pci-ioda.c 100.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Support PCI/PCIe on PowerNV platforms
 *
 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

12
#undef DEBUG
13 14 15

#include <linux/kernel.h>
#include <linux/pci.h>
16
#include <linux/crash_dump.h>
17
#include <linux/debugfs.h>
18 19 20 21 22 23 24
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/msi.h>
25
#include <linux/memblock.h>
26
#include <linux/iommu.h>
27
#include <linux/rculist.h>
28
#include <linux/sizes.h>
29 30 31 32 33 34

#include <asm/sections.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
35
#include <asm/msi_bitmap.h>
36 37 38 39
#include <asm/ppc-pci.h>
#include <asm/opal.h>
#include <asm/iommu.h>
#include <asm/tce.h>
40
#include <asm/xics.h>
41
#include <asm/debug.h>
42
#include <asm/firmware.h>
43
#include <asm/pnv-pci.h>
44
#include <asm/mmzone.h>
45

46
#include <misc/cxl-base.h>
47 48 49 50

#include "powernv.h"
#include "pci.h"

51 52
#define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
#define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
53
#define PNV_IODA1_DMA32_SEGSIZE	0x10000000
54

55 56 57
#define POWERNV_IOMMU_DEFAULT_LEVELS	1
#define POWERNV_IOMMU_MAX_LEVELS	5

58
static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
59 60
static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);

61
void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
62 63 64 65 66 67 68 69 70 71 72
			    const char *fmt, ...)
{
	struct va_format vaf;
	va_list args;
	char pfix[32];

	va_start(args, fmt);

	vaf.fmt = fmt;
	vaf.va = &args;

73
	if (pe->flags & PNV_IODA_PE_DEV)
74
		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75
	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76 77
		sprintf(pfix, "%04x:%02x     ",
			pci_domain_nr(pe->pbus), pe->pbus->number);
78 79 80 81 82 83 84
#ifdef CONFIG_PCI_IOV
	else if (pe->flags & PNV_IODA_PE_VF)
		sprintf(pfix, "%04x:%02x:%2x.%d",
			pci_domain_nr(pe->parent_dev->bus),
			(pe->rid & 0xff00) >> 8,
			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
#endif /* CONFIG_PCI_IOV*/
85 86 87 88 89 90

	printk("%spci %s: [PE# %.3d] %pV",
	       level, pfix, pe->pe_number, &vaf);

	va_end(args);
}
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
static bool pnv_iommu_bypass_disabled __read_mostly;

static int __init iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;

	while (*str) {
		if (!strncmp(str, "nobypass", 8)) {
			pnv_iommu_bypass_disabled = true;
			pr_info("PowerNV: IOMMU bypass window disabled.\n");
			break;
		}
		str += strcspn(str, ",");
		if (*str == ',')
			str++;
	}

	return 0;
}
early_param("iommu", iommu_setup);

114
static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
115
{
116 117 118 119 120 121 122 123 124
	/*
	 * WARNING: We cannot rely on the resource flags. The Linux PCI
	 * allocation code sometimes decides to put a 64-bit prefetchable
	 * BAR in the 32-bit window, so we have to compare the addresses.
	 *
	 * For simplicity we only test resource start.
	 */
	return (r->start >= phb->ioda.m64_base &&
		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
125 126
}

127 128 129 130 131 132 133 134
static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
{
	phb->ioda.pe_array[pe_no].phb = phb;
	phb->ioda.pe_array[pe_no].pe_number = pe_no;

	return &phb->ioda.pe_array[pe_no];
}

135 136
static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
{
137
	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
138 139 140 141 142
		pr_warn("%s: Invalid PE %d on PHB#%x\n",
			__func__, pe_no, phb->hose->global_number);
		return;
	}

143 144 145
	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
		pr_debug("%s: PE %d was reserved on PHB#%x\n",
			 __func__, pe_no, phb->hose->global_number);
146

147
	pnv_ioda_init_pe(phb, pe_no);
148 149
}

150
static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
151
{
152
	unsigned long pe = phb->ioda.total_pe_num - 1;
153

154 155 156 157
	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
			return pnv_ioda_init_pe(phb, pe);
	}
158

159
	return NULL;
160 161
}

162
static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
163
{
164 165 166
	struct pnv_phb *phb = pe->phb;

	WARN_ON(pe->pdev);
167

168 169
	memset(pe, 0, sizeof(struct pnv_ioda_pe));
	clear_bit(pe->pe_number, phb->ioda.pe_alloc);
170 171
}

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/* The default M64 BAR is shared by all PEs */
static int pnv_ioda2_init_m64(struct pnv_phb *phb)
{
	const char *desc;
	struct resource *r;
	s64 rc;

	/* Configure the default M64 BAR */
	rc = opal_pci_set_phb_mem_window(phb->opal_id,
					 OPAL_M64_WINDOW_TYPE,
					 phb->ioda.m64_bar_idx,
					 phb->ioda.m64_base,
					 0, /* unused */
					 phb->ioda.m64_size);
	if (rc != OPAL_SUCCESS) {
		desc = "configuring";
		goto fail;
	}

	/* Enable the default M64 BAR */
	rc = opal_pci_phb_mmio_enable(phb->opal_id,
				      OPAL_M64_WINDOW_TYPE,
				      phb->ioda.m64_bar_idx,
				      OPAL_ENABLE_M64_SPLIT);
	if (rc != OPAL_SUCCESS) {
		desc = "enabling";
		goto fail;
	}

	/*
202 203
	 * Exclude the segments for reserved and root bus PE, which
	 * are first or last two PEs.
204 205
	 */
	r = &phb->hose->mem_resources[1];
206
	if (phb->ioda.reserved_pe_idx == 0)
207
		r->start += (2 * phb->ioda.m64_segsize);
208
	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
209
		r->end -= (2 * phb->ioda.m64_segsize);
210 211
	else
		pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
212
			phb->ioda.reserved_pe_idx);
213 214 215 216 217 218 219 220 221 222 223 224 225

	return 0;

fail:
	pr_warn("  Failure %lld %s M64 BAR#%d\n",
		rc, desc, phb->ioda.m64_bar_idx);
	opal_pci_phb_mmio_enable(phb->opal_id,
				 OPAL_M64_WINDOW_TYPE,
				 phb->ioda.m64_bar_idx,
				 OPAL_DISABLE_M64);
	return -EIO;
}

226
static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
227
					 unsigned long *pe_bitmap)
228
{
229 230
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
231
	struct resource *r;
232 233 234 235 236 237 238
	resource_size_t base, sgsz, start, end;
	int segno, i;

	base = phb->ioda.m64_base;
	sgsz = phb->ioda.m64_segsize;
	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
		r = &pdev->resource[i];
239
		if (!r->parent || !pnv_pci_is_m64(phb, r))
240
			continue;
241

242 243 244 245 246 247 248
		start = _ALIGN_DOWN(r->start - base, sgsz);
		end = _ALIGN_UP(r->end - base, sgsz);
		for (segno = start / sgsz; segno < end / sgsz; segno++) {
			if (pe_bitmap)
				set_bit(segno, pe_bitmap);
			else
				pnv_ioda_reserve_pe(phb, segno);
249 250 251 252
		}
	}
}

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
static int pnv_ioda1_init_m64(struct pnv_phb *phb)
{
	struct resource *r;
	int index;

	/*
	 * There are 16 M64 BARs, each of which has 8 segments. So
	 * there are as many M64 segments as the maximum number of
	 * PEs, which is 128.
	 */
	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
		unsigned long base, segsz = phb->ioda.m64_segsize;
		int64_t rc;

		base = phb->ioda.m64_base +
		       index * PNV_IODA1_M64_SEGS * segsz;
		rc = opal_pci_set_phb_mem_window(phb->opal_id,
				OPAL_M64_WINDOW_TYPE, index, base, 0,
				PNV_IODA1_M64_SEGS * segsz);
		if (rc != OPAL_SUCCESS) {
			pr_warn("  Error %lld setting M64 PHB#%d-BAR#%d\n",
				rc, phb->hose->global_number, index);
			goto fail;
		}

		rc = opal_pci_phb_mmio_enable(phb->opal_id,
				OPAL_M64_WINDOW_TYPE, index,
				OPAL_ENABLE_M64_SPLIT);
		if (rc != OPAL_SUCCESS) {
			pr_warn("  Error %lld enabling M64 PHB#%d-BAR#%d\n",
				rc, phb->hose->global_number, index);
			goto fail;
		}
	}

	/*
289 290
	 * Exclude the segments for reserved and root bus PE, which
	 * are first or last two PEs.
291 292 293
	 */
	r = &phb->hose->mem_resources[1];
	if (phb->ioda.reserved_pe_idx == 0)
294
		r->start += (2 * phb->ioda.m64_segsize);
295
	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
296
		r->end -= (2 * phb->ioda.m64_segsize);
297 298 299 300 301 302 303 304 305 306 307 308 309 310
	else
		WARN(1, "Wrong reserved PE#%d on PHB#%d\n",
		     phb->ioda.reserved_pe_idx, phb->hose->global_number);

	return 0;

fail:
	for ( ; index >= 0; index--)
		opal_pci_phb_mmio_enable(phb->opal_id,
			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);

	return -EIO;
}

311 312 313
static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
				    unsigned long *pe_bitmap,
				    bool all)
314 315
{
	struct pci_dev *pdev;
316 317

	list_for_each_entry(pdev, &bus->devices, bus_list) {
318
		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
319 320

		if (all && pdev->subordinate)
321 322
			pnv_ioda_reserve_m64_pe(pdev->subordinate,
						pe_bitmap, all);
323 324 325
	}
}

326
static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
327
{
328 329
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
330 331
	struct pnv_ioda_pe *master_pe, *pe;
	unsigned long size, *pe_alloc;
332
	int i;
333 334 335

	/* Root bus shouldn't use M64 */
	if (pci_is_root_bus(bus))
336
		return NULL;
337 338

	/* Allocate bitmap */
339
	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
340 341 342 343
	pe_alloc = kzalloc(size, GFP_KERNEL);
	if (!pe_alloc) {
		pr_warn("%s: Out of memory !\n",
			__func__);
344
		return NULL;
345 346
	}

347
	/* Figure out reserved PE numbers by the PE */
348
	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
349 350 351 352 353 354

	/*
	 * the current bus might not own M64 window and that's all
	 * contributed by its child buses. For the case, we needn't
	 * pick M64 dependent PE#.
	 */
355
	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
356
		kfree(pe_alloc);
357
		return NULL;
358 359 360 361 362 363 364 365
	}

	/*
	 * Figure out the master PE and put all slave PEs to master
	 * PE's list to form compound PE.
	 */
	master_pe = NULL;
	i = -1;
366 367
	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
		phb->ioda.total_pe_num) {
368 369
		pe = &phb->ioda.pe_array[i];

370
		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
371 372 373 374 375 376 377 378 379
		if (!master_pe) {
			pe->flags |= PNV_IODA_PE_MASTER;
			INIT_LIST_HEAD(&pe->slaves);
			master_pe = pe;
		} else {
			pe->flags |= PNV_IODA_PE_SLAVE;
			pe->master = master_pe;
			list_add_tail(&pe->list, &master_pe->slaves);
		}
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

		/*
		 * P7IOC supports M64DT, which helps mapping M64 segment
		 * to one particular PE#. However, PHB3 has fixed mapping
		 * between M64 segment and PE#. In order to have same logic
		 * for P7IOC and PHB3, we enforce fixed mapping between M64
		 * segment and PE# on P7IOC.
		 */
		if (phb->type == PNV_PHB_IODA1) {
			int64_t rc;

			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
					pe->pe_number, OPAL_M64_WINDOW_TYPE,
					pe->pe_number / PNV_IODA1_M64_SEGS,
					pe->pe_number % PNV_IODA1_M64_SEGS);
			if (rc != OPAL_SUCCESS)
				pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n",
					__func__, rc, phb->hose->global_number,
					pe->pe_number);
		}
400 401 402
	}

	kfree(pe_alloc);
403
	return master_pe;
404 405 406 407 408 409 410
}

static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
{
	struct pci_controller *hose = phb->hose;
	struct device_node *dn = hose->dn;
	struct resource *res;
411
	u32 m64_range[2], i;
412 413 414
	const u32 *r;
	u64 pci_addr;

415
	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
416 417 418 419
		pr_info("  Not support M64 window\n");
		return;
	}

420
	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
421 422 423 424 425 426 427 428 429 430 431
		pr_info("  Firmware too old to support M64 window\n");
		return;
	}

	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
	if (!r) {
		pr_info("  No <ibm,opal-m64-window> on %s\n",
			dn->full_name);
		return;
	}

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	/*
	 * Find the available M64 BAR range and pickup the last one for
	 * covering the whole 64-bits space. We support only one range.
	 */
	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
				       m64_range, 2)) {
		/* In absence of the property, assume 0..15 */
		m64_range[0] = 0;
		m64_range[1] = 16;
	}
	/* We only support 64 bits in our allocator */
	if (m64_range[1] > 63) {
		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
			__func__, m64_range[1], phb->hose->global_number);
		m64_range[1] = 63;
	}
	/* Empty range, no m64 */
	if (m64_range[1] <= m64_range[0]) {
		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
			__func__, phb->hose->global_number);
		return;
	}

