pci-ioda.c 38.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Support PCI/PCIe on PowerNV platforms
 *
 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

12
#undef DEBUG
13 14 15

#include <linux/kernel.h>
#include <linux/pci.h>
16
#include <linux/debugfs.h>
17 18 19 20 21 22 23
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/msi.h>
24
#include <linux/memblock.h>
25 26 27 28 29 30

#include <asm/sections.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
31
#include <asm/msi_bitmap.h>
32 33 34 35
#include <asm/ppc-pci.h>
#include <asm/opal.h>
#include <asm/iommu.h>
#include <asm/tce.h>
36
#include <asm/xics.h>
37
#include <asm/debug.h>
38 39 40 41 42 43 44 45 46

#include "powernv.h"
#include "pci.h"

#define define_pe_printk_level(func, kern_level)		\
static int func(const struct pnv_ioda_pe *pe, const char *fmt, ...)	\
{								\
	struct va_format vaf;					\
	va_list args;						\
G
Gavin Shan 已提交
47
	char pfix[32];						\
48 49 50 51 52 53 54
	int r;							\
								\
	va_start(args, fmt);					\
								\
	vaf.fmt = fmt;						\
	vaf.va = &args;						\
								\
G
Gavin Shan 已提交
55 56 57 58 59 60 61 62 63 64
	if (pe->pdev)						\
		strlcpy(pfix, dev_name(&pe->pdev->dev),		\
			sizeof(pfix));				\
	else							\
		sprintf(pfix, "%04x:%02x     ",			\
			pci_domain_nr(pe->pbus),		\
			pe->pbus->number);			\
	r = printk(kern_level "pci %s: [PE# %.3d] %pV",		\
		   pfix, pe->pe_number, &vaf);			\
								\
65 66 67 68 69 70 71 72 73
	va_end(args);						\
								\
	return r;						\
}								\

define_pe_printk_level(pe_err, KERN_ERR);
define_pe_printk_level(pe_warn, KERN_WARNING);
define_pe_printk_level(pe_info, KERN_INFO);

74 75 76 77 78 79 80 81 82 83
/*
 * stdcix is only supposed to be used in hypervisor real mode as per
 * the architecture spec
 */
static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
{
	__asm__ __volatile__("stdcix %0,0,%1"
		: : "r" (val), "r" (paddr) : "memory");
}

84
static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
85 86 87 88 89 90 91 92 93 94
{
	unsigned long pe;

	do {
		pe = find_next_zero_bit(phb->ioda.pe_alloc,
					phb->ioda.total_pe, 0);
		if (pe >= phb->ioda.total_pe)
			return IODA_INVALID_PE;
	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));

95
	phb->ioda.pe_array[pe].phb = phb;
96 97 98 99
	phb->ioda.pe_array[pe].pe_number = pe;
	return pe;
}

100
static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
101 102 103 104 105 106 107 108 109 110 111
{
	WARN_ON(phb->ioda.pe_array[pe].pdev);

	memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
	clear_bit(pe, phb->ioda.pe_alloc);
}

/* Currently those 2 are only used when MSIs are enabled, this will change
 * but in the meantime, we need to protect them to avoid warnings
 */
#ifdef CONFIG_PCI_MSI
112
static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
113 114 115
{
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
116
	struct pci_dn *pdn = pci_get_pdn(dev);
117 118 119 120 121 122 123 124 125

	if (!pdn)
		return NULL;
	if (pdn->pe_number == IODA_INVALID_PE)
		return NULL;
	return &phb->ioda.pe_array[pdn->pe_number];
}
#endif /* CONFIG_PCI_MSI */

126
static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
127 128 129 130 131 132 133 134 135 136 137 138
{
	struct pci_dev *parent;
	uint8_t bcomp, dcomp, fcomp;
	long rc, rid_end, rid;

	/* Bus validation ? */
	if (pe->pbus) {
		int count;

		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
		parent = pe->pbus->self;
139 140 141 142 143
		if (pe->flags & PNV_IODA_PE_BUS_ALL)
			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
		else
			count = 1;

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
		switch(count) {
		case  1: bcomp = OpalPciBusAll;		break;
		case  2: bcomp = OpalPciBus7Bits;	break;
		case  4: bcomp = OpalPciBus6Bits;	break;
		case  8: bcomp = OpalPciBus5Bits;	break;
		case 16: bcomp = OpalPciBus4Bits;	break;
		case 32: bcomp = OpalPciBus3Bits;	break;
		default:
			pr_err("%s: Number of subordinate busses %d"
			       " unsupported\n",
			       pci_name(pe->pbus->self), count);
			/* Do an exact match only */
			bcomp = OpalPciBusAll;
		}
		rid_end = pe->rid + (count << 8);
	} else {
		parent = pe->pdev->bus->self;
		bcomp = OpalPciBusAll;
		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
		rid_end = pe->rid + 1;
	}

167 168 169 170 171 172
	/*
	 * Associate PE in PELT. We need add the PE into the
	 * corresponding PELT-V as well. Otherwise, the error
	 * originated from the PE might contribute to other
	 * PEs.
	 */
173 174 175 176 177 178
	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
	if (rc) {
		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
		return -ENXIO;
	}
179 180 181 182 183

	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
				pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
	if (rc)
		pe_warn(pe, "OPAL error %d adding self to PELTV\n", rc);
184 185 186 187 188
	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);

