kvm-s390.c 83.0 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <linux/bitmap.h>
30
#include <asm/asm-offsets.h>
31
#include <asm/lowcore.h>
32
#include <asm/etr.h>
33
#include <asm/pgtable.h>
34
#include <asm/gmap.h>
35
#include <asm/nmi.h>
36
#include <asm/switch_to.h>
37
#include <asm/isc.h>
38
#include <asm/sclp.h>
39 40
#include <asm/cpacf.h>
#include <asm/etr.h>
41
#include "kvm-s390.h"
42 43
#include "gaccess.h"

44 45 46 47
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

48 49
#define CREATE_TRACE_POINTS
#include "trace.h"
50
#include "trace-s390.h"
51

52
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
53 54 55
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
56

57 58 59 60
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
61
	{ "exit_null", VCPU_STAT(exit_null) },
62 63 64 65
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
66 67 68
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
69
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
70
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
71
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
72
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
73
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
74
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
75
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
76 77
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
78
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
79
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
80 81 82 83 84 85 86
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
87
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
88 89 90 91 92
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
93
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
94 95
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
96
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
97 98
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
99
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
100
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
101
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
102
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
103
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
104
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
105 106
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
107
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
108 109
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
110
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
111 112 113
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
114 115 116
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
117
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
118
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
119
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
120 121 122
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
123 124 125
	{ NULL }
};

126
/* upper facilities limit for kvm */
127 128 129
unsigned long kvm_s390_fac_list_mask[16] = {
	0xffe6000000000000UL,
	0x005e000000000000UL,
130
};
131

132
unsigned long kvm_s390_fac_list_mask_size(void)
133
{
134 135
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
136 137
}

138 139
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
140 141
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
142

143
static struct gmap_notifier gmap_notifier;
144
debug_info_t *kvm_s390_dbf;
145

146
/* Section: not file related */
147
int kvm_arch_hardware_enable(void)
148 149
{
	/* every s390 is virtualization enabled ;-) */
150
	return 0;
151 152
}

153 154
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
173 174
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
175 176 177 178 179 180 181 182 183
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

184 185
int kvm_arch_hardware_setup(void)
{
186 187
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
188 189
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
190 191 192 193 194
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
195
	gmap_unregister_ipte_notifier(&gmap_notifier);
196 197
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
198 199
}

200 201 202 203 204
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
	int cc = 3; /* subfunction not available */

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

221 222
static void kvm_s390_cpu_feat_init(void)
{
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
		etr_ptff(kvm_s390_available_subfunc.ptff, ETR_PTFF_QAF);

	if (test_facility(17)) { /* MSA */
		__cpacf_query(CPACF_KMAC, kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, kvm_s390_available_subfunc.klmd);
	}
	if (test_facility(76)) /* MSA3 */
		__cpacf_query(CPACF_PCKMO, kvm_s390_available_subfunc.pckmo);
	if (test_facility(77)) { /* MSA4 */
		__cpacf_query(CPACF_KMCTR, kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, kvm_s390_available_subfunc.pcc);
	}
	if (test_facility(57)) /* MSA5 */
		__cpacf_query(CPACF_PPNO, kvm_s390_available_subfunc.ppno);

251 252 253 254
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
}

255 256
int kvm_arch_init(void *opaque)
{
257 258 259 260 261 262 263 264 265
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

266 267
	kvm_s390_cpu_feat_init();

268 269
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
270 271
}

272 273 274 275 276
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

277 278 279 280 281 282 283 284 285
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

286
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
287
{
288 289
	int r;

290
	switch (ext) {
291
	case KVM_CAP_S390_PSW:
292
	case KVM_CAP_S390_GMAP:
293
	case KVM_CAP_SYNC_MMU:
294 295 296
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
297
	case KVM_CAP_ASYNC_PF:
298
	case KVM_CAP_SYNC_REGS:
299
	case KVM_CAP_ONE_REG:
300
	case KVM_CAP_ENABLE_CAP:
301
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
302
	case KVM_CAP_IOEVENTFD:
303
	case KVM_CAP_DEVICE_CTRL:
304
	case KVM_CAP_ENABLE_CAP_VM:
305
	case KVM_CAP_S390_IRQCHIP:
306
	case KVM_CAP_VM_ATTRIBUTES:
307
	case KVM_CAP_MP_STATE:
308
	case KVM_CAP_S390_INJECT_IRQ:
309
	case KVM_CAP_S390_USER_SIGP:
310
	case KVM_CAP_S390_USER_STSI:
311
	case KVM_CAP_S390_SKEYS:
312
	case KVM_CAP_S390_IRQ_STATE:
313 314
		r = 1;
		break;
315 316 317
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
318 319
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
320 321 322
		r = KVM_S390_BSCA_CPU_SLOTS;
		if (sclp.has_esca && sclp.has_64bscao)
			r = KVM_S390_ESCA_CPU_SLOTS;
323
		break;
324 325 326
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
327
	case KVM_CAP_S390_COW:
328
		r = MACHINE_HAS_ESOP;
329
		break;
330 331 332
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
333 334 335
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
336
	default:
337
		r = 0;
338
	}
339
	return r;
340 341
}

