		__u32 page_shift, __u64 window_size, __u32 levels,
		struct iommu_table *tbl);

static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
		int num, __u32 page_shift, __u64 window_size, __u32 levels,
		struct iommu_table **ptbl)
{
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
			table_group);
	int nid = pe->phb->hose->node;
	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
	long ret;
	struct iommu_table *tbl;

	tbl = pnv_pci_table_alloc(nid);
	if (!tbl)
		return -ENOMEM;

	ret = pnv_pci_ioda2_table_alloc_pages(nid,
			bus_offset, page_shift, window_size,
			levels, tbl);
	if (ret) {
		iommu_free_table(tbl, "pnv");
		return ret;
	}

	tbl->it_ops = &pnv_ioda2_iommu_ops;

	*ptbl = tbl;

	return 0;
}

2311 2312 2313 2314 2315
static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
{
	struct iommu_table *tbl = NULL;
	long rc;

2316 2317 2318 2319 2320 2321 2322
	/*
	 * crashkernel= specifies the kdump kernel's maximum memory at
	 * some offset and there is no guaranteed the result is a power
	 * of 2, which will cause errors later.
	 */
	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());

2323 2324 2325 2326 2327
	/*
	 * In memory constrained environments, e.g. kdump kernel, the
	 * DMA window can be larger than available memory, which will
	 * cause errors later.
	 */
2328
	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2329

2330 2331
	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
			IOMMU_PAGE_SHIFT_4K,
2332
			window_size,
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
	if (rc) {
		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
				rc);
		return rc;
	}

	iommu_init_table(tbl, pe->phb->hose->node);

	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
	if (rc) {
		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
				rc);
		pnv_ioda2_table_free(tbl);
		return rc;
	}

	if (!pnv_iommu_bypass_disabled)
		pnv_pci_ioda2_set_bypass(pe, true);

	/*
	 * Setting table base here only for carrying iommu_group
	 * further down to let iommu_add_device() do the job.
	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
	 */
	if (pe->flags & PNV_IODA_PE_DEV)
		set_iommu_table_base(&pe->pdev->dev, tbl);

	return 0;
}

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
#if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
		int num)
{
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
			table_group);
	struct pnv_phb *phb = pe->phb;
	long ret;

	pe_info(pe, "Removing DMA window #%d\n", num);

	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
			(pe->pe_number << 1) + num,
			0/* levels */, 0/* table address */,
			0/* table size */, 0/* page size */);
	if (ret)
		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
	else
2382
		pnv_pci_ioda2_tce_invalidate_pe(pe);
2383 2384 2385 2386 2387 2388 2389

	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);

	return ret;
}
#endif

2390
#ifdef CONFIG_IOMMU_API
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
		__u64 window_size, __u32 levels)
{
	unsigned long bytes = 0;
	const unsigned window_shift = ilog2(window_size);
	unsigned entries_shift = window_shift - page_shift;
	unsigned table_shift = entries_shift + 3;
	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
	unsigned long direct_table_size;

	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
			(window_size > memory_hotplug_max()) ||
			!is_power_of_2(window_size))
		return 0;

	/* Calculate a direct table size from window_size and levels */
	entries_shift = (entries_shift + levels - 1) / levels;
	table_shift = entries_shift + 3;
	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
	direct_table_size =  1UL << table_shift;

	for ( ; levels; --levels) {
		bytes += _ALIGN_UP(tce_table_size, direct_table_size);

		tce_table_size /= direct_table_size;
		tce_table_size <<= 3;
		tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
	}

	return bytes;
}

2423
static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2424
{
2425 2426
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
						table_group);
2427 2428
	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
	struct iommu_table *tbl = pe->table_group.tables[0];
2429

2430
	pnv_pci_ioda2_set_bypass(pe, false);
2431
	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2432 2433
	if (pe->pbus)
		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2434
	pnv_ioda2_table_free(tbl);
2435
}
2436

2437 2438 2439 2440 2441
static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
{
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
						table_group);

2442
	pnv_pci_ioda2_setup_default_config(pe);
2443 2444
	if (pe->pbus)
		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2445 2446
}

2447
static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2448
	.get_table_size = pnv_pci_ioda2_get_table_size,
2449 2450 2451
	.create_table = pnv_pci_ioda2_create_table,
	.set_window = pnv_pci_ioda2_set_window,
	.unset_window = pnv_pci_ioda2_unset_window,
2452 2453 2454
	.take_ownership = pnv_ioda2_take_ownership,
	.release_ownership = pnv_ioda2_release_ownership,
};
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564

static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
{
	struct pci_controller *hose;
	struct pnv_phb *phb;
	struct pnv_ioda_pe **ptmppe = opaque;
	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
	struct pci_dn *pdn = pci_get_pdn(pdev);

	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
		return 0;

	hose = pci_bus_to_host(pdev->bus);
	phb = hose->private_data;
	if (phb->type != PNV_PHB_NPU)
		return 0;

	*ptmppe = &phb->ioda.pe_array[pdn->pe_number];

	return 1;
}

/*
 * This returns PE of associated NPU.
 * This assumes that NPU is in the same IOMMU group with GPU and there is
 * no other PEs.
 */
static struct pnv_ioda_pe *gpe_table_group_to_npe(
		struct iommu_table_group *table_group)
{
	struct pnv_ioda_pe *npe = NULL;
	int ret = iommu_group_for_each_dev(table_group->group, &npe,
			gpe_table_group_to_npe_cb);

	BUG_ON(!ret || !npe);

	return npe;
}

static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
		int num, struct iommu_table *tbl)
{
	long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);

	if (ret)
		return ret;

	ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
	if (ret)
		pnv_pci_ioda2_unset_window(table_group, num);

	return ret;
}

static long pnv_pci_ioda2_npu_unset_window(
		struct iommu_table_group *table_group,
		int num)
{
	long ret = pnv_pci_ioda2_unset_window(table_group, num);

	if (ret)
		return ret;

	return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
}

static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
{
	/*
	 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
	 * the iommu_table if 32bit DMA is enabled.
	 */
	pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
	pnv_ioda2_take_ownership(table_group);
}

static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
	.get_table_size = pnv_pci_ioda2_get_table_size,
	.create_table = pnv_pci_ioda2_create_table,
	.set_window = pnv_pci_ioda2_npu_set_window,
	.unset_window = pnv_pci_ioda2_npu_unset_window,
	.take_ownership = pnv_ioda2_npu_take_ownership,
	.release_ownership = pnv_ioda2_release_ownership,
};

static void pnv_pci_ioda_setup_iommu_api(void)
{
	struct pci_controller *hose, *tmp;
	struct pnv_phb *phb;
	struct pnv_ioda_pe *pe, *gpe;

	/*
	 * Now we have all PHBs discovered, time to add NPU devices to
	 * the corresponding IOMMU groups.
	 */
	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		phb = hose->private_data;

		if (phb->type != PNV_PHB_NPU)
			continue;

		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
			gpe = pnv_pci_npu_setup_iommu(pe);
			if (gpe)
				gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
		}
	}
}
#else /* !CONFIG_IOMMU_API */
static void pnv_pci_ioda_setup_iommu_api(void) { };
2565 2566
#endif

2567 2568
static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
		unsigned levels, unsigned long limit,
2569
		unsigned long *current_offset, unsigned long *total_allocated)
2570 2571
{
	struct page *tce_mem = NULL;
2572
	__be64 *addr, *tmp;
2573
	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2574 2575 2576
	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
	unsigned entries = 1UL << (shift - 3);
	long i;
2577 2578 2579 2580 2581 2582 2583

	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
	if (!tce_mem) {
		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
		return NULL;
	}
	addr = page_address(tce_mem);
2584
	memset(addr, 0, allocated);
2585
	*total_allocated += allocated;
2586 2587 2588 2589 2590 2591 2592 2593 2594

	--levels;
	if (!levels) {
		*current_offset += allocated;
		return addr;
	}

	for (i = 0; i < entries; ++i) {
		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2595
				levels, limit, current_offset, total_allocated);
2596 2597 2598 2599 2600 2601 2602 2603 2604
		if (!tmp)
			break;

		addr[i] = cpu_to_be64(__pa(tmp) |
				TCE_PCI_READ | TCE_PCI_WRITE);

		if (*current_offset >= limit)
			break;
	}
2605 2606 2607 2608

	return addr;
}

2609 2610 2611
static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
		unsigned long size, unsigned level);

2612
static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2613 2614
		__u32 page_shift, __u64 window_size, __u32 levels,
		struct iommu_table *tbl)
2615
{
2616
	void *addr;
2617
	unsigned long offset = 0, level_shift, total_allocated = 0;
2618 2619 2620 2621 2622
	const unsigned window_shift = ilog2(window_size);
	unsigned entries_shift = window_shift - page_shift;
	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
	const unsigned long tce_table_size = 1UL << table_shift;

2623 2624 2625
	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
		return -EINVAL;

2626 2627 2628
	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
		return -EINVAL;

2629 2630 2631 2632 2633
	/* Adjust direct table size from window_size and levels */
	entries_shift = (entries_shift + levels - 1) / levels;
	level_shift = entries_shift + 3;
	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);

2634 2635 2636
	if ((level_shift - 3) * levels + page_shift >= 60)
		return -EINVAL;

2637
	/* Allocate TCE table */
2638
	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2639
			levels, tce_table_size, &offset, &total_allocated);
2640 2641

	/* addr==NULL means that the first level allocation failed */
2642 2643 2644
	if (!addr)
		return -ENOMEM;

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	/*
	 * First level was allocated but some lower level failed as
	 * we did not allocate as much as we wanted,
	 * release partially allocated table.
	 */
	if (offset < tce_table_size) {
		pnv_pci_ioda2_table_do_free_pages(addr,
				1ULL << (level_shift - 3), levels - 1);
		return -ENOMEM;
	}

2656 2657 2658
	/* Setup linux iommu table */
	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
			page_shift);
2659 2660
	tbl->it_level_size = 1ULL << (level_shift - 3);
	tbl->it_indirect_levels = levels - 1;
2661
	tbl->it_allocated_size = total_allocated;
2662 2663 2664 2665 2666 2667 2668

	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
			window_size, tce_table_size, bus_offset);

	return 0;
}

2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
		unsigned long size, unsigned level)
{
	const unsigned long addr_ul = (unsigned long) addr &
			~(TCE_PCI_READ | TCE_PCI_WRITE);

	if (level) {
		long i;
		u64 *tmp = (u64 *) addr_ul;

		for (i = 0; i < size; ++i) {
			unsigned long hpa = be64_to_cpu(tmp[i]);

			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
				continue;

			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
					level - 1);
		}
	}

	free_pages(addr_ul, get_order(size << 3));
}

2693 2694
static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
{
2695 2696 2697
	const unsigned long size = tbl->it_indirect_levels ?
			tbl->it_level_size : tbl->it_size;

2698 2699 2700
	if (!tbl->it_size)
		return;

2701 2702
	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
			tbl->it_indirect_levels);
2703 2704 2705 2706 2707
}

static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
				       struct pnv_ioda_pe *pe)
{
2708 2709
	int64_t rc;

2710 2711 2712
	if (!pnv_pci_ioda_pe_dma_weight(pe))
		return;

2713 2714 2715
	/* TVE #1 is selected by PCI address bit 59 */
	pe->tce_bypass_base = 1ull << 59;

2716 2717
	iommu_register_group(&pe->table_group, phb->hose->global_number,
			pe->pe_number);
2718

2719 2720
	/* The PE will reserve all possible 32-bits space */
	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2721
		phb->ioda.m32_pci_base);
2722

