pci-ioda.c 101.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Support PCI/PCIe on PowerNV platforms
 *
 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

12
#undef DEBUG
13 14 15

#include <linux/kernel.h>
#include <linux/pci.h>
16
#include <linux/crash_dump.h>
17
#include <linux/debugfs.h>
18 19 20 21 22 23 24
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/msi.h>
25
#include <linux/memblock.h>
26
#include <linux/iommu.h>
27
#include <linux/rculist.h>
28
#include <linux/sizes.h>
29 30 31 32 33 34

#include <asm/sections.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
35
#include <asm/msi_bitmap.h>
36 37 38 39
#include <asm/ppc-pci.h>
#include <asm/opal.h>
#include <asm/iommu.h>
#include <asm/tce.h>
40
#include <asm/xics.h>
41
#include <asm/debug.h>
42
#include <asm/firmware.h>
43
#include <asm/pnv-pci.h>
44
#include <asm/mmzone.h>
45

46
#include <misc/cxl-base.h>
47 48 49 50

#include "powernv.h"
#include "pci.h"

51 52
#define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
#define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
53
#define PNV_IODA1_DMA32_SEGSIZE	0x10000000
54

55 56 57
#define POWERNV_IOMMU_DEFAULT_LEVELS	1
#define POWERNV_IOMMU_MAX_LEVELS	5

58
static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
59 60
static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);

61
void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
62 63 64 65 66 67 68 69 70 71 72
			    const char *fmt, ...)
{
	struct va_format vaf;
	va_list args;
	char pfix[32];

	va_start(args, fmt);

	vaf.fmt = fmt;
	vaf.va = &args;

73
	if (pe->flags & PNV_IODA_PE_DEV)
74
		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75
	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76 77
		sprintf(pfix, "%04x:%02x     ",
			pci_domain_nr(pe->pbus), pe->pbus->number);
78 79 80 81 82 83 84
#ifdef CONFIG_PCI_IOV
	else if (pe->flags & PNV_IODA_PE_VF)
		sprintf(pfix, "%04x:%02x:%2x.%d",
			pci_domain_nr(pe->parent_dev->bus),
			(pe->rid & 0xff00) >> 8,
			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
#endif /* CONFIG_PCI_IOV*/
85 86 87 88 89 90

	printk("%spci %s: [PE# %.3d] %pV",
	       level, pfix, pe->pe_number, &vaf);

	va_end(args);
}
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
static bool pnv_iommu_bypass_disabled __read_mostly;

static int __init iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;

	while (*str) {
		if (!strncmp(str, "nobypass", 8)) {
			pnv_iommu_bypass_disabled = true;
			pr_info("PowerNV: IOMMU bypass window disabled.\n");
			break;
		}
		str += strcspn(str, ",");
		if (*str == ',')
			str++;
	}

	return 0;
}
early_param("iommu", iommu_setup);

114
static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
115
{
116 117 118 119 120 121 122 123 124
	/*
	 * WARNING: We cannot rely on the resource flags. The Linux PCI
	 * allocation code sometimes decides to put a 64-bit prefetchable
	 * BAR in the 32-bit window, so we have to compare the addresses.
	 *
	 * For simplicity we only test resource start.
	 */
	return (r->start >= phb->ioda.m64_base &&
		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
125 126
}

127 128
static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
{
129 130
	s64 rc;

131 132 133
	phb->ioda.pe_array[pe_no].phb = phb;
	phb->ioda.pe_array[pe_no].pe_number = pe_no;

134 135 136 137 138 139 140 141 142 143 144
	/*
	 * Clear the PE frozen state as it might be put into frozen state
	 * in the last PCI remove path. It's not harmful to do so when the
	 * PE is already in unfrozen state.
	 */
	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
	if (rc != OPAL_SUCCESS)
		pr_warn("%s: Error %lld unfreezing PHB#%d-PE#%d\n",
			__func__, rc, phb->hose->global_number, pe_no);

145 146 147
	return &phb->ioda.pe_array[pe_no];
}

148 149
static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
{
150
	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
151 152 153 154 155
		pr_warn("%s: Invalid PE %d on PHB#%x\n",
			__func__, pe_no, phb->hose->global_number);
		return;
	}

156 157 158
	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
		pr_debug("%s: PE %d was reserved on PHB#%x\n",
			 __func__, pe_no, phb->hose->global_number);
159

160
	pnv_ioda_init_pe(phb, pe_no);
161 162
}

163
static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
164
{
165
	long pe;
166

167 168 169 170
	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
			return pnv_ioda_init_pe(phb, pe);
	}
171

172
	return NULL;
173 174
}

175
static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
176
{
177 178 179
	struct pnv_phb *phb = pe->phb;

	WARN_ON(pe->pdev);
180

181 182
	memset(pe, 0, sizeof(struct pnv_ioda_pe));
	clear_bit(pe->pe_number, phb->ioda.pe_alloc);
183 184
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/* The default M64 BAR is shared by all PEs */
static int pnv_ioda2_init_m64(struct pnv_phb *phb)
{
	const char *desc;
	struct resource *r;
	s64 rc;

	/* Configure the default M64 BAR */
	rc = opal_pci_set_phb_mem_window(phb->opal_id,
					 OPAL_M64_WINDOW_TYPE,
					 phb->ioda.m64_bar_idx,
					 phb->ioda.m64_base,
					 0, /* unused */
					 phb->ioda.m64_size);
	if (rc != OPAL_SUCCESS) {
		desc = "configuring";
		goto fail;
	}

	/* Enable the default M64 BAR */
	rc = opal_pci_phb_mmio_enable(phb->opal_id,
				      OPAL_M64_WINDOW_TYPE,
				      phb->ioda.m64_bar_idx,
				      OPAL_ENABLE_M64_SPLIT);
	if (rc != OPAL_SUCCESS) {
		desc = "enabling";
		goto fail;
	}

	/*
215 216
	 * Exclude the segments for reserved and root bus PE, which
	 * are first or last two PEs.
217 218
	 */
	r = &phb->hose->mem_resources[1];
219
	if (phb->ioda.reserved_pe_idx == 0)
220
		r->start += (2 * phb->ioda.m64_segsize);
221
	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
222
		r->end -= (2 * phb->ioda.m64_segsize);
223 224
	else
		pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
225
			phb->ioda.reserved_pe_idx);
226 227 228 229 230 231 232 233 234 235 236 237 238

	return 0;

fail:
	pr_warn("  Failure %lld %s M64 BAR#%d\n",
		rc, desc, phb->ioda.m64_bar_idx);
	opal_pci_phb_mmio_enable(phb->opal_id,
				 OPAL_M64_WINDOW_TYPE,
				 phb->ioda.m64_bar_idx,
				 OPAL_DISABLE_M64);
	return -EIO;
}

239
static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
240
					 unsigned long *pe_bitmap)
241
{
242 243
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
244
	struct resource *r;
245 246 247 248 249 250 251
	resource_size_t base, sgsz, start, end;
	int segno, i;

	base = phb->ioda.m64_base;
	sgsz = phb->ioda.m64_segsize;
	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
		r = &pdev->resource[i];
252
		if (!r->parent || !pnv_pci_is_m64(phb, r))
253
			continue;
254

255 256 257 258 259 260 261
		start = _ALIGN_DOWN(r->start - base, sgsz);
		end = _ALIGN_UP(r->end - base, sgsz);
		for (segno = start / sgsz; segno < end / sgsz; segno++) {
			if (pe_bitmap)
				set_bit(segno, pe_bitmap);
			else
				pnv_ioda_reserve_pe(phb, segno);
262 263 264 265
		}
	}
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
static int pnv_ioda1_init_m64(struct pnv_phb *phb)
{
	struct resource *r;
	int index;

	/*
	 * There are 16 M64 BARs, each of which has 8 segments. So
	 * there are as many M64 segments as the maximum number of
	 * PEs, which is 128.
	 */
	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
		unsigned long base, segsz = phb->ioda.m64_segsize;
		int64_t rc;

		base = phb->ioda.m64_base +
		       index * PNV_IODA1_M64_SEGS * segsz;
		rc = opal_pci_set_phb_mem_window(phb->opal_id,
				OPAL_M64_WINDOW_TYPE, index, base, 0,
				PNV_IODA1_M64_SEGS * segsz);
		if (rc != OPAL_SUCCESS) {
			pr_warn("  Error %lld setting M64 PHB#%d-BAR#%d\n",
				rc, phb->hose->global_number, index);
			goto fail;
		}

		rc = opal_pci_phb_mmio_enable(phb->opal_id,
				OPAL_M64_WINDOW_TYPE, index,
				OPAL_ENABLE_M64_SPLIT);
		if (rc != OPAL_SUCCESS) {
			pr_warn("  Error %lld enabling M64 PHB#%d-BAR#%d\n",
				rc, phb->hose->global_number, index);
			goto fail;
		}
	}

	/*
302 303
	 * Exclude the segments for reserved and root bus PE, which
	 * are first or last two PEs.
304 305 306
	 */
	r = &phb->hose->mem_resources[1];
	if (phb->ioda.reserved_pe_idx == 0)
307
		r->start += (2 * phb->ioda.m64_segsize);
308
	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
309
		r->end -= (2 * phb->ioda.m64_segsize);
310 311 312 313 314 315 316 317 318 319 320 321 322 323
	else
		WARN(1, "Wrong reserved PE#%d on PHB#%d\n",
		     phb->ioda.reserved_pe_idx, phb->hose->global_number);

	return 0;

fail:
	for ( ; index >= 0; index--)
		opal_pci_phb_mmio_enable(phb->opal_id,
			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);

	return -EIO;
}

324 325 326
static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
				    unsigned long *pe_bitmap,
				    bool all)
327 328
{
	struct pci_dev *pdev;
329 330

	list_for_each_entry(pdev, &bus->devices, bus_list) {
331
		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
332 333

		if (all && pdev->subordinate)
334 335
			pnv_ioda_reserve_m64_pe(pdev->subordinate,
						pe_bitmap, all);
336 337 338
	}
}

339
static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
340
{
341 342
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
343 344
	struct pnv_ioda_pe *master_pe, *pe;
	unsigned long size, *pe_alloc;
345
	int i;
346 347 348

	/* Root bus shouldn't use M64 */
	if (pci_is_root_bus(bus))
349
		return NULL;
350 351

	/* Allocate bitmap */
352
	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
353 354 355 356
	pe_alloc = kzalloc(size, GFP_KERNEL);
	if (!pe_alloc) {
		pr_warn("%s: Out of memory !\n",
			__func__);
357
		return NULL;
358 359
	}

360
	/* Figure out reserved PE numbers by the PE */
361
	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
362 363 364 365 366 367

	/*
	 * the current bus might not own M64 window and that's all
	 * contributed by its child buses. For the case, we needn't
	 * pick M64 dependent PE#.
	 */
368
	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
369
		kfree(pe_alloc);
370
		return NULL;
371 372 373 374 375 376 377 378
	}

	/*
	 * Figure out the master PE and put all slave PEs to master
	 * PE's list to form compound PE.
	 */
	master_pe = NULL;
	i = -1;
379 380
	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
		phb->ioda.total_pe_num) {
381 382
		pe = &phb->ioda.pe_array[i];

383
		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
384 385 386 387 388 389 390 391 392
		if (!master_pe) {
			pe->flags |= PNV_IODA_PE_MASTER;
			INIT_LIST_HEAD(&pe->slaves);
			master_pe = pe;
		} else {
			pe->flags |= PNV_IODA_PE_SLAVE;
			pe->master = master_pe;
			list_add_tail(&pe->list, &master_pe->slaves);
		}
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

		/*
		 * P7IOC supports M64DT, which helps mapping M64 segment
		 * to one particular PE#. However, PHB3 has fixed mapping
		 * between M64 segment and PE#. In order to have same logic
		 * for P7IOC and PHB3, we enforce fixed mapping between M64
		 * segment and PE# on P7IOC.
		 */
		if (phb->type == PNV_PHB_IODA1) {
			int64_t rc;

			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
					pe->pe_number, OPAL_M64_WINDOW_TYPE,
					pe->pe_number / PNV_IODA1_M64_SEGS,
					pe->pe_number % PNV_IODA1_M64_SEGS);
			if (rc != OPAL_SUCCESS)
				pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n",
					__func__, rc, phb->hose->global_number,
					pe->pe_number);
		}
413 414 415
	}

	kfree(pe_alloc);
416
	return master_pe;
417 418 419 420 421 422 423
}

static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
{
	struct pci_controller *hose = phb->hose;
	struct device_node *dn = hose->dn;
	struct resource *res;
424
	u32 m64_range[2], i;
425 426 427
	const u32 *r;
	u64 pci_addr;

428
	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
429 430 431 432
		pr_info("  Not support M64 window\n");
		return;
	}

433
	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
434 435 436 437 438 439 440 441 442 443 444
		pr_info("  Firmware too old to support M64 window\n");
		return;
	}

	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
	if (!r) {
		pr_info("  No <ibm,opal-m64-window> on %s\n",
			dn->full_name);
		return;
	}

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	/*
	 * Find the available M64 BAR range and pickup the last one for
	 * covering the whole 64-bits space. We support only one range.
	 */
	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
				       m64_range, 2)) {
		/* In absence of the property, assume 0..15 */
		m64_range[0] = 0;
		m64_range[1] = 16;
	}
	/* We only support 64 bits in our allocator */
	if (m64_range[1] > 63) {
		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
			__func__, m64_range[1], phb->hose->global_number);
		m64_range[1] = 63;
	}
	/* Empty range, no m64 */
	if (m64_range[1] <= m64_range[0]) {
		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
			__func__, phb->hose->global_number);
		return;
	}