342 343 344 345 346 347 348 349 350 351 352 353
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

354
		if (test_and_clear_guest_dirty(gmap->mm, address))
355
			mark_page_dirty(kvm, cur_gfn);
356 357
		if (fatal_signal_pending(current))
			return;
358
		cond_resched();
359 360 361
	}
}

362
/* Section: vm related */
363 364
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

365 366 367 368 369 370
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
371 372
	int r;
	unsigned long n;
373
	struct kvm_memslots *slots;
374 375 376 377 378 379 380 381 382
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

383 384
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
403 404
}

405 406 407 408 409 410 411 412
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
413
	case KVM_CAP_S390_IRQCHIP:
414
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
415 416 417
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
418
	case KVM_CAP_S390_USER_SIGP:
419
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
420 421 422
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
423
	case KVM_CAP_S390_VECTOR_REGISTERS:
424 425 426 427
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
428 429
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
430 431 432
			r = 0;
		} else
			r = -EINVAL;
433
		mutex_unlock(&kvm->lock);
434 435
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
436
		break;
437 438 439 440 441 442
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (test_facility(64)) {
443 444
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
445 446 447 448 449 450
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
451
	case KVM_CAP_S390_USER_STSI:
452
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
453 454 455
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
456 457 458 459 460 461 462
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

463 464 465 466 467 468 469
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
470
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
471 472
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
473 474 475 476 477 478 479 480 481 482
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
483 484 485 486 487
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
488
		ret = -ENXIO;
489
		if (!sclp.has_cmma)
490 491
			break;

492
		ret = -EBUSY;
493
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
494 495 496 497 498 499 500 501
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
502 503 504
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
505 506 507 508
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

509
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
510 511
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
512
		s390_reset_cmma(kvm->arch.gmap->mm);
513 514 515 516
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
517 518 519 520 521 522 523 524 525
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

526 527
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
528 529
			return -E2BIG;

530 531 532 533 534 535 536
		if (!new_limit)
			return -EINVAL;

		/* gmap_alloc takes last usable address */
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
553 554 555
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
556 557
		break;
	}
558 559 560 561 562 563 564
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

565 566 567 568 569 570 571
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

572
	if (!test_kvm_facility(kvm, 76))
573 574 575 576 577 578 579 580 581
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
582
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
583 584 585 586 587 588
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
589
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
590 591 592 593 594
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
595
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
596 597 598 599 600
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
601
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
602 603 604 605 606 607 608 609 610 611 612 613 614 615
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

616 617 618 619 620 621 622 623 624 625
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
626
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
627 628 629 630 631 632

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
633
	u64 gtod;
634 635 636 637

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

638
	kvm_s390_set_tod_clock(kvm, gtod);
639
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
671
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
672 673 674 675 676 677

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
678
	u64 gtod;
679

680
	gtod = kvm_s390_get_tod_clock_fast(kvm);
681 682
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
683
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

709 710 711
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
712
	u16 lowest_ibc, unblocked_ibc;
713 714 715 716 717 718 719 720 721 722 723 724 725 726
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
727
		kvm->arch.model.cpuid = proc->cpuid;
728 729 730 731 732 733 734 735 736 737
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
		if (lowest_ibc) {
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
738
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
739 740 741 742 743 744 745 746 747
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

771 772 773 774 775 776 777 778 779 780
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