2723
	/* Setup linux iommu table */
2724 2725 2726 2727 2728 2729
	pe->table_group.tce32_start = 0;
	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
	pe->table_group.max_dynamic_windows_supported =
			IOMMU_TABLE_GROUP_MAX_TABLES;
	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2730 2731 2732 2733
#ifdef CONFIG_IOMMU_API
	pe->table_group.ops = &pnv_pci_ioda2_ops;
#endif

2734
	rc = pnv_pci_ioda2_setup_default_config(pe);
2735
	if (rc)
2736
		return;
2737

2738
	if (pe->flags & PNV_IODA_PE_DEV)
2739
		iommu_add_device(&pe->pdev->dev);
2740
	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2741
		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2742 2743
}

2744
#ifdef CONFIG_PCI_MSI
2745
int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2746 2747 2748
{
	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
					   ioda.irq_chip);
2749 2750 2751 2752 2753 2754

	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
}

static void pnv_ioda2_msi_eoi(struct irq_data *d)
{
2755
	int64_t rc;
2756 2757
	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
	struct irq_chip *chip = irq_data_get_irq_chip(d);
2758

2759
	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2760 2761 2762 2763 2764
	WARN_ON_ONCE(rc);

	icp_native_eoi(d);
}

2765

2766
void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2767 2768 2769 2770
{
	struct irq_data *idata;
	struct irq_chip *ichip;

2771 2772
	/* The MSI EOI OPAL call is only needed on PHB3 */
	if (phb->model != PNV_PHB_MODEL_PHB3)
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
		return;

	if (!phb->ioda.irq_chip_init) {
		/*
		 * First time we setup an MSI IRQ, we need to setup the
		 * corresponding IRQ chip to route correctly.
		 */
		idata = irq_get_irq_data(virq);
		ichip = irq_data_get_irq_chip(idata);
		phb->ioda.irq_chip_init = 1;
		phb->ioda.irq_chip = *ichip;
		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
	}
	irq_set_chip(virq, &phb->ioda.irq_chip);
}

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
/*
 * Returns true iff chip is something that we could call
 * pnv_opal_pci_msi_eoi for.
 */
bool is_pnv_opal_msi(struct irq_chip *chip)
{
	return chip->irq_eoi == pnv_ioda2_msi_eoi;
}
EXPORT_SYMBOL_GPL(is_pnv_opal_msi);

2799
static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2800 2801
				  unsigned int hwirq, unsigned int virq,
				  unsigned int is_64, struct msi_msg *msg)
2802 2803 2804
{
	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
	unsigned int xive_num = hwirq - phb->msi_base;
2805
	__be32 data;
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
	int rc;

	/* No PE assigned ? bail out ... no MSI for you ! */
	if (pe == NULL)
		return -ENXIO;

	/* Check if we have an MVE */
	if (pe->mve_number < 0)
		return -ENXIO;

2816
	/* Force 32-bit MSI on some broken devices */
2817
	if (dev->no_64bit_msi)
2818 2819
		is_64 = 0;

2820 2821 2822 2823 2824 2825 2826 2827 2828
	/* Assign XIVE to PE */
	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
	if (rc) {
		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
			pci_name(dev), rc, xive_num);
		return -EIO;
	}

	if (is_64) {
2829 2830
		__be64 addr64;

2831 2832 2833 2834 2835 2836 2837
		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
				     &addr64, &data);
		if (rc) {
			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
				pci_name(dev), rc);
			return -EIO;
		}
2838 2839
		msg->address_hi = be64_to_cpu(addr64) >> 32;
		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2840
	} else {
2841 2842
		__be32 addr32;

2843 2844 2845 2846 2847 2848 2849 2850
		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
				     &addr32, &data);
		if (rc) {
			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
				pci_name(dev), rc);
			return -EIO;
		}
		msg->address_hi = 0;
2851
		msg->address_lo = be32_to_cpu(addr32);
2852
	}
2853
	msg->data = be32_to_cpu(data);
2854

2855
	pnv_set_msi_irq_chip(phb, virq);
2856

2857
	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2858
		 " address=%x_%08x data=%x PE# %x\n",
2859 2860 2861 2862 2863 2864 2865 2866
		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
		 msg->address_hi, msg->address_lo, data, pe->pe_number);

	return 0;
}

static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
{
2867
	unsigned int count;
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
	const __be32 *prop = of_get_property(phb->hose->dn,
					     "ibm,opal-msi-ranges", NULL);
	if (!prop) {
		/* BML Fallback */
		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
	}
	if (!prop)
		return;

	phb->msi_base = be32_to_cpup(prop);
2878 2879
	count = be32_to_cpup(prop + 1);
	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2880 2881 2882 2883
		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
		       phb->hose->global_number);
		return;
	}
2884

2885 2886 2887
	phb->msi_setup = pnv_pci_ioda_msi_setup;
	phb->msi32_support = 1;
	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2888
		count, phb->msi_base);
2889 2890 2891 2892 2893
}
#else
static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
#endif /* CONFIG_PCI_MSI */

2894 2895 2896
#ifdef CONFIG_PCI_IOV
static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
{
2897 2898 2899
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2900 2901
	struct resource *res;
	int i;
2902
	resource_size_t size, total_vf_bar_sz;
2903
	struct pci_dn *pdn;
2904
	int mul, total_vfs;
2905 2906 2907 2908 2909 2910

	if (!pdev->is_physfn || pdev->is_added)
		return;

	pdn = pci_get_pdn(pdev);
	pdn->vfs_expanded = 0;
2911
	pdn->m64_single_mode = false;
2912

2913
	total_vfs = pci_sriov_get_totalvfs(pdev);
2914
	mul = phb->ioda.total_pe_num;
2915
	total_vf_bar_sz = 0;
2916 2917 2918 2919 2920