	/* Configure M64 informations */
469
	res = &hose->mem_resources[1];
470
	res->name = dn->full_name;
471 472 473 474 475 476 477
	res->start = of_translate_address(dn, r + 2);
	res->end = res->start + of_read_number(r + 4, 2) - 1;
	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
	pci_addr = of_read_number(r, 2);
	hose->mem_offset[1] = res->start - pci_addr;

	phb->ioda.m64_size = resource_size(res);
478
	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
479 480
	phb->ioda.m64_base = pci_addr;

481 482 483 484 485 486 487
	/* This lines up nicely with the display from processing OF ranges */
	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
		res->start, res->end, pci_addr, m64_range[0],
		m64_range[0] + m64_range[1] - 1);

	/* Mark all M64 used up by default */
	phb->ioda.m64_bar_alloc = (unsigned long)-1;
488

489
	/* Use last M64 BAR to cover M64 window */
490 491 492 493 494 495 496 497 498 499 500 501 502
	m64_range[1]--;
	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];

	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);

	/* Mark remaining ones free */
	for (i = m64_range[0]; i < m64_range[1]; i++)
		clear_bit(i, &phb->ioda.m64_bar_alloc);

	/*
	 * Setup init functions for M64 based on IODA version, IODA3 uses
	 * the IODA2 code.
	 */
503 504 505 506
	if (phb->type == PNV_PHB_IODA1)
		phb->init_m64 = pnv_ioda1_init_m64;
	else
		phb->init_m64 = pnv_ioda2_init_m64;
507 508
	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
509 510
}

G
Gavin Shan 已提交
511 512 513 514 515 516 517 518 519
static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
{
	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
	struct pnv_ioda_pe *slave;
	s64 rc;

	/* Fetch master PE */
	if (pe->flags & PNV_IODA_PE_SLAVE) {
		pe = pe->master;
520 521 522
		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
			return;

G
Gavin Shan 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
		pe_no = pe->pe_number;
	}

	/* Freeze master PE */
	rc = opal_pci_eeh_freeze_set(phb->opal_id,
				     pe_no,
				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
	if (rc != OPAL_SUCCESS) {
		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
			__func__, rc, phb->hose->global_number, pe_no);
		return;
	}

	/* Freeze slave PEs */
	if (!(pe->flags & PNV_IODA_PE_MASTER))
		return;

	list_for_each_entry(slave, &pe->slaves, list) {
		rc = opal_pci_eeh_freeze_set(phb->opal_id,
					     slave->pe_number,
					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
		if (rc != OPAL_SUCCESS)
			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
				__func__, rc, phb->hose->global_number,
				slave->pe_number);
	}
}

551
static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
G
Gavin Shan 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
{
	struct pnv_ioda_pe *pe, *slave;
	s64 rc;

	/* Find master PE */
	pe = &phb->ioda.pe_array[pe_no];
	if (pe->flags & PNV_IODA_PE_SLAVE) {
		pe = pe->master;
		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
		pe_no = pe->pe_number;
	}

	/* Clear frozen state for master PE */
	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
	if (rc != OPAL_SUCCESS) {
		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
			__func__, rc, opt, phb->hose->global_number, pe_no);
		return -EIO;
	}

	if (!(pe->flags & PNV_IODA_PE_MASTER))
		return 0;

	/* Clear frozen state for slave PEs */
	list_for_each_entry(slave, &pe->slaves, list) {
		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
					     slave->pe_number,
					     opt);
		if (rc != OPAL_SUCCESS) {
			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
				__func__, rc, opt, phb->hose->global_number,
				slave->pe_number);
			return -EIO;
		}
	}

	return 0;
}

static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
{
	struct pnv_ioda_pe *slave, *pe;
	u8 fstate, state;
	__be16 pcierr;
	s64 rc;

	/* Sanity check on PE number */
599
	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
G
Gavin Shan 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
		return OPAL_EEH_STOPPED_PERM_UNAVAIL;

	/*
	 * Fetch the master PE and the PE instance might be
	 * not initialized yet.
	 */
	pe = &phb->ioda.pe_array[pe_no];
	if (pe->flags & PNV_IODA_PE_SLAVE) {
		pe = pe->master;
		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
		pe_no = pe->pe_number;
	}

	/* Check the master PE */
	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
					&state, &pcierr, NULL);
	if (rc != OPAL_SUCCESS) {
		pr_warn("%s: Failure %lld getting "
			"PHB#%x-PE#%x state\n",
			__func__, rc,
			phb->hose->global_number, pe_no);
		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
	}

	/* Check the slave PE */
	if (!(pe->flags & PNV_IODA_PE_MASTER))
		return state;

	list_for_each_entry(slave, &pe->slaves, list) {
		rc = opal_pci_eeh_freeze_status(phb->opal_id,
						slave->pe_number,
						&fstate,
						&pcierr,
						NULL);
		if (rc != OPAL_SUCCESS) {
			pr_warn("%s: Failure %lld getting "
				"PHB#%x-PE#%x state\n",
				__func__, rc,
				phb->hose->global_number, slave->pe_number);
			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
		}

		/*
		 * Override the result based on the ascending
		 * priority.
		 */
		if (fstate > state)
			state = fstate;
	}

	return state;
}

653 654 655 656
/* Currently those 2 are only used when MSIs are enabled, this will change
 * but in the meantime, we need to protect them to avoid warnings
 */
#ifdef CONFIG_PCI_MSI
657
struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
658 659 660
{
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
661
	struct pci_dn *pdn = pci_get_pdn(dev);
662 663 664 665 666 667 668 669 670

	if (!pdn)
		return NULL;
	if (pdn->pe_number == IODA_INVALID_PE)
		return NULL;
	return &phb->ioda.pe_array[pdn->pe_number];
}
#endif /* CONFIG_PCI_MSI */

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
				  struct pnv_ioda_pe *parent,
				  struct pnv_ioda_pe *child,
				  bool is_add)
{
	const char *desc = is_add ? "adding" : "removing";
	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
			      OPAL_REMOVE_PE_FROM_DOMAIN;
	struct pnv_ioda_pe *slave;
	long rc;

	/* Parent PE affects child PE */
	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
				child->pe_number, op);
	if (rc != OPAL_SUCCESS) {
		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
			rc, desc);
		return -ENXIO;
	}

	if (!(child->flags & PNV_IODA_PE_MASTER))
		return 0;

	/* Compound case: parent PE affects slave PEs */
	list_for_each_entry(slave, &child->slaves, list) {
		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
					slave->pe_number, op);
		if (rc != OPAL_SUCCESS) {
			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
				rc, desc);
			return -ENXIO;
		}
	}

	return 0;
}

static int pnv_ioda_set_peltv(struct pnv_phb *phb,
			      struct pnv_ioda_pe *pe,
			      bool is_add)
{
	struct pnv_ioda_pe *slave;
713
	struct pci_dev *pdev = NULL;
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
	int ret;

	/*
	 * Clear PE frozen state. If it's master PE, we need
	 * clear slave PE frozen state as well.
	 */
	if (is_add) {
		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
		if (pe->flags & PNV_IODA_PE_MASTER) {
			list_for_each_entry(slave, &pe->slaves, list)
				opal_pci_eeh_freeze_clear(phb->opal_id,
							  slave->pe_number,
							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
		}
	}

	/*
	 * Associate PE in PELT. We need add the PE into the
	 * corresponding PELT-V as well. Otherwise, the error
	 * originated from the PE might contribute to other
	 * PEs.
	 */
	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
	if (ret)
		return ret;

	/* For compound PEs, any one affects all of them */
	if (pe->flags & PNV_IODA_PE_MASTER) {
		list_for_each_entry(slave, &pe->slaves, list) {
			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
			if (ret)
				return ret;
		}
	}

	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
		pdev = pe->pbus->self;
752
	else if (pe->flags & PNV_IODA_PE_DEV)
753
		pdev = pe->pdev->bus->self;
754 755
#ifdef CONFIG_PCI_IOV
	else if (pe->flags & PNV_IODA_PE_VF)
756
		pdev = pe->parent_dev;
757
#endif /* CONFIG_PCI_IOV */
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
	while (pdev) {
		struct pci_dn *pdn = pci_get_pdn(pdev);
		struct pnv_ioda_pe *parent;

		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
			parent = &phb->ioda.pe_array[pdn->pe_number];
			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
			if (ret)
				return ret;
		}

		pdev = pdev->bus->self;
	}

	return 0;
}

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
{
	struct pci_dev *parent;
	uint8_t bcomp, dcomp, fcomp;
	int64_t rc;
	long rid_end, rid;

	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
	if (pe->pbus) {
		int count;

		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
		parent = pe->pbus->self;
		if (pe->flags & PNV_IODA_PE_BUS_ALL)
			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
		else
			count = 1;

		switch(count) {
		case  1: bcomp = OpalPciBusAll;         break;
		case  2: bcomp = OpalPciBus7Bits;       break;
		case  4: bcomp = OpalPciBus6Bits;       break;
		case  8: bcomp = OpalPciBus5Bits;       break;
		case 16: bcomp = OpalPciBus4Bits;       break;
		case 32: bcomp = OpalPciBus3Bits;       break;
		default:
			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
			        count);
			/* Do an exact match only */
			bcomp = OpalPciBusAll;
		}
		rid_end = pe->rid + (count << 8);
	} else {
809
#ifdef CONFIG_PCI_IOV
810 811 812
		if (pe->flags & PNV_IODA_PE_VF)
			parent = pe->parent_dev;
		else
813
#endif
814 815 816 817 818 819 820 821 822
			parent = pe->pdev->bus->self;
		bcomp = OpalPciBusAll;
		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
		rid_end = pe->rid + 1;
	}

	/* Clear the reverse map */
	for (rid = pe->rid; rid < rid_end; rid++)
823
		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
824 825 826 827 828 829 830 831 832 833 834 835

	/* Release from all parents PELT-V */
	while (parent) {
		struct pci_dn *pdn = pci_get_pdn(parent);
		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
			/* XXX What to do in case of error ? */
		}
		parent = parent->bus->self;
	}

836
	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
837 838 839 840 841 842 843 844 845 846 847 848 849 850
				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);

	/* Disassociate PE in PELT */
	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
	if (rc)
		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
	if (rc)
		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);

	pe->pbus = NULL;
	pe->pdev = NULL;
851
#ifdef CONFIG_PCI_IOV
852
	pe->parent_dev = NULL;
853
#endif
854 855 856 857

	return 0;
}

858
static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
859 860 861 862 863 864 865 866 867 868 869 870
{
	struct pci_dev *parent;
	uint8_t bcomp, dcomp, fcomp;
	long rc, rid_end, rid;

	/* Bus validation ? */
	if (pe->pbus) {
		int count;

		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
		parent = pe->pbus->self;
871 872 873 874 875
		if (pe->flags & PNV_IODA_PE_BUS_ALL)
			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
		else
			count = 1;

876 877 878 879 880 881 882 883
		switch(count) {
		case  1: bcomp = OpalPciBusAll;		break;
		case  2: bcomp = OpalPciBus7Bits;	break;
		case  4: bcomp = OpalPciBus6Bits;	break;
		case  8: bcomp = OpalPciBus5Bits;	break;
		case 16: bcomp = OpalPciBus4Bits;	break;
		case 32: bcomp = OpalPciBus3Bits;	break;
		default:
884 885
			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
			        count);
886 887 888 889 890
			/* Do an exact match only */
			bcomp = OpalPciBusAll;
		}
		rid_end = pe->rid + (count << 8);
	} else {
891 892 893 894 895 896
#ifdef CONFIG_PCI_IOV
		if (pe->flags & PNV_IODA_PE_VF)
			parent = pe->parent_dev;
		else
#endif /* CONFIG_PCI_IOV */
			parent = pe->pdev->bus->self;
897 898 899 900 901 902
		bcomp = OpalPciBusAll;
		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
		rid_end = pe->rid + 1;
	}

903 904 905 906 907 908
	/*
	 * Associate PE in PELT. We need add the PE into the
	 * corresponding PELT-V as well. Otherwise, the error
	 * originated from the PE might contribute to other
	 * PEs.
	 */
909 910 911 912 913 914
	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
	if (rc) {
		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
		return -ENXIO;
	}
915

916 917 918 919 920 921
	/*
	 * Configure PELTV. NPUs don't have a PELTV table so skip
	 * configuration on them.
	 */
	if (phb->type != PNV_PHB_NPU)
		pnv_ioda_set_peltv(phb, pe, true);
922 923 924 925 926 927

	/* Setup reverse map */
	for (rid = pe->rid; rid < rid_end; rid++)
		phb->ioda.pe_rmap[rid] = pe->pe_number;

	/* Setup one MVTs on IODA1 */
928 929 930 931 932 933 934 935 936 937 938 939 940 941
	if (phb->type != PNV_PHB_IODA1) {
		pe->mve_number = 0;
		goto out;
	}

	pe->mve_number = pe->pe_number;
	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
	if (rc != OPAL_SUCCESS) {
		pe_err(pe, "OPAL error %ld setting up MVE %d\n",
		       rc, pe->mve_number);
		pe->mve_number = -1;
	} else {
		rc = opal_pci_set_mve_enable(phb->opal_id,
					     pe->mve_number, OPAL_ENABLE_MVE);
942
		if (rc) {
943
			pe_err(pe, "OPAL error %ld enabling MVE %d\n",
944 945 946
			       rc, pe->mve_number);
			pe->mve_number = -1;
		}
947
	}
948