781 782 783 784 785 786 787 788
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
789 790 791
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
792 793 794
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
795 796 797 798 799 800 801 802 803 804 805 806 807 808
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
809
	proc->cpuid = kvm->arch.model.cpuid;
810
	proc->ibc = kvm->arch.model.ibc;
811 812
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
831
	mach->ibc = sclp.ibc;
832
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
833
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
834
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
835
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
836 837 838 839 840 841 842
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
887 888 889 890 891 892 893 894 895 896 897
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
898 899 900 901 902 903
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
904 905 906 907 908 909
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
910 911 912 913
	}
	return ret;
}

914 915 916 917 918
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
919
	case KVM_S390_VM_MEM_CTRL:
920
		ret = kvm_s390_set_mem_control(kvm, attr);
921
		break;
922 923 924
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
925 926 927
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
928 929 930
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
931 932 933 934 935 936 937 938 939 940
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
941 942 943 944 945 946
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
947 948 949
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
950 951 952
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
953 954 955 956 957 958
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
959 960 961 962 963 964 965
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
966 967 968 969
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
970 971
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
972
		case KVM_S390_VM_MEM_LIMIT_SIZE:
973 974 975 976 977 978 979
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
980 981 982 983 984 985 986 987 988 989 990
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
991 992 993 994
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
995 996
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
997
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
998 999
			ret = 0;
			break;
1000 1001
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1002 1003 1004 1005 1006
		default:
			ret = -ENXIO;
			break;
		}
		break;
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1020 1021 1022 1023 1024 1025 1026 1027
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

1053
	down_read(&current->mm->mmap_sem);
1054 1055 1056 1057
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1058
			break;
1059 1060 1061 1062 1063
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
1064
			break;
1065 1066 1067
		}
		keys[i] = curkey;
	}
1068 1069 1070 1071 1072 1073 1074 1075
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
	}
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1109 1110 1111
	r = s390_enable_skey();
	if (r)
		goto out;
1112

1113
	down_read(&current->mm->mmap_sem);
1114 1115 1116 1117
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1118
			break;
1119 1120 1121 1122 1123
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1124
			break;
1125 1126 1127 1128 1129
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
1130
			break;
1131
	}
1132
	up_read(&current->mm->mmap_sem);
1133 1134 1135 1136 1137
out:
	kvfree(keys);
	return r;
}

1138 1139 1140 1141 1142
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1143
	struct kvm_device_attr attr;
1144 1145 1146
	int r;

	switch (ioctl) {
1147 1148 1149 1150 1151 1152 1153 1154 1155
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1156 1157 1158 1159 1160 1161 1162 1163
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1164 1165 1166 1167 1168 1169 1170
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1171
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1172 1173 1174
		}
		break;
	}
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1216
	default:
1217
		r = -ENOTTY;
1218 1219 1220 1221 1222
	}

	return r;
}

1223 1224 1225
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1226
	u32 cc = 0;
1227

1228
	memset(config, 0, 128);
1229 1230 1231 1232
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1233
		"0: ipm %0\n"
1234
		"srl %0,28\n"
1235 1236 1237
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1250
	if (test_facility(12)) {
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1272
static u64 kvm_s390_get_initial_cpuid(void)
1273
{
1274 1275 1276 1277 1278
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1279 1280
}

1281
static void kvm_s390_crypto_init(struct kvm *kvm)
1282
{
1283
	if (!test_kvm_facility(kvm, 76))
1284
		return;
1285

1286
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1287
	kvm_s390_set_crycb_format(kvm);
1288

1289 1290 1291 1292 1293 1294 1295
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1296 1297
}

1298 1299 1300
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1301
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1302 1303 1304 1305 1306
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1307
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1308
{
1309
	gfp_t alloc_flags = GFP_KERNEL;
1310
	int i, rc;
1311
	char debug_name[16];
1312
	static unsigned long sca_offset;
1313

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1325 1326
	rc = s390_enable_sie();
	if (rc)
1327
		goto out_err;
1328

1329 1330
	rc = -ENOMEM;

J
Janosch Frank 已提交
1331 1332
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1333
	kvm->arch.use_esca = 0; /* start with basic SCA */
1334 1335
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1336
	rwlock_init(&kvm->arch.sca_lock);
1337
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1338
	if (!kvm->arch.sca)
1339
		goto out_err;
1340
	spin_lock(&kvm_lock);
1341
	sca_offset += 16;
1342
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1343
		sca_offset = 0;
1344 1345
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1346
	spin_unlock(&kvm_lock);
1347 1348 1349

	sprintf(debug_name, "kvm-%u", current->pid);

