ksz9477.c 30.1 KB
Newer Older
1 2 3 4
// SPDX-License-Identifier: GPL-2.0
/*
 * Microchip KSZ9477 switch driver main logic
 *
5
 * Copyright (C) 2017-2019 Microchip Technology Inc.
6 7 8 9
 */

#include <linux/kernel.h>
#include <linux/module.h>
10
#include <linux/iopoll.h>
11 12 13
#include <linux/platform_data/microchip-ksz.h>
#include <linux/phy.h>
#include <linux/if_bridge.h>
14
#include <linux/if_vlan.h>
15 16 17
#include <net/dsa.h>
#include <net/switchdev.h>

18
#include "ksz9477_reg.h"
19
#include "ksz_common.h"
20
#include "ksz9477.h"
21

22 23
static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
24
	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
25 26 27 28 29
}

static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
			 bool set)
{
30 31
	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
			   bits, set ? bits : 0);
32 33
}

34 35
static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
{
36
	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
37 38 39 40 41
}

static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
			       u32 bits, bool set)
{
42 43
	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
			   bits, set ? bits : 0);
44 45
}

46
int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
47 48 49 50 51 52 53 54 55
{
	u16 frame_size, max_frame = 0;
	int i;

	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;

	/* Cache the per-port MTU setting */
	dev->ports[port].max_frame = frame_size;

56
	for (i = 0; i < dev->info->port_cnt; i++)
57 58 59 60 61 62
		max_frame = max(max_frame, dev->ports[i].max_frame);

	return regmap_update_bits(dev->regmap[1], REG_SW_MTU__2,
				  REG_SW_MTU_MASK, max_frame);
}

63
int ksz9477_max_mtu(struct ksz_device *dev, int port)
64 65 66 67
{
	return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
}

68
static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
69
{
70
	unsigned int val;
71

72 73
	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
					val, !(val & VLAN_START), 10, 1000);
74 75 76 77 78 79 80 81 82 83 84 85 86
}

static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
				  u32 *vlan_table)
{
	int ret;

	mutex_lock(&dev->vlan_mutex);

	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);

	/* wait to be cleared */
87 88
	ret = ksz9477_wait_vlan_ctrl_ready(dev);
	if (ret) {
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
		dev_dbg(dev->dev, "Failed to read vlan table\n");
		goto exit;
	}

	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);

	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);

exit:
	mutex_unlock(&dev->vlan_mutex);

	return ret;
}

static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
				  u32 *vlan_table)
{
	int ret;

	mutex_lock(&dev->vlan_mutex);

	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);

	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);

	/* wait to be cleared */
120 121
	ret = ksz9477_wait_vlan_ctrl_ready(dev);
	if (ret) {
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
		dev_dbg(dev->dev, "Failed to write vlan table\n");
		goto exit;
	}

	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);

	/* update vlan cache table */
	dev->vlan_cache[vid].table[0] = vlan_table[0];
	dev->vlan_cache[vid].table[1] = vlan_table[1];
	dev->vlan_cache[vid].table[2] = vlan_table[2];

exit:
	mutex_unlock(&dev->vlan_mutex);

	return ret;
}

static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
{
	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
}

static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
{
	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
}

155
static int ksz9477_wait_alu_ready(struct ksz_device *dev)
156
{
157
	unsigned int val;
158

159 160
	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
					val, !(val & ALU_START), 10, 1000);
161 162
}

163
static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
164
{
165
	unsigned int val;
166

167 168 169 170
	return regmap_read_poll_timeout(dev->regmap[2],
					REG_SW_ALU_STAT_CTRL__4,
					val, !(val & ALU_STAT_START),
					10, 1000);
171 172
}

173
int ksz9477_reset_switch(struct ksz_device *dev)
174 175 176 177 178 179 180 181
{
	u8 data8;
	u32 data32;

	/* reset switch */
	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);

	/* turn off SPI DO Edge select */
182 183
	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
			   SPI_AUTO_EDGE_DETECTION, 0);
184 185 186 187 188 189 190 191 192 193 194 195

	/* default configuration */
	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);