949
out:
950 951 952
	return 0;
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
#ifdef CONFIG_PCI_IOV
static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
{
	struct pci_dn *pdn = pci_get_pdn(dev);
	int i;
	struct resource *res, res2;
	resource_size_t size;
	u16 num_vfs;

	if (!dev->is_physfn)
		return -EINVAL;

	/*
	 * "offset" is in VFs.  The M64 windows are sized so that when they
	 * are segmented, each segment is the same size as the IOV BAR.
	 * Each segment is in a separate PE, and the high order bits of the
	 * address are the PE number.  Therefore, each VF's BAR is in a
	 * separate PE, and changing the IOV BAR start address changes the
	 * range of PEs the VFs are in.
	 */
	num_vfs = pdn->num_vfs;
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &dev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || !res->parent)
			continue;

		/*
		 * The actual IOV BAR range is determined by the start address
		 * and the actual size for num_vfs VFs BAR.  This check is to
		 * make sure that after shifting, the range will not overlap
		 * with another device.
		 */
		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
		res2.flags = res->flags;
		res2.start = res->start + (size * offset);
		res2.end = res2.start + (size * num_vfs) - 1;

		if (res2.end > res->end) {
			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
				i, &res2, res, num_vfs, offset);
			return -EBUSY;
		}
	}

	/*
	 * After doing so, there would be a "hole" in the /proc/iomem when
	 * offset is a positive value. It looks like the device return some
	 * mmio back to the system, which actually no one could use it.
	 */
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &dev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || !res->parent)
			continue;

		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
		res2 = *res;
		res->start += size * offset;

1011 1012 1013
		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
			 i, &res2, res, (offset > 0) ? "En" : "Dis",
			 num_vfs, offset);
1014 1015 1016 1017 1018 1019
		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
	}
	return 0;
}
#endif /* CONFIG_PCI_IOV */

1020
static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1021 1022 1023
{
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
1024
	struct pci_dn *pdn = pci_get_pdn(dev);
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	struct pnv_ioda_pe *pe;

	if (!pdn) {
		pr_err("%s: Device tree node not associated properly\n",
			   pci_name(dev));
		return NULL;
	}
	if (pdn->pe_number != IODA_INVALID_PE)
		return NULL;

1035 1036
	pe = pnv_ioda_alloc_pe(phb);
	if (!pe) {
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
		pr_warning("%s: Not enough PE# available, disabling device\n",
			   pci_name(dev));
		return NULL;
	}

	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
	 * pointer in the PE data structure, both should be destroyed at the
	 * same time. However, this needs to be looked at more closely again
	 * once we actually start removing things (Hotplug, SR-IOV, ...)
	 *
	 * At some point we want to remove the PDN completely anyways
	 */
	pci_dev_get(dev);
	pdn->pcidev = dev;
1051
	pdn->pe_number = pe->pe_number;
1052
	pe->flags = PNV_IODA_PE_DEV;
1053 1054 1055 1056 1057 1058 1059 1060 1061
	pe->pdev = dev;
	pe->pbus = NULL;
	pe->mve_number = -1;
	pe->rid = dev->bus->number << 8 | pdn->devfn;

	pe_info(pe, "Associated device to PE\n");

	if (pnv_ioda_configure_pe(phb, pe)) {
		/* XXX What do we do here ? */
1062
		pnv_ioda_free_pe(pe);
1063 1064 1065 1066 1067 1068
		pdn->pe_number = IODA_INVALID_PE;
		pe->pdev = NULL;
		pci_dev_put(dev);
		return NULL;
	}

1069 1070 1071
	/* Put PE to the list */
	list_add_tail(&pe->list, &phb->ioda.pe_list);

1072 1073 1074 1075 1076 1077 1078 1079
	return pe;
}

static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
1080
		struct pci_dn *pdn = pci_get_pdn(dev);
1081 1082 1083 1084 1085 1086

		if (pdn == NULL) {
			pr_warn("%s: No device node associated with device !\n",
				pci_name(dev));
			continue;
		}
1087 1088 1089 1090 1091 1092 1093 1094 1095

		/*
		 * In partial hotplug case, the PCI device might be still
		 * associated with the PE and needn't attach it to the PE
		 * again.
		 */
		if (pdn->pe_number != IODA_INVALID_PE)
			continue;

1096
		pe->device_count++;
1097
		pdn->pcidev = dev;
1098
		pdn->pe_number = pe->pe_number;
1099
		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1100 1101 1102 1103
			pnv_ioda_setup_same_PE(dev->subordinate, pe);
	}
}

1104 1105 1106 1107 1108 1109
/*
 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
 * single PCI bus. Another one that contains the primary PCI bus and its
 * subordinate PCI devices and buses. The second type of PE is normally
 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
 */
1110
static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1111
{
1112
	struct pci_controller *hose = pci_bus_to_host(bus);
1113
	struct pnv_phb *phb = hose->private_data;
1114
	struct pnv_ioda_pe *pe = NULL;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	unsigned int pe_num;

	/*
	 * In partial hotplug case, the PE instance might be still alive.
	 * We should reuse it instead of allocating a new one.
	 */
	pe_num = phb->ioda.pe_rmap[bus->number << 8];
	if (pe_num != IODA_INVALID_PE) {
		pe = &phb->ioda.pe_array[pe_num];
		pnv_ioda_setup_same_PE(bus, pe);
		return NULL;
	}
1127

1128 1129 1130 1131 1132
	/* PE number for root bus should have been reserved */
	if (pci_is_root_bus(bus) &&
	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];

1133
	/* Check if PE is determined by M64 */
1134
	if (!pe && phb->pick_m64_pe)
1135
		pe = phb->pick_m64_pe(bus, all);
1136 1137

	/* The PE number isn't pinned by M64 */
1138 1139
	if (!pe)
		pe = pnv_ioda_alloc_pe(phb);
1140

1141
	if (!pe) {
1142 1143
		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
			__func__, pci_domain_nr(bus), bus->number);
1144
		return NULL;
1145 1146
	}

1147
	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1148 1149 1150
	pe->pbus = bus;
	pe->pdev = NULL;
	pe->mve_number = -1;
1151
	pe->rid = bus->busn_res.start << 8;
1152

1153 1154
	if (all)
		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1155
			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1156 1157
	else
		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1158
			bus->busn_res.start, pe->pe_number);
1159 1160 1161

	if (pnv_ioda_configure_pe(phb, pe)) {
		/* XXX What do we do here ? */
1162
		pnv_ioda_free_pe(pe);
1163
		pe->pbus = NULL;
1164
		return NULL;
1165 1166 1167 1168 1169
	}

	/* Associate it with all child devices */
	pnv_ioda_setup_same_PE(bus, pe);

1170 1171
	/* Put PE to the list */
	list_add_tail(&pe->list, &phb->ioda.pe_list);
1172 1173

	return pe;
1174 1175
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
{
	int pe_num, found_pe = false, rc;
	long rid;
	struct pnv_ioda_pe *pe;
	struct pci_dev *gpu_pdev;
	struct pci_dn *npu_pdn;
	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
	struct pnv_phb *phb = hose->private_data;

	/*
	 * Due to a hardware errata PE#0 on the NPU is reserved for
	 * error handling. This means we only have three PEs remaining
	 * which need to be assigned to four links, implying some
	 * links must share PEs.
	 *
	 * To achieve this we assign PEs such that NPUs linking the
	 * same GPU get assigned the same PE.
	 */
	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1196
	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
		pe = &phb->ioda.pe_array[pe_num];
		if (!pe->pdev)
			continue;

		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
			/*
			 * This device has the same peer GPU so should
			 * be assigned the same PE as the existing
			 * peer NPU.
			 */
			dev_info(&npu_pdev->dev,
				"Associating to existing PE %d\n", pe_num);
			pci_dev_get(npu_pdev);
			npu_pdn = pci_get_pdn(npu_pdev);
			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
			npu_pdn->pcidev = npu_pdev;
			npu_pdn->pe_number = pe_num;
			phb->ioda.pe_rmap[rid] = pe->pe_number;

			/* Map the PE to this link */
			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
					OpalPciBusAll,
					OPAL_COMPARE_RID_DEVICE_NUMBER,
					OPAL_COMPARE_RID_FUNCTION_NUMBER,
					OPAL_MAP_PE);
			WARN_ON(rc != OPAL_SUCCESS);
			found_pe = true;
			break;
		}
	}

	if (!found_pe)
		/*
		 * Could not find an existing PE so allocate a new
		 * one.
		 */
		return pnv_ioda_setup_dev_PE(npu_pdev);
	else
		return pe;
}

static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1239 1240 1241 1242
{
	struct pci_dev *pdev;

	list_for_each_entry(pdev, &bus->devices, bus_list)
1243
		pnv_ioda_setup_npu_PE(pdev);
1244 1245
}

1246
static void pnv_pci_ioda_setup_PEs(void)
1247 1248
{
	struct pci_controller *hose, *tmp;
1249
	struct pnv_phb *phb;
1250 1251

	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1252
		phb = hose->private_data;
1253 1254 1255
		if (phb->type == PNV_PHB_NPU) {
			/* PE#0 is needed for error reporting */
			pnv_ioda_reserve_pe(phb, 0);
1256
			pnv_ioda_setup_npu_PEs(hose->bus);
1257
		}
1258 1259 1260
	}
}

G
Gavin Shan 已提交
1261
#ifdef CONFIG_PCI_IOV
1262
static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1263 1264 1265 1266 1267
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
	struct pci_dn         *pdn;
1268
	int                    i, j;
1269
	int                    m64_bars;
1270 1271 1272 1273 1274 1275

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);

1276 1277 1278 1279 1280
	if (pdn->m64_single_mode)
		m64_bars = num_vfs;
	else
		m64_bars = 1;

1281
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1282 1283
		for (j = 0; j < m64_bars; j++) {
			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1284 1285
				continue;
			opal_pci_phb_mmio_enable(phb->opal_id,
1286 1287 1288
				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
			pdn->m64_map[j][i] = IODA_INVALID_M64;
1289
		}
1290

1291
	kfree(pdn->m64_map);
1292 1293 1294
	return 0;
}

1295
static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1296 1297 1298 1299 1300 1301 1302
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
	struct pci_dn         *pdn;
	unsigned int           win;
	struct resource       *res;
1303
	int                    i, j;
1304
	int64_t                rc;
1305 1306 1307
	int                    total_vfs;
	resource_size_t        size, start;
	int                    pe_num;
1308
	int                    m64_bars;
1309 1310 1311 1312 1313

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);
1314
	total_vfs = pci_sriov_get_totalvfs(pdev);
1315

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	if (pdn->m64_single_mode)
		m64_bars = num_vfs;
	else
		m64_bars = 1;

	pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
	if (!pdn->m64_map)
		return -ENOMEM;
	/* Initialize the m64_map to IODA_INVALID_M64 */
	for (i = 0; i < m64_bars ; i++)
		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
			pdn->m64_map[i][j] = IODA_INVALID_M64;
1328

1329 1330 1331 1332 1333 1334

	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &pdev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || !res->parent)
			continue;

1335
		for (j = 0; j < m64_bars; j++) {
1336 1337 1338 1339 1340 1341 1342 1343
			do {
				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
						phb->ioda.m64_bar_idx + 1, 0);

				if (win >= phb->ioda.m64_bar_idx + 1)
					goto m64_failed;
			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));

1344
			pdn->m64_map[j][i] = win;
1345

1346
			if (pdn->m64_single_mode) {
1347 1348 1349 1350 1351 1352 1353 1354 1355
				size = pci_iov_resource_size(pdev,
							PCI_IOV_RESOURCES + i);
				start = res->start + size * j;
			} else {
				size = resource_size(res);
				start = res->start;
			}

			/* Map the M64 here */
1356
			if (pdn->m64_single_mode) {
1357
				pe_num = pdn->pe_num_map[j];
1358 1359
				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
						pe_num, OPAL_M64_WINDOW_TYPE,
1360
						pdn->m64_map[j][i], 0);
1361 1362 1363 1364
			}

			rc = opal_pci_set_phb_mem_window(phb->opal_id,
						 OPAL_M64_WINDOW_TYPE,
1365
						 pdn->m64_map[j][i],
1366 1367 1368
						 start,
						 0, /* unused */
						 size);
1369 1370


1371 1372 1373 1374 1375
			if (rc != OPAL_SUCCESS) {
				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
					win, rc);
				goto m64_failed;
			}
1376

1377
			if (pdn->m64_single_mode)
1378
				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1379
				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1380 1381
			else
				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1382
				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1383

1384 1385 1386 1387 1388
			if (rc != OPAL_SUCCESS) {
				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
					win, rc);
				goto m64_failed;
			}
1389 1390 1391 1392 1393
		}
	}
	return 0;

m64_failed:
1394
	pnv_pci_vf_release_m64(pdev, num_vfs);
1395 1396 1397
	return -EBUSY;
}

1398 1399 1400 1401
static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
		int num);
static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);

1402 1403 1404 1405 1406
static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
{
	struct iommu_table    *tbl;
	int64_t               rc;

1407
	tbl = pe->table_group.tables[0];
1408
	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1409 1410 1411
	if (rc)
		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);

1412
	pnv_pci_ioda2_set_bypass(pe, false);
1413 1414 1415
	if (pe->table_group.group) {
		iommu_group_put(pe->table_group.group);
		BUG_ON(pe->table_group.group);
1416
	}
1417
	pnv_pci_ioda2_table_free_pages(tbl);
1418 1419 1420
	iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
}