	/* Add to all parents PELT-V */
	while (parent) {
189
		struct pci_dn *pdn = pci_get_pdn(parent);
190 191
		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
192
						pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
			/* XXX What to do in case of error ? */
		}
		parent = parent->bus->self;
	}
	/* Setup reverse map */
	for (rid = pe->rid; rid < rid_end; rid++)
		phb->ioda.pe_rmap[rid] = pe->pe_number;

	/* Setup one MVTs on IODA1 */
	if (phb->type == PNV_PHB_IODA1) {
		pe->mve_number = pe->pe_number;
		rc = opal_pci_set_mve(phb->opal_id, pe->mve_number,
				      pe->pe_number);
		if (rc) {
			pe_err(pe, "OPAL error %ld setting up MVE %d\n",
			       rc, pe->mve_number);
			pe->mve_number = -1;
		} else {
			rc = opal_pci_set_mve_enable(phb->opal_id,
212
						     pe->mve_number, OPAL_ENABLE_MVE);
213 214 215 216 217 218 219 220 221 222 223 224
			if (rc) {
				pe_err(pe, "OPAL error %ld enabling MVE %d\n",
				       rc, pe->mve_number);
				pe->mve_number = -1;
			}
		}
	} else if (phb->type == PNV_PHB_IODA2)
		pe->mve_number = 0;

	return 0;
}

225 226
static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
				       struct pnv_ioda_pe *pe)
227 228 229
{
	struct pnv_ioda_pe *lpe;

230
	list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
231
		if (lpe->dma_weight < pe->dma_weight) {
232
			list_add_tail(&pe->dma_link, &lpe->dma_link);
233 234 235
			return;
		}
	}
236
	list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
}

static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
{
	/* This is quite simplistic. The "base" weight of a device
	 * is 10. 0 means no DMA is to be accounted for it.
	 */

	/* If it's a bridge, no DMA */
	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
		return 0;

	/* Reduce the weight of slow USB controllers */
	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
		return 3;

	/* Increase the weight of RAID (includes Obsidian) */
	if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
		return 15;

	/* Default */
	return 10;
}

263
#if 0
264
static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
265 266 267
{
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
268
	struct pci_dn *pdn = pci_get_pdn(dev);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
	struct pnv_ioda_pe *pe;
	int pe_num;

	if (!pdn) {
		pr_err("%s: Device tree node not associated properly\n",
			   pci_name(dev));
		return NULL;
	}
	if (pdn->pe_number != IODA_INVALID_PE)
		return NULL;

	/* PE#0 has been pre-set */
	if (dev->bus->number == 0)
		pe_num = 0;
	else
		pe_num = pnv_ioda_alloc_pe(phb);
	if (pe_num == IODA_INVALID_PE) {
		pr_warning("%s: Not enough PE# available, disabling device\n",
			   pci_name(dev));
		return NULL;
	}

	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
	 * pointer in the PE data structure, both should be destroyed at the
	 * same time. However, this needs to be looked at more closely again
	 * once we actually start removing things (Hotplug, SR-IOV, ...)
	 *
	 * At some point we want to remove the PDN completely anyways
	 */
	pe = &phb->ioda.pe_array[pe_num];
	pci_dev_get(dev);
	pdn->pcidev = dev;
	pdn->pe_number = pe_num;
	pe->pdev = dev;
	pe->pbus = NULL;
	pe->tce32_seg = -1;
	pe->mve_number = -1;
	pe->rid = dev->bus->number << 8 | pdn->devfn;

	pe_info(pe, "Associated device to PE\n");

	if (pnv_ioda_configure_pe(phb, pe)) {
		/* XXX What do we do here ? */
		if (pe_num)
			pnv_ioda_free_pe(phb, pe_num);
		pdn->pe_number = IODA_INVALID_PE;
		pe->pdev = NULL;
		pci_dev_put(dev);
		return NULL;
	}

	/* Assign a DMA weight to the device */
	pe->dma_weight = pnv_ioda_dma_weight(dev);
	if (pe->dma_weight != 0) {
		phb->ioda.dma_weight += pe->dma_weight;
		phb->ioda.dma_pe_count++;
	}

	/* Link the PE */
	pnv_ioda_link_pe_by_weight(phb, pe);

	return pe;
}
332
#endif /* Useful for SRIOV case */
333 334 335 336 337 338

static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
339
		struct pci_dn *pdn = pci_get_pdn(dev);
340 341 342 343 344 345 346 347 348

		if (pdn == NULL) {
			pr_warn("%s: No device node associated with device !\n",
				pci_name(dev));
			continue;
		}
		pdn->pcidev = dev;
		pdn->pe_number = pe->pe_number;
		pe->dma_weight += pnv_ioda_dma_weight(dev);
349
		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
350 351 352 353
			pnv_ioda_setup_same_PE(dev->subordinate, pe);
	}
}

354 355 356 357 358 359
/*
 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
 * single PCI bus. Another one that contains the primary PCI bus and its
 * subordinate PCI devices and buses. The second type of PE is normally
 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
 */
360
static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
361
{
362
	struct pci_controller *hose = pci_bus_to_host(bus);
363 364 365 366 367 368
	struct pnv_phb *phb = hose->private_data;
	struct pnv_ioda_pe *pe;
	int pe_num;

	pe_num = pnv_ioda_alloc_pe(phb);
	if (pe_num == IODA_INVALID_PE) {
369 370
		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
			__func__, pci_domain_nr(bus), bus->number);
371 372 373 374
		return;
	}

	pe = &phb->ioda.pe_array[pe_num];
375
	pe->flags = (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
376 377 378 379
	pe->pbus = bus;
	pe->pdev = NULL;
	pe->tce32_seg = -1;
	pe->mve_number = -1;
380
	pe->rid = bus->busn_res.start << 8;
381 382
	pe->dma_weight = 0;