1350
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1351
	if (!kvm->arch.dbf)
1352
		goto out_err;
1353

1354 1355 1356
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1357
		goto out_err;
1358

1359
	/* Populate the facility mask initially. */
1360
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1361
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1362 1363
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1364
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1365
		else
1366
			kvm->arch.model.fac_mask[i] = 0UL;
1367 1368
	}

1369
	/* Populate the facility list initially. */
1370 1371
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1372 1373
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1374 1375 1376
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1377
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1378
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1379

1380
	kvm_s390_crypto_init(kvm);
1381

1382
	spin_lock_init(&kvm->arch.float_int.lock);
1383 1384
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1385
	init_waitqueue_head(&kvm->arch.ipte_wq);
1386
	mutex_init(&kvm->arch.ipte_mutex);
1387

1388
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1389
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1390

1391 1392
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1393
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1394
	} else {
1395 1396 1397 1398 1399
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1400
		kvm->arch.gmap = gmap_alloc(current->mm, kvm->arch.mem_limit - 1);
1401
		if (!kvm->arch.gmap)
1402
			goto out_err;
1403
		kvm->arch.gmap->private = kvm;
1404
		kvm->arch.gmap->pfault_enabled = 0;
1405
	}
1406 1407

	kvm->arch.css_support = 0;
1408
	kvm->arch.use_irqchip = 0;
1409
	kvm->arch.epoch = 0;
1410

1411
	spin_lock_init(&kvm->arch.start_stop_lock);
1412
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1413

1414
	return 0;
1415
out_err:
1416
	free_page((unsigned long)kvm->arch.sie_page2);
1417
	debug_unregister(kvm->arch.dbf);
1418
	sca_dispose(kvm);
1419
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1420
	return rc;
1421 1422
}

1423 1424 1425
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1426
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1427
	kvm_s390_clear_local_irqs(vcpu);
1428
	kvm_clear_async_pf_completion_queue(vcpu);
1429
	if (!kvm_is_ucontrol(vcpu->kvm))
1430
		sca_del_vcpu(vcpu);
1431 1432 1433 1434

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1435
	if (vcpu->kvm->arch.use_cmma)
1436
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1437
	free_page((unsigned long)(vcpu->arch.sie_block));
1438

1439
	kvm_vcpu_uninit(vcpu);
1440
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1441 1442 1443 1444 1445
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1446
	struct kvm_vcpu *vcpu;
1447

1448 1449 1450 1451 1452 1453 1454 1455 1456
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1457 1458
}

1459 1460
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1461
	kvm_free_vcpus(kvm);
1462
	sca_dispose(kvm);
1463
	debug_unregister(kvm->arch.dbf);
1464
	free_page((unsigned long)kvm->arch.sie_page2);
1465 1466
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1467
	kvm_s390_destroy_adapters(kvm);
1468
	kvm_s390_clear_float_irqs(kvm);
1469
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1470 1471 1472
}

/* Section: vcpu related */
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1483 1484
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1485
	read_lock(&vcpu->kvm->arch.sca_lock);
1486 1487
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1488

1489
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1490
		sca->cpu[vcpu->vcpu_id].sda = 0;
1491 1492 1493 1494
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1495
		sca->cpu[vcpu->vcpu_id].sda = 0;
1496
	}
1497
	read_unlock(&vcpu->kvm->arch.sca_lock);
1498 1499
}

1500
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1501
{
1502 1503 1504
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1505

1506
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1507 1508
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1509
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1510
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1511
	} else {
1512
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1513

1514
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1515 1516
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1517
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1518
	}
1519
	read_unlock(&vcpu->kvm->arch.sca_lock);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1573 1574
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1575
	return 0;
1576 1577 1578 1579
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1580 1581 1582 1583
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
1584
	if (!sclp.has_esca || !sclp.has_64bscao)
1585 1586 1587 1588 1589 1590 1591
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1592 1593
}

1594 1595
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1596 1597
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1598 1599
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1600
				    KVM_SYNC_ACRS |
1601 1602 1603
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1604 1605
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1606 1607 1608 1609
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1610
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1611 1612
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1613 1614 1615 1616

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1617 1618 1619
	return 0;
}

1620 1621 1622 1623
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1624
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1625
	vcpu->arch.cputm_start = get_tod_clock_fast();
1626
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1627 1628 1629 1630 1631 1632
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1633
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1634 1635
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1636
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1669 1670 1671
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1672
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1673
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1674 1675
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1676
	vcpu->arch.sie_block->cputm = cputm;
1677
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1678
	preempt_enable();
1679 1680
}