	/* disable interrupts */
	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);

196 197 198 199 200 201
	data8 = SW_ENABLE_REFCLKO;
	if (dev->synclko_disable)
		data8 = 0;
	else if (dev->synclko_125)
		data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
	ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
202

203 204 205
	return 0;
}

206
void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
207 208
{
	struct ksz_port *p = &dev->ports[port];
209
	unsigned int val;
210 211 212 213 214 215 216 217 218
	u32 data;
	int ret;

	/* retain the flush/freeze bit */
	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
	data |= MIB_COUNTER_READ;
	data |= (addr << MIB_COUNTER_INDEX_S);
	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);

219 220 221
	ret = regmap_read_poll_timeout(dev->regmap[2],
			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
			val, !(val & MIB_COUNTER_READ), 10, 1000);
222
	/* failed to read MIB. get out of loop */
223
	if (ret) {
224 225 226 227 228 229 230 231 232
		dev_dbg(dev->dev, "Failed to get MIB\n");
		return;
	}

	/* count resets upon read */
	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
	*cnt += data;
}

233 234
void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
		       u64 *dropped, u64 *cnt)
235
{
236
	addr = dev->info->mib_names[addr].index;
237 238 239
	ksz9477_r_mib_cnt(dev, port, addr, cnt);
}

240
void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
241 242 243 244 245 246 247 248 249 250 251 252 253
{
	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
	struct ksz_port *p = &dev->ports[port];

	/* enable/disable the port for flush/freeze function */
	mutex_lock(&p->mib.cnt_mutex);
	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);

	/* used by MIB counter reading code to know freeze is enabled */
	p->freeze = freeze;
	mutex_unlock(&p->mib.cnt_mutex);
}

254
void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
255 256 257 258 259 260 261 262 263 264 265 266
{
	struct ksz_port_mib *mib = &dev->ports[port].mib;

	/* flush all enabled port MIB counters */
	mutex_lock(&mib->cnt_mutex);
	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
		     MIB_COUNTER_FLUSH_FREEZE);
	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
	mutex_unlock(&mib->cnt_mutex);
}

267 268 269 270 271 272 273 274 275 276
static void ksz9477_r_phy_quirks(struct ksz_device *dev, u16 addr, u16 reg,
				 u16 *data)
{
	/* KSZ8563R do not have extended registers but BMSR_ESTATEN and
	 * BMSR_ERCAP bits are set.
	 */
	if (dev->chip_id == KSZ8563_CHIP_ID && reg == MII_BMSR)
		*data &= ~(BMSR_ESTATEN | BMSR_ERCAP);
}

277
int ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
{
	u16 val = 0xffff;

	/* No real PHY after this. Simulate the PHY.
	 * A fixed PHY can be setup in the device tree, but this function is
	 * still called for that port during initialization.
	 * For RGMII PHY there is no way to access it so the fixed PHY should
	 * be used.  For SGMII PHY the supporting code will be added later.
	 */
	if (addr >= dev->phy_port_cnt) {
		struct ksz_port *p = &dev->ports[addr];

		switch (reg) {
		case MII_BMCR:
			val = 0x1140;
			break;
		case MII_BMSR:
			val = 0x796d;
			break;
		case MII_PHYSID1:
			val = 0x0022;
			break;
		case MII_PHYSID2:
			val = 0x1631;
			break;
		case MII_ADVERTISE:
			val = 0x05e1;
			break;
		case MII_LPA:
			val = 0xc5e1;
			break;
		case MII_CTRL1000:
			val = 0x0700;
			break;
		case MII_STAT1000:
			if (p->phydev.speed == SPEED_1000)
				val = 0x3800;
			else
				val = 0;
			break;
		}
	} else {
		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
321
		ksz9477_r_phy_quirks(dev, addr, reg, &val);
322 323
	}

324
	*data = val;
325 326

	return 0;
327 328
}

329
int ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
330 331 332
{
	/* No real PHY after this. */
	if (addr >= dev->phy_port_cnt)
333
		return 0;
334 335

