ksz9477.c 33.5 KB
Newer Older
1 2 3 4
// SPDX-License-Identifier: GPL-2.0
/*
 * Microchip KSZ9477 switch driver main logic
 *
5
 * Copyright (C) 2017-2019 Microchip Technology Inc.
6 7 8 9
 */

#include <linux/kernel.h>
#include <linux/module.h>
10
#include <linux/iopoll.h>
11 12 13
#include <linux/platform_data/microchip-ksz.h>
#include <linux/phy.h>
#include <linux/if_bridge.h>
14
#include <linux/if_vlan.h>
15 16 17
#include <net/dsa.h>
#include <net/switchdev.h>

18
#include "ksz9477_reg.h"
19
#include "ksz_common.h"
20
#include "ksz9477.h"
21

22 23 24 25 26
/* Used with variable features to indicate capabilities. */
#define GBIT_SUPPORT			BIT(0)
#define NEW_XMII			BIT(1)
#define IS_9893				BIT(2)

27 28
static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
29
	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
30 31 32 33 34
}

static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
			 bool set)
{
35 36
	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
			   bits, set ? bits : 0);
37 38
}

39 40
static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
{
41
	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
42 43 44 45 46
}

static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
			       u32 bits, bool set)
{
47 48
	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
			   bits, set ? bits : 0);
49 50
}

51
int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
52 53 54 55 56 57 58 59 60
{
	u16 frame_size, max_frame = 0;
	int i;

	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;

	/* Cache the per-port MTU setting */
	dev->ports[port].max_frame = frame_size;

61
	for (i = 0; i < dev->info->port_cnt; i++)
62 63 64 65 66 67
		max_frame = max(max_frame, dev->ports[i].max_frame);

	return regmap_update_bits(dev->regmap[1], REG_SW_MTU__2,
				  REG_SW_MTU_MASK, max_frame);
}

68
int ksz9477_max_mtu(struct ksz_device *dev, int port)
69 70 71 72
{
	return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
}

73
static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
74
{
75
	unsigned int val;
76

77 78
	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
					val, !(val & VLAN_START), 10, 1000);
79 80 81 82 83 84 85 86 87 88 89 90 91
}

static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
				  u32 *vlan_table)
{
	int ret;

	mutex_lock(&dev->vlan_mutex);

	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);

	/* wait to be cleared */
92 93
	ret = ksz9477_wait_vlan_ctrl_ready(dev);
	if (ret) {
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
		dev_dbg(dev->dev, "Failed to read vlan table\n");
		goto exit;
	}

	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);

	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);

exit:
	mutex_unlock(&dev->vlan_mutex);

	return ret;
}

static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
				  u32 *vlan_table)
{
	int ret;

	mutex_lock(&dev->vlan_mutex);

	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);

	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);

	/* wait to be cleared */
125 126
	ret = ksz9477_wait_vlan_ctrl_ready(dev);
	if (ret) {
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
		dev_dbg(dev->dev, "Failed to write vlan table\n");
		goto exit;
	}

	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);

	/* update vlan cache table */
	dev->vlan_cache[vid].table[0] = vlan_table[0];
	dev->vlan_cache[vid].table[1] = vlan_table[1];
	dev->vlan_cache[vid].table[2] = vlan_table[2];

exit:
	mutex_unlock(&dev->vlan_mutex);

	return ret;
}

static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
{
	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
}

static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
{
	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
}

160
static int ksz9477_wait_alu_ready(struct ksz_device *dev)
161
{
162
	unsigned int val;
163

164 165
	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
					val, !(val & ALU_START), 10, 1000);
166 167
}

168
static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
169
{
170
	unsigned int val;
171

172 173 174 175
	return regmap_read_poll_timeout(dev->regmap[2],
					REG_SW_ALU_STAT_CTRL__4,
					val, !(val & ALU_STAT_START),
					10, 1000);
176 177
}

178
int ksz9477_reset_switch(struct ksz_device *dev)
179 180 181 182 183 184 185 186
{
	u8 data8;
	u32 data32;

	/* reset switch */
	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);

	/* turn off SPI DO Edge select */
187 188
	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
			   SPI_AUTO_EDGE_DETECTION, 0);
189 190 191 192 193 194 195 196 197 198 199 200

	/* default configuration */
	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);

	/* disable interrupts */
	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);

201 202 203 204 205 206
	data8 = SW_ENABLE_REFCLKO;
	if (dev->synclko_disable)
		data8 = 0;
	else if (dev->synclko_125)
		data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
	ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
207