383 384 385 386 387 388
	if (all)
		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
			bus->busn_res.start, bus->busn_res.end, pe_num);
	else
		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
			bus->busn_res.start, pe_num);
389 390 391 392 393 394 395 396 397 398 399 400

	if (pnv_ioda_configure_pe(phb, pe)) {
		/* XXX What do we do here ? */
		if (pe_num)
			pnv_ioda_free_pe(phb, pe_num);
		pe->pbus = NULL;
		return;
	}

	/* Associate it with all child devices */
	pnv_ioda_setup_same_PE(bus, pe);

401 402 403
	/* Put PE to the list */
	list_add_tail(&pe->list, &phb->ioda.pe_list);

404 405 406 407 408 409 410 411 412 413 414 415
	/* Account for one DMA PE if at least one DMA capable device exist
	 * below the bridge
	 */
	if (pe->dma_weight != 0) {
		phb->ioda.dma_weight += pe->dma_weight;
		phb->ioda.dma_pe_count++;
	}

	/* Link the PE */
	pnv_ioda_link_pe_by_weight(phb, pe);
}

416
static void pnv_ioda_setup_PEs(struct pci_bus *bus)
417 418
{
	struct pci_dev *dev;
419 420

	pnv_ioda_setup_bus_PE(bus, 0);
421 422

	list_for_each_entry(dev, &bus->devices, bus_list) {
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
		if (dev->subordinate) {
			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
				pnv_ioda_setup_bus_PE(dev->subordinate, 1);
			else
				pnv_ioda_setup_PEs(dev->subordinate);
		}
	}
}

/*
 * Configure PEs so that the downstream PCI buses and devices
 * could have their associated PE#. Unfortunately, we didn't
 * figure out the way to identify the PLX bridge yet. So we
 * simply put the PCI bus and the subordinate behind the root
 * port to PE# here. The game rule here is expected to be changed
 * as soon as we can detected PLX bridge correctly.
 */
440
static void pnv_pci_ioda_setup_PEs(void)
441 442 443 444 445
{
	struct pci_controller *hose, *tmp;

	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		pnv_ioda_setup_PEs(hose->bus);
446 447 448
	}
}

449
static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
450
{
451
	struct pci_dn *pdn = pci_get_pdn(pdev);
452
	struct pnv_ioda_pe *pe;
453

454 455 456 457 458 459 460
	/*
	 * The function can be called while the PE#
	 * hasn't been assigned. Do nothing for the
	 * case.
	 */
	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
		return;
461

462
	pe = &phb->ioda.pe_array[pdn->pe_number];
463
	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
464
	set_iommu_table_base(&pdev->dev, &pe->tce32_table);
465 466
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
static int pnv_pci_ioda_dma_set_mask(struct pnv_phb *phb,
				     struct pci_dev *pdev, u64 dma_mask)
{
	struct pci_dn *pdn = pci_get_pdn(pdev);
	struct pnv_ioda_pe *pe;
	uint64_t top;
	bool bypass = false;

	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
		return -ENODEV;;

	pe = &phb->ioda.pe_array[pdn->pe_number];
	if (pe->tce_bypass_enabled) {
		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
		bypass = (dma_mask >= top);
	}

	if (bypass) {
		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
		set_dma_ops(&pdev->dev, &dma_direct_ops);
		set_dma_offset(&pdev->dev, pe->tce_bypass_base);
	} else {
		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
		set_dma_ops(&pdev->dev, &dma_iommu_ops);
		set_iommu_table_base(&pdev->dev, &pe->tce32_table);
	}
	return 0;
}

496 497 498 499 500
static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
501
		set_iommu_table_base_and_group(&dev->dev, &pe->tce32_table);
502 503 504 505 506
		if (dev->subordinate)
			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
	}
}

507 508
static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe,
					 struct iommu_table *tbl,
509
					 __be64 *startp, __be64 *endp, bool rm)
510
{
511 512 513
	__be64 __iomem *invalidate = rm ?
		(__be64 __iomem *)pe->tce_inval_reg_phys :
		(__be64 __iomem *)tbl->it_index;
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	unsigned long start, end, inc;

	start = __pa(startp);
	end = __pa(endp);

	/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
	if (tbl->it_busno) {
		start <<= 12;
		end <<= 12;
		inc = 128 << 12;
		start |= tbl->it_busno;
		end |= tbl->it_busno;
	} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
		/* p7ioc-style invalidation, 2 TCEs per write */
		start |= (1ull << 63);
		end |= (1ull << 63);
		inc = 16;
        } else {
		/* Default (older HW) */
                inc = 128;
	}

        end |= inc - 1;	/* round up end to be different than start */

        mb(); /* Ensure above stores are visible */
        while (start <= end) {
540
		if (rm)
541
			__raw_rm_writeq(cpu_to_be64(start), invalidate);
542
		else
543
			__raw_writeq(cpu_to_be64(start), invalidate);
544 545 546 547 548 549 550 551 552 553 554
                start += inc;
        }