	/* Configure M64 informations */
456
	res = &hose->mem_resources[1];
457
	res->name = dn->full_name;
458 459 460 461 462 463 464
	res->start = of_translate_address(dn, r + 2);
	res->end = res->start + of_read_number(r + 4, 2) - 1;
	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
	pci_addr = of_read_number(r, 2);
	hose->mem_offset[1] = res->start - pci_addr;

	phb->ioda.m64_size = resource_size(res);
465
	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
466 467
	phb->ioda.m64_base = pci_addr;

468 469 470 471 472 473 474
	/* This lines up nicely with the display from processing OF ranges */
	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
		res->start, res->end, pci_addr, m64_range[0],
		m64_range[0] + m64_range[1] - 1);

	/* Mark all M64 used up by default */
	phb->ioda.m64_bar_alloc = (unsigned long)-1;
475

476
	/* Use last M64 BAR to cover M64 window */
477 478 479 480 481 482 483 484 485 486 487 488 489
	m64_range[1]--;
	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];

	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);

	/* Mark remaining ones free */
	for (i = m64_range[0]; i < m64_range[1]; i++)
		clear_bit(i, &phb->ioda.m64_bar_alloc);

	/*
	 * Setup init functions for M64 based on IODA version, IODA3 uses
	 * the IODA2 code.
	 */
490 491 492 493
	if (phb->type == PNV_PHB_IODA1)
		phb->init_m64 = pnv_ioda1_init_m64;
	else
		phb->init_m64 = pnv_ioda2_init_m64;
494 495
	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
496 497
}

G
Gavin Shan 已提交
498 499 500 501 502 503 504 505 506
static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
{
	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
	struct pnv_ioda_pe *slave;
	s64 rc;

	/* Fetch master PE */
	if (pe->flags & PNV_IODA_PE_SLAVE) {
		pe = pe->master;
507 508 509
		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
			return;

G
Gavin Shan 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
		pe_no = pe->pe_number;
	}

	/* Freeze master PE */
	rc = opal_pci_eeh_freeze_set(phb->opal_id,
				     pe_no,
				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
	if (rc != OPAL_SUCCESS) {
		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
			__func__, rc, phb->hose->global_number, pe_no);
		return;
	}

	/* Freeze slave PEs */
	if (!(pe->flags & PNV_IODA_PE_MASTER))
		return;

	list_for_each_entry(slave, &pe->slaves, list) {
		rc = opal_pci_eeh_freeze_set(phb->opal_id,
					     slave->pe_number,
					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
		if (rc != OPAL_SUCCESS)
			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
				__func__, rc, phb->hose->global_number,
				slave->pe_number);
	}
}

538
static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
G
Gavin Shan 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
{
	struct pnv_ioda_pe *pe, *slave;
	s64 rc;

	/* Find master PE */
	pe = &phb->ioda.pe_array[pe_no];
	if (pe->flags & PNV_IODA_PE_SLAVE) {
		pe = pe->master;
		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
		pe_no = pe->pe_number;
	}

	/* Clear frozen state for master PE */
	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
	if (rc != OPAL_SUCCESS) {
		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
			__func__, rc, opt, phb->hose->global_number, pe_no);
		return -EIO;
	}

	if (!(pe->flags & PNV_IODA_PE_MASTER))
		return 0;

	/* Clear frozen state for slave PEs */
	list_for_each_entry(slave, &pe->slaves, list) {
		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
					     slave->pe_number,
					     opt);
		if (rc != OPAL_SUCCESS) {
			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
				__func__, rc, opt, phb->hose->global_number,
				slave->pe_number);
			return -EIO;
		}
	}

	return 0;
}

static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
{
	struct pnv_ioda_pe *slave, *pe;
	u8 fstate, state;
	__be16 pcierr;
	s64 rc;

	/* Sanity check on PE number */
586
	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
G
Gavin Shan 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
		return OPAL_EEH_STOPPED_PERM_UNAVAIL;

	/*
	 * Fetch the master PE and the PE instance might be
	 * not initialized yet.
	 */
	pe = &phb->ioda.pe_array[pe_no];
	if (pe->flags & PNV_IODA_PE_SLAVE) {
		pe = pe->master;
		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
		pe_no = pe->pe_number;
	}

	/* Check the master PE */
	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
					&state, &pcierr, NULL);
	if (rc != OPAL_SUCCESS) {
		pr_warn("%s: Failure %lld getting "
			"PHB#%x-PE#%x state\n",
			__func__, rc,
			phb->hose->global_number, pe_no);
		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
	}

	/* Check the slave PE */
	if (!(pe->flags & PNV_IODA_PE_MASTER))
		return state;

	list_for_each_entry(slave, &pe->slaves, list) {
		rc = opal_pci_eeh_freeze_status(phb->opal_id,
						slave->pe_number,
						&fstate,
						&pcierr,
						NULL);
		if (rc != OPAL_SUCCESS) {
			pr_warn("%s: Failure %lld getting "
				"PHB#%x-PE#%x state\n",
				__func__, rc,
				phb->hose->global_number, slave->pe_number);
			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
		}

		/*
		 * Override the result based on the ascending
		 * priority.
		 */
		if (fstate > state)
			state = fstate;
	}

	return state;
}

640 641 642 643
/* Currently those 2 are only used when MSIs are enabled, this will change
 * but in the meantime, we need to protect them to avoid warnings
 */
#ifdef CONFIG_PCI_MSI
644
struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
645 646 647
{
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
648
	struct pci_dn *pdn = pci_get_pdn(dev);
649 650 651 652 653 654 655 656 657

	if (!pdn)
		return NULL;
	if (pdn->pe_number == IODA_INVALID_PE)
		return NULL;
	return &phb->ioda.pe_array[pdn->pe_number];
}
#endif /* CONFIG_PCI_MSI */

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
				  struct pnv_ioda_pe *parent,
				  struct pnv_ioda_pe *child,
				  bool is_add)
{
	const char *desc = is_add ? "adding" : "removing";
	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
			      OPAL_REMOVE_PE_FROM_DOMAIN;
	struct pnv_ioda_pe *slave;
	long rc;

	/* Parent PE affects child PE */
	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
				child->pe_number, op);
	if (rc != OPAL_SUCCESS) {
		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
			rc, desc);
		return -ENXIO;
	}

	if (!(child->flags & PNV_IODA_PE_MASTER))
		return 0;

	/* Compound case: parent PE affects slave PEs */
	list_for_each_entry(slave, &child->slaves, list) {
		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
					slave->pe_number, op);
		if (rc != OPAL_SUCCESS) {
			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
				rc, desc);
			return -ENXIO;
		}
	}

	return 0;
}

static int pnv_ioda_set_peltv(struct pnv_phb *phb,
			      struct pnv_ioda_pe *pe,
			      bool is_add)
{
	struct pnv_ioda_pe *slave;
700
	struct pci_dev *pdev = NULL;
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	int ret;

	/*
	 * Clear PE frozen state. If it's master PE, we need
	 * clear slave PE frozen state as well.
	 */
	if (is_add) {
		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
		if (pe->flags & PNV_IODA_PE_MASTER) {
			list_for_each_entry(slave, &pe->slaves, list)
				opal_pci_eeh_freeze_clear(phb->opal_id,
							  slave->pe_number,
							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
		}
	}

	/*
	 * Associate PE in PELT. We need add the PE into the
	 * corresponding PELT-V as well. Otherwise, the error
	 * originated from the PE might contribute to other
	 * PEs.
	 */
	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
	if (ret)
		return ret;

	/* For compound PEs, any one affects all of them */
	if (pe->flags & PNV_IODA_PE_MASTER) {
		list_for_each_entry(slave, &pe->slaves, list) {
			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
			if (ret)
				return ret;
		}
	}

	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
		pdev = pe->pbus->self;
739
	else if (pe->flags & PNV_IODA_PE_DEV)
740
		pdev = pe->pdev->bus->self;
741 742
#ifdef CONFIG_PCI_IOV
	else if (pe->flags & PNV_IODA_PE_VF)
743
		pdev = pe->parent_dev;
744
#endif /* CONFIG_PCI_IOV */
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
	while (pdev) {
		struct pci_dn *pdn = pci_get_pdn(pdev);
		struct pnv_ioda_pe *parent;

		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
			parent = &phb->ioda.pe_array[pdn->pe_number];
			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
			if (ret)
				return ret;
		}

		pdev = pdev->bus->self;
	}

	return 0;
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
{
	struct pci_dev *parent;
	uint8_t bcomp, dcomp, fcomp;
	int64_t rc;
	long rid_end, rid;

	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
	if (pe->pbus) {
		int count;

		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
		parent = pe->pbus->self;
		if (pe->flags & PNV_IODA_PE_BUS_ALL)
			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
		else
			count = 1;

		switch(count) {
		case  1: bcomp = OpalPciBusAll;         break;
		case  2: bcomp = OpalPciBus7Bits;       break;
		case  4: bcomp = OpalPciBus6Bits;       break;
		case  8: bcomp = OpalPciBus5Bits;       break;
		case 16: bcomp = OpalPciBus4Bits;       break;
		case 32: bcomp = OpalPciBus3Bits;       break;
		default:
			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
			        count);
			/* Do an exact match only */
			bcomp = OpalPciBusAll;
		}
		rid_end = pe->rid + (count << 8);
	} else {
796
#ifdef CONFIG_PCI_IOV
797 798 799
		if (pe->flags & PNV_IODA_PE_VF)
			parent = pe->parent_dev;
		else
800
#endif
801 802 803 804 805 806 807 808 809
			parent = pe->pdev->bus->self;
		bcomp = OpalPciBusAll;
		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
		rid_end = pe->rid + 1;
	}

	/* Clear the reverse map */
	for (rid = pe->rid; rid < rid_end; rid++)
810
		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
811 812 813 814 815 816 817 818 819 820 821 822

	/* Release from all parents PELT-V */
	while (parent) {
		struct pci_dn *pdn = pci_get_pdn(parent);
		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
			/* XXX What to do in case of error ? */
		}
		parent = parent->bus->self;
	}

823
	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
824 825 826 827 828 829 830 831 832 833 834 835 836 837
				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);

	/* Disassociate PE in PELT */
	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
	if (rc)
		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
	if (rc)
		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);

	pe->pbus = NULL;
	pe->pdev = NULL;
838
#ifdef CONFIG_PCI_IOV
839
	pe->parent_dev = NULL;
840
#endif
841 842 843 844

	return 0;
}

845
static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
846 847 848 849 850 851 852 853 854 855 856 857
{
	struct pci_dev *parent;
	uint8_t bcomp, dcomp, fcomp;
	long rc, rid_end, rid;

	/* Bus validation ? */
	if (pe->pbus) {
		int count;

		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
		parent = pe->pbus->self;
858 859 860 861 862
		if (pe->flags & PNV_IODA_PE_BUS_ALL)
			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
		else
			count = 1;

863 864 865 866 867 868 869 870
		switch(count) {
		case  1: bcomp = OpalPciBusAll;		break;
		case  2: bcomp = OpalPciBus7Bits;	break;
		case  4: bcomp = OpalPciBus6Bits;	break;
		case  8: bcomp = OpalPciBus5Bits;	break;
		case 16: bcomp = OpalPciBus4Bits;	break;
		case 32: bcomp = OpalPciBus3Bits;	break;
		default:
871 872
			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
			        count);
873 874 875 876 877
			/* Do an exact match only */
			bcomp = OpalPciBusAll;
		}
		rid_end = pe->rid + (count << 8);
	} else {
878 879 880 881 882 883
#ifdef CONFIG_PCI_IOV
		if (pe->flags & PNV_IODA_PE_VF)
			parent = pe->parent_dev;
		else
#endif /* CONFIG_PCI_IOV */
			parent = pe->pdev->bus->self;
884 885 886 887 888 889
		bcomp = OpalPciBusAll;
		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
		rid_end = pe->rid + 1;
	}

890 891 892 893 894 895
	/*
	 * Associate PE in PELT. We need add the PE into the
	 * corresponding PELT-V as well. Otherwise, the error
	 * originated from the PE might contribute to other
	 * PEs.
	 */
896 897 898 899 900 901
	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
	if (rc) {
		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
		return -ENXIO;
	}
902

903 904 905 906 907 908
	/*
	 * Configure PELTV. NPUs don't have a PELTV table so skip
	 * configuration on them.
	 */
	if (phb->type != PNV_PHB_NPU)
		pnv_ioda_set_peltv(phb, pe, true);
909 910 911 912 913 914

	/* Setup reverse map */
	for (rid = pe->rid; rid < rid_end; rid++)
		phb->ioda.pe_rmap[rid] = pe->pe_number;

	/* Setup one MVTs on IODA1 */
915 916 917 918 919 920 921 922 923 924 925 926 927 928
	if (phb->type != PNV_PHB_IODA1) {
		pe->mve_number = 0;
		goto out;
	}

	pe->mve_number = pe->pe_number;
	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
	if (rc != OPAL_SUCCESS) {
		pe_err(pe, "OPAL error %ld setting up MVE %d\n",
		       rc, pe->mve_number);
		pe->mve_number = -1;
	} else {
		rc = opal_pci_set_mve_enable(phb->opal_id,
					     pe->mve_number, OPAL_ENABLE_MVE);
929
		if (rc) {
930
			pe_err(pe, "OPAL error %ld enabling MVE %d\n",
931 932 933
			       rc, pe->mve_number);
			pe->mve_number = -1;
		}
934
	}
935