208 209 210
	return 0;
}

211
void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
212 213
{
	struct ksz_port *p = &dev->ports[port];
214
	unsigned int val;
215 216 217 218 219 220 221 222 223
	u32 data;
	int ret;

	/* retain the flush/freeze bit */
	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
	data |= MIB_COUNTER_READ;
	data |= (addr << MIB_COUNTER_INDEX_S);
	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);

224 225 226
	ret = regmap_read_poll_timeout(dev->regmap[2],
			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
			val, !(val & MIB_COUNTER_READ), 10, 1000);
227
	/* failed to read MIB. get out of loop */
228
	if (ret) {
229 230 231 232 233 234 235 236 237
		dev_dbg(dev->dev, "Failed to get MIB\n");
		return;
	}

	/* count resets upon read */
	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
	*cnt += data;
}

238 239
void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
		       u64 *dropped, u64 *cnt)
240
{
241
	addr = dev->info->mib_names[addr].index;
242 243 244
	ksz9477_r_mib_cnt(dev, port, addr, cnt);
}

245
void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
246 247 248 249 250 251 252 253 254 255 256 257 258
{
	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
	struct ksz_port *p = &dev->ports[port];

	/* enable/disable the port for flush/freeze function */
	mutex_lock(&p->mib.cnt_mutex);
	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);

	/* used by MIB counter reading code to know freeze is enabled */
	p->freeze = freeze;
	mutex_unlock(&p->mib.cnt_mutex);
}

259
void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
260 261 262 263 264 265 266 267 268 269 270 271
{
	struct ksz_port_mib *mib = &dev->ports[port].mib;

	/* flush all enabled port MIB counters */
	mutex_lock(&mib->cnt_mutex);
	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
		     MIB_COUNTER_FLUSH_FREEZE);
	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
	mutex_unlock(&mib->cnt_mutex);
}

272
void ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
{
	u16 val = 0xffff;

	/* No real PHY after this. Simulate the PHY.
	 * A fixed PHY can be setup in the device tree, but this function is
	 * still called for that port during initialization.
	 * For RGMII PHY there is no way to access it so the fixed PHY should
	 * be used.  For SGMII PHY the supporting code will be added later.
	 */
	if (addr >= dev->phy_port_cnt) {
		struct ksz_port *p = &dev->ports[addr];

		switch (reg) {
		case MII_BMCR:
			val = 0x1140;
			break;
		case MII_BMSR:
			val = 0x796d;
			break;
		case MII_PHYSID1:
			val = 0x0022;
			break;
		case MII_PHYSID2:
			val = 0x1631;
			break;
		case MII_ADVERTISE:
			val = 0x05e1;
			break;
		case MII_LPA:
			val = 0xc5e1;
			break;
		case MII_CTRL1000:
			val = 0x0700;
			break;
		case MII_STAT1000:
			if (p->phydev.speed == SPEED_1000)
				val = 0x3800;
			else
				val = 0;
			break;
		}
	} else {
		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
	}

318
	*data = val;
319 320
}

321
void ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
322 323 324
{
	/* No real PHY after this. */
	if (addr >= dev->phy_port_cnt)
325
		return;
326 327 328

	/* No gigabit support.  Do not write to this register. */
	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
329
		return;
330

331
	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
332 333
}

334
void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
335 336 337 338
{
	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
}

339
void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
340
{
341
	const u16 *regs = dev->info->regs;
342 343
	u8 data;

344 345 346 347
	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);

348
	if (port < dev->info->port_cnt) {
349
		/* flush individual port */
350
		ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
351
		if (!(data & PORT_LEARN_DISABLE))
352
			ksz_pwrite8(dev, port, regs[P_STP_CTRL],
353 354
				    data | PORT_LEARN_DISABLE);
		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
355
		ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
356 357 358 359 360 361
	} else {
		/* flush all */
		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
	}
}

362 363
int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
				bool flag, struct netlink_ext_ack *extack)
364 365 366 367 368 369 370 371 372 373 374 375 376 377
{
	if (flag) {
		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
			     PORT_VLAN_LOOKUP_VID_0, true);
		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
	} else {
		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
			     PORT_VLAN_LOOKUP_VID_0, false);
	}

	return 0;
}

378 379 380
int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
			  const struct switchdev_obj_port_vlan *vlan,
			  struct netlink_ext_ack *extack)
381 382 383
{
	u32 vlan_table[3];
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
384
	int err;
385