	/* No gigabit support.  Do not write to this register. */
336
	if (!dev->info->gbit_capable[addr] && reg == MII_CTRL1000)
337
		return 0;
338

339
	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
340 341

	return 0;
342 343
}

344
void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
345 346 347 348
{
	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
}

349
void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
350
{
351
	const u16 *regs = dev->info->regs;
352 353
	u8 data;

354 355 356 357
	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);

358
	if (port < dev->info->port_cnt) {
359
		/* flush individual port */
360
		ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
361
		if (!(data & PORT_LEARN_DISABLE))
362
			ksz_pwrite8(dev, port, regs[P_STP_CTRL],
363 364
				    data | PORT_LEARN_DISABLE);
		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
365
		ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
366 367 368 369 370 371
	} else {
		/* flush all */
		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
	}
}

372 373
int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
				bool flag, struct netlink_ext_ack *extack)
374 375 376 377 378 379 380 381 382 383 384 385 386 387
{
	if (flag) {
		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
			     PORT_VLAN_LOOKUP_VID_0, true);
		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
	} else {
		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
			     PORT_VLAN_LOOKUP_VID_0, false);
	}

	return 0;
}

388 389 390
int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
			  const struct switchdev_obj_port_vlan *vlan,
			  struct netlink_ext_ack *extack)
391 392 393
{
	u32 vlan_table[3];
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
394
	int err;
395

396 397
	err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
	if (err) {
398
		NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
399
		return err;
400
	}
401

402 403 404 405 406 407
	vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
	if (untagged)
		vlan_table[1] |= BIT(port);
	else
		vlan_table[1] &= ~BIT(port);
	vlan_table[1] &= ~(BIT(dev->cpu_port));
408

409
	vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
410

411 412
	err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
	if (err) {
413
		NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
414
		return err;
415
	}
416 417 418 419

	/* change PVID */
	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
		ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
420 421

	return 0;
422 423
}

424 425
int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
			  const struct switchdev_obj_port_vlan *vlan)
426 427 428 429 430 431 432 433
{
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	u32 vlan_table[3];
	u16 pvid;

	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
	pvid = pvid & 0xFFF;

434 435 436 437
	if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
		dev_dbg(dev->dev, "Failed to get vlan table\n");
		return -ETIMEDOUT;
	}
438

439
	vlan_table[2] &= ~BIT(port);
440

441 442
	if (pvid == vlan->vid)
		pvid = 1;
443

444 445
	if (untagged)
		vlan_table[1] &= ~BIT(port);
446

447 448 449
	if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
		dev_dbg(dev->dev, "Failed to set vlan table\n");
		return -ETIMEDOUT;
450 451 452 453 454 455 456
	}

	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);

	return 0;
}

457 458
int ksz9477_fdb_add(struct ksz_device *dev, int port,
		    const unsigned char *addr, u16 vid, struct dsa_db db)
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
{
	u32 alu_table[4];
	u32 data;
	int ret = 0;

	mutex_lock(&dev->alu_mutex);

	/* find any entry with mac & vid */
	data = vid << ALU_FID_INDEX_S;
	data |= ((addr[0] << 8) | addr[1]);
	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);

	data = ((addr[2] << 24) | (addr[3] << 16));
	data |= ((addr[4] << 8) | addr[5]);
	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);

	/* start read operation */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);

	/* wait to be finished */
479 480
	ret = ksz9477_wait_alu_ready(dev);
	if (ret) {
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
		dev_dbg(dev->dev, "Failed to read ALU\n");
		goto exit;
	}

	/* read ALU entry */
	ksz9477_read_table(dev, alu_table);

	/* update ALU entry */
	alu_table[0] = ALU_V_STATIC_VALID;
	alu_table[1] |= BIT(port);
	if (vid)
		alu_table[1] |= ALU_V_USE_FID;
	alu_table[2] = (vid << ALU_V_FID_S);
	alu_table[2] |= ((addr[0] << 8) | addr[1]);
	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
	alu_table[3] |= ((addr[4] << 8) | addr[5]);

	ksz9477_write_table(dev, alu_table);

	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);