	/*
	 * The iommu layer will do another mb() for us on build()
	 * and we don't care on free()
	 */
}

static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
					 struct iommu_table *tbl,
555
					 __be64 *startp, __be64 *endp, bool rm)
556 557
{
	unsigned long start, end, inc;
558 559 560
	__be64 __iomem *invalidate = rm ?
		(__be64 __iomem *)pe->tce_inval_reg_phys :
		(__be64 __iomem *)tbl->it_index;
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

	/* We'll invalidate DMA address in PE scope */
	start = 0x2ul << 60;
	start |= (pe->pe_number & 0xFF);
	end = start;

	/* Figure out the start, end and step */
	inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
	start |= (inc << 12);
	inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
	end |= (inc << 12);
	inc = (0x1ul << 12);
	mb();

	while (start <= end) {
576
		if (rm)
577
			__raw_rm_writeq(cpu_to_be64(start), invalidate);
578
		else
579
			__raw_writeq(cpu_to_be64(start), invalidate);
580 581 582 583 584
		start += inc;
	}
}

void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
585
				 __be64 *startp, __be64 *endp, bool rm)
586 587 588 589 590 591
{
	struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
					      tce32_table);
	struct pnv_phb *phb = pe->phb;

	if (phb->type == PNV_PHB_IODA1)
592
		pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm);
593
	else
594
		pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm);
595 596
}

597 598 599
static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
				      struct pnv_ioda_pe *pe, unsigned int base,
				      unsigned int segs)
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
{

	struct page *tce_mem = NULL;
	const __be64 *swinvp;
	struct iommu_table *tbl;
	unsigned int i;
	int64_t rc;
	void *addr;

	/* 256M DMA window, 4K TCE pages, 8 bytes TCE */
#define TCE32_TABLE_SIZE	((0x10000000 / 0x1000) * 8)

	/* XXX FIXME: Handle 64-bit only DMA devices */
	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
	/* XXX FIXME: Allocate multi-level tables on PHB3 */

	/* We shouldn't already have a 32-bit DMA associated */
	if (WARN_ON(pe->tce32_seg >= 0))
		return;

	/* Grab a 32-bit TCE table */
	pe->tce32_seg = base;
	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
		(base << 28), ((base + segs) << 28) - 1);

	/* XXX Currently, we allocate one big contiguous table for the
	 * TCEs. We only really need one chunk per 256M of TCE space
	 * (ie per segment) but that's an optimization for later, it
	 * requires some added smarts with our get/put_tce implementation
	 */
	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
				   get_order(TCE32_TABLE_SIZE * segs));
	if (!tce_mem) {
		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
		goto fail;
	}
	addr = page_address(tce_mem);
	memset(addr, 0, TCE32_TABLE_SIZE * segs);

	/* Configure HW */
	for (i = 0; i < segs; i++) {
		rc = opal_pci_map_pe_dma_window(phb->opal_id,
					      pe->pe_number,
					      base + i, 1,
					      __pa(addr) + TCE32_TABLE_SIZE * i,
					      TCE32_TABLE_SIZE, 0x1000);
		if (rc) {
			pe_err(pe, " Failed to configure 32-bit TCE table,"
			       " err %ld\n", rc);
			goto fail;
		}
	}

	/* Setup linux iommu table */
	tbl = &pe->tce32_table;
	pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
				  base << 28);

	/* OPAL variant of P7IOC SW invalidated TCEs */
	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
	if (swinvp) {
		/* We need a couple more fields -- an address and a data
		 * to or.  Since the bus is only printed out on table free
		 * errors, and on the first pass the data will be a relative
		 * bus number, print that out instead.
		 */
		tbl->it_busno = 0;
667 668 669
		pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
		tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
				8);
670 671
		tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE |
			       TCE_PCI_SWINV_PAIR;
672 673
	}
	iommu_init_table(tbl, phb->hose->node);
674
	iommu_register_group(tbl, pci_domain_nr(pe->pbus), pe->pe_number);
675

676
	if (pe->pdev)
677
		set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
678 679 680
	else
		pnv_ioda_setup_bus_dma(pe, pe->pbus);

681 682 683 684 685 686 687 688 689
	return;
 fail:
	/* XXX Failure: Try to fallback to 64-bit only ? */
	if (pe->tce32_seg >= 0)
		pe->tce32_seg = -1;
	if (tce_mem)
		__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
}

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
static void pnv_pci_ioda2_set_bypass(struct iommu_table *tbl, bool enable)
{
	struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
					      tce32_table);
	uint16_t window_id = (pe->pe_number << 1 ) + 1;
	int64_t rc;

	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
	if (enable) {
		phys_addr_t top = memblock_end_of_DRAM();

		top = roundup_pow_of_two(top);
		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
						     pe->pe_number,
						     window_id,
						     pe->tce_bypass_base,
						     top);
	} else {
		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
						     pe->pe_number,
						     window_id,
						     pe->tce_bypass_base,
						     0);

		/*
		 * We might want to reset the DMA ops of all devices on
		 * this PE. However in theory, that shouldn't be necessary
		 * as this is used for VFIO/KVM pass-through and the device
		 * hasn't yet been returned to its kernel driver
		 */
	}
	if (rc)
		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
	else
		pe->tce_bypass_enabled = enable;
}

static void pnv_pci_ioda2_setup_bypass_pe(struct pnv_phb *phb,
					  struct pnv_ioda_pe *pe)
{
	/* TVE #1 is selected by PCI address bit 59 */
	pe->tce_bypass_base = 1ull << 59;