386 387
	err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
	if (err) {
388
		NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
389
		return err;
390
	}
391

392 393 394 395 396 397
	vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
	if (untagged)
		vlan_table[1] |= BIT(port);
	else
		vlan_table[1] &= ~BIT(port);
	vlan_table[1] &= ~(BIT(dev->cpu_port));
398

399
	vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
400

401 402
	err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
	if (err) {
403
		NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
404
		return err;
405
	}
406 407 408 409

	/* change PVID */
	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
		ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
410 411

	return 0;
412 413
}

414 415
int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
			  const struct switchdev_obj_port_vlan *vlan)
416 417 418 419 420 421 422 423
{
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	u32 vlan_table[3];
	u16 pvid;

	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
	pvid = pvid & 0xFFF;

424 425 426 427
	if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
		dev_dbg(dev->dev, "Failed to get vlan table\n");
		return -ETIMEDOUT;
	}
428

429
	vlan_table[2] &= ~BIT(port);
430

431 432
	if (pvid == vlan->vid)
		pvid = 1;
433

434 435
	if (untagged)
		vlan_table[1] &= ~BIT(port);
436

437 438 439
	if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
		dev_dbg(dev->dev, "Failed to set vlan table\n");
		return -ETIMEDOUT;
440 441 442 443 444 445 446
	}

	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);

	return 0;
}

447 448
int ksz9477_fdb_add(struct ksz_device *dev, int port,
		    const unsigned char *addr, u16 vid, struct dsa_db db)
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
{
	u32 alu_table[4];
	u32 data;
	int ret = 0;

	mutex_lock(&dev->alu_mutex);

	/* find any entry with mac & vid */
	data = vid << ALU_FID_INDEX_S;
	data |= ((addr[0] << 8) | addr[1]);
	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);

	data = ((addr[2] << 24) | (addr[3] << 16));
	data |= ((addr[4] << 8) | addr[5]);
	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);

	/* start read operation */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);

	/* wait to be finished */
469 470
	ret = ksz9477_wait_alu_ready(dev);
	if (ret) {
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
		dev_dbg(dev->dev, "Failed to read ALU\n");
		goto exit;
	}

	/* read ALU entry */
	ksz9477_read_table(dev, alu_table);

	/* update ALU entry */
	alu_table[0] = ALU_V_STATIC_VALID;
	alu_table[1] |= BIT(port);
	if (vid)
		alu_table[1] |= ALU_V_USE_FID;
	alu_table[2] = (vid << ALU_V_FID_S);
	alu_table[2] |= ((addr[0] << 8) | addr[1]);
	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
	alu_table[3] |= ((addr[4] << 8) | addr[5]);

	ksz9477_write_table(dev, alu_table);

	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);

	/* wait to be finished */
493 494
	ret = ksz9477_wait_alu_ready(dev);
	if (ret)
495 496 497 498 499 500 501 502
		dev_dbg(dev->dev, "Failed to write ALU\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

503 504
int ksz9477_fdb_del(struct ksz_device *dev, int port,
		    const unsigned char *addr, u16 vid, struct dsa_db db)
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
{
	u32 alu_table[4];
	u32 data;
	int ret = 0;

	mutex_lock(&dev->alu_mutex);

	/* read any entry with mac & vid */
	data = vid << ALU_FID_INDEX_S;
	data |= ((addr[0] << 8) | addr[1]);
	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);

	data = ((addr[2] << 24) | (addr[3] << 16));
	data |= ((addr[4] << 8) | addr[5]);
	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);

	/* start read operation */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);

	/* wait to be finished */
525 526
	ret = ksz9477_wait_alu_ready(dev);
	if (ret) {
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		dev_dbg(dev->dev, "Failed to read ALU\n");
		goto exit;
	}

	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
	if (alu_table[0] & ALU_V_STATIC_VALID) {
		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);

		/* clear forwarding port */
		alu_table[2] &= ~BIT(port);

		/* if there is no port to forward, clear table */
		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
			alu_table[0] = 0;
			alu_table[1] = 0;
			alu_table[2] = 0;
			alu_table[3] = 0;
		}
	} else {
		alu_table[0] = 0;
		alu_table[1] = 0;
		alu_table[2] = 0;
		alu_table[3] = 0;
	}

	ksz9477_write_table(dev, alu_table);

	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);