1421
static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
	struct pnv_ioda_pe    *pe, *pe_n;
	struct pci_dn         *pdn;

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
1432
	pdn = pci_get_pdn(pdev);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

	if (!pdev->is_physfn)
		return;

	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
		if (pe->parent_dev != pdev)
			continue;

		pnv_pci_ioda2_release_dma_pe(pdev, pe);

		/* Remove from list */
		mutex_lock(&phb->ioda.pe_list_mutex);
		list_del(&pe->list);
		mutex_unlock(&phb->ioda.pe_list_mutex);

		pnv_ioda_deconfigure_pe(phb, pe);

1450
		pnv_ioda_free_pe(pe);
1451 1452 1453 1454 1455 1456 1457 1458
	}
}

void pnv_pci_sriov_disable(struct pci_dev *pdev)
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
1459
	struct pnv_ioda_pe    *pe;
1460 1461
	struct pci_dn         *pdn;
	struct pci_sriov      *iov;
1462
	u16                    num_vfs, i;
1463 1464 1465 1466 1467 1468 1469 1470 1471

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);
	iov = pdev->sriov;
	num_vfs = pdn->num_vfs;

	/* Release VF PEs */
1472
	pnv_ioda_release_vf_PE(pdev);
1473 1474

	if (phb->type == PNV_PHB_IODA2) {
1475
		if (!pdn->m64_single_mode)
1476
			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1477 1478

		/* Release M64 windows */
1479
		pnv_pci_vf_release_m64(pdev, num_vfs);
1480 1481

		/* Release PE numbers */
1482 1483
		if (pdn->m64_single_mode) {
			for (i = 0; i < num_vfs; i++) {
1484 1485 1486 1487 1488
				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
					continue;

				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
				pnv_ioda_free_pe(pe);
1489 1490 1491 1492 1493
			}
		} else
			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
		/* Releasing pe_num_map */
		kfree(pdn->pe_num_map);
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	}
}

static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
				       struct pnv_ioda_pe *pe);
static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
	struct pnv_ioda_pe    *pe;
	int                    pe_num;
	u16                    vf_index;
	struct pci_dn         *pdn;

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);

	if (!pdev->is_physfn)
		return;

	/* Reserve PE for each VF */
	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1519 1520 1521 1522
		if (pdn->m64_single_mode)
			pe_num = pdn->pe_num_map[vf_index];
		else
			pe_num = *pdn->pe_num_map + vf_index;
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

		pe = &phb->ioda.pe_array[pe_num];
		pe->pe_number = pe_num;
		pe->phb = phb;
		pe->flags = PNV_IODA_PE_VF;
		pe->pbus = NULL;
		pe->parent_dev = pdev;
		pe->mve_number = -1;
		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
			   pci_iov_virtfn_devfn(pdev, vf_index);

		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
			hose->global_number, pdev->bus->number,
			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);

		if (pnv_ioda_configure_pe(phb, pe)) {
			/* XXX What do we do here ? */
1541
			pnv_ioda_free_pe(pe);
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
			pe->pdev = NULL;
			continue;
		}

		/* Put PE to the list */
		mutex_lock(&phb->ioda.pe_list_mutex);
		list_add_tail(&pe->list, &phb->ioda.pe_list);
		mutex_unlock(&phb->ioda.pe_list_mutex);

		pnv_pci_ioda2_setup_dma_pe(phb, pe);
	}
}

int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
{
	struct pci_bus        *bus;
	struct pci_controller *hose;
	struct pnv_phb        *phb;
1560
	struct pnv_ioda_pe    *pe;
1561 1562
	struct pci_dn         *pdn;
	int                    ret;
1563
	u16                    i;
1564 1565 1566 1567 1568 1569 1570

	bus = pdev->bus;
	hose = pci_bus_to_host(bus);
	phb = hose->private_data;
	pdn = pci_get_pdn(pdev);

	if (phb->type == PNV_PHB_IODA2) {
1571 1572 1573 1574 1575 1576
		if (!pdn->vfs_expanded) {
			dev_info(&pdev->dev, "don't support this SRIOV device"
				" with non 64bit-prefetchable IOV BAR\n");
			return -ENOSPC;
		}

1577 1578 1579 1580 1581 1582 1583 1584 1585
		/*
		 * When M64 BARs functions in Single PE mode, the number of VFs
		 * could be enabled must be less than the number of M64 BARs.
		 */
		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
			return -EBUSY;
		}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
		/* Allocating pe_num_map */
		if (pdn->m64_single_mode)
			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
					GFP_KERNEL);
		else
			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);

		if (!pdn->pe_num_map)
			return -ENOMEM;

		if (pdn->m64_single_mode)
			for (i = 0; i < num_vfs; i++)
				pdn->pe_num_map[i] = IODA_INVALID_PE;

1600
		/* Calculate available PE for required VFs */
1601 1602
		if (pdn->m64_single_mode) {
			for (i = 0; i < num_vfs; i++) {
1603 1604
				pe = pnv_ioda_alloc_pe(phb);
				if (!pe) {
1605 1606 1607
					ret = -EBUSY;
					goto m64_failed;
				}
1608 1609

				pdn->pe_num_map[i] = pe->pe_number;
1610 1611 1612 1613
			}
		} else {
			mutex_lock(&phb->ioda.pe_alloc_mutex);
			*pdn->pe_num_map = bitmap_find_next_zero_area(
1614
				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1615
				0, num_vfs, 0);
1616
			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1617 1618 1619 1620 1621 1622
				mutex_unlock(&phb->ioda.pe_alloc_mutex);
				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
				kfree(pdn->pe_num_map);
				return -EBUSY;
			}
			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1623 1624 1625 1626 1627
			mutex_unlock(&phb->ioda.pe_alloc_mutex);
		}
		pdn->num_vfs = num_vfs;

		/* Assign M64 window accordingly */
1628
		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
		if (ret) {
			dev_info(&pdev->dev, "Not enough M64 window resources\n");
			goto m64_failed;
		}

		/*
		 * When using one M64 BAR to map one IOV BAR, we need to shift
		 * the IOV BAR according to the PE# allocated to the VFs.
		 * Otherwise, the PE# for the VF will conflict with others.
		 */
1639
		if (!pdn->m64_single_mode) {
1640
			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1641 1642 1643
			if (ret)
				goto m64_failed;
		}
1644 1645 1646 1647 1648 1649 1650 1651
	}

	/* Setup VF PEs */
	pnv_ioda_setup_vf_PE(pdev, num_vfs);

	return 0;

m64_failed:
1652 1653
	if (pdn->m64_single_mode) {
		for (i = 0; i < num_vfs; i++) {
1654 1655 1656 1657 1658
			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
				continue;

			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
			pnv_ioda_free_pe(pe);
1659 1660 1661 1662 1663 1664
		}
	} else
		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);

	/* Releasing pe_num_map */
	kfree(pdn->pe_num_map);
1665 1666 1667 1668

	return ret;
}

G
Gavin Shan 已提交
1669 1670
int pcibios_sriov_disable(struct pci_dev *pdev)
{
1671 1672
	pnv_pci_sriov_disable(pdev);

G
Gavin Shan 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681
	/* Release PCI data */
	remove_dev_pci_data(pdev);
	return 0;
}

int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
{
	/* Allocate PCI data */
	add_dev_pci_data(pdev);
1682

1683
	return pnv_pci_sriov_enable(pdev, num_vfs);
G
Gavin Shan 已提交
1684 1685 1686
}
#endif /* CONFIG_PCI_IOV */

1687
static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1688
{
1689
	struct pci_dn *pdn = pci_get_pdn(pdev);
1690
	struct pnv_ioda_pe *pe;
1691

1692 1693 1694 1695 1696 1697 1698
	/*
	 * The function can be called while the PE#
	 * hasn't been assigned. Do nothing for the
	 * case.
	 */
	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
		return;
1699

1700
	pe = &phb->ioda.pe_array[pdn->pe_number];
1701
	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1702
	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1703
	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1704 1705 1706 1707 1708 1709
	/*
	 * Note: iommu_add_device() will fail here as
	 * for physical PE: the device is already added by now;
	 * for virtual PE: sysfs entries are not ready yet and
	 * tce_iommu_bus_notifier will add the device to a group later.
	 */
1710 1711
}

1712
static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1713
{
1714 1715
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	struct pci_dn *pdn = pci_get_pdn(pdev);
	struct pnv_ioda_pe *pe;
	uint64_t top;
	bool bypass = false;

	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
		return -ENODEV;;

	pe = &phb->ioda.pe_array[pdn->pe_number];
	if (pe->tce_bypass_enabled) {
		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
		bypass = (dma_mask >= top);
	}

	if (bypass) {
		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
		set_dma_ops(&pdev->dev, &dma_direct_ops);
	} else {
		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
		set_dma_ops(&pdev->dev, &dma_iommu_ops);
	}
1737
	*pdev->dev.dma_mask = dma_mask;
1738 1739

	/* Update peer npu devices */
1740
	pnv_npu_try_dma_set_bypass(pdev, bypass);
1741

1742 1743 1744
	return 0;
}

1745
static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1746
{
1747 1748
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	struct pci_dn *pdn = pci_get_pdn(pdev);
	struct pnv_ioda_pe *pe;
	u64 end, mask;

	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
		return 0;

	pe = &phb->ioda.pe_array[pdn->pe_number];
	if (!pe->tce_bypass_enabled)
		return __dma_get_required_mask(&pdev->dev);


	end = pe->tce_bypass_base + memblock_end_of_DRAM();
	mask = 1ULL << (fls64(end) - 1);
	mask += mask - 1;

	return mask;
}

1768
static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1769
				   struct pci_bus *bus)
1770 1771 1772 1773
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
1774
		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1775
		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1776
		iommu_add_device(&dev->dev);
1777

1778
		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1779
			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1780 1781 1782
	}
}

1783 1784 1785 1786 1787 1788 1789
static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
						     bool real_mode)
{
	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
		(phb->regs + 0x210);
}

1790
static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1791
		unsigned long index, unsigned long npages, bool rm)
1792
{
1793 1794 1795 1796
	struct iommu_table_group_link *tgl = list_first_entry_or_null(
			&tbl->it_group_list, struct iommu_table_group_link,
			next);
	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1797
			struct pnv_ioda_pe, table_group);
1798
	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1799 1800
	unsigned long start, end, inc;

1801 1802 1803
	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
			npages - 1);
1804

1805 1806 1807 1808
	/* p7ioc-style invalidation, 2 TCEs per write */
	start |= (1ull << 63);
	end |= (1ull << 63);
	inc = 16;
1809 1810 1811 1812
        end |= inc - 1;	/* round up end to be different than start */

        mb(); /* Ensure above stores are visible */
        while (start <= end) {
1813
		if (rm)
1814
			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1815
		else
1816
			__raw_writeq(cpu_to_be64(start), invalidate);
1817 1818 1819 1820 1821 1822 1823 1824 1825
                start += inc;
        }

	/*
	 * The iommu layer will do another mb() for us on build()
	 * and we don't care on free()
	 */
}

1826 1827 1828
static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
		long npages, unsigned long uaddr,
		enum dma_data_direction direction,
1829
		unsigned long attrs)
1830 1831 1832 1833
{
	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
			attrs);

1834
	if (!ret)
1835
		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1836 1837 1838 1839

	return ret;
}

1840 1841 1842 1843 1844 1845
#ifdef CONFIG_IOMMU_API
static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
		unsigned long *hpa, enum dma_data_direction *direction)
{
	long ret = pnv_tce_xchg(tbl, index, hpa, direction);

1846
	if (!ret)
1847
		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1848 1849 1850 1851 1852

	return ret;
}
#endif

1853 1854 1855 1856 1857
static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
		long npages)
{
	pnv_tce_free(tbl, index, npages);

1858
	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1859 1860
}

1861
static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1862
	.set = pnv_ioda1_tce_build,
1863 1864 1865
#ifdef CONFIG_IOMMU_API
	.exchange = pnv_ioda1_tce_xchg,
#endif
1866
	.clear = pnv_ioda1_tce_free,
1867 1868 1869
	.get = pnv_tce_get,
};

1870 1871 1872
#define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
#define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
#define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1873

1874
void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1875
{
1876
	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1877
	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1878 1879 1880

	mb(); /* Ensure previous TCE table stores are visible */
	if (rm)
1881
		__raw_rm_writeq(cpu_to_be64(val), invalidate);
1882
	else
1883
		__raw_writeq(cpu_to_be64(val), invalidate);
1884 1885
}

1886
static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1887 1888
{
	/* 01xb - invalidate TCEs that match the specified PE# */
1889
	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1890
	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1891 1892

	mb(); /* Ensure above stores are visible */
1893
	__raw_writeq(cpu_to_be64(val), invalidate);
1894 1895
}

1896 1897 1898
static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
					unsigned shift, unsigned long index,
					unsigned long npages)
1899
{
1900
	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1901 1902 1903
	unsigned long start, end, inc;

	/* We'll invalidate DMA address in PE scope */
1904
	start = PHB3_TCE_KILL_INVAL_ONE;
1905
	start |= (pe->pe_number & 0xFF);
1906 1907 1908
	end = start;

	/* Figure out the start, end and step */
1909 1910
	start |= (index << shift);
	end |= ((index + npages - 1) << shift);
1911
	inc = (0x1ull << shift);
1912 1913 1914
	mb();

	while (start <= end) {
1915
		if (rm)
1916
			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1917
		else
1918
			__raw_writeq(cpu_to_be64(start), invalidate);
1919 1920 1921 1922
		start += inc;
	}
}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
{
	struct pnv_phb *phb = pe->phb;