936
out:
937 938 939
	return 0;
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
#ifdef CONFIG_PCI_IOV
static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
{
	struct pci_dn *pdn = pci_get_pdn(dev);
	int i;
	struct resource *res, res2;
	resource_size_t size;
	u16 num_vfs;

	if (!dev->is_physfn)
		return -EINVAL;

	/*
	 * "offset" is in VFs.  The M64 windows are sized so that when they
	 * are segmented, each segment is the same size as the IOV BAR.
	 * Each segment is in a separate PE, and the high order bits of the
	 * address are the PE number.  Therefore, each VF's BAR is in a
	 * separate PE, and changing the IOV BAR start address changes the
	 * range of PEs the VFs are in.
	 */
	num_vfs = pdn->num_vfs;
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &dev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || !res->parent)
			continue;

		/*
		 * The actual IOV BAR range is determined by the start address
		 * and the actual size for num_vfs VFs BAR.  This check is to
		 * make sure that after shifting, the range will not overlap
		 * with another device.
		 */
		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
		res2.flags = res->flags;
		res2.start = res->start + (size * offset);
		res2.end = res2.start + (size * num_vfs) - 1;

		if (res2.end > res->end) {
			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
				i, &res2, res, num_vfs, offset);
			return -EBUSY;
		}
	}

	/*
	 * After doing so, there would be a "hole" in the /proc/iomem when
	 * offset is a positive value. It looks like the device return some
	 * mmio back to the system, which actually no one could use it.
	 */
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &dev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || !res->parent)
			continue;

		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
		res2 = *res;
		res->start += size * offset;

998 999 1000
		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
			 i, &res2, res, (offset > 0) ? "En" : "Dis",
			 num_vfs, offset);
1001 1002 1003 1004 1005 1006
		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
	}
	return 0;
}
#endif /* CONFIG_PCI_IOV */

1007
static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1008 1009 1010
{
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
1011
	struct pci_dn *pdn = pci_get_pdn(dev);
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	struct pnv_ioda_pe *pe;

	if (!pdn) {
		pr_err("%s: Device tree node not associated properly\n",
			   pci_name(dev));
		return NULL;
	}
	if (pdn->pe_number != IODA_INVALID_PE)
		return NULL;

1022 1023
	pe = pnv_ioda_alloc_pe(phb);
	if (!pe) {
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		pr_warning("%s: Not enough PE# available, disabling device\n",
			   pci_name(dev));
		return NULL;
	}

	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
	 * pointer in the PE data structure, both should be destroyed at the
	 * same time. However, this needs to be looked at more closely again
	 * once we actually start removing things (Hotplug, SR-IOV, ...)
	 *
	 * At some point we want to remove the PDN completely anyways
	 */
	pci_dev_get(dev);
	pdn->pcidev = dev;
1038
	pdn->pe_number = pe->pe_number;
1039
	pe->flags = PNV_IODA_PE_DEV;
1040 1041 1042 1043 1044 1045 1046 1047 1048
	pe->pdev = dev;
	pe->pbus = NULL;
	pe->mve_number = -1;
	pe->rid = dev->bus->number << 8 | pdn->devfn;

	pe_info(pe, "Associated device to PE\n");

	if (pnv_ioda_configure_pe(phb, pe)) {
		/* XXX What do we do here ? */
1049
		pnv_ioda_free_pe(pe);
1050 1051 1052 1053 1054 1055
		pdn->pe_number = IODA_INVALID_PE;
		pe->pdev = NULL;
		pci_dev_put(dev);
		return NULL;
	}

1056 1057 1058
	/* Put PE to the list */
	list_add_tail(&pe->list, &phb->ioda.pe_list);

1059 1060 1061 1062 1063 1064 1065 1066
	return pe;
}

static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
1067
		struct pci_dn *pdn = pci_get_pdn(dev);
1068 1069 1070 1071 1072 1073

		if (pdn == NULL) {
			pr_warn("%s: No device node associated with device !\n",
				pci_name(dev));
			continue;
		}
1074 1075 1076 1077 1078 1079 1080 1081 1082

		/*
		 * In partial hotplug case, the PCI device might be still
		 * associated with the PE and needn't attach it to the PE
		 * again.
		 */
		if (pdn->pe_number != IODA_INVALID_PE)
			continue;

1083
		pe->device_count++;
1084
		pdn->pcidev = dev;
1085
		pdn->pe_number = pe->pe_number;
1086
		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1087 1088 1089 1090
			pnv_ioda_setup_same_PE(dev->subordinate, pe);
	}
}

1091 1092 1093 1094 1095 1096
/*
 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
 * single PCI bus. Another one that contains the primary PCI bus and its
 * subordinate PCI devices and buses. The second type of PE is normally
 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
 */
1097
static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1098
{
1099
	struct pci_controller *hose = pci_bus_to_host(bus);
1100
	struct pnv_phb *phb = hose->private_data;
1101
	struct pnv_ioda_pe *pe = NULL;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	unsigned int pe_num;

	/*
	 * In partial hotplug case, the PE instance might be still alive.
	 * We should reuse it instead of allocating a new one.
	 */
	pe_num = phb->ioda.pe_rmap[bus->number << 8];
	if (pe_num != IODA_INVALID_PE) {
		pe = &phb->ioda.pe_array[pe_num];
		pnv_ioda_setup_same_PE(bus, pe);
		return NULL;
	}
1114

1115 1116 1117 1118 1119
	/* PE number for root bus should have been reserved */
	if (pci_is_root_bus(bus) &&
	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];

1120
	/* Check if PE is determined by M64 */
1121
	if (!pe && phb->pick_m64_pe)
1122
		pe = phb->pick_m64_pe(bus, all);
1123 1124

	/* The PE number isn't pinned by M64 */
1125 1126
	if (!pe)
		pe = pnv_ioda_alloc_pe(phb);
1127

1128
	if (!pe) {
1129 1130
		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
			__func__, pci_domain_nr(bus), bus->number);
1131
		return NULL;
1132 1133
	}

1134
	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1135 1136 1137
	pe->pbus = bus;
	pe->pdev = NULL;
	pe->mve_number = -1;
1138
	pe->rid = bus->busn_res.start << 8;
1139

1140 1141
	if (all)
		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1142
			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1143 1144
	else
		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1145
			bus->busn_res.start, pe->pe_number);
1146 1147 1148

	if (pnv_ioda_configure_pe(phb, pe)) {
		/* XXX What do we do here ? */
1149
		pnv_ioda_free_pe(pe);
1150
		pe->pbus = NULL;
1151
		return NULL;
1152 1153 1154 1155 1156
	}

	/* Associate it with all child devices */
	pnv_ioda_setup_same_PE(bus, pe);

1157 1158
	/* Put PE to the list */
	list_add_tail(&pe->list, &phb->ioda.pe_list);
1159 1160

	return pe;
1161 1162
}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
{
	int pe_num, found_pe = false, rc;
	long rid;
	struct pnv_ioda_pe *pe;
	struct pci_dev *gpu_pdev;
	struct pci_dn *npu_pdn;
	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
	struct pnv_phb *phb = hose->private_data;

	/*
	 * Due to a hardware errata PE#0 on the NPU is reserved for
	 * error handling. This means we only have three PEs remaining
	 * which need to be assigned to four links, implying some
	 * links must share PEs.
	 *
	 * To achieve this we assign PEs such that NPUs linking the
	 * same GPU get assigned the same PE.
	 */
	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1183
	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		pe = &phb->ioda.pe_array[pe_num];
		if (!pe->pdev)
			continue;

		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
			/*
			 * This device has the same peer GPU so should
			 * be assigned the same PE as the existing
			 * peer NPU.
			 */
			dev_info(&npu_pdev->dev,
				"Associating to existing PE %d\n", pe_num);
			pci_dev_get(npu_pdev);
			npu_pdn = pci_get_pdn(npu_pdev);
			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
			npu_pdn->pcidev = npu_pdev;
			npu_pdn->pe_number = pe_num;
			phb->ioda.pe_rmap[rid] = pe->pe_number;

			/* Map the PE to this link */
			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
					OpalPciBusAll,
					OPAL_COMPARE_RID_DEVICE_NUMBER,
					OPAL_COMPARE_RID_FUNCTION_NUMBER,
					OPAL_MAP_PE);
			WARN_ON(rc != OPAL_SUCCESS);
			found_pe = true;
			break;
		}
	}

	if (!found_pe)
		/*
		 * Could not find an existing PE so allocate a new
		 * one.
		 */
		return pnv_ioda_setup_dev_PE(npu_pdev);
	else
		return pe;
}

static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1226 1227 1228 1229
{
	struct pci_dev *pdev;

	list_for_each_entry(pdev, &bus->devices, bus_list)
1230
		pnv_ioda_setup_npu_PE(pdev);
1231 1232
}

1233
static void pnv_pci_ioda_setup_PEs(void)
1234 1235
{
	struct pci_controller *hose, *tmp;
1236
	struct pnv_phb *phb;
1237 1238

	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1239
		phb = hose->private_data;
1240 1241 1242
		if (phb->type == PNV_PHB_NPU) {
			/* PE#0 is needed for error reporting */
			pnv_ioda_reserve_pe(phb, 0);
1243
			pnv_ioda_setup_npu_PEs(hose->bus);
1244
		}
1245 1246 1247
	}
}

G
Gavin Shan 已提交
1248
#ifdef CONFIG_PCI_IOV
1249
static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1250 1251 1252 1253 1254
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
	struct pci_dn         *pdn;
1255
	int                    i, j;
1256
	int                    m64_bars;
1257 1258 1259 1260 1261 1262

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);

1263 1264 1265 1266 1267
	if (pdn->m64_single_mode)
		m64_bars = num_vfs;
	else
		m64_bars = 1;

1268
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1269 1270
		for (j = 0; j < m64_bars; j++) {
			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1271 1272
				continue;
			opal_pci_phb_mmio_enable(phb->opal_id,
1273 1274 1275
				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
			pdn->m64_map[j][i] = IODA_INVALID_M64;
1276
		}
1277

1278
	kfree(pdn->m64_map);
1279 1280 1281
	return 0;
}

1282
static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1283 1284 1285 1286 1287 1288 1289
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
	struct pci_dn         *pdn;
	unsigned int           win;
	struct resource       *res;
1290
	int                    i, j;
1291
	int64_t                rc;
1292 1293 1294
	int                    total_vfs;
	resource_size_t        size, start;
	int                    pe_num;
1295
	int                    m64_bars;
1296 1297 1298 1299 1300

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);
1301
	total_vfs = pci_sriov_get_totalvfs(pdev);
1302

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	if (pdn->m64_single_mode)
		m64_bars = num_vfs;
	else
		m64_bars = 1;

	pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
	if (!pdn->m64_map)
		return -ENOMEM;
	/* Initialize the m64_map to IODA_INVALID_M64 */
	for (i = 0; i < m64_bars ; i++)
		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
			pdn->m64_map[i][j] = IODA_INVALID_M64;
1315

1316 1317 1318 1319 1320 1321

	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &pdev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || !res->parent)
			continue;

1322
		for (j = 0; j < m64_bars; j++) {
1323 1324 1325 1326 1327 1328 1329 1330
			do {
				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
						phb->ioda.m64_bar_idx + 1, 0);

				if (win >= phb->ioda.m64_bar_idx + 1)
					goto m64_failed;
			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));

1331
			pdn->m64_map[j][i] = win;
1332

1333
			if (pdn->m64_single_mode) {
1334 1335 1336 1337 1338 1339 1340 1341 1342
				size = pci_iov_resource_size(pdev,
							PCI_IOV_RESOURCES + i);
				start = res->start + size * j;
			} else {
				size = resource_size(res);
				start = res->start;
			}

			/* Map the M64 here */
1343
			if (pdn->m64_single_mode) {
1344
				pe_num = pdn->pe_num_map[j];
1345 1346
				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
						pe_num, OPAL_M64_WINDOW_TYPE,
1347
						pdn->m64_map[j][i], 0);
1348 1349 1350 1351
			}

			rc = opal_pci_set_phb_mem_window(phb->opal_id,
						 OPAL_M64_WINDOW_TYPE,
1352
						 pdn->m64_map[j][i],
1353 1354 1355
						 start,
						 0, /* unused */
						 size);
1356 1357


1358 1359 1360 1361 1362
			if (rc != OPAL_SUCCESS) {
				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
					win, rc);
				goto m64_failed;
			}
1363

1364
			if (pdn->m64_single_mode)
1365
				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1366
				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1367 1368
			else
				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1369
				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1370

1371 1372 1373 1374 1375
			if (rc != OPAL_SUCCESS) {
				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
					win, rc);
				goto m64_failed;
			}
1376 1377 1378 1379 1380
		}
	}
	return 0;

m64_failed:
1381
	pnv_pci_vf_release_m64(pdev, num_vfs);
1382 1383 1384
	return -EBUSY;
}

1385 1386 1387 1388
static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
		int num);
static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);

1389 1390 1391 1392 1393
static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
{
	struct iommu_table    *tbl;
	int64_t               rc;

1394
	tbl = pe->table_group.tables[0];
1395
	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1396 1397 1398
	if (rc)
		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);