	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &pdev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || res->parent)
			continue;
2921
		if (!pnv_pci_is_m64_flags(res->flags)) {
2922 2923
			dev_warn(&pdev->dev, "Don't support SR-IOV with"
					" non M64 VF BAR%d: %pR. \n",
2924
				 i, res);
2925
			goto truncate_iov;
2926 2927
		}

2928 2929
		total_vf_bar_sz += pci_iov_resource_size(pdev,
				i + PCI_IOV_RESOURCES);
2930

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
		/*
		 * If bigger than quarter of M64 segment size, just round up
		 * power of two.
		 *
		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
		 * with other devices, IOV BAR size is expanded to be
		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
		 * segment size , the expanded size would equal to half of the
		 * whole M64 space size, which will exhaust the M64 Space and
		 * limit the system flexibility.  This is a design decision to
		 * set the boundary to quarter of the M64 segment size.
		 */
2943
		if (total_vf_bar_sz > gate) {
2944
			mul = roundup_pow_of_two(total_vfs);
2945 2946 2947
			dev_info(&pdev->dev,
				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
				total_vf_bar_sz, gate, mul);
2948
			pdn->m64_single_mode = true;
2949 2950 2951 2952
			break;
		}
	}

2953 2954 2955 2956 2957 2958
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &pdev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || res->parent)
			continue;

		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2959 2960 2961 2962 2963 2964 2965
		/*
		 * On PHB3, the minimum size alignment of M64 BAR in single
		 * mode is 32MB.
		 */
		if (pdn->m64_single_mode && (size < SZ_32M))
			goto truncate_iov;
		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2966
		res->end = res->start + size * mul - 1;
2967 2968
		dev_dbg(&pdev->dev, "                       %pR\n", res);
		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2969
			 i, res, mul);
2970
	}
2971
	pdn->vfs_expanded = mul;
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981

	return;

truncate_iov:
	/* To save MMIO space, IOV BAR is truncated. */
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &pdev->resource[i + PCI_IOV_RESOURCES];
		res->flags = 0;
		res->end = res->start - 1;
	}
2982 2983 2984
}
#endif /* CONFIG_PCI_IOV */

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
				  struct resource *res)
{
	struct pnv_phb *phb = pe->phb;
	struct pci_bus_region region;
	int index;
	int64_t rc;

	if (!res || !res->flags || res->start > res->end)
		return;

	if (res->flags & IORESOURCE_IO) {
		region.start = res->start - phb->ioda.io_pci_base;
		region.end   = res->end - phb->ioda.io_pci_base;
		index = region.start / phb->ioda.io_segsize;

		while (index < phb->ioda.total_pe_num &&
		       region.start <= region.end) {
			phb->ioda.io_segmap[index] = pe->pe_number;
			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
			if (rc != OPAL_SUCCESS) {
3007
				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3008 3009 3010 3011 3012 3013 3014 3015
				       __func__, rc, index, pe->pe_number);
				break;
			}

			region.start += phb->ioda.io_segsize;
			index++;
		}
	} else if ((res->flags & IORESOURCE_MEM) &&
3016
		   !pnv_pci_is_m64(phb, res)) {
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
		region.start = res->start -
			       phb->hose->mem_offset[0] -
			       phb->ioda.m32_pci_base;
		region.end   = res->end -
			       phb->hose->mem_offset[0] -
			       phb->ioda.m32_pci_base;
		index = region.start / phb->ioda.m32_segsize;

		while (index < phb->ioda.total_pe_num &&
		       region.start <= region.end) {
			phb->ioda.m32_segmap[index] = pe->pe_number;
			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
			if (rc != OPAL_SUCCESS) {
3031
				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
				       __func__, rc, index, pe->pe_number);
				break;
			}

			region.start += phb->ioda.m32_segsize;
			index++;
		}
	}
}

3042 3043 3044
/*
 * This function is supposed to be called on basis of PE from top
 * to bottom style. So the the I/O or MMIO segment assigned to
3045
 * parent PE could be overridden by its child PEs if necessary.
3046
 */
3047
static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3048
{
3049
	struct pci_dev *pdev;
3050
	int i;
3051 3052 3053 3054 3055 3056 3057 3058

	/*
	 * NOTE: We only care PCI bus based PE for now. For PCI
	 * device based PE, for example SRIOV sensitive VF should
	 * be figured out later.
	 */
	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);

		/*
		 * If the PE contains all subordinate PCI buses, the
		 * windows of the child bridges should be mapped to
		 * the PE as well.
		 */
		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
			continue;
		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
			pnv_ioda_setup_pe_res(pe,
				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
	}
3074 3075
}

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
#ifdef CONFIG_DEBUG_FS
static int pnv_pci_diag_data_set(void *data, u64 val)
{
	struct pci_controller *hose;
	struct pnv_phb *phb;
	s64 ret;

	if (val != 1ULL)
		return -EINVAL;

	hose = (struct pci_controller *)data;
	if (!hose || !hose->private_data)
		return -ENODEV;

	phb = hose->private_data;

	/* Retrieve the diag data from firmware */
	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag.blob,
					  PNV_PCI_DIAG_BUF_SIZE);
	if (ret != OPAL_SUCCESS)
		return -EIO;

	/* Print the diag data to the kernel log */
	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag.blob);
	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
			pnv_pci_diag_data_set, "%llu\n");

#endif /* CONFIG_DEBUG_FS */

3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
static void pnv_pci_ioda_create_dbgfs(void)
{
#ifdef CONFIG_DEBUG_FS
	struct pci_controller *hose, *tmp;
	struct pnv_phb *phb;
	char name[16];

	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		phb = hose->private_data;

3118 3119 3120
		/* Notify initialization of PHB done */
		phb->initialized = 1;