1681
/* update and get the cpu timer - can also be called from other VCPU threads */
1682 1683
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1684
	unsigned int seq;
1685 1686 1687 1688 1689
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1704
	return value;
1705 1706
}

1707 1708
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1709
	/* Save host register state */
1710
	save_fpu_regs();
1711 1712
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1713

1714 1715 1716 1717
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1718
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1719
	if (test_fp_ctl(current->thread.fpu.fpc))
1720
		/* User space provided an invalid FPC, let's clear it */
1721 1722 1723
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1724
	restore_access_regs(vcpu->run->s.regs.acrs);
1725
	gmap_enable(vcpu->arch.gmap);
1726
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1727
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1728
		__start_cpu_timer_accounting(vcpu);
1729
	vcpu->cpu = cpu;
1730 1731 1732 1733
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1734
	vcpu->cpu = -1;
1735
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1736
		__stop_cpu_timer_accounting(vcpu);
1737
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1738
	gmap_disable(vcpu->arch.gmap);
1739

1740
	/* Save guest register state */
1741
	save_fpu_regs();
1742
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1743

1744 1745 1746
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1747 1748

	save_access_regs(vcpu->run->s.regs.acrs);
1749 1750 1751 1752 1753 1754 1755 1756
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1757
	kvm_s390_set_prefix(vcpu, 0);
1758
	kvm_s390_set_cpu_timer(vcpu, 0);
1759 1760 1761 1762 1763
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1764 1765 1766
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1767
	vcpu->arch.sie_block->gbea = 1;
1768
	vcpu->arch.sie_block->pp = 0;
1769 1770
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1771 1772
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1773
	kvm_s390_clear_local_irqs(vcpu);
1774 1775
}

1776
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1777
{
1778
	mutex_lock(&vcpu->kvm->lock);
1779
	preempt_disable();
1780
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1781
	preempt_enable();
1782
	mutex_unlock(&vcpu->kvm->lock);
1783
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1784
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1785
		sca_add_vcpu(vcpu);
1786 1787
	}

1788 1789
}

1790 1791
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1792
	if (!test_kvm_facility(vcpu->kvm, 76))
1793 1794
		return;

1795 1796 1797 1798 1799 1800 1801
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1802 1803 1804
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1822 1823 1824 1825 1826
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1827
	if (test_kvm_facility(vcpu->kvm, 7))
1828
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1829 1830
}

1831 1832
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1833
	int rc = 0;
1834

1835 1836
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1837 1838
						    CPUSTAT_STOPPED);

1839
	if (test_kvm_facility(vcpu->kvm, 78))
1840
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1841
	else if (test_kvm_facility(vcpu->kvm, 8))
1842
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1843

1844 1845
	kvm_s390_vcpu_setup_model(vcpu);

1846 1847 1848
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
		vcpu->arch.sie_block->ecb |= 0x02;
1849 1850
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1851
	if (test_kvm_facility(vcpu->kvm, 73))
1852 1853
		vcpu->arch.sie_block->ecb |= 0x10;

1854
	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1855
		vcpu->arch.sie_block->ecb2 |= 0x08;
1856 1857 1858
	vcpu->arch.sie_block->eca = 0x1002000U;
	if (sclp.has_cei)
		vcpu->arch.sie_block->eca |= 0x80000000U;
1859 1860
	if (sclp.has_ib)
		vcpu->arch.sie_block->eca |= 0x40000000U;
1861
	if (sclp.has_siif)
1862
		vcpu->arch.sie_block->eca |= 1;
1863
	if (sclp.has_sigpif)
1864
		vcpu->arch.sie_block->eca |= 0x10000000U;
1865 1866
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1867
	if (test_kvm_facility(vcpu->kvm, 129)) {
1868 1869 1870
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1871
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1872
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
J
Janosch Frank 已提交
1873 1874
	if (test_kvm_facility(vcpu->kvm, 74))
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1875

1876
	if (vcpu->kvm->arch.use_cmma) {
1877 1878 1879
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1880
	}
1881
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1882
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1883

1884 1885
	kvm_s390_vcpu_crypto_setup(vcpu);