1399
	pnv_pci_ioda2_set_bypass(pe, false);
1400 1401 1402
	if (pe->table_group.group) {
		iommu_group_put(pe->table_group.group);
		BUG_ON(pe->table_group.group);
1403
	}
1404
	pnv_pci_ioda2_table_free_pages(tbl);
1405 1406 1407
	iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
}

1408
static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
	struct pnv_ioda_pe    *pe, *pe_n;
	struct pci_dn         *pdn;

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
1419
	pdn = pci_get_pdn(pdev);
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	if (!pdev->is_physfn)
		return;

	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
		if (pe->parent_dev != pdev)
			continue;

		pnv_pci_ioda2_release_dma_pe(pdev, pe);

		/* Remove from list */
		mutex_lock(&phb->ioda.pe_list_mutex);
		list_del(&pe->list);
		mutex_unlock(&phb->ioda.pe_list_mutex);

		pnv_ioda_deconfigure_pe(phb, pe);

1437
		pnv_ioda_free_pe(pe);
1438 1439 1440 1441 1442 1443 1444 1445
	}
}

void pnv_pci_sriov_disable(struct pci_dev *pdev)
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
1446
	struct pnv_ioda_pe    *pe;
1447 1448
	struct pci_dn         *pdn;
	struct pci_sriov      *iov;
1449
	u16                    num_vfs, i;
1450 1451 1452 1453 1454 1455 1456 1457 1458

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);
	iov = pdev->sriov;
	num_vfs = pdn->num_vfs;

	/* Release VF PEs */
1459
	pnv_ioda_release_vf_PE(pdev);
1460 1461

	if (phb->type == PNV_PHB_IODA2) {
1462
		if (!pdn->m64_single_mode)
1463
			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1464 1465

		/* Release M64 windows */
1466
		pnv_pci_vf_release_m64(pdev, num_vfs);
1467 1468

		/* Release PE numbers */
1469 1470
		if (pdn->m64_single_mode) {
			for (i = 0; i < num_vfs; i++) {
1471 1472 1473 1474 1475
				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
					continue;

				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
				pnv_ioda_free_pe(pe);
1476 1477 1478 1479 1480
			}
		} else
			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
		/* Releasing pe_num_map */
		kfree(pdn->pe_num_map);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	}
}

static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
				       struct pnv_ioda_pe *pe);
static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
	struct pnv_ioda_pe    *pe;
	int                    pe_num;
	u16                    vf_index;
	struct pci_dn         *pdn;

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);

	if (!pdev->is_physfn)
		return;

	/* Reserve PE for each VF */
	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1506 1507 1508 1509
		if (pdn->m64_single_mode)
			pe_num = pdn->pe_num_map[vf_index];
		else
			pe_num = *pdn->pe_num_map + vf_index;
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

		pe = &phb->ioda.pe_array[pe_num];
		pe->pe_number = pe_num;
		pe->phb = phb;
		pe->flags = PNV_IODA_PE_VF;
		pe->pbus = NULL;
		pe->parent_dev = pdev;
		pe->mve_number = -1;
		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
			   pci_iov_virtfn_devfn(pdev, vf_index);

		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
			hose->global_number, pdev->bus->number,
			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);

		if (pnv_ioda_configure_pe(phb, pe)) {
			/* XXX What do we do here ? */
1528
			pnv_ioda_free_pe(pe);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
			pe->pdev = NULL;
			continue;
		}

		/* Put PE to the list */
		mutex_lock(&phb->ioda.pe_list_mutex);
		list_add_tail(&pe->list, &phb->ioda.pe_list);
		mutex_unlock(&phb->ioda.pe_list_mutex);

		pnv_pci_ioda2_setup_dma_pe(phb, pe);
	}
}

int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
1547
	struct pnv_ioda_pe    *pe;
1548 1549
	struct pci_dn         *pdn;
	int                    ret;
1550
	u16                    i;
1551 1552 1553 1554 1555 1556 1557

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);

	if (phb->type == PNV_PHB_IODA2) {
1558 1559 1560 1561 1562 1563
		if (!pdn->vfs_expanded) {
			dev_info(&pdev->dev, "don't support this SRIOV device"
				" with non 64bit-prefetchable IOV BAR\n");
			return -ENOSPC;
		}

1564 1565 1566 1567 1568 1569 1570 1571 1572
		/*
		 * When M64 BARs functions in Single PE mode, the number of VFs
		 * could be enabled must be less than the number of M64 BARs.
		 */
		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
			return -EBUSY;
		}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
		/* Allocating pe_num_map */
		if (pdn->m64_single_mode)
			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
					GFP_KERNEL);
		else
			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);

		if (!pdn->pe_num_map)
			return -ENOMEM;

		if (pdn->m64_single_mode)
			for (i = 0; i < num_vfs; i++)
				pdn->pe_num_map[i] = IODA_INVALID_PE;

1587
		/* Calculate available PE for required VFs */
1588 1589
		if (pdn->m64_single_mode) {
			for (i = 0; i < num_vfs; i++) {
1590 1591
				pe = pnv_ioda_alloc_pe(phb);
				if (!pe) {
1592 1593 1594
					ret = -EBUSY;
					goto m64_failed;
				}
1595 1596

				pdn->pe_num_map[i] = pe->pe_number;
1597 1598 1599 1600
			}
		} else {
			mutex_lock(&phb->ioda.pe_alloc_mutex);
			*pdn->pe_num_map = bitmap_find_next_zero_area(
1601
				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1602
				0, num_vfs, 0);
1603
			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1604 1605 1606 1607 1608 1609
				mutex_unlock(&phb->ioda.pe_alloc_mutex);
				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
				kfree(pdn->pe_num_map);
				return -EBUSY;
			}
			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1610 1611 1612 1613 1614
			mutex_unlock(&phb->ioda.pe_alloc_mutex);
		}
		pdn->num_vfs = num_vfs;

		/* Assign M64 window accordingly */
1615
		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
		if (ret) {
			dev_info(&pdev->dev, "Not enough M64 window resources\n");
			goto m64_failed;
		}

		/*
		 * When using one M64 BAR to map one IOV BAR, we need to shift
		 * the IOV BAR according to the PE# allocated to the VFs.
		 * Otherwise, the PE# for the VF will conflict with others.
		 */
1626
		if (!pdn->m64_single_mode) {
1627
			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1628 1629 1630
			if (ret)
				goto m64_failed;
		}
1631 1632 1633 1634 1635 1636 1637 1638
	}

	/* Setup VF PEs */
	pnv_ioda_setup_vf_PE(pdev, num_vfs);

	return 0;

m64_failed:
1639 1640
	if (pdn->m64_single_mode) {
		for (i = 0; i < num_vfs; i++) {
1641 1642 1643 1644 1645
			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
				continue;

			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
			pnv_ioda_free_pe(pe);
1646 1647 1648 1649 1650 1651
		}
	} else
		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);

	/* Releasing pe_num_map */
	kfree(pdn->pe_num_map);
1652 1653 1654 1655

	return ret;
}

G
Gavin Shan 已提交
1656 1657
int pcibios_sriov_disable(struct pci_dev *pdev)
{
1658 1659
	pnv_pci_sriov_disable(pdev);

G
Gavin Shan 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668
	/* Release PCI data */
	remove_dev_pci_data(pdev);
	return 0;
}

int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
{
	/* Allocate PCI data */
	add_dev_pci_data(pdev);
1669

1670
	return pnv_pci_sriov_enable(pdev, num_vfs);
G
Gavin Shan 已提交
1671 1672 1673
}
#endif /* CONFIG_PCI_IOV */

1674
static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1675
{
1676
	struct pci_dn *pdn = pci_get_pdn(pdev);
1677
	struct pnv_ioda_pe *pe;
1678

1679 1680 1681 1682 1683 1684 1685
	/*
	 * The function can be called while the PE#
	 * hasn't been assigned. Do nothing for the
	 * case.
	 */
	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
		return;
1686

1687
	pe = &phb->ioda.pe_array[pdn->pe_number];
1688
	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1689
	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1690
	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1691 1692 1693 1694 1695 1696
	/*
	 * Note: iommu_add_device() will fail here as
	 * for physical PE: the device is already added by now;
	 * for virtual PE: sysfs entries are not ready yet and
	 * tce_iommu_bus_notifier will add the device to a group later.
	 */
1697 1698
}

1699
static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1700
{
1701 1702
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	struct pci_dn *pdn = pci_get_pdn(pdev);
	struct pnv_ioda_pe *pe;
	uint64_t top;
	bool bypass = false;

	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
		return -ENODEV;;

	pe = &phb->ioda.pe_array[pdn->pe_number];
	if (pe->tce_bypass_enabled) {
		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
		bypass = (dma_mask >= top);
	}

	if (bypass) {
		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
		set_dma_ops(&pdev->dev, &dma_direct_ops);
	} else {
		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
		set_dma_ops(&pdev->dev, &dma_iommu_ops);
	}
1724
	*pdev->dev.dma_mask = dma_mask;
1725 1726

	/* Update peer npu devices */
1727
	pnv_npu_try_dma_set_bypass(pdev, bypass);
1728

1729 1730 1731
	return 0;
}

1732
static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1733
{
1734 1735
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	struct pci_dn *pdn = pci_get_pdn(pdev);
	struct pnv_ioda_pe *pe;
	u64 end, mask;

	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
		return 0;

	pe = &phb->ioda.pe_array[pdn->pe_number];
	if (!pe->tce_bypass_enabled)
		return __dma_get_required_mask(&pdev->dev);


	end = pe->tce_bypass_base + memblock_end_of_DRAM();
	mask = 1ULL << (fls64(end) - 1);
	mask += mask - 1;

	return mask;
}

1755
static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1756
				   struct pci_bus *bus)
1757 1758 1759 1760
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
1761
		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1762
		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1763
		iommu_add_device(&dev->dev);
1764

1765
		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1766
			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1767 1768 1769
	}
}

1770 1771 1772 1773 1774 1775 1776
static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
						     bool real_mode)
{
	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
		(phb->regs + 0x210);
}

1777
static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1778
		unsigned long index, unsigned long npages, bool rm)
1779
{
1780 1781 1782 1783
	struct iommu_table_group_link *tgl = list_first_entry_or_null(
			&tbl->it_group_list, struct iommu_table_group_link,
			next);
	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1784
			struct pnv_ioda_pe, table_group);
1785
	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1786 1787
	unsigned long start, end, inc;

1788 1789 1790
	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
			npages - 1);
1791

1792 1793 1794 1795
	/* p7ioc-style invalidation, 2 TCEs per write */
	start |= (1ull << 63);
	end |= (1ull << 63);
	inc = 16;
1796 1797 1798 1799
        end |= inc - 1;	/* round up end to be different than start */

        mb(); /* Ensure above stores are visible */
        while (start <= end) {
1800
		if (rm)
1801
			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1802
		else
1803
			__raw_writeq(cpu_to_be64(start), invalidate);
1804 1805 1806 1807 1808 1809 1810 1811 1812
                start += inc;
        }

	/*
	 * The iommu layer will do another mb() for us on build()
	 * and we don't care on free()
	 */
}

1813 1814 1815
static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
		long npages, unsigned long uaddr,
		enum dma_data_direction direction,
1816
		unsigned long attrs)
1817 1818 1819 1820
{
	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
			attrs);

1821
	if (!ret)
1822
		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1823 1824 1825 1826

	return ret;
}

1827 1828 1829 1830 1831 1832
#ifdef CONFIG_IOMMU_API
static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
		unsigned long *hpa, enum dma_data_direction *direction)
{
	long ret = pnv_tce_xchg(tbl, index, hpa, direction);

1833
	if (!ret)
1834
		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1835 1836 1837 1838 1839

	return ret;
}
#endif

1840 1841 1842 1843 1844
static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
		long npages)
{
	pnv_tce_free(tbl, index, npages);

1845
	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1846 1847
}

1848
static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1849
	.set = pnv_ioda1_tce_build,
1850 1851 1852
#ifdef CONFIG_IOMMU_API
	.exchange = pnv_ioda1_tce_xchg,
#endif
1853
	.clear = pnv_ioda1_tce_free,
1854 1855 1856
	.get = pnv_tce_get,
};

1857 1858 1859
#define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
#define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
#define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1860

1861
void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1862
{
1863
	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1864
	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1865 1866 1867

	mb(); /* Ensure previous TCE table stores are visible */
	if (rm)
1868
		__raw_rm_writeq(cpu_to_be64(val), invalidate);
1869
	else
1870
		__raw_writeq(cpu_to_be64(val), invalidate);
1871 1872
}

1873
static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1874 1875
{
	/* 01xb - invalidate TCEs that match the specified PE# */
1876
	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1877
	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1878 1879

	mb(); /* Ensure above stores are visible */
1880
	__raw_writeq(cpu_to_be64(val), invalidate);
1881 1882
}

1883 1884 1885
static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
					unsigned shift, unsigned long index,
					unsigned long npages)
1886
{
1887
	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1888 1889 1890
	unsigned long start, end, inc;

	/* We'll invalidate DMA address in PE scope */
1891
	start = PHB3_TCE_KILL_INVAL_ONE;
1892
	start |= (pe->pe_number & 0xFF);
1893 1894 1895
	end = start;