	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
		pnv_pci_phb3_tce_invalidate_pe(pe);
	else
		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
				  pe->pe_number, 0, 0, 0);
}

1934 1935 1936 1937 1938 1939 1940 1941
static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
		unsigned long index, unsigned long npages, bool rm)
{
	struct iommu_table_group_link *tgl;

	list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
				struct pnv_ioda_pe, table_group);
1942 1943 1944 1945
		struct pnv_phb *phb = pe->phb;
		unsigned int shift = tbl->it_page_shift;

		if (phb->type == PNV_PHB_NPU) {
1946 1947 1948 1949 1950
			/*
			 * The NVLink hardware does not support TCE kill
			 * per TCE entry so we have to invalidate
			 * the entire cache for it.
			 */
1951
			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1952 1953
			continue;
		}
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
						    index, npages);
		else if (rm)
			opal_rm_pci_tce_kill(phb->opal_id,
					     OPAL_PCI_TCE_KILL_PAGES,
					     pe->pe_number, 1u << shift,
					     index << shift, npages);
		else
			opal_pci_tce_kill(phb->opal_id,
					  OPAL_PCI_TCE_KILL_PAGES,
					  pe->pe_number, 1u << shift,
					  index << shift, npages);
1967 1968 1969
	}
}

1970 1971 1972
static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
		long npages, unsigned long uaddr,
		enum dma_data_direction direction,
1973
		unsigned long attrs)
1974
{
1975 1976
	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
			attrs);
1977

1978
	if (!ret)
1979 1980 1981 1982 1983
		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);

	return ret;
}

1984 1985 1986 1987 1988 1989
#ifdef CONFIG_IOMMU_API
static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
		unsigned long *hpa, enum dma_data_direction *direction)
{
	long ret = pnv_tce_xchg(tbl, index, hpa, direction);

1990
	if (!ret)
1991 1992 1993 1994 1995 1996
		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);

	return ret;
}
#endif

1997 1998 1999 2000 2001
static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
		long npages)
{
	pnv_tce_free(tbl, index, npages);

2002
	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2003 2004
}

2005 2006 2007 2008 2009 2010
static void pnv_ioda2_table_free(struct iommu_table *tbl)
{
	pnv_pci_ioda2_table_free_pages(tbl);
	iommu_free_table(tbl, "pnv");
}

2011
static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2012
	.set = pnv_ioda2_tce_build,
2013 2014 2015
#ifdef CONFIG_IOMMU_API
	.exchange = pnv_ioda2_tce_xchg,
#endif
2016
	.clear = pnv_ioda2_tce_free,
2017
	.get = pnv_tce_get,
2018
	.free = pnv_ioda2_table_free,
2019 2020
};

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
{
	unsigned int *weight = (unsigned int *)data;

	/* This is quite simplistic. The "base" weight of a device
	 * is 10. 0 means no DMA is to be accounted for it.
	 */
	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
		return 0;

	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
		*weight += 3;
	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
		*weight += 15;
	else
		*weight += 10;

	return 0;
}

static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
{
	unsigned int weight = 0;

	/* SRIOV VF has same DMA32 weight as its PF */
#ifdef CONFIG_PCI_IOV
	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
		return weight;
	}
#endif

	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
		struct pci_dev *pdev;

		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
	}

	return weight;
}

2069
static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2070
				       struct pnv_ioda_pe *pe)
2071 2072 2073 2074
{

	struct page *tce_mem = NULL;
	struct iommu_table *tbl;
2075 2076
	unsigned int weight, total_weight = 0;
	unsigned int tce32_segsz, base, segs, avail, i;
2077 2078 2079 2080 2081 2082
	int64_t rc;
	void *addr;

	/* XXX FIXME: Handle 64-bit only DMA devices */
	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2083 2084 2085 2086 2087 2088 2089 2090 2091
	weight = pnv_pci_ioda_pe_dma_weight(pe);
	if (!weight)
		return;

	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
		     &total_weight);
	segs = (weight * phb->ioda.dma32_count) / total_weight;
	if (!segs)
		segs = 1;
2092

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	/*
	 * Allocate contiguous DMA32 segments. We begin with the expected
	 * number of segments. With one more attempt, the number of DMA32
	 * segments to be allocated is decreased by one until one segment
	 * is allocated successfully.
	 */
	do {
		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
			for (avail = 0, i = base; i < base + segs; i++) {
				if (phb->ioda.dma32_segmap[i] ==
				    IODA_INVALID_PE)
					avail++;
			}

			if (avail == segs)
				goto found;
		}
	} while (--segs);

	if (!segs) {
		pe_warn(pe, "No available DMA32 segments\n");
		return;
	}

found:
2118
	tbl = pnv_pci_table_alloc(phb->hose->node);
2119 2120
	iommu_register_group(&pe->table_group, phb->hose->global_number,
			pe->pe_number);
2121
	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2122

2123
	/* Grab a 32-bit TCE table */
2124 2125
	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
		weight, total_weight, base, segs);
2126
	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2127 2128
		base * PNV_IODA1_DMA32_SEGSIZE,
		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2129 2130 2131 2132 2133

	/* XXX Currently, we allocate one big contiguous table for the
	 * TCEs. We only really need one chunk per 256M of TCE space
	 * (ie per segment) but that's an optimization for later, it
	 * requires some added smarts with our get/put_tce implementation
2134 2135 2136
	 *
	 * Each TCE page is 4KB in size and each TCE entry occupies 8
	 * bytes
2137
	 */
2138
	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2139
	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2140
				   get_order(tce32_segsz * segs));
2141 2142 2143 2144 2145
	if (!tce_mem) {
		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
		goto fail;
	}
	addr = page_address(tce_mem);
2146
	memset(addr, 0, tce32_segsz * segs);
2147 2148 2149 2150 2151 2152

	/* Configure HW */
	for (i = 0; i < segs; i++) {
		rc = opal_pci_map_pe_dma_window(phb->opal_id,
					      pe->pe_number,
					      base + i, 1,
2153 2154
					      __pa(addr) + tce32_segsz * i,
					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2155 2156 2157 2158 2159 2160 2161
		if (rc) {
			pe_err(pe, " Failed to configure 32-bit TCE table,"
			       " err %ld\n", rc);
			goto fail;
		}
	}

2162 2163 2164 2165
	/* Setup DMA32 segment mapping */
	for (i = base; i < base + segs; i++)
		phb->ioda.dma32_segmap[i] = pe->pe_number;

2166
	/* Setup linux iommu table */
2167 2168 2169
	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
				  base * PNV_IODA1_DMA32_SEGSIZE,
				  IOMMU_PAGE_SHIFT_4K);
2170

2171
	tbl->it_ops = &pnv_ioda1_iommu_ops;
2172 2173
	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2174 2175
	iommu_init_table(tbl, phb->hose->node);

2176
	if (pe->flags & PNV_IODA_PE_DEV) {
2177 2178 2179 2180 2181 2182 2183
		/*
		 * Setting table base here only for carrying iommu_group
		 * further down to let iommu_add_device() do the job.
		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
		 */
		set_iommu_table_base(&pe->pdev->dev, tbl);
		iommu_add_device(&pe->pdev->dev);
2184
	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2185
		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2186

2187 2188 2189 2190
	return;
 fail:
	/* XXX Failure: Try to fallback to 64-bit only ? */
	if (tce_mem)
2191
		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2192 2193 2194 2195
	if (tbl) {
		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
		iommu_free_table(tbl, "pnv");
	}
2196 2197
}

2198 2199 2200 2201 2202 2203 2204
static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
		int num, struct iommu_table *tbl)
{
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
			table_group);
	struct pnv_phb *phb = pe->phb;
	int64_t rc;
2205 2206
	const unsigned long size = tbl->it_indirect_levels ?
			tbl->it_level_size : tbl->it_size;
2207 2208 2209
	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
	const __u64 win_size = tbl->it_size << tbl->it_page_shift;

2210
	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2211 2212 2213 2214 2215 2216 2217 2218 2219
			start_addr, start_addr + win_size - 1,
			IOMMU_PAGE_SIZE(tbl));

	/*
	 * Map TCE table through TVT. The TVE index is the PE number
	 * shifted by 1 bit for 32-bits DMA space.
	 */
	rc = opal_pci_map_pe_dma_window(phb->opal_id,
			pe->pe_number,
2220
			(pe->pe_number << 1) + num,
2221
			tbl->it_indirect_levels + 1,
2222
			__pa(tbl->it_base),
2223
			size << 3,
2224 2225 2226 2227 2228 2229 2230 2231
			IOMMU_PAGE_SIZE(tbl));
	if (rc) {
		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
		return rc;
	}

	pnv_pci_link_table_and_group(phb->hose->node, num,
			tbl, &pe->table_group);
2232
	pnv_pci_phb3_tce_invalidate_pe(pe);
2233 2234 2235 2236

	return 0;
}

2237
static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
{
	uint16_t window_id = (pe->pe_number << 1 ) + 1;
	int64_t rc;

	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
	if (enable) {
		phys_addr_t top = memblock_end_of_DRAM();

		top = roundup_pow_of_two(top);
		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
						     pe->pe_number,
						     window_id,
						     pe->tce_bypass_base,
						     top);
	} else {
		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
						     pe->pe_number,
						     window_id,
						     pe->tce_bypass_base,
						     0);
	}
	if (rc)
		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
	else
		pe->tce_bypass_enabled = enable;
}

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
		__u32 page_shift, __u64 window_size, __u32 levels,
		struct iommu_table *tbl);

static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
		int num, __u32 page_shift, __u64 window_size, __u32 levels,
		struct iommu_table **ptbl)
{
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
			table_group);
	int nid = pe->phb->hose->node;
	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
	long ret;
	struct iommu_table *tbl;

	tbl = pnv_pci_table_alloc(nid);
	if (!tbl)
		return -ENOMEM;

	ret = pnv_pci_ioda2_table_alloc_pages(nid,
			bus_offset, page_shift, window_size,
			levels, tbl);
	if (ret) {
		iommu_free_table(tbl, "pnv");
		return ret;
	}

	tbl->it_ops = &pnv_ioda2_iommu_ops;

	*ptbl = tbl;

	return 0;
}

2299 2300 2301 2302 2303
static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
{
	struct iommu_table *tbl = NULL;
	long rc;

2304 2305 2306 2307 2308 2309 2310
	/*
	 * crashkernel= specifies the kdump kernel's maximum memory at
	 * some offset and there is no guaranteed the result is a power
	 * of 2, which will cause errors later.
	 */
	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());

2311 2312 2313 2314 2315
	/*
	 * In memory constrained environments, e.g. kdump kernel, the
	 * DMA window can be larger than available memory, which will
	 * cause errors later.
	 */
2316
	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2317

2318 2319
	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
			IOMMU_PAGE_SHIFT_4K,
2320
			window_size,
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
	if (rc) {
		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
				rc);
		return rc;
	}

	iommu_init_table(tbl, pe->phb->hose->node);

	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
	if (rc) {
		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
				rc);
		pnv_ioda2_table_free(tbl);
		return rc;
	}

	if (!pnv_iommu_bypass_disabled)
		pnv_pci_ioda2_set_bypass(pe, true);

	/*
	 * Setting table base here only for carrying iommu_group
	 * further down to let iommu_add_device() do the job.
	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
	 */
	if (pe->flags & PNV_IODA_PE_DEV)
		set_iommu_table_base(&pe->pdev->dev, tbl);

	return 0;
}

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
#if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
		int num)
{
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
			table_group);
	struct pnv_phb *phb = pe->phb;
	long ret;

	pe_info(pe, "Removing DMA window #%d\n", num);

	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
			(pe->pe_number << 1) + num,
			0/* levels */, 0/* table address */,
			0/* table size */, 0/* page size */);
	if (ret)
		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
	else
2370
		pnv_pci_phb3_tce_invalidate_pe(pe);
2371 2372 2373 2374 2375 2376 2377

	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);

	return ret;
}
#endif

2378
#ifdef CONFIG_IOMMU_API
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
		__u64 window_size, __u32 levels)
{
	unsigned long bytes = 0;
	const unsigned window_shift = ilog2(window_size);
	unsigned entries_shift = window_shift - page_shift;
	unsigned table_shift = entries_shift + 3;
	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
	unsigned long direct_table_size;

	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
			(window_size > memory_hotplug_max()) ||
			!is_power_of_2(window_size))
		return 0;

	/* Calculate a direct table size from window_size and levels */
	entries_shift = (entries_shift + levels - 1) / levels;
	table_shift = entries_shift + 3;
	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
	direct_table_size =  1UL << table_shift;

	for ( ; levels; --levels) {
		bytes += _ALIGN_UP(tce_table_size, direct_table_size);

		tce_table_size /= direct_table_size;
		tce_table_size <<= 3;
		tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
	}

	return bytes;
}

2411
static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2412
{
2413 2414
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
						table_group);
2415 2416
	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
	struct iommu_table *tbl = pe->table_group.tables[0];
2417

2418
	pnv_pci_ioda2_set_bypass(pe, false);
2419 2420
	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
	pnv_ioda2_table_free(tbl);
2421
}
2422

2423 2424 2425 2426 2427
static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
{
	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
						table_group);