	/* wait to be finished */
503 504
	ret = ksz9477_wait_alu_ready(dev);
	if (ret)
505 506 507 508 509 510 511 512
		dev_dbg(dev->dev, "Failed to write ALU\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

513 514
int ksz9477_fdb_del(struct ksz_device *dev, int port,
		    const unsigned char *addr, u16 vid, struct dsa_db db)
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
{
	u32 alu_table[4];
	u32 data;
	int ret = 0;

	mutex_lock(&dev->alu_mutex);

	/* read any entry with mac & vid */
	data = vid << ALU_FID_INDEX_S;
	data |= ((addr[0] << 8) | addr[1]);
	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);

	data = ((addr[2] << 24) | (addr[3] << 16));
	data |= ((addr[4] << 8) | addr[5]);
	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);

	/* start read operation */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);

	/* wait to be finished */
535 536
	ret = ksz9477_wait_alu_ready(dev);
	if (ret) {
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
		dev_dbg(dev->dev, "Failed to read ALU\n");
		goto exit;
	}

	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
	if (alu_table[0] & ALU_V_STATIC_VALID) {
		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);

		/* clear forwarding port */
		alu_table[2] &= ~BIT(port);

		/* if there is no port to forward, clear table */
		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
			alu_table[0] = 0;
			alu_table[1] = 0;
			alu_table[2] = 0;
			alu_table[3] = 0;
		}
	} else {
		alu_table[0] = 0;
		alu_table[1] = 0;
		alu_table[2] = 0;
		alu_table[3] = 0;
	}

	ksz9477_write_table(dev, alu_table);

	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);

	/* wait to be finished */
569 570
	ret = ksz9477_wait_alu_ready(dev);
	if (ret)
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
		dev_dbg(dev->dev, "Failed to write ALU\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
{
	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
			ALU_V_PRIO_AGE_CNT_M;
	alu->mstp = alu_table[0] & ALU_V_MSTP_M;

	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;

	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;

	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
	alu->mac[1] = alu_table[2] & 0xFF;
	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
	alu->mac[5] = alu_table[3] & 0xFF;
}

602 603
int ksz9477_fdb_dump(struct ksz_device *dev, int port,
		     dsa_fdb_dump_cb_t *cb, void *data)
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
{
	int ret = 0;
	u32 ksz_data;
	u32 alu_table[4];
	struct alu_struct alu;
	int timeout;

	mutex_lock(&dev->alu_mutex);

	/* start ALU search */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);

	do {
		timeout = 1000;
		do {
			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
				break;
			usleep_range(1, 10);
		} while (timeout-- > 0);

		if (!timeout) {
			dev_dbg(dev->dev, "Failed to search ALU\n");
			ret = -ETIMEDOUT;
			goto exit;
		}

631 632 633
		if (!(ksz_data & ALU_VALID))
			continue;

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
		/* read ALU table */
		ksz9477_read_table(dev, alu_table);

		ksz9477_convert_alu(&alu, alu_table);

		if (alu.port_forward & BIT(port)) {
			ret = cb(alu.mac, alu.fid, alu.is_static, data);
			if (ret)
				goto exit;
		}
	} while (ksz_data & ALU_START);

exit:

	/* stop ALU search */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);

	mutex_unlock(&dev->alu_mutex);

	return ret;
}

656 657
int ksz9477_mdb_add(struct ksz_device *dev, int port,
		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
658 659
{
	u32 static_table[4];
660 661
	const u8 *shifts;
	const u32 *masks;
662 663 664
	u32 data;
	int index;
	u32 mac_hi, mac_lo;
665
	int err = 0;
666

667 668 669
	shifts = dev->info->shifts;
	masks = dev->info->masks;

670 671 672 673 674 675
	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);

	mutex_lock(&dev->alu_mutex);

676
	for (index = 0; index < dev->info->num_statics; index++) {
677
		/* find empty slot first */
678 679
		data = (index << shifts[ALU_STAT_INDEX]) |
			masks[ALU_STAT_READ] | ALU_STAT_START;
680 681 682
		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