3121 3122
		sprintf(name, "PCI%04x", hose->global_number);
		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3123
		if (!phb->dbgfs) {
3124 3125
			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
				__func__, hose->global_number);
3126 3127 3128 3129 3130
			continue;
		}

		debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
				    &pnv_pci_diag_data_fops);
3131 3132 3133 3134
	}
#endif /* CONFIG_DEBUG_FS */
}

3135
static void pnv_pci_ioda_fixup(void)
3136 3137
{
	pnv_pci_ioda_setup_PEs();
3138
	pnv_pci_ioda_setup_iommu_api();
3139 3140
	pnv_pci_ioda_create_dbgfs();

3141 3142
#ifdef CONFIG_EEH
	eeh_init();
M
Mike Qiu 已提交
3143
	eeh_addr_cache_build();
3144
#endif
3145 3146
}

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
/*
 * Returns the alignment for I/O or memory windows for P2P
 * bridges. That actually depends on how PEs are segmented.
 * For now, we return I/O or M32 segment size for PE sensitive
 * P2P bridges. Otherwise, the default values (4KiB for I/O,
 * 1MiB for memory) will be returned.
 *
 * The current PCI bus might be put into one PE, which was
 * create against the parent PCI bridge. For that case, we
 * needn't enlarge the alignment so that we can save some
 * resources.
 */
static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
						unsigned long type)
{
	struct pci_dev *bridge;
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
	int num_pci_bridges = 0;

	bridge = bus->self;
	while (bridge) {
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
			num_pci_bridges++;
			if (num_pci_bridges >= 2)
				return 1;
		}

		bridge = bridge->bus->self;
	}

3178 3179 3180 3181 3182
	/*
	 * We fall back to M32 if M64 isn't supported. We enforce the M64
	 * alignment for any 64-bit resource, PCIe doesn't care and
	 * bridges only do 64-bit prefetchable anyway.
	 */
3183
	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3184
		return phb->ioda.m64_segsize;
3185 3186 3187 3188 3189 3190
	if (type & IORESOURCE_MEM)
		return phb->ioda.m32_segsize;

	return phb->ioda.io_segsize;
}

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
/*
 * We are updating root port or the upstream port of the
 * bridge behind the root port with PHB's windows in order
 * to accommodate the changes on required resources during
 * PCI (slot) hotplug, which is connected to either root
 * port or the downstream ports of PCIe switch behind the
 * root port.
 */
static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
					   unsigned long type)
{
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dev *bridge = bus->self;
	struct resource *r, *w;
	bool msi_region = false;
	int i;

	/* Check if we need apply fixup to the bridge's windows */
	if (!pci_is_root_bus(bridge->bus) &&
	    !pci_is_root_bus(bridge->bus->self->bus))
		return;

	/* Fixup the resources */
	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
		if (!r->flags || !r->parent)
			continue;

		w = NULL;
		if (r->flags & type & IORESOURCE_IO)
			w = &hose->io_resource;
3223
		else if (pnv_pci_is_m64(phb, r) &&
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
			 (type & IORESOURCE_PREFETCH) &&
			 phb->ioda.m64_segsize)
			w = &hose->mem_resources[1];
		else if (r->flags & type & IORESOURCE_MEM) {
			w = &hose->mem_resources[0];
			msi_region = true;
		}

		r->start = w->start;
		r->end = w->end;

		/* The 64KB 32-bits MSI region shouldn't be included in
		 * the 32-bits bridge window. Otherwise, we can see strange
		 * issues. One of them is EEH error observed on Garrison.
		 *
		 * Exclude top 1MB region which is the minimal alignment of
		 * 32-bits bridge window.
		 */
		if (msi_region) {
			r->end += 0x10000;
			r->end -= 0x100000;
		}
	}
}

3249 3250 3251 3252 3253 3254 3255 3256
static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
{
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dev *bridge = bus->self;
	struct pnv_ioda_pe *pe;
	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);

3257 3258 3259
	/* Extend bridge's windows if necessary */
	pnv_pci_fixup_bridge_resources(bus, type);

3260 3261 3262 3263 3264 3265 3266 3267 3268
	/* The PE for root bus should be realized before any one else */
	if (!phb->ioda.root_pe_populated) {
		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
		if (pe) {
			phb->ioda.root_pe_idx = pe->pe_number;
			phb->ioda.root_pe_populated = true;
		}
	}

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
	if (list_empty(&bus->devices))
		return;

	/* Reserve PEs according to used M64 resources */
	if (phb->reserve_m64_pe)
		phb->reserve_m64_pe(bus, NULL, all);

	/*
	 * Assign PE. We might run here because of partial hotplug.
	 * For the case, we just pick up the existing PE and should
	 * not allocate resources again.
	 */
	pe = pnv_ioda_setup_bus_PE(bus, all);
	if (!pe)
		return;

	pnv_ioda_setup_pe_seg(pe);
	switch (phb->type) {
	case PNV_PHB_IODA1:
		pnv_pci_ioda1_setup_dma_pe(phb, pe);
		break;
	case PNV_PHB_IODA2:
		pnv_pci_ioda2_setup_dma_pe(phb, pe);
		break;
	default:
3295
		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3296 3297 3298 3299
			__func__, phb->hose->global_number, phb->type);
	}
}

3300 3301 3302 3303
#ifdef CONFIG_PCI_IOV
static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
						      int resno)
{
3304 3305
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
3306
	struct pci_dn *pdn = pci_get_pdn(pdev);
3307
	resource_size_t align;
3308

3309 3310 3311 3312 3313
	/*
	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
	 * SR-IOV. While from hardware perspective, the range mapped by M64
	 * BAR should be size aligned.
	 *
3314 3315 3316 3317 3318 3319 3320
	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
	 * powernv-specific hardware restriction is gone. But if just use the
	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
	 * in one segment of M64 #15, which introduces the PE conflict between
	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
	 * m64_segsize.
	 *
3321 3322
	 * This function returns the total IOV BAR size if M64 BAR is in
	 * Shared PE mode or just VF BAR size if not.
3323 3324
	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
	 * M64 segment size if IOV BAR size is less.
3325
	 */
3326
	align = pci_iov_resource_size(pdev, resno);
3327 3328
	if (!pdn->vfs_expanded)
		return align;
3329 3330
	if (pdn->m64_single_mode)
		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3331