2428
	pnv_pci_ioda2_setup_default_config(pe);
2429 2430
}

2431
static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2432
	.get_table_size = pnv_pci_ioda2_get_table_size,
2433 2434 2435
	.create_table = pnv_pci_ioda2_create_table,
	.set_window = pnv_pci_ioda2_set_window,
	.unset_window = pnv_pci_ioda2_unset_window,
2436 2437 2438
	.take_ownership = pnv_ioda2_take_ownership,
	.release_ownership = pnv_ioda2_release_ownership,
};
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548

static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
{
	struct pci_controller *hose;
	struct pnv_phb *phb;
	struct pnv_ioda_pe **ptmppe = opaque;
	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
	struct pci_dn *pdn = pci_get_pdn(pdev);

	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
		return 0;

	hose = pci_bus_to_host(pdev->bus);
	phb = hose->private_data;
	if (phb->type != PNV_PHB_NPU)
		return 0;

	*ptmppe = &phb->ioda.pe_array[pdn->pe_number];

	return 1;
}

/*
 * This returns PE of associated NPU.
 * This assumes that NPU is in the same IOMMU group with GPU and there is
 * no other PEs.
 */
static struct pnv_ioda_pe *gpe_table_group_to_npe(
		struct iommu_table_group *table_group)
{
	struct pnv_ioda_pe *npe = NULL;
	int ret = iommu_group_for_each_dev(table_group->group, &npe,
			gpe_table_group_to_npe_cb);

	BUG_ON(!ret || !npe);

	return npe;
}

static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
		int num, struct iommu_table *tbl)
{
	long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);

	if (ret)
		return ret;

	ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
	if (ret)
		pnv_pci_ioda2_unset_window(table_group, num);

	return ret;
}

static long pnv_pci_ioda2_npu_unset_window(
		struct iommu_table_group *table_group,
		int num)
{
	long ret = pnv_pci_ioda2_unset_window(table_group, num);

	if (ret)
		return ret;

	return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
}

static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
{
	/*
	 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
	 * the iommu_table if 32bit DMA is enabled.
	 */
	pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
	pnv_ioda2_take_ownership(table_group);
}

static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
	.get_table_size = pnv_pci_ioda2_get_table_size,
	.create_table = pnv_pci_ioda2_create_table,
	.set_window = pnv_pci_ioda2_npu_set_window,
	.unset_window = pnv_pci_ioda2_npu_unset_window,
	.take_ownership = pnv_ioda2_npu_take_ownership,
	.release_ownership = pnv_ioda2_release_ownership,
};

static void pnv_pci_ioda_setup_iommu_api(void)
{
	struct pci_controller *hose, *tmp;
	struct pnv_phb *phb;
	struct pnv_ioda_pe *pe, *gpe;

	/*
	 * Now we have all PHBs discovered, time to add NPU devices to
	 * the corresponding IOMMU groups.
	 */
	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		phb = hose->private_data;

		if (phb->type != PNV_PHB_NPU)
			continue;

		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
			gpe = pnv_pci_npu_setup_iommu(pe);
			if (gpe)
				gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
		}
	}
}
#else /* !CONFIG_IOMMU_API */
static void pnv_pci_ioda_setup_iommu_api(void) { };
2549 2550
#endif

2551 2552
static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
		unsigned levels, unsigned long limit,
2553
		unsigned long *current_offset, unsigned long *total_allocated)
2554 2555
{
	struct page *tce_mem = NULL;
2556
	__be64 *addr, *tmp;
2557
	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2558 2559 2560
	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
	unsigned entries = 1UL << (shift - 3);
	long i;
2561 2562 2563 2564 2565 2566 2567

	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
	if (!tce_mem) {
		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
		return NULL;
	}
	addr = page_address(tce_mem);
2568
	memset(addr, 0, allocated);
2569
	*total_allocated += allocated;
2570 2571 2572 2573 2574 2575 2576 2577 2578

	--levels;
	if (!levels) {
		*current_offset += allocated;
		return addr;
	}

	for (i = 0; i < entries; ++i) {
		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2579
				levels, limit, current_offset, total_allocated);
2580 2581 2582 2583 2584 2585 2586 2587 2588
		if (!tmp)
			break;

		addr[i] = cpu_to_be64(__pa(tmp) |
				TCE_PCI_READ | TCE_PCI_WRITE);

		if (*current_offset >= limit)
			break;
	}
2589 2590 2591 2592

	return addr;
}

2593 2594 2595
static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
		unsigned long size, unsigned level);

2596
static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2597 2598
		__u32 page_shift, __u64 window_size, __u32 levels,
		struct iommu_table *tbl)
2599
{
2600
	void *addr;
2601
	unsigned long offset = 0, level_shift, total_allocated = 0;
2602 2603 2604 2605 2606
	const unsigned window_shift = ilog2(window_size);
	unsigned entries_shift = window_shift - page_shift;
	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
	const unsigned long tce_table_size = 1UL << table_shift;

2607 2608 2609
	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
		return -EINVAL;

2610 2611 2612
	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
		return -EINVAL;

2613 2614 2615 2616 2617
	/* Adjust direct table size from window_size and levels */
	entries_shift = (entries_shift + levels - 1) / levels;
	level_shift = entries_shift + 3;
	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);

2618
	/* Allocate TCE table */
2619
	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2620
			levels, tce_table_size, &offset, &total_allocated);
2621 2622

	/* addr==NULL means that the first level allocation failed */
2623 2624 2625
	if (!addr)
		return -ENOMEM;

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
	/*
	 * First level was allocated but some lower level failed as
	 * we did not allocate as much as we wanted,
	 * release partially allocated table.
	 */
	if (offset < tce_table_size) {
		pnv_pci_ioda2_table_do_free_pages(addr,
				1ULL << (level_shift - 3), levels - 1);
		return -ENOMEM;
	}

2637 2638 2639
	/* Setup linux iommu table */
	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
			page_shift);
2640 2641
	tbl->it_level_size = 1ULL << (level_shift - 3);
	tbl->it_indirect_levels = levels - 1;
2642
	tbl->it_allocated_size = total_allocated;
2643 2644 2645 2646 2647 2648 2649

	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
			window_size, tce_table_size, bus_offset);

	return 0;
}

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
		unsigned long size, unsigned level)
{
	const unsigned long addr_ul = (unsigned long) addr &
			~(TCE_PCI_READ | TCE_PCI_WRITE);

	if (level) {
		long i;
		u64 *tmp = (u64 *) addr_ul;

		for (i = 0; i < size; ++i) {
			unsigned long hpa = be64_to_cpu(tmp[i]);

			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
				continue;

			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
					level - 1);
		}
	}

	free_pages(addr_ul, get_order(size << 3));
}

2674 2675
static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
{
2676 2677 2678
	const unsigned long size = tbl->it_indirect_levels ?
			tbl->it_level_size : tbl->it_size;

2679 2680 2681
	if (!tbl->it_size)
		return;

2682 2683
	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
			tbl->it_indirect_levels);
2684 2685 2686 2687 2688
}

static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
				       struct pnv_ioda_pe *pe)
{
2689 2690
	int64_t rc;

2691 2692 2693
	if (!pnv_pci_ioda_pe_dma_weight(pe))
		return;

2694 2695 2696
	/* TVE #1 is selected by PCI address bit 59 */
	pe->tce_bypass_base = 1ull << 59;

2697 2698
	iommu_register_group(&pe->table_group, phb->hose->global_number,
			pe->pe_number);
2699

2700 2701
	/* The PE will reserve all possible 32-bits space */
	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2702
		phb->ioda.m32_pci_base);
2703

2704
	/* Setup linux iommu table */
2705 2706 2707 2708 2709 2710
	pe->table_group.tce32_start = 0;
	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
	pe->table_group.max_dynamic_windows_supported =
			IOMMU_TABLE_GROUP_MAX_TABLES;
	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2711 2712 2713 2714
#ifdef CONFIG_IOMMU_API
	pe->table_group.ops = &pnv_pci_ioda2_ops;
#endif

2715
	rc = pnv_pci_ioda2_setup_default_config(pe);
2716
	if (rc)
2717
		return;
2718

2719
	if (pe->flags & PNV_IODA_PE_DEV)
2720
		iommu_add_device(&pe->pdev->dev);
2721
	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2722
		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2723 2724
}

2725
#ifdef CONFIG_PCI_MSI
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
static void pnv_ioda2_msi_eoi(struct irq_data *d)
{
	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
	struct irq_chip *chip = irq_data_get_irq_chip(d);
	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
					   ioda.irq_chip);
	int64_t rc;

	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
	WARN_ON_ONCE(rc);

	icp_native_eoi(d);
}

2740

2741
void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2742 2743 2744 2745
{
	struct irq_data *idata;
	struct irq_chip *ichip;

2746 2747
	/* The MSI EOI OPAL call is only needed on PHB3 */
	if (phb->model != PNV_PHB_MODEL_PHB3)
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
		return;

	if (!phb->ioda.irq_chip_init) {
		/*
		 * First time we setup an MSI IRQ, we need to setup the
		 * corresponding IRQ chip to route correctly.
		 */
		idata = irq_get_irq_data(virq);
		ichip = irq_data_get_irq_chip(idata);
		phb->ioda.irq_chip_init = 1;
		phb->ioda.irq_chip = *ichip;
		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
	}
	irq_set_chip(virq, &phb->ioda.irq_chip);
}

2764
static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2765 2766
				  unsigned int hwirq, unsigned int virq,
				  unsigned int is_64, struct msi_msg *msg)
2767 2768 2769
{
	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
	unsigned int xive_num = hwirq - phb->msi_base;
2770
	__be32 data;
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
	int rc;

	/* No PE assigned ? bail out ... no MSI for you ! */
	if (pe == NULL)
		return -ENXIO;

	/* Check if we have an MVE */
	if (pe->mve_number < 0)
		return -ENXIO;

2781
	/* Force 32-bit MSI on some broken devices */
2782
	if (dev->no_64bit_msi)
2783 2784
		is_64 = 0;

2785 2786 2787 2788 2789 2790 2791 2792 2793
	/* Assign XIVE to PE */
	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
	if (rc) {
		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
			pci_name(dev), rc, xive_num);
		return -EIO;
	}

	if (is_64) {
2794 2795
		__be64 addr64;

2796 2797 2798 2799 2800 2801 2802
		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
				     &addr64, &data);
		if (rc) {
			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
				pci_name(dev), rc);
			return -EIO;
		}
2803 2804
		msg->address_hi = be64_to_cpu(addr64) >> 32;
		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2805
	} else {
2806 2807
		__be32 addr32;

2808 2809 2810 2811 2812 2813 2814 2815
		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
				     &addr32, &data);
		if (rc) {
			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
				pci_name(dev), rc);
			return -EIO;
		}
		msg->address_hi = 0;
2816
		msg->address_lo = be32_to_cpu(addr32);
2817
	}
2818
	msg->data = be32_to_cpu(data);
2819

2820
	pnv_set_msi_irq_chip(phb, virq);
2821

2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
		 " address=%x_%08x data=%x PE# %d\n",
		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
		 msg->address_hi, msg->address_lo, data, pe->pe_number);

	return 0;
}

static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
{
2832
	unsigned int count;
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
	const __be32 *prop = of_get_property(phb->hose->dn,
					     "ibm,opal-msi-ranges", NULL);
	if (!prop) {
		/* BML Fallback */
		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
	}
	if (!prop)
		return;

	phb->msi_base = be32_to_cpup(prop);
2843 2844
	count = be32_to_cpup(prop + 1);
	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2845 2846 2847 2848
		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
		       phb->hose->global_number);
		return;
	}
2849

2850 2851 2852
	phb->msi_setup = pnv_pci_ioda_msi_setup;
	phb->msi32_support = 1;
	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2853
		count, phb->msi_base);
2854 2855 2856 2857 2858
}
#else
static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
#endif /* CONFIG_PCI_MSI */

2859 2860 2861
#ifdef CONFIG_PCI_IOV
static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
{
2862 2863 2864
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2865 2866
	struct resource *res;
	int i;
2867
	resource_size_t size, total_vf_bar_sz;
2868
	struct pci_dn *pdn;
2869
	int mul, total_vfs;
2870 2871 2872 2873 2874 2875

	if (!pdev->is_physfn || pdev->is_added)
		return;

	pdn = pci_get_pdn(pdev);
	pdn->vfs_expanded = 0;
2876
	pdn->m64_single_mode = false;
2877

2878
	total_vfs = pci_sriov_get_totalvfs(pdev);
2879
	mul = phb->ioda.total_pe_num;
2880
	total_vf_bar_sz = 0;
2881 2882 2883 2884 2885

	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &pdev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || res->parent)
			continue;
2886
		if (!pnv_pci_is_m64(phb, res)) {
2887 2888
			dev_warn(&pdev->dev, "Don't support SR-IOV with"
					" non M64 VF BAR%d: %pR. \n",
2889
				 i, res);
2890
			goto truncate_iov;
2891 2892
		}

2893 2894
		total_vf_bar_sz += pci_iov_resource_size(pdev,
				i + PCI_IOV_RESOURCES);
2895

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
		/*
		 * If bigger than quarter of M64 segment size, just round up
		 * power of two.
		 *
		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
		 * with other devices, IOV BAR size is expanded to be
		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
		 * segment size , the expanded size would equal to half of the
		 * whole M64 space size, which will exhaust the M64 Space and
		 * limit the system flexibility.  This is a design decision to
		 * set the boundary to quarter of the M64 segment size.
		 */
2908
		if (total_vf_bar_sz > gate) {
2909
			mul = roundup_pow_of_two(total_vfs);
2910 2911 2912
			dev_info(&pdev->dev,
				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
				total_vf_bar_sz, gate, mul);
2913
			pdn->m64_single_mode = true;
2914 2915 2916 2917
			break;
		}
	}