1886
	return rc;
1887 1888 1889 1890 1891
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1892
	struct kvm_vcpu *vcpu;
1893
	struct sie_page *sie_page;
1894 1895
	int rc = -EINVAL;

1896
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1897 1898 1899
		goto out;

	rc = -ENOMEM;
1900

1901
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1902
	if (!vcpu)
1903
		goto out;
1904

1905 1906
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1907 1908
		goto out_free_cpu;

1909 1910 1911
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1912 1913 1914 1915
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

1916
	vcpu->arch.sie_block->icpua = id;
1917 1918
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1919
	vcpu->arch.local_int.wq = &vcpu->wq;
1920
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1921
	seqcount_init(&vcpu->arch.cputm_seqcount);
1922

1923 1924
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1925
		goto out_free_sie_block;
1926
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1927
		 vcpu->arch.sie_block);
1928
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1929 1930

	return vcpu;
1931 1932
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1933
out_free_cpu:
1934
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1935
out:
1936 1937 1938 1939 1940
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1941
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1942 1943
}

1944
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1945
{
1946
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1947
	exit_sie(vcpu);
1948 1949
}

1950
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1951
{
1952
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1953 1954
}

1955 1956
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1957
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1958
	exit_sie(vcpu);
1959 1960 1961 1962
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1963
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1964 1965
}

1966 1967 1968 1969 1970 1971
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1972
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1973 1974 1975 1976
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1977 1978
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1979
{
1980 1981
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1982 1983
}

1984 1985 1986 1987 1988 1989 1990 1991
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1992
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1993
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1994
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1995 1996 1997 1998
		}
	}
}

1999 2000 2001 2002 2003 2004 2005
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2006 2007 2008 2009 2010 2011
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2012 2013 2014 2015 2016 2017 2018 2019
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2020
	case KVM_REG_S390_CPU_TIMER:
2021
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2022 2023 2024 2025 2026 2027
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2040 2041 2042 2043
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2044 2045 2046 2047
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2059
	__u64 val;
2060 2061

	switch (reg->id) {
2062 2063 2064 2065 2066 2067 2068 2069
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2070
	case KVM_REG_S390_CPU_TIMER:
2071 2072 2073
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2074 2075 2076 2077 2078
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2079 2080 2081
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2082 2083
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2084 2085 2086 2087 2088 2089 2090 2091 2092
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2093 2094 2095 2096
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2097 2098 2099 2100
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2101 2102 2103 2104 2105 2106
	default:
		break;
	}

	return r;
}
2107

2108 2109 2110 2111 2112 2113 2114 2115
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2116
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2117 2118 2119 2120 2121
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2122
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2123 2124 2125 2126 2127 2128
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2129
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2130
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2131
	restore_access_regs(vcpu->run->s.regs.acrs);
2132 2133 2134 2135 2136 2137
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2138
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2139 2140 2141 2142 2143 2144
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2145 2146
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
2147 2148
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2149 2150 2151 2152 2153
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2154 2155 2156 2157 2158
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2159 2160 2161 2162 2163 2164 2165
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
2166 2167 2168 2169 2170 2171 2172
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2173
	if (!is_vcpu_stopped(vcpu))
2174
		rc = -EBUSY;
2175 2176 2177 2178
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2179 2180 2181 2182 2183 2184 2185 2186 2187
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2188 2189 2190 2191
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2192 2193
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2194
{
2195 2196 2197 2198 2199
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2200
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2201
		return -EINVAL;
2202 2203
	if (!sclp.has_gpere)
		return -EINVAL;
2204 2205 2206 2207

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2208
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2209 2210 2211 2212

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2213
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2214 2215 2216 2217 2218 2219
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2220
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2221 2222 2223
	}

	return rc;
2224 2225
}

2226 2227 2228
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2229 2230 2231
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2232 2233 2234 2235 2236
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2257 2258
}

2259 2260 2261 2262 2263
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2264 2265
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2266
retry:
2267
	kvm_s390_vcpu_request_handled(vcpu);
2268 2269
	if (!vcpu->requests)
		return 0;
2270 2271 2272 2273 2274 2275 2276
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2277
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2278 2279
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
2280
				      kvm_s390_get_prefix(vcpu),
2281 2282 2283
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
2284
		goto retry;
2285
	}
2286

2287 2288 2289 2290 2291
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2292 2293 2294
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2295
			atomic_or(CPUSTAT_IBS,
2296 2297 2298
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2299
	}
2300 2301 2302 2303