	/* Install set_bypass callback for VFIO */
	pe->tce32_table.set_bypass = pnv_pci_ioda2_set_bypass;

	/* Enable bypass by default */
	pnv_pci_ioda2_set_bypass(&pe->tce32_table, true);
}

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
				       struct pnv_ioda_pe *pe)
{
	struct page *tce_mem = NULL;
	void *addr;
	const __be64 *swinvp;
	struct iommu_table *tbl;
	unsigned int tce_table_size, end;
	int64_t rc;

	/* We shouldn't already have a 32-bit DMA associated */
	if (WARN_ON(pe->tce32_seg >= 0))
		return;

	/* The PE will reserve all possible 32-bits space */
	pe->tce32_seg = 0;
	end = (1 << ilog2(phb->ioda.m32_pci_base));
	tce_table_size = (end / 0x1000) * 8;
	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
		end);

	/* Allocate TCE table */
	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
				   get_order(tce_table_size));
	if (!tce_mem) {
		pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
		goto fail;
	}
	addr = page_address(tce_mem);
	memset(addr, 0, tce_table_size);

	/*
	 * Map TCE table through TVT. The TVE index is the PE number
	 * shifted by 1 bit for 32-bits DMA space.
	 */
	rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
					pe->pe_number << 1, 1, __pa(addr),
					tce_table_size, 0x1000);
	if (rc) {
		pe_err(pe, "Failed to configure 32-bit TCE table,"
		       " err %ld\n", rc);
		goto fail;
	}

	/* Setup linux iommu table */
	tbl = &pe->tce32_table;
	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0);

	/* OPAL variant of PHB3 invalidated TCEs */
	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
	if (swinvp) {
		/* We need a couple more fields -- an address and a data
		 * to or.  Since the bus is only printed out on table free
		 * errors, and on the first pass the data will be a relative
		 * bus number, print that out instead.
		 */
		tbl->it_busno = 0;
797 798 799
		pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
		tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
				8);
800 801 802
		tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE;
	}
	iommu_init_table(tbl, phb->hose->node);
803
	iommu_register_group(tbl, pci_domain_nr(pe->pbus), pe->pe_number);
804

805
	if (pe->pdev)
806
		set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
807 808 809
	else
		pnv_ioda_setup_bus_dma(pe, pe->pbus);

810 811
	/* Also create a bypass window */
	pnv_pci_ioda2_setup_bypass_pe(phb, pe);
812 813 814 815 816 817 818 819
	return;
fail:
	if (pe->tce32_seg >= 0)
		pe->tce32_seg = -1;
	if (tce_mem)
		__free_pages(tce_mem, get_order(tce_table_size));
}

820
static void pnv_ioda_setup_dma(struct pnv_phb *phb)
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
{
	struct pci_controller *hose = phb->hose;
	unsigned int residual, remaining, segs, tw, base;
	struct pnv_ioda_pe *pe;

	/* If we have more PE# than segments available, hand out one
	 * per PE until we run out and let the rest fail. If not,
	 * then we assign at least one segment per PE, plus more based
	 * on the amount of devices under that PE
	 */
	if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
		residual = 0;
	else
		residual = phb->ioda.tce32_count -
			phb->ioda.dma_pe_count;

	pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
		hose->global_number, phb->ioda.tce32_count);
	pr_info("PCI: %d PE# for a total weight of %d\n",
		phb->ioda.dma_pe_count, phb->ioda.dma_weight);

	/* Walk our PE list and configure their DMA segments, hand them
	 * out one base segment plus any residual segments based on
	 * weight
	 */
	remaining = phb->ioda.tce32_count;
	tw = phb->ioda.dma_weight;
	base = 0;
849
	list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
850 851 852 853 854 855 856 857 858 859 860 861
		if (!pe->dma_weight)
			continue;
		if (!remaining) {
			pe_warn(pe, "No DMA32 resources available\n");
			continue;
		}
		segs = 1;
		if (residual) {
			segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
			if (segs > remaining)
				segs = remaining;
		}
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877

		/*
		 * For IODA2 compliant PHB3, we needn't care about the weight.
		 * The all available 32-bits DMA space will be assigned to
		 * the specific PE.
		 */
		if (phb->type == PNV_PHB_IODA1) {
			pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
				pe->dma_weight, segs);
			pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
		} else {
			pe_info(pe, "Assign DMA32 space\n");
			segs = 0;
			pnv_pci_ioda2_setup_dma_pe(phb, pe);
		}

878 879 880 881 882 883
		remaining -= segs;
		base += segs;
	}
}

#ifdef CONFIG_PCI_MSI
884 885 886 887 888 889 890 891 892 893 894 895 896 897
static void pnv_ioda2_msi_eoi(struct irq_data *d)
{
	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
	struct irq_chip *chip = irq_data_get_irq_chip(d);
	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
					   ioda.irq_chip);
	int64_t rc;

	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
	WARN_ON_ONCE(rc);

	icp_native_eoi(d);
}

898
static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
899 900
				  unsigned int hwirq, unsigned int virq,
				  unsigned int is_64, struct msi_msg *msg)
901 902
{
	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
903
	struct pci_dn *pdn = pci_get_pdn(dev);
904 905
	struct irq_data *idata;
	struct irq_chip *ichip;
906
	unsigned int xive_num = hwirq - phb->msi_base;
907
	__be32 data;
908 909 910 911 912 913 914 915 916 917
	int rc;