	/* Figure out the start, end and step */
1896 1897
	start |= (index << shift);
	end |= ((index + npages - 1) << shift);
1898
	inc = (0x1ull << shift);
1899 1900 1901
	mb();

	while (start <= end) {
1902
		if (rm)
1903
			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1904
		else
1905
			__raw_writeq(cpu_to_be64(start), invalidate);
1906 1907 1908 1909
		start += inc;
	}
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
{
	struct pnv_phb *phb = pe->phb;

	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
		pnv_pci_phb3_tce_invalidate_pe(pe);
	else
		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
				  pe->pe_number, 0, 0, 0);
}

1921 1922 1923 1924 1925 1926 1927 1928
static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
		unsigned long index, unsigned long npages, bool rm)
{
	struct iommu_table_group_link *tgl;

	list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
				struct pnv_ioda_pe, table_group);
1929 1930 1931 1932
		struct pnv_phb *phb = pe->phb;
		unsigned int shift = tbl->it_page_shift;

		if (phb->type == PNV_PHB_NPU) {
1933 1934 1935 1936 1937
			/*
			 * The NVLink hardware does not support TCE kill
			 * per TCE entry so we have to invalidate
			 * the entire cache for it.
			 */
1938
			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1939 1940
			continue;
		}
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
						    index, npages);
		else if (rm)
			opal_rm_pci_tce_kill(phb->opal_id,
					     OPAL_PCI_TCE_KILL_PAGES,
					     pe->pe_number, 1u << shift,
					     index << shift, npages);
		else
			opal_pci_tce_kill(phb->opal_id,
					  OPAL_PCI_TCE_KILL_PAGES,
					  pe->pe_number, 1u << shift,
					  index << shift, npages);
1954 1955 1956
	}
}

1957 1958 1959
static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
		long npages, unsigned long uaddr,
		enum dma_data_direction direction,
1960
		unsigned long attrs)
1961
{
1962 1963
	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
			attrs);
1964

1965
	if (!ret)
1966 1967 1968 1969 1970
		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);

	return ret;
}

1971 1972 1973 1974 1975 1976
#ifdef CONFIG_IOMMU_API
static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
		unsigned long *hpa, enum dma_data_direction *direction)
{
	long ret = pnv_tce_xchg(tbl, index, hpa, direction);

1977
	if (!ret)
1978 1979 1980 1981 1982 1983
		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);

	return ret;
}
#endif

1984 1985 1986 1987 1988
static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
		long npages)
{
	pnv_tce_free(tbl, index, npages);

1989
	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1990 1991
}

1992 1993 1994 1995 1996 1997
static void pnv_ioda2_table_free(struct iommu_table *tbl)
{
	pnv_pci_ioda2_table_free_pages(tbl);
	iommu_free_table(tbl, "pnv");
}

1998
static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1999
	.set = pnv_ioda2_tce_build,
2000 2001 2002
#ifdef CONFIG_IOMMU_API
	.exchange = pnv_ioda2_tce_xchg,
#endif
2003
	.clear = pnv_ioda2_tce_free,
2004
	.get = pnv_tce_get,
2005
	.free = pnv_ioda2_table_free,
2006 2007
};

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
{
	unsigned int *weight = (unsigned int *)data;

	/* This is quite simplistic. The "base" weight of a device
	 * is 10. 0 means no DMA is to be accounted for it.
	 */
	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
		return 0;

	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
		*weight += 3;
	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
		*weight += 15;
	else
		*weight += 10;

	return 0;
}

static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
{
	unsigned int weight = 0;

	/* SRIOV VF has same DMA32 weight as its PF */
#ifdef CONFIG_PCI_IOV
	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
		return weight;
	}
#endif

	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
		struct pci_dev *pdev;

		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
	}

	return weight;
}

2056
static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2057
				       struct pnv_ioda_pe *pe)
2058 2059 2060 2061
{

	struct page *tce_mem = NULL;
	struct iommu_table *tbl;
2062 2063
	unsigned int weight, total_weight = 0;
	unsigned int tce32_segsz, base, segs, avail, i;
2064 2065 2066 2067 2068 2069
	int64_t rc;
	void *addr;

	/* XXX FIXME: Handle 64-bit only DMA devices */
	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2070 2071 2072 2073 2074 2075 2076 2077 2078
	weight = pnv_pci_ioda_pe_dma_weight(pe);
	if (!weight)
		return;

	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
		     &total_weight);
	segs = (weight * phb->ioda.dma32_count) / total_weight;
	if (!segs)
		segs = 1;
2079

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
	/*
	 * Allocate contiguous DMA32 segments. We begin with the expected
	 * number of segments. With one more attempt, the number of DMA32
	 * segments to be allocated is decreased by one until one segment
	 * is allocated successfully.
	 */
	do {
		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
			for (avail = 0, i = base; i < base + segs; i++) {
				if (phb->ioda.dma32_segmap[i] ==
				    IODA_INVALID_PE)
					avail++;
			}

			if (avail == segs)
				goto found;
		}
	} while (--segs);

	if (!segs) {
		pe_warn(pe, "No available DMA32 segments\n");
		return;
	}

found:
2105
	tbl = pnv_pci_table_alloc(phb->hose->node);
2106 2107
	iommu_register_group(&pe->table_group, phb->hose->global_number,
			pe->pe_number);
2108
	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2109

2110
	/* Grab a 32-bit TCE table */
2111 2112
	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
		weight, total_weight, base, segs);
2113
	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2114 2115
		base * PNV_IODA1_DMA32_SEGSIZE,
		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2116 2117 2118 2119 2120

	/* XXX Currently, we allocate one big contiguous table for the
	 * TCEs. We only really need one chunk per 256M of TCE space
	 * (ie per segment) but that's an optimization for later, it
	 * requires some added smarts with our get/put_tce implementation
2121 2122 2123
	 *
	 * Each TCE page is 4KB in size and each TCE entry occupies 8
	 * bytes
2124
	 */
2125
	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2126
	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2127
				   get_order(tce32_segsz * segs));
2128 2129 2130 2131 2132
	if (!tce_mem) {
		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
		goto fail;
	}
	addr = page_address(tce_mem);
2133
	memset(addr, 0, tce32_segsz * segs);
2134 2135 2136 2137 2138 2139

	/* Configure HW */
	for (i = 0; i < segs; i++) {
		rc = opal_pci_map_pe_dma_window(phb->opal_id,
					      pe->pe_number,
					      base + i, 1,
2140 2141
					      __pa(addr) + tce32_segsz * i,
					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2142 2143 2144 2145 2146 2147 2148
		if (rc) {
			pe_err(pe, " Failed to configure 32-bit TCE table,"
			       " err %ld\n", rc);
			goto fail;
		}
	}

2149 2150 2151 2152
	/* Setup DMA32 segment mapping */
	for (i = base; i < base + segs; i++)
		phb->ioda.dma32_segmap[i] = pe->pe_number;

2153
	/* Setup linux iommu table */
2154 2155 2156
	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
				  base * PNV_IODA1_DMA32_SEGSIZE,
				  IOMMU_PAGE_SHIFT_4K);
2157

2158
	tbl->it_ops = &pnv_ioda1_iommu_ops;
2159 2160
	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2161 2162
	iommu_init_table(tbl, phb->hose->node);

2163
	if (pe->flags & PNV_IODA_PE_DEV) {
2164 2165 2166 2167 2168 2169 2170
		/*
		 * Setting table base here only for carrying iommu_group
		 * further down to let iommu_add_device() do the job.
		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
		 */
		set_iommu_table_base(&pe->pdev->dev, tbl);
		iommu_add_device(&pe->pdev->dev);
2171
	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2172
		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2173

2174 2175 2176 2177
	return;
 fail:
	/* XXX Failure: Try to fallback to 64-bit only ? */
	if (tce_mem)
2178
		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2179 2180 2181 2182
	if (tbl) {
		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
		iommu_free_table(tbl, "pnv");
	}
2183 2184
}

2185 2186 2187 2188 2189 2190 2191
static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
		int num, struct iommu_table *tbl)
{
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
			table_group);
	struct pnv_phb *phb = pe->phb;
	int64_t rc;
2192 2193
	const unsigned long size = tbl->it_indirect_levels ?
			tbl->it_level_size : tbl->it_size;
2194 2195 2196
	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
	const __u64 win_size = tbl->it_size << tbl->it_page_shift;

2197
	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2198 2199 2200 2201 2202 2203 2204 2205 2206
			start_addr, start_addr + win_size - 1,
			IOMMU_PAGE_SIZE(tbl));

	/*
	 * Map TCE table through TVT. The TVE index is the PE number
	 * shifted by 1 bit for 32-bits DMA space.
	 */
	rc = opal_pci_map_pe_dma_window(phb->opal_id,
			pe->pe_number,
2207
			(pe->pe_number << 1) + num,
2208
			tbl->it_indirect_levels + 1,
2209
			__pa(tbl->it_base),
2210
			size << 3,
2211 2212 2213 2214 2215 2216 2217 2218
			IOMMU_PAGE_SIZE(tbl));
	if (rc) {
		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
		return rc;
	}

	pnv_pci_link_table_and_group(phb->hose->node, num,
			tbl, &pe->table_group);
2219
	pnv_pci_phb3_tce_invalidate_pe(pe);
2220 2221 2222 2223

	return 0;
}

2224
static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
{
	uint16_t window_id = (pe->pe_number << 1 ) + 1;
	int64_t rc;

	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
	if (enable) {
		phys_addr_t top = memblock_end_of_DRAM();

		top = roundup_pow_of_two(top);
		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
						     pe->pe_number,
						     window_id,
						     pe->tce_bypass_base,
						     top);
	} else {
		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
						     pe->pe_number,
						     window_id,
						     pe->tce_bypass_base,
						     0);
	}
	if (rc)
		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
	else
		pe->tce_bypass_enabled = enable;
}

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
		__u32 page_shift, __u64 window_size, __u32 levels,
		struct iommu_table *tbl);

static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
		int num, __u32 page_shift, __u64 window_size, __u32 levels,
		struct iommu_table **ptbl)
{
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
			table_group);
	int nid = pe->phb->hose->node;
	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
	long ret;
	struct iommu_table *tbl;

	tbl = pnv_pci_table_alloc(nid);
	if (!tbl)
		return -ENOMEM;

	ret = pnv_pci_ioda2_table_alloc_pages(nid,
			bus_offset, page_shift, window_size,
			levels, tbl);
	if (ret) {
		iommu_free_table(tbl, "pnv");
		return ret;
	}

	tbl->it_ops = &pnv_ioda2_iommu_ops;

	*ptbl = tbl;

	return 0;
}

2286 2287 2288 2289 2290
static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
{
	struct iommu_table *tbl = NULL;
	long rc;

2291 2292 2293 2294 2295 2296 2297
	/*
	 * crashkernel= specifies the kdump kernel's maximum memory at
	 * some offset and there is no guaranteed the result is a power
	 * of 2, which will cause errors later.
	 */
	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());

2298 2299 2300 2301 2302
	/*
	 * In memory constrained environments, e.g. kdump kernel, the
	 * DMA window can be larger than available memory, which will
	 * cause errors later.
	 */
2303
	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2304

2305 2306
	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
			IOMMU_PAGE_SHIFT_4K,
2307
			window_size,
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
	if (rc) {
		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
				rc);
		return rc;
	}

	iommu_init_table(tbl, pe->phb->hose->node);

	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
	if (rc) {
		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
				rc);
		pnv_ioda2_table_free(tbl);
		return rc;
	}

	if (!pnv_iommu_bypass_disabled)
		pnv_pci_ioda2_set_bypass(pe, true);

	/*
	 * Setting table base here only for carrying iommu_group
	 * further down to let iommu_add_device() do the job.
	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
	 */
	if (pe->flags & PNV_IODA_PE_DEV)
		set_iommu_table_base(&pe->pdev->dev, tbl);

	return 0;
}

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
#if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
		int num)
{
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
			table_group);
	struct pnv_phb *phb = pe->phb;
	long ret;

	pe_info(pe, "Removing DMA window #%d\n", num);

	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
			(pe->pe_number << 1) + num,
			0/* levels */, 0/* table address */,
			0/* table size */, 0/* page size */);
	if (ret)
		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
	else
2357
		pnv_pci_phb3_tce_invalidate_pe(pe);
2358 2359 2360 2361 2362 2363 2364

	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);

	return ret;
}
#endif

2365
#ifdef CONFIG_IOMMU_API
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
		__u64 window_size, __u32 levels)
{
	unsigned long bytes = 0;
	const unsigned window_shift = ilog2(window_size);
	unsigned entries_shift = window_shift - page_shift;
	unsigned table_shift = entries_shift + 3;
	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
	unsigned long direct_table_size;

	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
			(window_size > memory_hotplug_max()) ||
			!is_power_of_2(window_size))
		return 0;

	/* Calculate a direct table size from window_size and levels */
	entries_shift = (entries_shift + levels - 1) / levels;
	table_shift = entries_shift + 3;
	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
	direct_table_size =  1UL << table_shift;

	for ( ; levels; --levels) {
		bytes += _ALIGN_UP(tce_table_size, direct_table_size);

		tce_table_size /= direct_table_size;
		tce_table_size <<= 3;
		tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
	}

	return bytes;
}

2398
static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2399
{
2400 2401
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
						table_group);
2402 2403
	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
	struct iommu_table *tbl = pe->table_group.tables[0];
2404