		/* wait to be finished */
683 684
		err = ksz9477_wait_alu_sta_ready(dev);
		if (err) {
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
			goto exit;
		}

		/* read ALU static table */
		ksz9477_read_table(dev, static_table);

		if (static_table[0] & ALU_V_STATIC_VALID) {
			/* check this has same vid & mac address */
			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
			    static_table[3] == mac_lo) {
				/* found matching one */
				break;
			}
		} else {
			/* found empty one */
			break;
		}
	}

	/* no available entry */
707
	if (index == dev->info->num_statics) {
708
		err = -ENOSPC;
709
		goto exit;
710
	}
711 712 713 714 715 716 717 718 719 720 721 722

	/* add entry */
	static_table[0] = ALU_V_STATIC_VALID;
	static_table[1] |= BIT(port);
	if (mdb->vid)
		static_table[1] |= ALU_V_USE_FID;
	static_table[2] = (mdb->vid << ALU_V_FID_S);
	static_table[2] |= mac_hi;
	static_table[3] = mac_lo;

	ksz9477_write_table(dev, static_table);

723
	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
724 725 726
	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

	/* wait to be finished */
727
	if (ksz9477_wait_alu_sta_ready(dev))
728 729 730 731
		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");

exit:
	mutex_unlock(&dev->alu_mutex);
732
	return err;
733 734
}

735 736
int ksz9477_mdb_del(struct ksz_device *dev, int port,
		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
737 738
{
	u32 static_table[4];
739 740
	const u8 *shifts;
	const u32 *masks;
741 742 743 744 745
	u32 data;
	int index;
	int ret = 0;
	u32 mac_hi, mac_lo;

746 747 748
	shifts = dev->info->shifts;
	masks = dev->info->masks;

749 750 751 752 753 754
	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);

	mutex_lock(&dev->alu_mutex);

755
	for (index = 0; index < dev->info->num_statics; index++) {
756
		/* find empty slot first */
757 758
		data = (index << shifts[ALU_STAT_INDEX]) |
			masks[ALU_STAT_READ] | ALU_STAT_START;
759 760 761
		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

		/* wait to be finished */
762 763
		ret = ksz9477_wait_alu_sta_ready(dev);
		if (ret) {
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
			goto exit;
		}

		/* read ALU static table */
		ksz9477_read_table(dev, static_table);

		if (static_table[0] & ALU_V_STATIC_VALID) {
			/* check this has same vid & mac address */

			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
			    static_table[3] == mac_lo) {
				/* found matching one */
				break;
			}
		}
	}

	/* no available entry */
784
	if (index == dev->info->num_statics)
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
		goto exit;

	/* clear port */
	static_table[1] &= ~BIT(port);

	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
		/* delete entry */
		static_table[0] = 0;
		static_table[1] = 0;
		static_table[2] = 0;
		static_table[3] = 0;
	}

	ksz9477_write_table(dev, static_table);

800
	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
801 802 803
	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

	/* wait to be finished */
804 805
	ret = ksz9477_wait_alu_sta_ready(dev);
	if (ret)
806 807 808 809 810 811 812 813
		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

814 815 816
int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
			    struct dsa_mall_mirror_tc_entry *mirror,
			    bool ingress, struct netlink_ext_ack *extack)
817
{
818 819 820 821 822 823 824
	u8 data;
	int p;

	/* Limit to one sniffer port
	 * Check if any of the port is already set for sniffing
	 * If yes, instruct the user to remove the previous entry & exit
	 */
825
	for (p = 0; p < dev->info->port_cnt; p++) {
826 827 828 829 830 831 832 833 834 835 836 837
		/* Skip the current sniffing port */
		if (p == mirror->to_local_port)
			continue;

		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);

		if (data & PORT_MIRROR_SNIFFER) {
			NL_SET_ERR_MSG_MOD(extack,
					   "Sniffer port is already configured, delete existing rules & retry");
			return -EBUSY;
		}
	}
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

	if (ingress)
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
	else
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);

	/* configure mirror port */
	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
		     PORT_MIRROR_SNIFFER, true);