3332
	return pdn->vfs_expanded * align;
3333 3334 3335
}
#endif /* CONFIG_PCI_IOV */

3336 3337 3338
/* Prevent enabling devices for which we couldn't properly
 * assign a PE
 */
3339
bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3340
{
3341 3342 3343
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dn *pdn;
3344

3345 3346 3347 3348 3349 3350
	/* The function is probably called while the PEs have
	 * not be created yet. For example, resource reassignment
	 * during PCI probe period. We just skip the check if
	 * PEs isn't ready.
	 */
	if (!phb->initialized)
3351
		return true;
3352

3353
	pdn = pci_get_pdn(dev);
3354
	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3355
		return false;
3356

3357
	return true;
3358 3359
}

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
				       int num)
{
	struct pnv_ioda_pe *pe = container_of(table_group,
					      struct pnv_ioda_pe, table_group);
	struct pnv_phb *phb = pe->phb;
	unsigned int idx;
	long rc;

	pe_info(pe, "Removing DMA window #%d\n", num);
	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
			continue;

		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
						idx, 0, 0ul, 0ul, 0ul);
		if (rc != OPAL_SUCCESS) {
			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
				rc, idx);
			return rc;
		}

		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
	}

	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
	return OPAL_SUCCESS;
}

static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
{
	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
	struct iommu_table *tbl = pe->table_group.tables[0];
	int64_t rc;

	if (!weight)
		return;

	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
	if (rc != OPAL_SUCCESS)
		return;

3402
	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
	if (pe->table_group.group) {
		iommu_group_put(pe->table_group.group);
		WARN_ON(pe->table_group.group);
	}

	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
	iommu_free_table(tbl, "pnv");
}

static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
{
	struct iommu_table *tbl = pe->table_group.tables[0];
	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
#ifdef CONFIG_IOMMU_API
	int64_t rc;
#endif

	if (!weight)
		return;

#ifdef CONFIG_IOMMU_API
	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
	if (rc)
		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
#endif

	pnv_pci_ioda2_set_bypass(pe, false);
	if (pe->table_group.group) {
		iommu_group_put(pe->table_group.group);
		WARN_ON(pe->table_group.group);
	}

	pnv_pci_ioda2_table_free_pages(tbl);
	iommu_free_table(tbl, "pnv");
}

static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
				 unsigned short win,
				 unsigned int *map)
{
	struct pnv_phb *phb = pe->phb;
	int idx;
	int64_t rc;

	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
		if (map[idx] != pe->pe_number)
			continue;

		if (win == OPAL_M64_WINDOW_TYPE)
			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
					phb->ioda.reserved_pe_idx, win,
					idx / PNV_IODA1_M64_SEGS,
					idx % PNV_IODA1_M64_SEGS);
		else
			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
					phb->ioda.reserved_pe_idx, win, 0, idx);

		if (rc != OPAL_SUCCESS)
			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
				rc, win, idx);

		map[idx] = IODA_INVALID_PE;
	}
}

static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
{
	struct pnv_phb *phb = pe->phb;

	if (phb->type == PNV_PHB_IODA1) {
		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
				     phb->ioda.io_segmap);
		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
				     phb->ioda.m32_segmap);
		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
				     phb->ioda.m64_segmap);
	} else if (phb->type == PNV_PHB_IODA2) {
		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
				     phb->ioda.m32_segmap);
	}
}

static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
{
	struct pnv_phb *phb = pe->phb;
	struct pnv_ioda_pe *slave, *tmp;

	list_del(&pe->list);
	switch (phb->type) {
	case PNV_PHB_IODA1:
		pnv_pci_ioda1_release_pe_dma(pe);
		break;
	case PNV_PHB_IODA2:
		pnv_pci_ioda2_release_pe_dma(pe);
		break;
	default:
		WARN_ON(1);
	}

	pnv_ioda_release_pe_seg(pe);
	pnv_ioda_deconfigure_pe(pe->phb, pe);
3504 3505 3506 3507 3508 3509 3510 3511 3512

	/* Release slave PEs in the compound PE */
	if (pe->flags & PNV_IODA_PE_MASTER) {
		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
			list_del(&slave->list);
			pnv_ioda_free_pe(slave);
		}
	}

3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
	/*
	 * The PE for root bus can be removed because of hotplug in EEH
	 * recovery for fenced PHB error. We need to mark the PE dead so
	 * that it can be populated again in PCI hot add path. The PE
	 * shouldn't be destroyed as it's the global reserved resource.
	 */
	if (phb->ioda.root_pe_populated &&
	    phb->ioda.root_pe_idx == pe->pe_number)
		phb->ioda.root_pe_populated = false;
	else
		pnv_ioda_free_pe(pe);
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
}

static void pnv_pci_release_device(struct pci_dev *pdev)
{
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dn *pdn = pci_get_pdn(pdev);
	struct pnv_ioda_pe *pe;

	if (pdev->is_virtfn)
		return;

	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
		return;

3539 3540 3541 3542 3543 3544 3545 3546
	/*
	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
	 * isn't removed and added afterwards in this scenario. We should
	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
	 * device count is decreased on removing devices while failing to
	 * be increased on adding devices. It leads to unbalanced PE's device
	 * count and eventually make normal PCI hotplug path broken.
	 */
3547
	pe = &phb->ioda.pe_array[pdn->pe_number];
3548 3549
	pdn->pe_number = IODA_INVALID_PE;

3550 3551 3552 3553 3554
	WARN_ON(--pe->device_count < 0);
	if (pe->device_count == 0)
		pnv_ioda_release_pe(pe);
}