2918 2919 2920 2921 2922 2923
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &pdev->resource[i + PCI_IOV_RESOURCES];
		if (!res->flags || res->parent)
			continue;

		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2924 2925 2926 2927 2928 2929 2930
		/*
		 * On PHB3, the minimum size alignment of M64 BAR in single
		 * mode is 32MB.
		 */
		if (pdn->m64_single_mode && (size < SZ_32M))
			goto truncate_iov;
		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2931
		res->end = res->start + size * mul - 1;
2932 2933
		dev_dbg(&pdev->dev, "                       %pR\n", res);
		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2934
			 i, res, mul);
2935
	}
2936
	pdn->vfs_expanded = mul;
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946

	return;

truncate_iov:
	/* To save MMIO space, IOV BAR is truncated. */
	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
		res = &pdev->resource[i + PCI_IOV_RESOURCES];
		res->flags = 0;
		res->end = res->start - 1;
	}
2947 2948 2949
}
#endif /* CONFIG_PCI_IOV */

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
				  struct resource *res)
{
	struct pnv_phb *phb = pe->phb;
	struct pci_bus_region region;
	int index;
	int64_t rc;

	if (!res || !res->flags || res->start > res->end)
		return;

	if (res->flags & IORESOURCE_IO) {
		region.start = res->start - phb->ioda.io_pci_base;
		region.end   = res->end - phb->ioda.io_pci_base;
		index = region.start / phb->ioda.io_segsize;

		while (index < phb->ioda.total_pe_num &&
		       region.start <= region.end) {
			phb->ioda.io_segmap[index] = pe->pe_number;
			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
			if (rc != OPAL_SUCCESS) {
				pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n",
				       __func__, rc, index, pe->pe_number);
				break;
			}

			region.start += phb->ioda.io_segsize;
			index++;
		}
	} else if ((res->flags & IORESOURCE_MEM) &&
2981
		   !pnv_pci_is_m64(phb, res)) {
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
		region.start = res->start -
			       phb->hose->mem_offset[0] -
			       phb->ioda.m32_pci_base;
		region.end   = res->end -
			       phb->hose->mem_offset[0] -
			       phb->ioda.m32_pci_base;
		index = region.start / phb->ioda.m32_segsize;

		while (index < phb->ioda.total_pe_num &&
		       region.start <= region.end) {
			phb->ioda.m32_segmap[index] = pe->pe_number;
			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
			if (rc != OPAL_SUCCESS) {
				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d",
				       __func__, rc, index, pe->pe_number);
				break;
			}

			region.start += phb->ioda.m32_segsize;
			index++;
		}
	}
}

3007 3008 3009 3010 3011
/*
 * This function is supposed to be called on basis of PE from top
 * to bottom style. So the the I/O or MMIO segment assigned to
 * parent PE could be overrided by its child PEs if necessary.
 */
3012
static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3013
{
3014
	struct pci_dev *pdev;
3015
	int i;
3016 3017 3018 3019 3020 3021 3022 3023

	/*
	 * NOTE: We only care PCI bus based PE for now. For PCI
	 * device based PE, for example SRIOV sensitive VF should
	 * be figured out later.
	 */
	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));

3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);

		/*
		 * If the PE contains all subordinate PCI buses, the
		 * windows of the child bridges should be mapped to
		 * the PE as well.
		 */
		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
			continue;
		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
			pnv_ioda_setup_pe_res(pe,
				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
	}
3039 3040
}

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
#ifdef CONFIG_DEBUG_FS
static int pnv_pci_diag_data_set(void *data, u64 val)
{
	struct pci_controller *hose;
	struct pnv_phb *phb;
	s64 ret;

	if (val != 1ULL)
		return -EINVAL;

	hose = (struct pci_controller *)data;
	if (!hose || !hose->private_data)
		return -ENODEV;

	phb = hose->private_data;

	/* Retrieve the diag data from firmware */
	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag.blob,
					  PNV_PCI_DIAG_BUF_SIZE);
	if (ret != OPAL_SUCCESS)
		return -EIO;

	/* Print the diag data to the kernel log */
	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag.blob);
	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
			pnv_pci_diag_data_set, "%llu\n");

#endif /* CONFIG_DEBUG_FS */

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
static void pnv_pci_ioda_create_dbgfs(void)
{
#ifdef CONFIG_DEBUG_FS
	struct pci_controller *hose, *tmp;
	struct pnv_phb *phb;
	char name[16];

	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		phb = hose->private_data;

3083 3084 3085
		/* Notify initialization of PHB done */
		phb->initialized = 1;

3086 3087
		sprintf(name, "PCI%04x", hose->global_number);
		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3088
		if (!phb->dbgfs) {
3089 3090
			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
				__func__, hose->global_number);
3091 3092 3093 3094 3095
			continue;
		}

		debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
				    &pnv_pci_diag_data_fops);
3096 3097 3098 3099
	}
#endif /* CONFIG_DEBUG_FS */
}

3100
static void pnv_pci_ioda_fixup(void)
3101 3102
{
	pnv_pci_ioda_setup_PEs();
3103
	pnv_pci_ioda_setup_iommu_api();
3104 3105
	pnv_pci_ioda_create_dbgfs();

3106 3107
#ifdef CONFIG_EEH
	eeh_init();
M
Mike Qiu 已提交
3108
	eeh_addr_cache_build();
3109
#endif
3110 3111
}

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
/*
 * Returns the alignment for I/O or memory windows for P2P
 * bridges. That actually depends on how PEs are segmented.
 * For now, we return I/O or M32 segment size for PE sensitive
 * P2P bridges. Otherwise, the default values (4KiB for I/O,
 * 1MiB for memory) will be returned.
 *
 * The current PCI bus might be put into one PE, which was
 * create against the parent PCI bridge. For that case, we
 * needn't enlarge the alignment so that we can save some
 * resources.
 */
static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
						unsigned long type)
{
	struct pci_dev *bridge;
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
	int num_pci_bridges = 0;

	bridge = bus->self;
	while (bridge) {
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
			num_pci_bridges++;
			if (num_pci_bridges >= 2)
				return 1;
		}

		bridge = bridge->bus->self;
	}

3143 3144 3145 3146 3147 3148
	/*
	 * We fall back to M32 if M64 isn't supported. We enforce the M64
	 * alignment for any 64-bit resource, PCIe doesn't care and
	 * bridges only do 64-bit prefetchable anyway.
	 */
	if (phb->ioda.m64_segsize && (type & IORESOURCE_MEM_64))
3149
		return phb->ioda.m64_segsize;
3150 3151 3152 3153 3154 3155
	if (type & IORESOURCE_MEM)
		return phb->ioda.m32_segsize;

	return phb->ioda.io_segsize;
}

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
/*
 * We are updating root port or the upstream port of the
 * bridge behind the root port with PHB's windows in order
 * to accommodate the changes on required resources during
 * PCI (slot) hotplug, which is connected to either root
 * port or the downstream ports of PCIe switch behind the
 * root port.
 */
static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
					   unsigned long type)
{
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dev *bridge = bus->self;
	struct resource *r, *w;
	bool msi_region = false;
	int i;

	/* Check if we need apply fixup to the bridge's windows */
	if (!pci_is_root_bus(bridge->bus) &&
	    !pci_is_root_bus(bridge->bus->self->bus))
		return;

	/* Fixup the resources */
	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
		if (!r->flags || !r->parent)
			continue;

		w = NULL;
		if (r->flags & type & IORESOURCE_IO)
			w = &hose->io_resource;
3188
		else if (pnv_pci_is_m64(phb, r) &&
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
			 (type & IORESOURCE_PREFETCH) &&
			 phb->ioda.m64_segsize)
			w = &hose->mem_resources[1];
		else if (r->flags & type & IORESOURCE_MEM) {
			w = &hose->mem_resources[0];
			msi_region = true;
		}

		r->start = w->start;
		r->end = w->end;

		/* The 64KB 32-bits MSI region shouldn't be included in
		 * the 32-bits bridge window. Otherwise, we can see strange
		 * issues. One of them is EEH error observed on Garrison.
		 *
		 * Exclude top 1MB region which is the minimal alignment of
		 * 32-bits bridge window.
		 */
		if (msi_region) {
			r->end += 0x10000;
			r->end -= 0x100000;
		}
	}
}

3214 3215 3216 3217 3218 3219 3220 3221
static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
{
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dev *bridge = bus->self;
	struct pnv_ioda_pe *pe;
	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);

3222 3223 3224
	/* Extend bridge's windows if necessary */
	pnv_pci_fixup_bridge_resources(bus, type);

3225 3226 3227 3228 3229 3230 3231 3232 3233
	/* The PE for root bus should be realized before any one else */
	if (!phb->ioda.root_pe_populated) {
		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
		if (pe) {
			phb->ioda.root_pe_idx = pe->pe_number;
			phb->ioda.root_pe_populated = true;
		}
	}

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
	if (list_empty(&bus->devices))
		return;

	/* Reserve PEs according to used M64 resources */
	if (phb->reserve_m64_pe)
		phb->reserve_m64_pe(bus, NULL, all);

	/*
	 * Assign PE. We might run here because of partial hotplug.
	 * For the case, we just pick up the existing PE and should
	 * not allocate resources again.
	 */
	pe = pnv_ioda_setup_bus_PE(bus, all);
	if (!pe)
		return;

	pnv_ioda_setup_pe_seg(pe);
	switch (phb->type) {
	case PNV_PHB_IODA1:
		pnv_pci_ioda1_setup_dma_pe(phb, pe);
		break;
	case PNV_PHB_IODA2:
		pnv_pci_ioda2_setup_dma_pe(phb, pe);
		break;
	default:
		pr_warn("%s: No DMA for PHB#%d (type %d)\n",
			__func__, phb->hose->global_number, phb->type);
	}
}

3265 3266 3267 3268
#ifdef CONFIG_PCI_IOV
static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
						      int resno)
{
3269 3270
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
3271
	struct pci_dn *pdn = pci_get_pdn(pdev);
3272
	resource_size_t align;
3273

3274 3275 3276 3277 3278
	/*
	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
	 * SR-IOV. While from hardware perspective, the range mapped by M64
	 * BAR should be size aligned.
	 *
3279 3280 3281 3282 3283 3284 3285
	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
	 * powernv-specific hardware restriction is gone. But if just use the
	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
	 * in one segment of M64 #15, which introduces the PE conflict between
	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
	 * m64_segsize.
	 *
3286 3287
	 * This function returns the total IOV BAR size if M64 BAR is in
	 * Shared PE mode or just VF BAR size if not.
3288 3289
	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
	 * M64 segment size if IOV BAR size is less.
3290
	 */
3291
	align = pci_iov_resource_size(pdev, resno);
3292 3293
	if (!pdn->vfs_expanded)
		return align;
3294 3295
	if (pdn->m64_single_mode)
		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3296

3297
	return pdn->vfs_expanded * align;
3298 3299 3300
}
#endif /* CONFIG_PCI_IOV */

3301 3302 3303
/* Prevent enabling devices for which we couldn't properly
 * assign a PE
 */
3304
bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3305
{
3306 3307 3308
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dn *pdn;
3309

3310 3311 3312 3313 3314 3315
	/* The function is probably called while the PEs have
	 * not be created yet. For example, resource reassignment
	 * during PCI probe period. We just skip the check if
	 * PEs isn't ready.
	 */
	if (!phb->initialized)
3316
		return true;
3317

3318
	pdn = pci_get_pdn(dev);
3319
	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3320
		return false;
3321

3322
	return true;
3323 3324
}

3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
				       int num)
{
	struct pnv_ioda_pe *pe = container_of(table_group,
					      struct pnv_ioda_pe, table_group);
	struct pnv_phb *phb = pe->phb;
	unsigned int idx;
	long rc;

	pe_info(pe, "Removing DMA window #%d\n", num);
	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
			continue;

		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
						idx, 0, 0ul, 0ul, 0ul);
		if (rc != OPAL_SUCCESS) {
			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
				rc, idx);
			return rc;
		}

		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
	}

	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
	return OPAL_SUCCESS;
}

static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
{
	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
	struct iommu_table *tbl = pe->table_group.tables[0];
	int64_t rc;

	if (!weight)
		return;

	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
	if (rc != OPAL_SUCCESS)
		return;

3367
	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
	if (pe->table_group.group) {
		iommu_group_put(pe->table_group.group);
		WARN_ON(pe->table_group.group);
	}

	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
	iommu_free_table(tbl, "pnv");
}

static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
{
	struct iommu_table *tbl = pe->table_group.tables[0];
	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
#ifdef CONFIG_IOMMU_API
	int64_t rc;
#endif

	if (!weight)
		return;

#ifdef CONFIG_IOMMU_API
	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
	if (rc)
		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
#endif

	pnv_pci_ioda2_set_bypass(pe, false);
	if (pe->table_group.group) {
		iommu_group_put(pe->table_group.group);
		WARN_ON(pe->table_group.group);
	}

	pnv_pci_ioda2_table_free_pages(tbl);
	iommu_free_table(tbl, "pnv");
}

static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
				 unsigned short win,
				 unsigned int *map)
{
	struct pnv_phb *phb = pe->phb;
	int idx;
	int64_t rc;