	/* No PE assigned ? bail out ... no MSI for you ! */
	if (pe == NULL)
		return -ENXIO;

	/* Check if we have an MVE */
	if (pe->mve_number < 0)
		return -ENXIO;

918 919 920 921
	/* Force 32-bit MSI on some broken devices */
	if (pdn && pdn->force_32bit_msi)
		is_64 = 0;

922 923 924 925 926 927 928 929 930
	/* Assign XIVE to PE */
	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
	if (rc) {
		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
			pci_name(dev), rc, xive_num);
		return -EIO;
	}

	if (is_64) {
931 932
		__be64 addr64;

933 934 935 936 937 938 939
		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
				     &addr64, &data);
		if (rc) {
			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
				pci_name(dev), rc);
			return -EIO;
		}
940 941
		msg->address_hi = be64_to_cpu(addr64) >> 32;
		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
942
	} else {
943 944
		__be32 addr32;

945 946 947 948 949 950 951 952
		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
				     &addr32, &data);
		if (rc) {
			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
				pci_name(dev), rc);
			return -EIO;
		}
		msg->address_hi = 0;
953
		msg->address_lo = be32_to_cpu(addr32);
954
	}
955
	msg->data = be32_to_cpu(data);
956

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
	/*
	 * Change the IRQ chip for the MSI interrupts on PHB3.
	 * The corresponding IRQ chip should be populated for
	 * the first time.
	 */
	if (phb->type == PNV_PHB_IODA2) {
		if (!phb->ioda.irq_chip_init) {
			idata = irq_get_irq_data(virq);
			ichip = irq_data_get_irq_chip(idata);
			phb->ioda.irq_chip_init = 1;
			phb->ioda.irq_chip = *ichip;
			phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
		}

		irq_set_chip(virq, &phb->ioda.irq_chip);
	}

974 975 976 977 978 979 980 981 982 983
	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
		 " address=%x_%08x data=%x PE# %d\n",
		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
		 msg->address_hi, msg->address_lo, data, pe->pe_number);

	return 0;
}

static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
{
984
	unsigned int count;
985 986 987 988 989 990 991 992 993 994
	const __be32 *prop = of_get_property(phb->hose->dn,
					     "ibm,opal-msi-ranges", NULL);
	if (!prop) {
		/* BML Fallback */
		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
	}
	if (!prop)
		return;

	phb->msi_base = be32_to_cpup(prop);
995 996
	count = be32_to_cpup(prop + 1);
	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
997 998 999 1000
		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
		       phb->hose->global_number);
		return;
	}
1001

1002 1003 1004
	phb->msi_setup = pnv_pci_ioda_msi_setup;
	phb->msi32_support = 1;
	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1005
		count, phb->msi_base);
1006 1007 1008 1009 1010
}
#else
static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
#endif /* CONFIG_PCI_MSI */

1011 1012 1013 1014 1015
/*
 * This function is supposed to be called on basis of PE from top
 * to bottom style. So the the I/O or MMIO segment assigned to
 * parent PE could be overrided by its child PEs if necessary.
 */
1016 1017
static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
				  struct pnv_ioda_pe *pe)
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
{
	struct pnv_phb *phb = hose->private_data;
	struct pci_bus_region region;
	struct resource *res;
	int i, index;
	int rc;

	/*
	 * NOTE: We only care PCI bus based PE for now. For PCI
	 * device based PE, for example SRIOV sensitive VF should
	 * be figured out later.
	 */
	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));

	pci_bus_for_each_resource(pe->pbus, res, i) {
		if (!res || !res->flags ||
		    res->start > res->end)
			continue;

		if (res->flags & IORESOURCE_IO) {
			region.start = res->start - phb->ioda.io_pci_base;
			region.end   = res->end - phb->ioda.io_pci_base;
			index = region.start / phb->ioda.io_segsize;

			while (index < phb->ioda.total_pe &&
			       region.start <= region.end) {
				phb->ioda.io_segmap[index] = pe->pe_number;
				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
					pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
				if (rc != OPAL_SUCCESS) {
					pr_err("%s: OPAL error %d when mapping IO "
					       "segment #%d to PE#%d\n",
					       __func__, rc, index, pe->pe_number);
					break;
				}

				region.start += phb->ioda.io_segsize;
				index++;
			}
		} else if (res->flags & IORESOURCE_MEM) {
1058 1059 1060
			/* WARNING: Assumes M32 is mem region 0 in PHB. We need to
			 * harden that algorithm when we start supporting M64
			 */
1061
			region.start = res->start -
1062
				       hose->mem_offset[0] -
1063 1064
				       phb->ioda.m32_pci_base;
			region.end   = res->end -
1065
				       hose->mem_offset[0] -
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
				       phb->ioda.m32_pci_base;
			index = region.start / phb->ioda.m32_segsize;

			while (index < phb->ioda.total_pe &&
			       region.start <= region.end) {
				phb->ioda.m32_segmap[index] = pe->pe_number;
				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
					pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
				if (rc != OPAL_SUCCESS) {
					pr_err("%s: OPAL error %d when mapping M32 "
					       "segment#%d to PE#%d",
					       __func__, rc, index, pe->pe_number);
					break;
				}

				region.start += phb->ioda.m32_segsize;
				index++;
			}
		}
	}
}

1088
static void pnv_pci_ioda_setup_seg(void)
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
{
	struct pci_controller *tmp, *hose;
	struct pnv_phb *phb;
	struct pnv_ioda_pe *pe;