2405
	pnv_pci_ioda2_set_bypass(pe, false);
2406 2407
	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
	pnv_ioda2_table_free(tbl);
2408
}
2409

2410 2411 2412 2413 2414
static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
{
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
						table_group);

2415
	pnv_pci_ioda2_setup_default_config(pe);
2416 2417
}

2418
static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2419
	.get_table_size = pnv_pci_ioda2_get_table_size,
2420 2421 2422
	.create_table = pnv_pci_ioda2_create_table,
	.set_window = pnv_pci_ioda2_set_window,
	.unset_window = pnv_pci_ioda2_unset_window,
2423 2424 2425
	.take_ownership = pnv_ioda2_take_ownership,
	.release_ownership = pnv_ioda2_release_ownership,
};
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535

static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
{
	struct pci_controller *hose;
	struct pnv_phb *phb;
	struct pnv_ioda_pe **ptmppe = opaque;
	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
	struct pci_dn *pdn = pci_get_pdn(pdev);

	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
		return 0;

	hose = pci_bus_to_host(pdev->bus);
	phb = hose->private_data;
	if (phb->type != PNV_PHB_NPU)
		return 0;

	*ptmppe = &phb->ioda.pe_array[pdn->pe_number];

	return 1;
}

/*
 * This returns PE of associated NPU.
 * This assumes that NPU is in the same IOMMU group with GPU and there is
 * no other PEs.
 */
static struct pnv_ioda_pe *gpe_table_group_to_npe(
		struct iommu_table_group *table_group)
{
	struct pnv_ioda_pe *npe = NULL;
	int ret = iommu_group_for_each_dev(table_group->group, &npe,
			gpe_table_group_to_npe_cb);

	BUG_ON(!ret || !npe);

	return npe;
}

static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
		int num, struct iommu_table *tbl)
{
	long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);

	if (ret)
		return ret;

	ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
	if (ret)
		pnv_pci_ioda2_unset_window(table_group, num);

	return ret;
}

static long pnv_pci_ioda2_npu_unset_window(
		struct iommu_table_group *table_group,
		int num)
{
	long ret = pnv_pci_ioda2_unset_window(table_group, num);

	if (ret)
		return ret;

	return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
}

static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
{
	/*
	 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
	 * the iommu_table if 32bit DMA is enabled.
	 */
	pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
	pnv_ioda2_take_ownership(table_group);
}

static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
	.get_table_size = pnv_pci_ioda2_get_table_size,
	.create_table = pnv_pci_ioda2_create_table,
	.set_window = pnv_pci_ioda2_npu_set_window,
	.unset_window = pnv_pci_ioda2_npu_unset_window,
	.take_ownership = pnv_ioda2_npu_take_ownership,
	.release_ownership = pnv_ioda2_release_ownership,
};

static void pnv_pci_ioda_setup_iommu_api(void)
{
	struct pci_controller *hose, *tmp;
	struct pnv_phb *phb;
	struct pnv_ioda_pe *pe, *gpe;

	/*
	 * Now we have all PHBs discovered, time to add NPU devices to
	 * the corresponding IOMMU groups.
	 */
	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		phb = hose->private_data;

		if (phb->type != PNV_PHB_NPU)
			continue;

		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
			gpe = pnv_pci_npu_setup_iommu(pe);
			if (gpe)
				gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
		}
	}
}
#else /* !CONFIG_IOMMU_API */
static void pnv_pci_ioda_setup_iommu_api(void) { };
2536 2537
#endif

2538 2539
static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
		unsigned levels, unsigned long limit,
2540
		unsigned long *current_offset, unsigned long *total_allocated)
2541 2542
{
	struct page *tce_mem = NULL;
2543
	__be64 *addr, *tmp;
2544
	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2545 2546 2547
	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
	unsigned entries = 1UL << (shift - 3);
	long i;
2548 2549 2550 2551 2552 2553 2554

	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
	if (!tce_mem) {
		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
		return NULL;
	}
	addr = page_address(tce_mem);
2555
	memset(addr, 0, allocated);
2556
	*total_allocated += allocated;
2557 2558 2559 2560 2561 2562 2563 2564 2565

	--levels;
	if (!levels) {
		*current_offset += allocated;
		return addr;
	}

	for (i = 0; i < entries; ++i) {
		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2566
				levels, limit, current_offset, total_allocated);
2567 2568 2569 2570 2571 2572 2573 2574 2575
		if (!tmp)
			break;

		addr[i] = cpu_to_be64(__pa(tmp) |
				TCE_PCI_READ | TCE_PCI_WRITE);

		if (*current_offset >= limit)
			break;
	}
2576 2577 2578 2579

	return addr;
}

2580 2581 2582
static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
		unsigned long size, unsigned level);

2583
static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2584 2585
		__u32 page_shift, __u64 window_size, __u32 levels,
		struct iommu_table *tbl)
2586
{
2587
	void *addr;
2588
	unsigned long offset = 0, level_shift, total_allocated = 0;
2589 2590 2591 2592 2593
	const unsigned window_shift = ilog2(window_size);
	unsigned entries_shift = window_shift - page_shift;
	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
	const unsigned long tce_table_size = 1UL << table_shift;

2594 2595 2596
	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
		return -EINVAL;

2597 2598 2599
	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
		return -EINVAL;

2600 2601 2602 2603 2604
	/* Adjust direct table size from window_size and levels */
	entries_shift = (entries_shift + levels - 1) / levels;
	level_shift = entries_shift + 3;
	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);

2605
	/* Allocate TCE table */
2606
	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2607
			levels, tce_table_size, &offset, &total_allocated);
2608 2609

	/* addr==NULL means that the first level allocation failed */
2610 2611 2612
	if (!addr)
		return -ENOMEM;

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
	/*
	 * First level was allocated but some lower level failed as
	 * we did not allocate as much as we wanted,
	 * release partially allocated table.
	 */
	if (offset < tce_table_size) {
		pnv_pci_ioda2_table_do_free_pages(addr,
				1ULL << (level_shift - 3), levels - 1);
		return -ENOMEM;
	}

2624 2625 2626
	/* Setup linux iommu table */
	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
			page_shift);
2627 2628
	tbl->it_level_size = 1ULL << (level_shift - 3);
	tbl->it_indirect_levels = levels - 1;
2629
	tbl->it_allocated_size = total_allocated;
2630 2631 2632 2633 2634 2635 2636

	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
			window_size, tce_table_size, bus_offset);

	return 0;
}

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
		unsigned long size, unsigned level)
{
	const unsigned long addr_ul = (unsigned long) addr &
			~(TCE_PCI_READ | TCE_PCI_WRITE);

	if (level) {
		long i;
		u64 *tmp = (u64 *) addr_ul;

		for (i = 0; i < size; ++i) {
			unsigned long hpa = be64_to_cpu(tmp[i]);

			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
				continue;

			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
					level - 1);
		}
	}

	free_pages(addr_ul, get_order(size << 3));
}

2661 2662
static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
{
2663 2664 2665
	const unsigned long size = tbl->it_indirect_levels ?
			tbl->it_level_size : tbl->it_size;

2666 2667 2668
	if (!tbl->it_size)
		return;

2669 2670
	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
			tbl->it_indirect_levels);
2671 2672 2673 2674 2675
}

static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
				       struct pnv_ioda_pe *pe)
{
2676 2677
	int64_t rc;

2678 2679 2680
	if (!pnv_pci_ioda_pe_dma_weight(pe))
		return;

2681 2682 2683
	/* TVE #1 is selected by PCI address bit 59 */
	pe->tce_bypass_base = 1ull << 59;

2684 2685
	iommu_register_group(&pe->table_group, phb->hose->global_number,
			pe->pe_number);
2686

2687 2688
	/* The PE will reserve all possible 32-bits space */
	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2689
		phb->ioda.m32_pci_base);
2690

2691
	/* Setup linux iommu table */
2692 2693 2694 2695 2696 2697
	pe->table_group.tce32_start = 0;
	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
	pe->table_group.max_dynamic_windows_supported =
			IOMMU_TABLE_GROUP_MAX_TABLES;
	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2698 2699 2700 2701
#ifdef CONFIG_IOMMU_API
	pe->table_group.ops = &pnv_pci_ioda2_ops;
#endif

2702
	rc = pnv_pci_ioda2_setup_default_config(pe);
2703
	if (rc)
2704
		return;
2705

2706
	if (pe->flags & PNV_IODA_PE_DEV)
2707
		iommu_add_device(&pe->pdev->dev);
2708
	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2709
		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2710 2711
}

2712
#ifdef CONFIG_PCI_MSI
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
static void pnv_ioda2_msi_eoi(struct irq_data *d)
{
	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
	struct irq_chip *chip = irq_data_get_irq_chip(d);
	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
					   ioda.irq_chip);
	int64_t rc;

	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
	WARN_ON_ONCE(rc);

	icp_native_eoi(d);
}

2727

2728
void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2729 2730 2731 2732
{
	struct irq_data *idata;
	struct irq_chip *ichip;

2733 2734
	/* The MSI EOI OPAL call is only needed on PHB3 */
	if (phb->model != PNV_PHB_MODEL_PHB3)
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
		return;

	if (!phb->ioda.irq_chip_init) {
		/*
		 * First time we setup an MSI IRQ, we need to setup the
		 * corresponding IRQ chip to route correctly.
		 */
		idata = irq_get_irq_data(virq);
		ichip = irq_data_get_irq_chip(idata);
		phb->ioda.irq_chip_init = 1;
		phb->ioda.irq_chip = *ichip;
		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
	}
	irq_set_chip(virq, &phb->ioda.irq_chip);
}

2751
static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2752 2753
				  unsigned int hwirq, unsigned int virq,
				  unsigned int is_64, struct msi_msg *msg)
2754 2755 2756
{
	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
	unsigned int xive_num = hwirq - phb->msi_base;
2757
	__be32 data;
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
	int rc;

	/* No PE assigned ? bail out ... no MSI for you ! */
	if (pe == NULL)
		return -ENXIO;

	/* Check if we have an MVE */
	if (pe->mve_number < 0)
		return -ENXIO;

2768
	/* Force 32-bit MSI on some broken devices */
2769
	if (dev->no_64bit_msi)
2770 2771
		is_64 = 0;

2772 2773 2774 2775 2776 2777 2778 2779 2780
	/* Assign XIVE to PE */
	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
	if (rc) {
		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
			pci_name(dev), rc, xive_num);
		return -EIO;
	}

	if (is_64) {
2781 2782
		__be64 addr64;

2783 2784 2785 2786 2787 2788 2789
		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
				     &addr64, &data);
		if (rc) {
			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
				pci_name(dev), rc);
			return -EIO;
		}
2790 2791
		msg->address_hi = be64_to_cpu(addr64) >> 32;
		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2792
	} else {
2793 2794
		__be32 addr32;

2795 2796 2797 2798 2799 2800 2801 2802
		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
				     &addr32, &data);
		if (rc) {
			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
				pci_name(dev), rc);
			return -EIO;
		}
		msg->address_hi = 0;
2803
		msg->address_lo = be32_to_cpu(addr32);
2804
	}
2805
	msg->data = be32_to_cpu(data);
2806

2807
	pnv_set_msi_irq_chip(phb, virq);
2808

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
		 " address=%x_%08x data=%x PE# %d\n",
		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
		 msg->address_hi, msg->address_lo, data, pe->pe_number);

	return 0;
}

static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
{
2819
	unsigned int count;
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	const __be32 *prop = of_get_property(phb->hose->dn,
					     "ibm,opal-msi-ranges", NULL);
	if (!prop) {
		/* BML Fallback */
		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
	}
	if (!prop)
		return;

	phb->msi_base = be32_to_cpup(prop);
2830 2831
	count = be32_to_cpup(prop + 1);
	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2832 2833 2834 2835
		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
		       phb->hose->global_number);
		return;
	}
2836

2837 2838 2839
	phb->msi_setup = pnv_pci_ioda_msi_setup;
	phb->msi32_support = 1;
	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2840
		count, phb->msi_base);
2841 2842 2843 2844 2845
}
#else
static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
#endif /* CONFIG_PCI_MSI */

2846 2847 2848
#ifdef CONFIG_PCI_IOV
static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
{
2849 2850 2851
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2852 2853
	struct resource *res;
	int i;
2854
	resource_size_t size, total_vf_bar_sz;
2855
	struct pci_dn *pdn;
2856
	int mul, total_vfs;
2857 2858 2859 2860 2861 2862

	if (!pdev->is_physfn || pdev->is_added)
		return;

	pdn = pci_get_pdn(pdev);
	pdn->vfs_expanded = 0;
2863
	pdn->m64_single_mode = false;
2864

2865
	total_vfs = pci_sriov_get_totalvfs(pdev);
2866
	mul = phb->ioda.total_pe_num;
2867
	total_vf_bar_sz = 0;
2868 2869 2870 2871 2872

	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &pdev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || res->parent)
			continue;
2873
		if (!pnv_pci_is_m64(phb, res)) {
2874 2875
			dev_warn(&pdev->dev, "Don't support SR-IOV with"
					" non M64 VF BAR%d: %pR. \n",
2876
				 i, res);
2877
			goto truncate_iov;
2878 2879
		}

2880 2881
		total_vf_bar_sz += pci_iov_resource_size(pdev,
				i + PCI_IOV_RESOURCES);
2882