	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
		if (map[idx] != pe->pe_number)
			continue;

		if (win == OPAL_M64_WINDOW_TYPE)
			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
					phb->ioda.reserved_pe_idx, win,
					idx / PNV_IODA1_M64_SEGS,
					idx % PNV_IODA1_M64_SEGS);
		else
			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
					phb->ioda.reserved_pe_idx, win, 0, idx);

		if (rc != OPAL_SUCCESS)
			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
				rc, win, idx);

		map[idx] = IODA_INVALID_PE;
	}
}

static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
{
	struct pnv_phb *phb = pe->phb;

	if (phb->type == PNV_PHB_IODA1) {
		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
				     phb->ioda.io_segmap);
		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
				     phb->ioda.m32_segmap);
		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
				     phb->ioda.m64_segmap);
	} else if (phb->type == PNV_PHB_IODA2) {
		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
				     phb->ioda.m32_segmap);
	}
}

static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
{
	struct pnv_phb *phb = pe->phb;
	struct pnv_ioda_pe *slave, *tmp;

	/* Release slave PEs in compound PE */
	if (pe->flags & PNV_IODA_PE_MASTER) {
		list_for_each_entry_safe(slave, tmp, &pe->slaves, list)
			pnv_ioda_release_pe(slave);
	}

	list_del(&pe->list);
	switch (phb->type) {
	case PNV_PHB_IODA1:
		pnv_pci_ioda1_release_pe_dma(pe);
		break;
	case PNV_PHB_IODA2:
		pnv_pci_ioda2_release_pe_dma(pe);
		break;
	default:
		WARN_ON(1);
	}

	pnv_ioda_release_pe_seg(pe);
	pnv_ioda_deconfigure_pe(pe->phb, pe);
	pnv_ioda_free_pe(pe);
}

static void pnv_pci_release_device(struct pci_dev *pdev)
{
	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dn *pdn = pci_get_pdn(pdev);
	struct pnv_ioda_pe *pe;

	if (pdev->is_virtfn)
		return;

	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
		return;

	pe = &phb->ioda.pe_array[pdn->pe_number];
	WARN_ON(--pe->device_count < 0);
	if (pe->device_count == 0)
		pnv_ioda_release_pe(pe);
}

3497
static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3498
{
3499 3500
	struct pnv_phb *phb = hose->private_data;

3501
	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3502 3503 3504
		       OPAL_ASSERT_RESET);
}

3505
static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3506 3507
	.dma_dev_setup		= pnv_pci_dma_dev_setup,
	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3508
#ifdef CONFIG_PCI_MSI
3509 3510
	.setup_msi_irqs		= pnv_setup_msi_irqs,
	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3511
#endif
3512
	.enable_device_hook	= pnv_pci_enable_device_hook,
3513
	.release_device		= pnv_pci_release_device,
3514
	.window_alignment	= pnv_pci_window_alignment,
3515
	.setup_bridge		= pnv_pci_setup_bridge,
3516 3517 3518 3519
	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
	.shutdown		= pnv_pci_ioda_shutdown,
3520 3521
};

3522 3523 3524 3525 3526 3527 3528 3529
static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
{
	dev_err_once(&npdev->dev,
			"%s operation unsupported for NVLink devices\n",
			__func__);
	return -EPERM;
}

3530
static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3531
	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3532
#ifdef CONFIG_PCI_MSI
3533 3534
	.setup_msi_irqs		= pnv_setup_msi_irqs,
	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3535
#endif
3536 3537 3538 3539 3540
	.enable_device_hook	= pnv_pci_enable_device_hook,
	.window_alignment	= pnv_pci_window_alignment,
	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
	.dma_set_mask		= pnv_npu_dma_set_mask,
	.shutdown		= pnv_pci_ioda_shutdown,
3541 3542
};

3543 3544 3545 3546
#ifdef CONFIG_CXL_BASE
const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
	.dma_dev_setup		= pnv_pci_dma_dev_setup,
	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3547 3548 3549 3550
#ifdef CONFIG_PCI_MSI
	.setup_msi_irqs		= pnv_cxl_cx4_setup_msi_irqs,
	.teardown_msi_irqs	= pnv_cxl_cx4_teardown_msi_irqs,
#endif
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
	.enable_device_hook	= pnv_cxl_enable_device_hook,
	.disable_device		= pnv_cxl_disable_device,
	.release_device		= pnv_pci_release_device,
	.window_alignment	= pnv_pci_window_alignment,
	.setup_bridge		= pnv_pci_setup_bridge,
	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
	.shutdown		= pnv_pci_ioda_shutdown,
};
#endif

3563 3564
static void __init pnv_pci_init_ioda_phb(struct device_node *np,
					 u64 hub_id, int ioda_type)
3565 3566 3567
{
	struct pci_controller *hose;
	struct pnv_phb *phb;
3568 3569
	unsigned long size, m64map_off, m32map_off, pemap_off;
	unsigned long iomap_off = 0, dma32map_off = 0;
3570
	struct resource r;
3571
	const __be64 *prop64;
3572
	const __be32 *prop32;
3573
	int len;
3574
	unsigned int segno;
3575 3576 3577 3578
	u64 phb_id;
	void *aux;
	long rc;

3579 3580 3581
	if (!of_device_is_available(np))
		return;

3582 3583
	pr_info("Initializing %s PHB (%s)\n",
		pnv_phb_names[ioda_type], of_node_full_name(np));
3584 3585 3586 3587 3588 3589 3590 3591 3592

	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
	if (!prop64) {
		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
		return;
	}
	phb_id = be64_to_cpup(prop64);
	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);

3593
	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3594 3595 3596 3597 3598

	/* Allocate PCI controller */
	phb->hose = hose = pcibios_alloc_controller(np);
	if (!phb->hose) {
		pr_err("  Can't allocate PCI controller for %s\n",
3599
		       np->full_name);
3600
		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3601 3602 3603 3604
		return;
	}

	spin_lock_init(&phb->lock);
3605 3606
	prop32 = of_get_property(np, "bus-range", &len);
	if (prop32 && len == 8) {
3607 3608
		hose->first_busno = be32_to_cpu(prop32[0]);
		hose->last_busno = be32_to_cpu(prop32[1]);
3609 3610 3611 3612 3613
	} else {
		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
		hose->first_busno = 0;
		hose->last_busno = 0xff;
	}
3614
	hose->private_data = phb;
3615
	phb->hub_id = hub_id;
3616
	phb->opal_id = phb_id;
G
Gavin Shan 已提交
3617
	phb->type = ioda_type;
3618
	mutex_init(&phb->ioda.pe_alloc_mutex);
3619

3620 3621 3622
	/* Detect specific models for error handling */
	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
		phb->model = PNV_PHB_MODEL_P7IOC;
3623
	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
G
Gavin Shan 已提交
3624
		phb->model = PNV_PHB_MODEL_PHB3;
3625 3626
	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
		phb->model = PNV_PHB_MODEL_NPU;
3627 3628 3629
	else
		phb->model = PNV_PHB_MODEL_UNKNOWN;

G
Gavin Shan 已提交
3630
	/* Parse 32-bit and IO ranges (if any) */
3631
	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3632

G
Gavin Shan 已提交
3633
	/* Get registers */
3634 3635 3636 3637 3638 3639
	if (!of_address_to_resource(np, 0, &r)) {
		phb->regs_phys = r.start;
		phb->regs = ioremap(r.start, resource_size(&r));
		if (phb->regs == NULL)
			pr_err("  Failed to map registers !\n");
	}
3640

3641
	/* Initialize more IODA stuff */
3642
	phb->ioda.total_pe_num = 1;
G
Gavin Shan 已提交
3643
	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3644
	if (prop32)
3645
		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3646 3647
	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
	if (prop32)
3648
		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3649

3650 3651 3652 3653
	/* Invalidate RID to PE# mapping */
	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;

3654 3655 3656
	/* Parse 64-bit MMIO range */
	pnv_ioda_parse_m64_window(phb);

3657
	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
G
Gavin Shan 已提交
3658
	/* FW Has already off top 64k of M32 space (MSI space) */
3659 3660
	phb->ioda.m32_size += 0x10000;

3661
	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3662
	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3663
	phb->ioda.io_size = hose->pci_io_size;
3664
	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3665 3666
	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */

3667 3668 3669 3670
	/* Calculate how many 32-bit TCE segments we have */
	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
				PNV_IODA1_DMA32_SEGSIZE;

3671
	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3672 3673
	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
			sizeof(unsigned long));
3674 3675
	m64map_off = size;
	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3676
	m32map_off = size;
3677
	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3678 3679
	if (phb->type == PNV_PHB_IODA1) {
		iomap_off = size;
3680
		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3681 3682 3683
		dma32map_off = size;
		size += phb->ioda.dma32_count *
			sizeof(phb->ioda.dma32_segmap[0]);
3684
	}
3685
	pemap_off = size;
3686
	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3687
	aux = memblock_virt_alloc(size, 0);
3688
	phb->ioda.pe_alloc = aux;
3689
	phb->ioda.m64_segmap = aux + m64map_off;
3690
	phb->ioda.m32_segmap = aux + m32map_off;
3691 3692
	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3693
		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3694
	}
3695
	if (phb->type == PNV_PHB_IODA1) {
3696
		phb->ioda.io_segmap = aux + iomap_off;
3697 3698
		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3699 3700 3701 3702

		phb->ioda.dma32_segmap = aux + dma32map_off;
		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3703
	}
3704
	phb->ioda.pe_array = aux + pemap_off;
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720

	/*
	 * Choose PE number for root bus, which shouldn't have
	 * M64 resources consumed by its child devices. To pick
	 * the PE number adjacent to the reserved one if possible.
	 */
	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
	if (phb->ioda.reserved_pe_idx == 0) {
		phb->ioda.root_pe_idx = 1;
		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
	} else {
		phb->ioda.root_pe_idx = IODA_INVALID_PE;
	}
3721 3722

	INIT_LIST_HEAD(&phb->ioda.pe_list);
3723
	mutex_init(&phb->ioda.pe_list_mutex);
3724 3725

	/* Calculate how many 32-bit TCE segments we have */
3726
	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3727
				PNV_IODA1_DMA32_SEGSIZE;
3728

G
Gavin Shan 已提交
3729
#if 0 /* We should really do that ... */
3730 3731 3732 3733 3734 3735 3736 3737
	rc = opal_pci_set_phb_mem_window(opal->phb_id,
					 window_type,
					 window_num,
					 starting_real_address,
					 starting_pci_address,
					 segment_size);
#endif

3738
	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3739
		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3740 3741 3742 3743 3744 3745 3746 3747
		phb->ioda.m32_size, phb->ioda.m32_segsize);
	if (phb->ioda.m64_size)
		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
			phb->ioda.m64_size, phb->ioda.m64_segsize);
	if (phb->ioda.io_size)
		pr_info("                  IO: 0x%x [segment=0x%x]\n",
			phb->ioda.io_size, phb->ioda.io_segsize);

3748 3749

	phb->hose->ops = &pnv_pci_ops;
G
Gavin Shan 已提交
3750 3751 3752
	phb->get_pe_state = pnv_ioda_get_pe_state;
	phb->freeze_pe = pnv_ioda_freeze_pe;
	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3753 3754 3755 3756

	/* Setup MSI support */
	pnv_pci_init_ioda_msis(phb);

3757 3758 3759 3760 3761 3762
	/*
	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
	 * to let the PCI core do resource assignment. It's supposed
	 * that the PCI core will do correct I/O and MMIO alignment
	 * for the P2P bridge bars so that each PCI bus (excluding
	 * the child P2P bridges) can form individual PE.
3763
	 */
3764
	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3765

3766
	if (phb->type == PNV_PHB_NPU) {
3767
		hose->controller_ops = pnv_npu_ioda_controller_ops;
3768 3769
	} else {
		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3770
		hose->controller_ops = pnv_pci_ioda_controller_ops;
3771
	}
3772

3773 3774
#ifdef CONFIG_PCI_IOV
	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3775
	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3776 3777
#endif

3778
	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3779 3780

	/* Reset IODA tables to a clean state */
3781
	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3782
	if (rc)
3783
		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3784

3785 3786
	/*
	 * If we're running in kdump kernel, the previous kernel never
3787 3788
	 * shutdown PCI devices correctly. We already got IODA table
	 * cleaned out. So we have to issue PHB reset to stop all PCI
3789
	 * transactions from previous kernel.
3790 3791 3792
	 */
	if (is_kdump_kernel()) {
		pr_info("  Issue PHB reset ...\n");
3793 3794
		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3795
	}
3796

3797 3798
	/* Remove M64 resource if we can't configure it successfully */
	if (!phb->init_m64 || phb->init_m64(phb))
3799
		hose->mem_resources[1].flags = 0;
G
Gavin Shan 已提交
3800 3801
}

3802
void __init pnv_pci_init_ioda2_phb(struct device_node *np)
G
Gavin Shan 已提交
3803
{
3804
	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3805 3806
}

3807 3808 3809 3810 3811
void __init pnv_pci_init_npu_phb(struct device_node *np)
{
	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
}

3812 3813 3814
void __init pnv_pci_init_ioda_hub(struct device_node *np)
{
	struct device_node *phbn;
3815
	const __be64 *prop64;
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
	u64 hub_id;

	pr_info("Probing IODA IO-Hub %s\n", np->full_name);

	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
	if (!prop64) {
		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
		return;
	}
	hub_id = be64_to_cpup(prop64);
	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);

	/* Count child PHBs */
	for_each_child_of_node(np, phbn) {
		/* Look for IODA1 PHBs */
		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3832
			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3833 3834
	}
}