3555
static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3556
{
3557 3558
	struct pnv_phb *phb = hose->private_data;

3559
	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3560 3561 3562
		       OPAL_ASSERT_RESET);
}

3563
static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3564 3565
	.dma_dev_setup		= pnv_pci_dma_dev_setup,
	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3566
#ifdef CONFIG_PCI_MSI
3567 3568
	.setup_msi_irqs		= pnv_setup_msi_irqs,
	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3569
#endif
3570
	.enable_device_hook	= pnv_pci_enable_device_hook,
3571
	.release_device		= pnv_pci_release_device,
3572
	.window_alignment	= pnv_pci_window_alignment,
3573
	.setup_bridge		= pnv_pci_setup_bridge,
3574 3575 3576 3577
	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
	.shutdown		= pnv_pci_ioda_shutdown,
3578 3579
};

3580 3581 3582 3583 3584 3585 3586 3587
static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
{
	dev_err_once(&npdev->dev,
			"%s operation unsupported for NVLink devices\n",
			__func__);
	return -EPERM;
}

3588
static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3589
	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3590
#ifdef CONFIG_PCI_MSI
3591 3592
	.setup_msi_irqs		= pnv_setup_msi_irqs,
	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3593
#endif
3594 3595 3596 3597 3598
	.enable_device_hook	= pnv_pci_enable_device_hook,
	.window_alignment	= pnv_pci_window_alignment,
	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
	.dma_set_mask		= pnv_npu_dma_set_mask,
	.shutdown		= pnv_pci_ioda_shutdown,
3599 3600
};

3601 3602 3603 3604
#ifdef CONFIG_CXL_BASE
const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
	.dma_dev_setup		= pnv_pci_dma_dev_setup,
	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3605 3606 3607 3608
#ifdef CONFIG_PCI_MSI
	.setup_msi_irqs		= pnv_cxl_cx4_setup_msi_irqs,
	.teardown_msi_irqs	= pnv_cxl_cx4_teardown_msi_irqs,
#endif
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
	.enable_device_hook	= pnv_cxl_enable_device_hook,
	.disable_device		= pnv_cxl_disable_device,
	.release_device		= pnv_pci_release_device,
	.window_alignment	= pnv_pci_window_alignment,
	.setup_bridge		= pnv_pci_setup_bridge,
	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
	.shutdown		= pnv_pci_ioda_shutdown,
};
#endif

3621 3622
static void __init pnv_pci_init_ioda_phb(struct device_node *np,
					 u64 hub_id, int ioda_type)
3623 3624 3625
{
	struct pci_controller *hose;
	struct pnv_phb *phb;
3626 3627
	unsigned long size, m64map_off, m32map_off, pemap_off;
	unsigned long iomap_off = 0, dma32map_off = 0;
3628
	struct resource r;
3629
	const __be64 *prop64;
3630
	const __be32 *prop32;
3631
	int len;
3632
	unsigned int segno;
3633 3634 3635 3636
	u64 phb_id;
	void *aux;
	long rc;

3637 3638 3639
	if (!of_device_is_available(np))
		return;

3640 3641
	pr_info("Initializing %s PHB (%s)\n",
		pnv_phb_names[ioda_type], of_node_full_name(np));
3642 3643 3644 3645 3646 3647 3648 3649 3650

	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
	if (!prop64) {
		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
		return;
	}
	phb_id = be64_to_cpup(prop64);
	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);

3651
	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3652 3653 3654 3655 3656

	/* Allocate PCI controller */
	phb->hose = hose = pcibios_alloc_controller(np);
	if (!phb->hose) {
		pr_err("  Can't allocate PCI controller for %s\n",
3657
		       np->full_name);
3658
		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3659 3660 3661 3662
		return;
	}

	spin_lock_init(&phb->lock);
3663 3664
	prop32 = of_get_property(np, "bus-range", &len);
	if (prop32 && len == 8) {
3665 3666
		hose->first_busno = be32_to_cpu(prop32[0]);
		hose->last_busno = be32_to_cpu(prop32[1]);
3667 3668 3669 3670 3671
	} else {
		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
		hose->first_busno = 0;
		hose->last_busno = 0xff;
	}
3672
	hose->private_data = phb;
3673
	phb->hub_id = hub_id;
3674
	phb->opal_id = phb_id;
G
Gavin Shan 已提交
3675
	phb->type = ioda_type;
3676
	mutex_init(&phb->ioda.pe_alloc_mutex);
3677

3678 3679 3680
	/* Detect specific models for error handling */
	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
		phb->model = PNV_PHB_MODEL_P7IOC;
3681
	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
G
Gavin Shan 已提交
3682
		phb->model = PNV_PHB_MODEL_PHB3;
3683 3684
	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
		phb->model = PNV_PHB_MODEL_NPU;
3685 3686
	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
		phb->model = PNV_PHB_MODEL_NPU2;
3687 3688 3689
	else
		phb->model = PNV_PHB_MODEL_UNKNOWN;

G
Gavin Shan 已提交
3690
	/* Parse 32-bit and IO ranges (if any) */
3691
	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3692

G
Gavin Shan 已提交
3693
	/* Get registers */
3694 3695 3696 3697 3698 3699
	if (!of_address_to_resource(np, 0, &r)) {
		phb->regs_phys = r.start;
		phb->regs = ioremap(r.start, resource_size(&r));
		if (phb->regs == NULL)
			pr_err("  Failed to map registers !\n");
	}
3700

3701
	/* Initialize more IODA stuff */
3702
	phb->ioda.total_pe_num = 1;
G
Gavin Shan 已提交
3703
	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3704
	if (prop32)
3705
		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3706 3707
	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
	if (prop32)
3708
		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3709

3710 3711 3712 3713
	/* Invalidate RID to PE# mapping */
	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;

3714 3715 3716
	/* Parse 64-bit MMIO range */
	pnv_ioda_parse_m64_window(phb);