	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		phb = hose->private_data;
		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
			pnv_ioda_setup_pe_seg(hose, pe);
		}
	}
}

1102
static void pnv_pci_ioda_setup_DMA(void)
1103 1104
{
	struct pci_controller *hose, *tmp;
1105
	struct pnv_phb *phb;
1106 1107 1108

	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		pnv_ioda_setup_dma(hose->private_data);
1109 1110 1111 1112

		/* Mark the PHB initialization done */
		phb = hose->private_data;
		phb->initialized = 1;
1113 1114 1115
	}
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
static void pnv_pci_ioda_create_dbgfs(void)
{
#ifdef CONFIG_DEBUG_FS
	struct pci_controller *hose, *tmp;
	struct pnv_phb *phb;
	char name[16];

	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		phb = hose->private_data;

		sprintf(name, "PCI%04x", hose->global_number);
		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
		if (!phb->dbgfs)
			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
				__func__, hose->global_number);
	}
#endif /* CONFIG_DEBUG_FS */
}

1135
static void pnv_pci_ioda_fixup(void)
1136 1137
{
	pnv_pci_ioda_setup_PEs();
1138
	pnv_pci_ioda_setup_seg();
1139
	pnv_pci_ioda_setup_DMA();
1140

1141 1142
	pnv_pci_ioda_create_dbgfs();

1143
#ifdef CONFIG_EEH
1144
	eeh_probe_mode_set(EEH_PROBE_MODE_DEV);
1145 1146 1147
	eeh_addr_cache_build();
	eeh_init();
#endif
1148 1149
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
/*
 * Returns the alignment for I/O or memory windows for P2P
 * bridges. That actually depends on how PEs are segmented.
 * For now, we return I/O or M32 segment size for PE sensitive
 * P2P bridges. Otherwise, the default values (4KiB for I/O,
 * 1MiB for memory) will be returned.
 *
 * The current PCI bus might be put into one PE, which was
 * create against the parent PCI bridge. For that case, we
 * needn't enlarge the alignment so that we can save some
 * resources.
 */
static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
						unsigned long type)
{
	struct pci_dev *bridge;
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
	int num_pci_bridges = 0;

	bridge = bus->self;
	while (bridge) {
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
			num_pci_bridges++;
			if (num_pci_bridges >= 2)
				return 1;
		}

		bridge = bridge->bus->self;
	}

	/* We need support prefetchable memory window later */
	if (type & IORESOURCE_MEM)
		return phb->ioda.m32_segsize;

	return phb->ioda.io_segsize;
}

1188 1189 1190
/* Prevent enabling devices for which we couldn't properly
 * assign a PE
 */
1191
static int pnv_pci_enable_device_hook(struct pci_dev *dev)
1192
{
1193 1194 1195
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dn *pdn;
1196

1197 1198 1199 1200 1201 1202 1203 1204
	/* The function is probably called while the PEs have
	 * not be created yet. For example, resource reassignment
	 * during PCI probe period. We just skip the check if
	 * PEs isn't ready.
	 */
	if (!phb->initialized)
		return 0;

1205
	pdn = pci_get_pdn(dev);
1206 1207
	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
		return -EINVAL;
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217
	return 0;
}

static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
			       u32 devfn)
{
	return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
}

1218 1219 1220 1221 1222 1223
static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
{
	opal_pci_reset(phb->opal_id, OPAL_PCI_IODA_TABLE_RESET,
		       OPAL_ASSERT_RESET);
}

1224 1225
void __init pnv_pci_init_ioda_phb(struct device_node *np,
				  u64 hub_id, int ioda_type)
1226 1227 1228
{
	struct pci_controller *hose;
	struct pnv_phb *phb;
1229
	unsigned long size, m32map_off, pemap_off, iomap_off = 0;
1230
	const __be64 *prop64;
1231
	const __be32 *prop32;
1232
	int len;
1233 1234 1235 1236
	u64 phb_id;
	void *aux;
	long rc;

1237
	pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
	if (!prop64) {
		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
		return;
	}
	phb_id = be64_to_cpup(prop64);
	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);

	phb = alloc_bootmem(sizeof(struct pnv_phb));
1248 1249 1250
	if (!phb) {
		pr_err("  Out of memory !\n");
		return;
1251
	}
1252 1253 1254 1255 1256 1257

	/* Allocate PCI controller */
	memset(phb, 0, sizeof(struct pnv_phb));
	phb->hose = hose = pcibios_alloc_controller(np);
	if (!phb->hose) {
		pr_err("  Can't allocate PCI controller for %s\n",
1258
		       np->full_name);
1259
		free_bootmem((unsigned long)phb, sizeof(struct pnv_phb));
1260 1261 1262 1263
		return;
	}

	spin_lock_init(&phb->lock);
1264 1265
	prop32 = of_get_property(np, "bus-range", &len);
	if (prop32 && len == 8) {
1266 1267
		hose->first_busno = be32_to_cpu(prop32[0]);
		hose->last_busno = be32_to_cpu(prop32[1]);
1268 1269 1270 1271 1272
	} else {
		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
		hose->first_busno = 0;
		hose->last_busno = 0xff;
	}
1273
	hose->private_data = phb;
1274
	phb->hub_id = hub_id;
1275
	phb->opal_id = phb_id;
G
Gavin Shan 已提交
1276
	phb->type = ioda_type;
1277