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
		/*
		 * If bigger than quarter of M64 segment size, just round up
		 * power of two.
		 *
		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
		 * with other devices, IOV BAR size is expanded to be
		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
		 * segment size , the expanded size would equal to half of the
		 * whole M64 space size, which will exhaust the M64 Space and
		 * limit the system flexibility.  This is a design decision to
		 * set the boundary to quarter of the M64 segment size.
		 */
2895
		if (total_vf_bar_sz > gate) {
2896
			mul = roundup_pow_of_two(total_vfs);
2897 2898 2899
			dev_info(&pdev->dev,
				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
				total_vf_bar_sz, gate, mul);
2900
			pdn->m64_single_mode = true;
2901 2902 2903 2904
			break;
		}
	}

2905 2906 2907 2908 2909 2910
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &pdev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || res->parent)
			continue;

		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2911 2912 2913 2914 2915 2916 2917
		/*
		 * On PHB3, the minimum size alignment of M64 BAR in single
		 * mode is 32MB.
		 */
		if (pdn->m64_single_mode && (size < SZ_32M))
			goto truncate_iov;
		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2918
		res->end = res->start + size * mul - 1;
2919 2920
		dev_dbg(&pdev->dev, "                       %pR\n", res);
		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2921
			 i, res, mul);
2922
	}
2923
	pdn->vfs_expanded = mul;
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933

	return;

truncate_iov:
	/* To save MMIO space, IOV BAR is truncated. */
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &pdev->resource[i + PCI_IOV_RESOURCES];
		res->flags = 0;
		res->end = res->start - 1;
	}
2934 2935 2936
}
#endif /* CONFIG_PCI_IOV */

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
				  struct resource *res)
{
	struct pnv_phb *phb = pe->phb;
	struct pci_bus_region region;
	int index;
	int64_t rc;

	if (!res || !res->flags || res->start > res->end)
		return;

	if (res->flags & IORESOURCE_IO) {
		region.start = res->start - phb->ioda.io_pci_base;
		region.end   = res->end - phb->ioda.io_pci_base;
		index = region.start / phb->ioda.io_segsize;

		while (index < phb->ioda.total_pe_num &&
		       region.start <= region.end) {
			phb->ioda.io_segmap[index] = pe->pe_number;
			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
			if (rc != OPAL_SUCCESS) {
				pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n",
				       __func__, rc, index, pe->pe_number);
				break;
			}

			region.start += phb->ioda.io_segsize;
			index++;
		}
	} else if ((res->flags & IORESOURCE_MEM) &&
2968
		   !pnv_pci_is_m64(phb, res)) {
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
		region.start = res->start -
			       phb->hose->mem_offset[0] -
			       phb->ioda.m32_pci_base;
		region.end   = res->end -
			       phb->hose->mem_offset[0] -
			       phb->ioda.m32_pci_base;
		index = region.start / phb->ioda.m32_segsize;

		while (index < phb->ioda.total_pe_num &&
		       region.start <= region.end) {
			phb->ioda.m32_segmap[index] = pe->pe_number;
			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
			if (rc != OPAL_SUCCESS) {
				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d",
				       __func__, rc, index, pe->pe_number);
				break;
			}

			region.start += phb->ioda.m32_segsize;
			index++;
		}
	}
}

2994 2995 2996 2997 2998
/*
 * This function is supposed to be called on basis of PE from top
 * to bottom style. So the the I/O or MMIO segment assigned to
 * parent PE could be overrided by its child PEs if necessary.
 */
2999
static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3000
{
3001
	struct pci_dev *pdev;
3002
	int i;
3003 3004 3005 3006 3007 3008 3009 3010

	/*
	 * NOTE: We only care PCI bus based PE for now. For PCI
	 * device based PE, for example SRIOV sensitive VF should
	 * be figured out later.
	 */
	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);

		/*
		 * If the PE contains all subordinate PCI buses, the
		 * windows of the child bridges should be mapped to
		 * the PE as well.
		 */
		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
			continue;
		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
			pnv_ioda_setup_pe_res(pe,
				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
	}
3026 3027
}

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
static void pnv_pci_ioda_create_dbgfs(void)
{
#ifdef CONFIG_DEBUG_FS
	struct pci_controller *hose, *tmp;
	struct pnv_phb *phb;
	char name[16];

	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		phb = hose->private_data;

3038 3039 3040
		/* Notify initialization of PHB done */
		phb->initialized = 1;

3041 3042 3043 3044 3045 3046 3047 3048 3049
		sprintf(name, "PCI%04x", hose->global_number);
		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
		if (!phb->dbgfs)
			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
				__func__, hose->global_number);
	}
#endif /* CONFIG_DEBUG_FS */
}

3050
static void pnv_pci_ioda_fixup(void)
3051 3052
{
	pnv_pci_ioda_setup_PEs();
3053
	pnv_pci_ioda_setup_iommu_api();
3054 3055
	pnv_pci_ioda_create_dbgfs();

3056 3057
#ifdef CONFIG_EEH
	eeh_init();
M
Mike Qiu 已提交
3058
	eeh_addr_cache_build();
3059
#endif
3060 3061
}

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
/*
 * Returns the alignment for I/O or memory windows for P2P
 * bridges. That actually depends on how PEs are segmented.
 * For now, we return I/O or M32 segment size for PE sensitive
 * P2P bridges. Otherwise, the default values (4KiB for I/O,
 * 1MiB for memory) will be returned.
 *
 * The current PCI bus might be put into one PE, which was
 * create against the parent PCI bridge. For that case, we
 * needn't enlarge the alignment so that we can save some
 * resources.
 */
static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
						unsigned long type)
{
	struct pci_dev *bridge;
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
	int num_pci_bridges = 0;

	bridge = bus->self;
	while (bridge) {
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
			num_pci_bridges++;
			if (num_pci_bridges >= 2)
				return 1;
		}

		bridge = bridge->bus->self;
	}

3093 3094 3095 3096 3097 3098
	/*
	 * We fall back to M32 if M64 isn't supported. We enforce the M64
	 * alignment for any 64-bit resource, PCIe doesn't care and
	 * bridges only do 64-bit prefetchable anyway.
	 */
	if (phb->ioda.m64_segsize && (type & IORESOURCE_MEM_64))
3099
		return phb->ioda.m64_segsize;
3100 3101 3102 3103 3104 3105
	if (type & IORESOURCE_MEM)
		return phb->ioda.m32_segsize;

	return phb->ioda.io_segsize;
}

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
/*
 * We are updating root port or the upstream port of the
 * bridge behind the root port with PHB's windows in order
 * to accommodate the changes on required resources during
 * PCI (slot) hotplug, which is connected to either root
 * port or the downstream ports of PCIe switch behind the
 * root port.
 */
static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
					   unsigned long type)
{
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dev *bridge = bus->self;
	struct resource *r, *w;
	bool msi_region = false;
	int i;

	/* Check if we need apply fixup to the bridge's windows */
	if (!pci_is_root_bus(bridge->bus) &&
	    !pci_is_root_bus(bridge->bus->self->bus))
		return;

	/* Fixup the resources */
	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
		if (!r->flags || !r->parent)
			continue;

		w = NULL;
		if (r->flags & type & IORESOURCE_IO)
			w = &hose->io_resource;
3138
		else if (pnv_pci_is_m64(phb, r) &&
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
			 (type & IORESOURCE_PREFETCH) &&
			 phb->ioda.m64_segsize)
			w = &hose->mem_resources[1];
		else if (r->flags & type & IORESOURCE_MEM) {
			w = &hose->mem_resources[0];
			msi_region = true;
		}

		r->start = w->start;
		r->end = w->end;

		/* The 64KB 32-bits MSI region shouldn't be included in
		 * the 32-bits bridge window. Otherwise, we can see strange
		 * issues. One of them is EEH error observed on Garrison.
		 *
		 * Exclude top 1MB region which is the minimal alignment of
		 * 32-bits bridge window.
		 */
		if (msi_region) {
			r->end += 0x10000;
			r->end -= 0x100000;
		}
	}
}

3164 3165 3166 3167 3168 3169 3170 3171
static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
{
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dev *bridge = bus->self;
	struct pnv_ioda_pe *pe;
	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);

3172 3173 3174
	/* Extend bridge's windows if necessary */
	pnv_pci_fixup_bridge_resources(bus, type);

3175 3176 3177 3178 3179 3180 3181 3182 3183
	/* The PE for root bus should be realized before any one else */
	if (!phb->ioda.root_pe_populated) {
		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
		if (pe) {
			phb->ioda.root_pe_idx = pe->pe_number;
			phb->ioda.root_pe_populated = true;
		}
	}

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
	if (list_empty(&bus->devices))
		return;

	/* Reserve PEs according to used M64 resources */
	if (phb->reserve_m64_pe)
		phb->reserve_m64_pe(bus, NULL, all);

	/*
	 * Assign PE. We might run here because of partial hotplug.
	 * For the case, we just pick up the existing PE and should
	 * not allocate resources again.
	 */
	pe = pnv_ioda_setup_bus_PE(bus, all);
	if (!pe)
		return;

	pnv_ioda_setup_pe_seg(pe);
	switch (phb->type) {
	case PNV_PHB_IODA1:
		pnv_pci_ioda1_setup_dma_pe(phb, pe);
		break;
	case PNV_PHB_IODA2:
		pnv_pci_ioda2_setup_dma_pe(phb, pe);
		break;
	default:
		pr_warn("%s: No DMA for PHB#%d (type %d)\n",
			__func__, phb->hose->global_number, phb->type);
	}
}

3215 3216 3217 3218
#ifdef CONFIG_PCI_IOV
static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
						      int resno)
{
3219 3220
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
3221
	struct pci_dn *pdn = pci_get_pdn(pdev);
3222
	resource_size_t align;
3223

3224 3225 3226 3227 3228
	/*
	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
	 * SR-IOV. While from hardware perspective, the range mapped by M64
	 * BAR should be size aligned.
	 *
3229 3230 3231 3232 3233 3234 3235
	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
	 * powernv-specific hardware restriction is gone. But if just use the
	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
	 * in one segment of M64 #15, which introduces the PE conflict between
	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
	 * m64_segsize.
	 *
3236 3237
	 * This function returns the total IOV BAR size if M64 BAR is in
	 * Shared PE mode or just VF BAR size if not.
3238 3239
	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
	 * M64 segment size if IOV BAR size is less.
3240
	 */
3241
	align = pci_iov_resource_size(pdev, resno);
3242 3243
	if (!pdn->vfs_expanded)
		return align;
3244 3245
	if (pdn->m64_single_mode)
		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3246

3247
	return pdn->vfs_expanded * align;
3248 3249 3250
}
#endif /* CONFIG_PCI_IOV */

3251 3252 3253
/* Prevent enabling devices for which we couldn't properly
 * assign a PE
 */
3254
bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3255
{
3256 3257 3258
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dn *pdn;
3259

3260 3261 3262 3263 3264 3265
	/* The function is probably called while the PEs have
	 * not be created yet. For example, resource reassignment
	 * during PCI probe period. We just skip the check if
	 * PEs isn't ready.
	 */
	if (!phb->initialized)
3266
		return true;
3267

3268
	pdn = pci_get_pdn(dev);
3269
	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3270
		return false;
3271

3272
	return true;
3273 3274
}

3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
				       int num)
{
	struct pnv_ioda_pe *pe = container_of(table_group,
					      struct pnv_ioda_pe, table_group);
	struct pnv_phb *phb = pe->phb;
	unsigned int idx;
	long rc;

	pe_info(pe, "Removing DMA window #%d\n", num);
	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
			continue;

		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
						idx, 0, 0ul, 0ul, 0ul);
		if (rc != OPAL_SUCCESS) {
			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
				rc, idx);
			return rc;
		}

		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
	}

	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
	return OPAL_SUCCESS;
}

static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
{
	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
	struct iommu_table *tbl = pe->table_group.tables[0];
	int64_t rc;

	if (!weight)
		return;

	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
	if (rc != OPAL_SUCCESS)
		return;

3317
	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
	if (pe->table_group.group) {
		iommu_group_put(pe->table_group.group);
		WARN_ON(pe->table_group.group);
	}

	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
	iommu_free_table(tbl, "pnv");
}

static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
{
	struct iommu_table *tbl = pe->table_group.tables[0];
	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
#ifdef CONFIG_IOMMU_API
	int64_t rc;
#endif

	if (!weight)
		return;

#ifdef CONFIG_IOMMU_API
	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
	if (rc)
		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
#endif

	pnv_pci_ioda2_set_bypass(pe, false);
	if (pe->table_group.group) {
		iommu_group_put(pe->table_group.group);
		WARN_ON(pe->table_group.group);
	}

	pnv_pci_ioda2_table_free_pages(tbl);
	iommu_free_table(tbl, "pnv");
}

static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
				 unsigned short win,
				 unsigned int *map)
{
	struct pnv_phb *phb = pe->phb;
	int idx;
	int64_t rc;