	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);

	return 0;
}

853 854
void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
			     struct dsa_mall_mirror_tc_entry *mirror)
855
{
856
	bool in_use = false;
857
	u8 data;
858
	int p;
859 860 861 862 863 864 865

	if (mirror->ingress)
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
	else
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);


866
	/* Check if any of the port is still referring to sniffer port */
867
	for (p = 0; p < dev->info->port_cnt; p++) {
868 869 870 871 872 873 874 875 876 877
		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);

		if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
			in_use = true;
			break;
		}
	}

	/* delete sniffing if there are no other mirroring rules */
	if (!in_use)
878 879 880 881
		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
			     PORT_MIRROR_SNIFFER, false);
}

882 883 884 885 886 887 888
static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
{
	phy_interface_t interface;
	bool gbit;

	if (port < dev->phy_port_cnt)
		return PHY_INTERFACE_MODE_NA;
889

890
	gbit = ksz_get_gbit(dev, port);
891 892 893

	interface = ksz_get_xmii(dev, port, gbit);

894
	return interface;
895 896
}

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
				   u8 dev_addr, u16 reg_addr, u16 val)
{
	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
}

static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
{
	/* Apply PHY settings to address errata listed in
	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
	 * Silicon Errata and Data Sheet Clarification documents:
	 *
	 * Register settings are needed to improve PHY receive performance
	 */
	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);

	/* Transmit waveform amplitude can be improved
	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
	 */
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);

	/* Energy Efficient Ethernet (EEE) feature select must
	 * be manually disabled (except on KSZ8565 which is 100Mbit)
	 */
932
	if (dev->info->gbit_capable[port])
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);

	/* Register settings are required to meet data sheet
	 * supply current specifications
	 */
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
}

953 954
void ksz9477_get_caps(struct ksz_device *dev, int port,
		      struct phylink_config *config)
955
{
956 957 958
	config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
				   MAC_SYM_PAUSE;

959
	if (dev->info->gbit_capable[port])
960
		config->mac_capabilities |= MAC_1000FD;
961 962
}

963
void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
964
{
965 966
	struct dsa_switch *ds = dev->ds;
	u16 data16;
967
	u8 member;
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999

	/* enable tag tail for host port */
	if (cpu_port)
		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
			     true);

	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);

	/* set back pressure */
	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);

	/* enable broadcast storm limit */
	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);

	/* disable DiffServ priority */
	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);

	/* replace priority */
	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
		     false);
	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
			   MTI_PVID_REPLACE, false);

	/* enable 802.1p priority */
	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);

	if (port < dev->phy_port_cnt) {
		/* do not force flow control */
		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
			     false);

1000
		if (dev->info->phy_errata_9477)
1001
			ksz9477_phy_errata_setup(dev, port);
1002 1003 1004 1005 1006 1007
	} else {
		/* force flow control */
		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
			     true);
	}
1008

1009
	if (cpu_port)
1010
		member = dsa_user_ports(ds);
1011
	else
1012 1013
		member = BIT(dsa_upstream_port(ds, port));

1014 1015 1016 1017 1018 1019 1020
	ksz9477_cfg_port_member(dev, port, member);

	/* clear pending interrupts */
	if (port < dev->phy_port_cnt)
		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
}

1021
void ksz9477_config_cpu_port(struct dsa_switch *ds)
1022 1023 1024 1025 1026
{
	struct ksz_device *dev = ds->priv;
	struct ksz_port *p;
	int i;

1027 1028 1029
	for (i = 0; i < dev->info->port_cnt; i++) {
		if (dsa_is_cpu_port(ds, i) &&
		    (dev->info->cpu_ports & (1 << i))) {
1030
			phy_interface_t interface;
1031 1032
			const char *prev_msg;
			const char *prev_mode;
1033