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2304
			atomic_andnot(CPUSTAT_IBS,
2305 2306 2307 2308 2309
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2310 2311 2312
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2313 2314 2315
	return 0;
}

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2343
{
2344 2345
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2346 2347
}

2348 2349 2350 2351
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2352
	struct kvm_s390_irq irq;
2353 2354

	if (start_token) {
2355 2356 2357
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2358 2359
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2360
		inti.parm64 = token;
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2407
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2408 2409 2410 2411 2412 2413
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2414 2415 2416
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2417 2418 2419 2420 2421 2422
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2423
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2424
{
2425
	int rc, cpuflags;
2426

2427 2428 2429 2430 2431 2432 2433
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2434 2435
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2436 2437 2438 2439

	if (need_resched())
		schedule();

2440
	if (test_cpu_flag(CIF_MCCK_PENDING))
2441 2442
		s390_handle_mcck();

2443 2444 2445 2446 2447
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2448

2449 2450 2451 2452
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2453 2454 2455 2456 2457
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2458
	vcpu->arch.sie_block->icptcode = 0;
2459 2460 2461
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2462

2463 2464 2465
	return 0;
}

2466 2467
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2468 2469 2470 2471
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2485
	rc = read_guest_instr(vcpu, &opcode, 1);
2486
	ilen = insn_length(opcode);
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2497 2498 2499
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2500 2501
}

2502 2503
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2504 2505 2506 2507
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2508 2509 2510
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2511 2512
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2527 2528 2529 2530 2531
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2532
		return -EREMOTE;
2533
	} else if (current->thread.gmap_pfault) {
2534
		trace_kvm_s390_major_guest_pfault(vcpu);
2535
		current->thread.gmap_pfault = 0;
2536 2537 2538
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2539
	}
2540
	return vcpu_post_run_fault_in_sie(vcpu);
2541 2542 2543 2544 2545 2546
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2547 2548 2549 2550 2551 2552
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2553 2554 2555 2556
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2557

2558
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2559 2560 2561 2562
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2563 2564
		local_irq_disable();
		__kvm_guest_enter();
2565
		__disable_cpu_timer_accounting(vcpu);
2566
		local_irq_enable();
2567 2568
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2569
		local_irq_disable();
2570
		__enable_cpu_timer_accounting(vcpu);
2571 2572
		__kvm_guest_exit();
		local_irq_enable();
2573
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2574 2575

		rc = vcpu_post_run(vcpu, exit_reason);
2576
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2577

2578
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2579
	return rc;
2580 2581
}

2582 2583 2584 2585 2586 2587 2588 2589
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2590 2591
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2592 2593
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2594
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2595 2596 2597 2598 2599 2600 2601 2602 2603
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2604 2605
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2616
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2617 2618 2619 2620 2621 2622 2623 2624 2625
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2626 2627
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2628
	int rc;
2629 2630
	sigset_t sigsaved;

2631 2632 2633 2634 2635
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2636 2637 2638
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2639 2640 2641
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2642
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2643 2644 2645
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2646

2647
	sync_regs(vcpu, kvm_run);
2648
	enable_cpu_timer_accounting(vcpu);
2649

2650
	might_fault();
2651
	rc = __vcpu_run(vcpu);
2652

2653 2654
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2655
		rc = -EINTR;
2656
	}
2657

2658 2659 2660 2661 2662
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2663
	if (rc == -EREMOTE) {
2664
		/* userspace support is needed, kvm_run has been prepared */
2665 2666
		rc = 0;
	}
2667

2668
	disable_cpu_timer_accounting(vcpu);
2669
	store_regs(vcpu, kvm_run);
2670

2671 2672 2673 2674
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2675
	return rc;
2676 2677 2678 2679 2680 2681 2682 2683
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2684
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2685
{
2686
	unsigned char archmode = 1;
2687
	freg_t fprs[NUM_FPRS];
2688
	unsigned int px;
2689
	u64 clkcomp, cputm;
2690
	int rc;
2691

2692
	px = kvm_s390_get_prefix(vcpu);
2693 2694
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2695
			return -EFAULT;
2696
		gpa = 0;
2697 2698
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2699
			return -EFAULT;
2700 2701 2702
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2703 2704 2705