1278 1279 1280
	/* Detect specific models for error handling */
	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
		phb->model = PNV_PHB_MODEL_P7IOC;
1281
	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
G
Gavin Shan 已提交
1282
		phb->model = PNV_PHB_MODEL_PHB3;
1283 1284 1285
	else
		phb->model = PNV_PHB_MODEL_UNKNOWN;

G
Gavin Shan 已提交
1286
	/* Parse 32-bit and IO ranges (if any) */
1287
	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
1288

G
Gavin Shan 已提交
1289
	/* Get registers */
1290 1291 1292 1293 1294
	phb->regs = of_iomap(np, 0);
	if (phb->regs == NULL)
		pr_err("  Failed to map registers !\n");

	/* Initialize more IODA stuff */
1295
	phb->ioda.total_pe = 1;
G
Gavin Shan 已提交
1296
	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
1297
	if (prop32)
1298
		phb->ioda.total_pe = be32_to_cpup(prop32);
1299 1300 1301
	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
	if (prop32)
		phb->ioda.reserved_pe = be32_to_cpup(prop32);
1302
	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
G
Gavin Shan 已提交
1303
	/* FW Has already off top 64k of M32 space (MSI space) */
1304 1305 1306
	phb->ioda.m32_size += 0x10000;

	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
1307
	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
1308 1309 1310 1311
	phb->ioda.io_size = hose->pci_io_size;
	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */

1312
	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
1313 1314
	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
	m32map_off = size;
1315
	size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
1316 1317 1318 1319
	if (phb->type == PNV_PHB_IODA1) {
		iomap_off = size;
		size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
	}
1320 1321 1322 1323 1324 1325
	pemap_off = size;
	size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
	aux = alloc_bootmem(size);
	memset(aux, 0, size);
	phb->ioda.pe_alloc = aux;
	phb->ioda.m32_segmap = aux + m32map_off;
1326 1327
	if (phb->type == PNV_PHB_IODA1)
		phb->ioda.io_segmap = aux + iomap_off;
1328
	phb->ioda.pe_array = aux + pemap_off;
1329
	set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
1330

1331
	INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	INIT_LIST_HEAD(&phb->ioda.pe_list);

	/* Calculate how many 32-bit TCE segments we have */
	phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;

	/* Clear unusable m64 */
	hose->mem_resources[1].flags = 0;
	hose->mem_resources[1].start = 0;
	hose->mem_resources[1].end = 0;
	hose->mem_resources[2].flags = 0;
	hose->mem_resources[2].start = 0;
	hose->mem_resources[2].end = 0;

G
Gavin Shan 已提交
1345
#if 0 /* We should really do that ... */
1346 1347 1348 1349 1350 1351 1352 1353
	rc = opal_pci_set_phb_mem_window(opal->phb_id,
					 window_type,
					 window_num,
					 starting_real_address,
					 starting_pci_address,
					 segment_size);
#endif

1354 1355
	pr_info("  %d (%d) PE's M32: 0x%x [segment=0x%x]"
		" IO: 0x%x [segment=0x%x]\n",
1356
		phb->ioda.total_pe,
1357
		phb->ioda.reserved_pe,
1358 1359 1360 1361
		phb->ioda.m32_size, phb->ioda.m32_segsize,
		phb->ioda.io_size, phb->ioda.io_segsize);

	phb->hose->ops = &pnv_pci_ops;
1362 1363 1364
#ifdef CONFIG_EEH
	phb->eeh_ops = &ioda_eeh_ops;
#endif
1365 1366 1367 1368 1369 1370

	/* Setup RID -> PE mapping function */
	phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;

	/* Setup TCEs */
	phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
1371
	phb->dma_set_mask = pnv_pci_ioda_dma_set_mask;
1372

1373 1374 1375
	/* Setup shutdown function for kexec */
	phb->shutdown = pnv_pci_ioda_shutdown;

1376 1377 1378
	/* Setup MSI support */
	pnv_pci_init_ioda_msis(phb);

1379 1380 1381 1382 1383 1384
	/*
	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
	 * to let the PCI core do resource assignment. It's supposed
	 * that the PCI core will do correct I/O and MMIO alignment
	 * for the P2P bridge bars so that each PCI bus (excluding
	 * the child P2P bridges) can form individual PE.
1385
	 */
1386
	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
1387
	ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
1388
	ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
1389
	ppc_md.pcibios_reset_secondary_bus = pnv_pci_reset_secondary_bus;
1390
	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
1391 1392

	/* Reset IODA tables to a clean state */
1393
	rc = opal_pci_reset(phb_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET);
1394
	if (rc)
1395
		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
G
Gavin Shan 已提交
1396 1397
}

1398
void __init pnv_pci_init_ioda2_phb(struct device_node *np)
G
Gavin Shan 已提交
1399
{
1400
	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
1401 1402 1403 1404 1405
}

void __init pnv_pci_init_ioda_hub(struct device_node *np)
{
	struct device_node *phbn;
1406
	const __be64 *prop64;
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	u64 hub_id;

	pr_info("Probing IODA IO-Hub %s\n", np->full_name);

	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
	if (!prop64) {
		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
		return;
	}
	hub_id = be64_to_cpup(prop64);
	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);

	/* Count child PHBs */
	for_each_child_of_node(np, phbn) {
		/* Look for IODA1 PHBs */
		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
1423
			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
1424 1425
	}
}