	/* wait to be finished */
559 560
	ret = ksz9477_wait_alu_ready(dev);
	if (ret)
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
		dev_dbg(dev->dev, "Failed to write ALU\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
{
	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
			ALU_V_PRIO_AGE_CNT_M;
	alu->mstp = alu_table[0] & ALU_V_MSTP_M;

	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;

	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;

	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
	alu->mac[1] = alu_table[2] & 0xFF;
	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
	alu->mac[5] = alu_table[3] & 0xFF;
}

592 593
int ksz9477_fdb_dump(struct ksz_device *dev, int port,
		     dsa_fdb_dump_cb_t *cb, void *data)
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
{
	int ret = 0;
	u32 ksz_data;
	u32 alu_table[4];
	struct alu_struct alu;
	int timeout;

	mutex_lock(&dev->alu_mutex);

	/* start ALU search */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);

	do {
		timeout = 1000;
		do {
			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
				break;
			usleep_range(1, 10);
		} while (timeout-- > 0);

		if (!timeout) {
			dev_dbg(dev->dev, "Failed to search ALU\n");
			ret = -ETIMEDOUT;
			goto exit;
		}

		/* read ALU table */
		ksz9477_read_table(dev, alu_table);

		ksz9477_convert_alu(&alu, alu_table);

		if (alu.port_forward & BIT(port)) {
			ret = cb(alu.mac, alu.fid, alu.is_static, data);
			if (ret)
				goto exit;
		}
	} while (ksz_data & ALU_START);

exit:

	/* stop ALU search */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);

	mutex_unlock(&dev->alu_mutex);

	return ret;
}

643 644
int ksz9477_mdb_add(struct ksz_device *dev, int port,
		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
645 646 647 648 649
{
	u32 static_table[4];
	u32 data;
	int index;
	u32 mac_hi, mac_lo;
650
	int err = 0;
651 652 653 654 655 656 657

	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);

	mutex_lock(&dev->alu_mutex);

658
	for (index = 0; index < dev->info->num_statics; index++) {
659 660 661 662 663 664
		/* find empty slot first */
		data = (index << ALU_STAT_INDEX_S) |
			ALU_STAT_READ | ALU_STAT_START;
		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

		/* wait to be finished */
665 666
		err = ksz9477_wait_alu_sta_ready(dev);
		if (err) {
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
			goto exit;
		}

		/* read ALU static table */
		ksz9477_read_table(dev, static_table);

		if (static_table[0] & ALU_V_STATIC_VALID) {
			/* check this has same vid & mac address */
			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
			    static_table[3] == mac_lo) {
				/* found matching one */
				break;
			}
		} else {
			/* found empty one */
			break;
		}
	}

	/* no available entry */
689
	if (index == dev->info->num_statics) {
690
		err = -ENOSPC;
691
		goto exit;
692
	}
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

	/* add entry */
	static_table[0] = ALU_V_STATIC_VALID;
	static_table[1] |= BIT(port);
	if (mdb->vid)
		static_table[1] |= ALU_V_USE_FID;
	static_table[2] = (mdb->vid << ALU_V_FID_S);
	static_table[2] |= mac_hi;
	static_table[3] = mac_lo;

	ksz9477_write_table(dev, static_table);

	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

	/* wait to be finished */
709
	if (ksz9477_wait_alu_sta_ready(dev))
710 711 712 713
		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");

exit:
	mutex_unlock(&dev->alu_mutex);
714
	return err;
715 716
}

717 718
int ksz9477_mdb_del(struct ksz_device *dev, int port,
		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
719 720 721 722 723 724 725 726 727 728 729 730 731
{
	u32 static_table[4];
	u32 data;
	int index;
	int ret = 0;
	u32 mac_hi, mac_lo;

	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);

	mutex_lock(&dev->alu_mutex);

732
	for (index = 0; index < dev->info->num_statics; index++) {
733 734 735 736 737 738
		/* find empty slot first */
		data = (index << ALU_STAT_INDEX_S) |
			ALU_STAT_READ | ALU_STAT_START;
		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

		/* wait to be finished */
739 740
		ret = ksz9477_wait_alu_sta_ready(dev);
		if (ret) {
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
			goto exit;
		}

		/* read ALU static table */
		ksz9477_read_table(dev, static_table);

		if (static_table[0] & ALU_V_STATIC_VALID) {
			/* check this has same vid & mac address */

			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
			    static_table[3] == mac_lo) {
				/* found matching one */
				break;
			}
		}
	}