3717
	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
G
Gavin Shan 已提交
3718
	/* FW Has already off top 64k of M32 space (MSI space) */
3719 3720
	phb->ioda.m32_size += 0x10000;

3721
	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3722
	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3723
	phb->ioda.io_size = hose->pci_io_size;
3724
	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3725 3726
	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */

3727 3728 3729 3730
	/* Calculate how many 32-bit TCE segments we have */
	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
				PNV_IODA1_DMA32_SEGSIZE;

3731
	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3732 3733
	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
			sizeof(unsigned long));
3734 3735
	m64map_off = size;
	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3736
	m32map_off = size;
3737
	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3738 3739
	if (phb->type == PNV_PHB_IODA1) {
		iomap_off = size;
3740
		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3741 3742 3743
		dma32map_off = size;
		size += phb->ioda.dma32_count *
			sizeof(phb->ioda.dma32_segmap[0]);
3744
	}
3745
	pemap_off = size;
3746
	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3747
	aux = memblock_virt_alloc(size, 0);
3748
	phb->ioda.pe_alloc = aux;
3749
	phb->ioda.m64_segmap = aux + m64map_off;
3750
	phb->ioda.m32_segmap = aux + m32map_off;
3751 3752
	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3753
		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3754
	}
3755
	if (phb->type == PNV_PHB_IODA1) {
3756
		phb->ioda.io_segmap = aux + iomap_off;
3757 3758
		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3759 3760 3761 3762

		phb->ioda.dma32_segmap = aux + dma32map_off;
		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3763
	}
3764
	phb->ioda.pe_array = aux + pemap_off;
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780

	/*
	 * Choose PE number for root bus, which shouldn't have
	 * M64 resources consumed by its child devices. To pick
	 * the PE number adjacent to the reserved one if possible.
	 */
	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
	if (phb->ioda.reserved_pe_idx == 0) {
		phb->ioda.root_pe_idx = 1;
		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
	} else {
		phb->ioda.root_pe_idx = IODA_INVALID_PE;
	}
3781 3782

	INIT_LIST_HEAD(&phb->ioda.pe_list);
3783
	mutex_init(&phb->ioda.pe_list_mutex);
3784 3785

	/* Calculate how many 32-bit TCE segments we have */
3786
	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3787
				PNV_IODA1_DMA32_SEGSIZE;
3788

G
Gavin Shan 已提交
3789
#if 0 /* We should really do that ... */
3790 3791 3792 3793 3794 3795 3796 3797
	rc = opal_pci_set_phb_mem_window(opal->phb_id,
					 window_type,
					 window_num,
					 starting_real_address,
					 starting_pci_address,
					 segment_size);
#endif

3798
	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3799
		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3800 3801 3802 3803 3804 3805 3806 3807
		phb->ioda.m32_size, phb->ioda.m32_segsize);
	if (phb->ioda.m64_size)
		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
			phb->ioda.m64_size, phb->ioda.m64_segsize);
	if (phb->ioda.io_size)
		pr_info("                  IO: 0x%x [segment=0x%x]\n",
			phb->ioda.io_size, phb->ioda.io_segsize);

3808 3809

	phb->hose->ops = &pnv_pci_ops;
G
Gavin Shan 已提交
3810 3811 3812
	phb->get_pe_state = pnv_ioda_get_pe_state;
	phb->freeze_pe = pnv_ioda_freeze_pe;
	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3813 3814 3815 3816

	/* Setup MSI support */
	pnv_pci_init_ioda_msis(phb);

3817 3818 3819 3820 3821 3822
	/*
	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
	 * to let the PCI core do resource assignment. It's supposed
	 * that the PCI core will do correct I/O and MMIO alignment
	 * for the P2P bridge bars so that each PCI bus (excluding
	 * the child P2P bridges) can form individual PE.
3823
	 */
3824
	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3825

3826
	if (phb->type == PNV_PHB_NPU) {
3827
		hose->controller_ops = pnv_npu_ioda_controller_ops;
3828 3829
	} else {
		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3830
		hose->controller_ops = pnv_pci_ioda_controller_ops;
3831
	}
3832

3833 3834
#ifdef CONFIG_PCI_IOV
	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3835
	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3836 3837
#endif

3838
	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3839 3840

	/* Reset IODA tables to a clean state */
3841
	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3842
	if (rc)
3843
		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3844

3845 3846
	/*
	 * If we're running in kdump kernel, the previous kernel never
3847 3848
	 * shutdown PCI devices correctly. We already got IODA table
	 * cleaned out. So we have to issue PHB reset to stop all PCI
3849
	 * transactions from previous kernel.
3850 3851 3852
	 */
	if (is_kdump_kernel()) {
		pr_info("  Issue PHB reset ...\n");
3853 3854
		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3855
	}
3856

3857 3858
	/* Remove M64 resource if we can't configure it successfully */
	if (!phb->init_m64 || phb->init_m64(phb))
3859
		hose->mem_resources[1].flags = 0;
G
Gavin Shan 已提交
3860 3861
}

3862
void __init pnv_pci_init_ioda2_phb(struct device_node *np)
G
Gavin Shan 已提交
3863
{
3864
	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3865 3866
}

3867 3868 3869 3870 3871
void __init pnv_pci_init_npu_phb(struct device_node *np)
{
	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
}

3872 3873 3874
void __init pnv_pci_init_ioda_hub(struct device_node *np)
{
	struct device_node *phbn;
3875
	const __be64 *prop64;
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
	u64 hub_id;

	pr_info("Probing IODA IO-Hub %s\n", np->full_name);

	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
	if (!prop64) {
		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
		return;
	}
	hub_id = be64_to_cpup(prop64);
	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);

	/* Count child PHBs */
	for_each_child_of_node(np, phbn) {
		/* Look for IODA1 PHBs */
		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3892
			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3893 3894
	}
}