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2706
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2707 2708 2709 2710
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2711
				     vcpu->run->s.regs.fprs, 128);
2712
	}
2713
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2714
			      vcpu->run->s.regs.gprs, 128);
2715
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2716
			      &vcpu->arch.sie_block->gpsw, 16);
2717
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2718
			      &px, 4);
2719
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2720
			      &vcpu->run->s.regs.fpc, 4);
2721
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2722
			      &vcpu->arch.sie_block->todpr, 4);
2723
	cputm = kvm_s390_get_cpu_timer(vcpu);
2724
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2725
			      &cputm, 8);
2726
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2727
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2728
			      &clkcomp, 8);
2729
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2730
			      &vcpu->run->s.regs.acrs, 64);
2731
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2732 2733
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2734 2735
}

2736 2737 2738 2739 2740 2741 2742
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2743
	save_fpu_regs();
2744
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2745 2746 2747 2748 2749
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2771 2772 2773 2774 2775
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2776
	 */
2777
	save_fpu_regs();
E
Eric Farman 已提交
2778 2779 2780 2781

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2782 2783 2784
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2785
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
2800 2801
	if (!sclp.has_ibs)
		return;
2802
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2803
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2804 2805
}

2806 2807
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2808 2809 2810 2811 2812
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2813
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2814
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2815
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2835
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2836 2837 2838 2839
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2840
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2841
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2842
	return;
2843 2844 2845 2846
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2847 2848 2849 2850 2851 2852
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2853
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2854
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2855
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2856 2857
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2858
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2859
	kvm_s390_clear_stop_irq(vcpu);
2860

2861
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2879
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2880
	return;
2881 2882
}

2883 2884 2885 2886 2887 2888 2889 2890 2891
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2892 2893 2894
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2895
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2896 2897 2898 2899
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2900 2901 2902 2903 2904 2905 2906
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2933 2934
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2945 2946
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2968 2969 2970 2971 2972
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2973
	int idx;
2974
	long r;
2975

2976
	switch (ioctl) {
2977 2978 2979 2980 2981 2982 2983 2984 2985
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2986
	case KVM_S390_INTERRUPT: {
2987
		struct kvm_s390_interrupt s390int;
2988
		struct kvm_s390_irq s390irq;
2989

2990
		r = -EFAULT;
2991
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2992
			break;
2993 2994 2995
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2996
		break;
2997
	}
2998
	case KVM_S390_STORE_STATUS:
2999
		idx = srcu_read_lock(&vcpu->kvm->srcu);
3000
		r = kvm_s390_vcpu_store_status(vcpu, arg);
3001
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3002
		break;
3003 3004 3005
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3006
		r = -EFAULT;
3007
		if (copy_from_user(&psw, argp, sizeof(psw)))
3008 3009 3010
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3011 3012
	}
	case KVM_S390_INITIAL_RESET:
3013 3014
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3063
	case KVM_S390_VCPU_FAULT: {
3064
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3065 3066
		break;
	}
3067 3068 3069 3070 3071 3072 3073 3074 3075
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3076 3077 3078 3079 3080 3081 3082 3083 3084
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3117
	default:
3118
		r = -ENOTTY;
3119
	}
3120
	return r;
3121 3122
}

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3136 3137
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3138 3139 3140 3141
{
	return 0;
}

3142
/* Section: memory related */
3143 3144
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3145
				   const struct kvm_userspace_memory_region *mem,
3146
				   enum kvm_mr_change change)
3147
{
3148 3149 3150 3151
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3152

3153
	if (mem->userspace_addr & 0xffffful)
3154 3155
		return -EINVAL;

3156
	if (mem->memory_size & 0xffffful)
3157 3158
		return -EINVAL;

3159 3160 3161
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3162 3163 3164 3165
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3166
				const struct kvm_userspace_memory_region *mem,
3167
				const struct kvm_memory_slot *old,
3168
				const struct kvm_memory_slot *new,
3169
				enum kvm_mr_change change)
3170
{
3171
	int rc;
3172

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3183 3184 3185 3186

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3187
		pr_warn("failed to commit memory region\n");
3188
	return;
3189 3190
}

3191 3192 3193 3194 3195 3196 3197
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3198 3199 3200 3201 3202
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3203 3204
static int __init kvm_s390_init(void)
{
3205 3206
	int i;

3207 3208 3209 3210 3211
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3212 3213 3214 3215
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3216
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3217 3218 3219 3220 3221 3222 3223 3224 3225
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3226 3227 3228 3229 3230 3231 3232 3233 3234

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");