	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
		if (map[idx] != pe->pe_number)
			continue;

		if (win == OPAL_M64_WINDOW_TYPE)
			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
					phb->ioda.reserved_pe_idx, win,
					idx / PNV_IODA1_M64_SEGS,
					idx % PNV_IODA1_M64_SEGS);
		else
			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
					phb->ioda.reserved_pe_idx, win, 0, idx);

		if (rc != OPAL_SUCCESS)
			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
				rc, win, idx);

		map[idx] = IODA_INVALID_PE;
	}
}

static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
{
	struct pnv_phb *phb = pe->phb;

	if (phb->type == PNV_PHB_IODA1) {
		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
				     phb->ioda.io_segmap);
		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
				     phb->ioda.m32_segmap);
		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
				     phb->ioda.m64_segmap);
	} else if (phb->type == PNV_PHB_IODA2) {
		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
				     phb->ioda.m32_segmap);
	}
}

static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
{
	struct pnv_phb *phb = pe->phb;
	struct pnv_ioda_pe *slave, *tmp;

	/* Release slave PEs in compound PE */
	if (pe->flags & PNV_IODA_PE_MASTER) {
		list_for_each_entry_safe(slave, tmp, &pe->slaves, list)
			pnv_ioda_release_pe(slave);
	}

	list_del(&pe->list);
	switch (phb->type) {
	case PNV_PHB_IODA1:
		pnv_pci_ioda1_release_pe_dma(pe);
		break;
	case PNV_PHB_IODA2:
		pnv_pci_ioda2_release_pe_dma(pe);
		break;
	default:
		WARN_ON(1);
	}

	pnv_ioda_release_pe_seg(pe);
	pnv_ioda_deconfigure_pe(pe->phb, pe);
	pnv_ioda_free_pe(pe);
}

static void pnv_pci_release_device(struct pci_dev *pdev)
{
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dn *pdn = pci_get_pdn(pdev);
	struct pnv_ioda_pe *pe;

	if (pdev->is_virtfn)
		return;

	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
		return;

	pe = &phb->ioda.pe_array[pdn->pe_number];
	WARN_ON(--pe->device_count < 0);
	if (pe->device_count == 0)
		pnv_ioda_release_pe(pe);
}

3447
static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3448
{
3449 3450
	struct pnv_phb *phb = hose->private_data;

3451
	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3452 3453 3454
		       OPAL_ASSERT_RESET);
}

3455
static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3456 3457
	.dma_dev_setup		= pnv_pci_dma_dev_setup,
	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3458
#ifdef CONFIG_PCI_MSI
3459 3460
	.setup_msi_irqs		= pnv_setup_msi_irqs,
	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3461
#endif
3462
	.enable_device_hook	= pnv_pci_enable_device_hook,
3463
	.release_device		= pnv_pci_release_device,
3464
	.window_alignment	= pnv_pci_window_alignment,
3465
	.setup_bridge		= pnv_pci_setup_bridge,
3466 3467 3468 3469
	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
	.shutdown		= pnv_pci_ioda_shutdown,
3470 3471
};

3472 3473 3474 3475 3476 3477 3478 3479
static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
{
	dev_err_once(&npdev->dev,
			"%s operation unsupported for NVLink devices\n",
			__func__);
	return -EPERM;
}

3480
static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3481
	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3482
#ifdef CONFIG_PCI_MSI
3483 3484
	.setup_msi_irqs		= pnv_setup_msi_irqs,
	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3485
#endif
3486 3487 3488 3489 3490
	.enable_device_hook	= pnv_pci_enable_device_hook,
	.window_alignment	= pnv_pci_window_alignment,
	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
	.dma_set_mask		= pnv_npu_dma_set_mask,
	.shutdown		= pnv_pci_ioda_shutdown,
3491 3492
};

3493 3494 3495 3496
#ifdef CONFIG_CXL_BASE
const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
	.dma_dev_setup		= pnv_pci_dma_dev_setup,
	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3497 3498 3499 3500
#ifdef CONFIG_PCI_MSI
	.setup_msi_irqs		= pnv_cxl_cx4_setup_msi_irqs,
	.teardown_msi_irqs	= pnv_cxl_cx4_teardown_msi_irqs,
#endif
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
	.enable_device_hook	= pnv_cxl_enable_device_hook,
	.disable_device		= pnv_cxl_disable_device,
	.release_device		= pnv_pci_release_device,
	.window_alignment	= pnv_pci_window_alignment,
	.setup_bridge		= pnv_pci_setup_bridge,
	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
	.shutdown		= pnv_pci_ioda_shutdown,
};
#endif

3513 3514
static void __init pnv_pci_init_ioda_phb(struct device_node *np,
					 u64 hub_id, int ioda_type)
3515 3516 3517
{
	struct pci_controller *hose;
	struct pnv_phb *phb;
3518 3519
	unsigned long size, m64map_off, m32map_off, pemap_off;
	unsigned long iomap_off = 0, dma32map_off = 0;
3520
	struct resource r;
3521
	const __be64 *prop64;
3522
	const __be32 *prop32;
3523
	int len;
3524
	unsigned int segno;
3525 3526 3527 3528
	u64 phb_id;
	void *aux;
	long rc;

3529 3530 3531
	if (!of_device_is_available(np))
		return;

3532 3533
	pr_info("Initializing %s PHB (%s)\n",
		pnv_phb_names[ioda_type], of_node_full_name(np));
3534 3535 3536 3537 3538 3539 3540 3541 3542

	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
	if (!prop64) {
		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
		return;
	}
	phb_id = be64_to_cpup(prop64);
	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);

3543
	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3544 3545 3546 3547 3548

	/* Allocate PCI controller */
	phb->hose = hose = pcibios_alloc_controller(np);
	if (!phb->hose) {
		pr_err("  Can't allocate PCI controller for %s\n",
3549
		       np->full_name);
3550
		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3551 3552 3553 3554
		return;
	}

	spin_lock_init(&phb->lock);
3555 3556
	prop32 = of_get_property(np, "bus-range", &len);
	if (prop32 && len == 8) {
3557 3558
		hose->first_busno = be32_to_cpu(prop32[0]);
		hose->last_busno = be32_to_cpu(prop32[1]);
3559 3560 3561 3562 3563
	} else {
		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
		hose->first_busno = 0;
		hose->last_busno = 0xff;
	}
3564
	hose->private_data = phb;
3565
	phb->hub_id = hub_id;
3566
	phb->opal_id = phb_id;
G
Gavin Shan 已提交
3567
	phb->type = ioda_type;
3568
	mutex_init(&phb->ioda.pe_alloc_mutex);
3569

3570 3571 3572
	/* Detect specific models for error handling */
	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
		phb->model = PNV_PHB_MODEL_P7IOC;
3573
	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
G
Gavin Shan 已提交
3574
		phb->model = PNV_PHB_MODEL_PHB3;
3575 3576
	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
		phb->model = PNV_PHB_MODEL_NPU;
3577 3578 3579
	else
		phb->model = PNV_PHB_MODEL_UNKNOWN;

G
Gavin Shan 已提交
3580
	/* Parse 32-bit and IO ranges (if any) */
3581
	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3582

G
Gavin Shan 已提交
3583
	/* Get registers */
3584 3585 3586 3587 3588 3589
	if (!of_address_to_resource(np, 0, &r)) {
		phb->regs_phys = r.start;
		phb->regs = ioremap(r.start, resource_size(&r));
		if (phb->regs == NULL)
			pr_err("  Failed to map registers !\n");
	}
3590

3591
	/* Initialize more IODA stuff */
3592
	phb->ioda.total_pe_num = 1;
G
Gavin Shan 已提交
3593
	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3594
	if (prop32)
3595
		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3596 3597
	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
	if (prop32)
3598
		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3599

3600 3601 3602 3603
	/* Invalidate RID to PE# mapping */
	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;

3604 3605 3606
	/* Parse 64-bit MMIO range */
	pnv_ioda_parse_m64_window(phb);

3607
	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
G
Gavin Shan 已提交
3608
	/* FW Has already off top 64k of M32 space (MSI space) */
3609 3610
	phb->ioda.m32_size += 0x10000;

3611
	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3612
	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3613
	phb->ioda.io_size = hose->pci_io_size;
3614
	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3615 3616
	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */

3617 3618 3619 3620
	/* Calculate how many 32-bit TCE segments we have */
	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
				PNV_IODA1_DMA32_SEGSIZE;

3621
	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3622 3623
	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
			sizeof(unsigned long));
3624 3625
	m64map_off = size;
	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3626
	m32map_off = size;
3627
	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3628 3629
	if (phb->type == PNV_PHB_IODA1) {
		iomap_off = size;
3630
		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3631 3632 3633
		dma32map_off = size;
		size += phb->ioda.dma32_count *
			sizeof(phb->ioda.dma32_segmap[0]);
3634
	}
3635
	pemap_off = size;
3636
	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3637
	aux = memblock_virt_alloc(size, 0);
3638
	phb->ioda.pe_alloc = aux;
3639
	phb->ioda.m64_segmap = aux + m64map_off;
3640
	phb->ioda.m32_segmap = aux + m32map_off;
3641 3642
	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3643
		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3644
	}
3645
	if (phb->type == PNV_PHB_IODA1) {
3646
		phb->ioda.io_segmap = aux + iomap_off;
3647 3648
		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3649 3650 3651 3652

		phb->ioda.dma32_segmap = aux + dma32map_off;
		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3653
	}
3654
	phb->ioda.pe_array = aux + pemap_off;
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670

	/*
	 * Choose PE number for root bus, which shouldn't have
	 * M64 resources consumed by its child devices. To pick
	 * the PE number adjacent to the reserved one if possible.
	 */
	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
	if (phb->ioda.reserved_pe_idx == 0) {
		phb->ioda.root_pe_idx = 1;
		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
	} else {
		phb->ioda.root_pe_idx = IODA_INVALID_PE;
	}
3671 3672

	INIT_LIST_HEAD(&phb->ioda.pe_list);
3673
	mutex_init(&phb->ioda.pe_list_mutex);
3674 3675

	/* Calculate how many 32-bit TCE segments we have */
3676
	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3677
				PNV_IODA1_DMA32_SEGSIZE;
3678

G
Gavin Shan 已提交
3679
#if 0 /* We should really do that ... */
3680 3681 3682 3683 3684 3685 3686 3687
	rc = opal_pci_set_phb_mem_window(opal->phb_id,
					 window_type,
					 window_num,
					 starting_real_address,
					 starting_pci_address,
					 segment_size);
#endif

3688
	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3689
		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3690 3691 3692 3693 3694 3695 3696 3697
		phb->ioda.m32_size, phb->ioda.m32_segsize);
	if (phb->ioda.m64_size)
		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
			phb->ioda.m64_size, phb->ioda.m64_segsize);
	if (phb->ioda.io_size)
		pr_info("                  IO: 0x%x [segment=0x%x]\n",
			phb->ioda.io_size, phb->ioda.io_segsize);

3698 3699

	phb->hose->ops = &pnv_pci_ops;
G
Gavin Shan 已提交
3700 3701 3702
	phb->get_pe_state = pnv_ioda_get_pe_state;
	phb->freeze_pe = pnv_ioda_freeze_pe;
	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3703 3704 3705 3706

	/* Setup MSI support */
	pnv_pci_init_ioda_msis(phb);

3707 3708 3709 3710 3711 3712
	/*
	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
	 * to let the PCI core do resource assignment. It's supposed
	 * that the PCI core will do correct I/O and MMIO alignment
	 * for the P2P bridge bars so that each PCI bus (excluding
	 * the child P2P bridges) can form individual PE.
3713
	 */
3714
	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3715

3716
	if (phb->type == PNV_PHB_NPU) {
3717
		hose->controller_ops = pnv_npu_ioda_controller_ops;
3718 3719
	} else {
		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3720
		hose->controller_ops = pnv_pci_ioda_controller_ops;
3721
	}
3722

3723 3724
#ifdef CONFIG_PCI_IOV
	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3725
	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3726 3727
#endif

3728
	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3729 3730

	/* Reset IODA tables to a clean state */
3731
	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3732
	if (rc)
3733
		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3734 3735 3736 3737 3738 3739 3740 3741

	/* If we're running in kdump kerenl, the previous kerenl never
	 * shutdown PCI devices correctly. We already got IODA table
	 * cleaned out. So we have to issue PHB reset to stop all PCI
	 * transactions from previous kerenl.
	 */
	if (is_kdump_kernel()) {
		pr_info("  Issue PHB reset ...\n");
3742 3743
		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3744
	}
3745

3746 3747
	/* Remove M64 resource if we can't configure it successfully */
	if (!phb->init_m64 || phb->init_m64(phb))
3748
		hose->mem_resources[1].flags = 0;
G
Gavin Shan 已提交
3749 3750
}

3751
void __init pnv_pci_init_ioda2_phb(struct device_node *np)
G
Gavin Shan 已提交
3752
{
3753
	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3754 3755
}

3756 3757 3758 3759 3760
void __init pnv_pci_init_npu_phb(struct device_node *np)
{
	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
}

3761 3762 3763
void __init pnv_pci_init_ioda_hub(struct device_node *np)
{
	struct device_node *phbn;
3764
	const __be64 *prop64;
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
	u64 hub_id;

	pr_info("Probing IODA IO-Hub %s\n", np->full_name);

	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
	if (!prop64) {
		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
		return;
	}
	hub_id = be64_to_cpup(prop64);
	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);

	/* Count child PHBs */
	for_each_child_of_node(np, phbn) {
		/* Look for IODA1 PHBs */
		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3781
			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3782 3783
	}
}