1034
			dev->cpu_port = i;
1035
			p = &dev->ports[i];
1036

1037 1038 1039 1040 1041
			/* Read from XMII register to determine host port
			 * interface.  If set specifically in device tree
			 * note the difference to help debugging.
			 */
			interface = ksz9477_get_interface(dev, i);
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
			if (!p->interface) {
				if (dev->compat_interface) {
					dev_warn(dev->dev,
						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
						 "Please update your device tree.\n",
						 i);
					p->interface = dev->compat_interface;
				} else {
					p->interface = interface;
				}
			}
1053
			if (interface && interface != p->interface) {
1054 1055 1056 1057 1058 1059 1060 1061 1062
				prev_msg = " instead of ";
				prev_mode = phy_modes(interface);
			} else {
				prev_msg = "";
				prev_mode = "";
			}
			dev_info(dev->dev,
				 "Port%d: using phy mode %s%s%s\n",
				 i,
1063
				 phy_modes(p->interface),
1064 1065
				 prev_msg,
				 prev_mode);
1066

1067 1068 1069 1070 1071 1072
			/* enable cpu port */
			ksz9477_port_setup(dev, i, true);
			p->on = 1;
		}
	}

1073
	for (i = 0; i < dev->info->port_cnt; i++) {
1074 1075 1076 1077
		if (i == dev->cpu_port)
			continue;
		p = &dev->ports[i];

1078
		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		p->on = 1;
		if (i < dev->phy_port_cnt)
			p->phy = 1;
		if (dev->chip_id == 0x00947700 && i == 6) {
			p->sgmii = 1;

			/* SGMII PHY detection code is not implemented yet. */
			p->phy = 0;
		}
	}
}

1091
int ksz9477_enable_stp_addr(struct ksz_device *dev)
1092
{
1093
	const u32 *masks;
1094 1095 1096
	u32 data;
	int ret;

1097 1098
	masks = dev->info->masks;

1099 1100 1101 1102 1103 1104 1105 1106 1107
	/* Enable Reserved multicast table */
	ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);

	/* Set the Override bit for forwarding BPDU packet to CPU */
	ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
			  ALU_V_OVERRIDE | BIT(dev->cpu_port));
	if (ret < 0)
		return ret;

1108
	data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE];
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

	ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
	if (ret < 0)
		return ret;

	/* wait to be finished */
	ret = ksz9477_wait_alu_sta_ready(dev);
	if (ret < 0) {
		dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
		return ret;
	}

	return 0;
}

1124
int ksz9477_setup(struct dsa_switch *ds)
1125 1126 1127 1128
{
	struct ksz_device *dev = ds->priv;
	int ret = 0;

1129 1130 1131 1132
	/* Required for port partitioning. */
	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
		      true);

1133 1134 1135
	/* Do not work correctly with tail tagging. */
	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);

1136 1137 1138 1139 1140 1141 1142 1143
	/* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);

	/* Now we can configure default MTU value */
	ret = regmap_update_bits(dev->regmap[1], REG_SW_MTU__2, REG_SW_MTU_MASK,
				 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
	if (ret)
		return ret;
1144 1145 1146 1147

	/* queue based egress rate limit */
	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);

1148 1149 1150
	/* enable global MIB counter freeze function */
	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);

1151 1152 1153
	return 0;
}

1154
u32 ksz9477_get_port_addr(int port, int offset)
1155 1156 1157 1158
{
	return PORT_CTRL_ADDR(port, offset);
}

1159
int ksz9477_switch_init(struct ksz_device *dev)
1160 1161 1162 1163 1164 1165
{
	u8 data8;
	int ret;

	dev->port_mask = (1 << dev->info->port_cnt) - 1;

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	/* turn off SPI DO Edge select */
	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
	if (ret)
		return ret;

	data8 &= ~SPI_AUTO_EDGE_DETECTION;
	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
	if (ret)
		return ret;

	/* Number of ports can be reduced depending on chip. */
	dev->phy_port_cnt = 5;

1179
	if (dev->chip_id == KSZ9893_CHIP_ID) {
1180 1181 1182 1183
		dev->features |= IS_9893;

		dev->phy_port_cnt = 2;
	}
1184

1185 1186 1187
	return 0;
}

1188
void ksz9477_switch_exit(struct ksz_device *dev)
1189 1190 1191 1192 1193 1194 1195
{
	ksz9477_reset_switch(dev);
}

MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
MODULE_LICENSE("GPL");