	/* no available entry */
761
	if (index == dev->info->num_statics)
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
		goto exit;

	/* clear port */
	static_table[1] &= ~BIT(port);

	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
		/* delete entry */
		static_table[0] = 0;
		static_table[1] = 0;
		static_table[2] = 0;
		static_table[3] = 0;
	}

	ksz9477_write_table(dev, static_table);

	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

	/* wait to be finished */
781 782
	ret = ksz9477_wait_alu_sta_ready(dev);
	if (ret)
783 784 785 786 787 788 789 790
		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

791 792 793
int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
			    struct dsa_mall_mirror_tc_entry *mirror,
			    bool ingress, struct netlink_ext_ack *extack)
794
{
795 796 797 798 799 800 801
	u8 data;
	int p;

	/* Limit to one sniffer port
	 * Check if any of the port is already set for sniffing
	 * If yes, instruct the user to remove the previous entry & exit
	 */
802
	for (p = 0; p < dev->info->port_cnt; p++) {
803 804 805 806 807 808 809 810 811 812 813 814
		/* Skip the current sniffing port */
		if (p == mirror->to_local_port)
			continue;

		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);

		if (data & PORT_MIRROR_SNIFFER) {
			NL_SET_ERR_MSG_MOD(extack,
					   "Sniffer port is already configured, delete existing rules & retry");
			return -EBUSY;
		}
	}
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829

	if (ingress)
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
	else
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);

	/* configure mirror port */
	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
		     PORT_MIRROR_SNIFFER, true);

	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);

	return 0;
}

830 831
void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
			     struct dsa_mall_mirror_tc_entry *mirror)
832
{
833
	bool in_use = false;
834
	u8 data;
835
	int p;
836 837 838 839 840 841 842

	if (mirror->ingress)
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
	else
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);


843
	/* Check if any of the port is still referring to sniffer port */
844
	for (p = 0; p < dev->info->port_cnt; p++) {
845 846 847 848 849 850 851 852 853 854
		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);

		if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
			in_use = true;
			break;
		}
	}

	/* delete sniffing if there are no other mirroring rules */
	if (!in_use)
855 856 857 858
		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
			     PORT_MIRROR_SNIFFER, false);
}

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
{
	bool gbit;

	if (dev->features & NEW_XMII)
		gbit = !(data & PORT_MII_NOT_1GBIT);
	else
		gbit = !!(data & PORT_MII_1000MBIT_S1);
	return gbit;
}

static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
{
	if (dev->features & NEW_XMII) {
		if (gbit)
			*data &= ~PORT_MII_NOT_1GBIT;
		else
			*data |= PORT_MII_NOT_1GBIT;
	} else {
		if (gbit)
			*data |= PORT_MII_1000MBIT_S1;
		else
			*data &= ~PORT_MII_1000MBIT_S1;
	}
}

static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
{
	int mode;

	if (dev->features & NEW_XMII) {
		switch (data & PORT_MII_SEL_M) {
		case PORT_MII_SEL:
			mode = 0;
			break;
		case PORT_RMII_SEL:
			mode = 1;
			break;
		case PORT_GMII_SEL:
			mode = 2;
			break;
		default:
			mode = 3;
		}
	} else {
		switch (data & PORT_MII_SEL_M) {
		case PORT_MII_SEL_S1:
			mode = 0;
			break;
		case PORT_RMII_SEL_S1:
			mode = 1;
			break;
		case PORT_GMII_SEL_S1:
			mode = 2;
			break;
		default:
			mode = 3;
		}
	}
	return mode;
}

static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
{
	u8 xmii;

	if (dev->features & NEW_XMII) {
		switch (mode) {
		case 0:
			xmii = PORT_MII_SEL;
			break;
		case 1:
			xmii = PORT_RMII_SEL;
			break;
		case 2:
			xmii = PORT_GMII_SEL;
			break;
		default:
			xmii = PORT_RGMII_SEL;
			break;
		}
	} else {
		switch (mode) {
		case 0:
			xmii = PORT_MII_SEL_S1;
			break;
		case 1:
			xmii = PORT_RMII_SEL_S1;
			break;
		case 2:
			xmii = PORT_GMII_SEL_S1;
			break;
		default:
			xmii = PORT_RGMII_SEL_S1;
			break;
		}
	}
	*data &= ~PORT_MII_SEL_M;
	*data |= xmii;
}

static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
{
	phy_interface_t interface;
	bool gbit;
	int mode;
	u8 data8;

	if (port < dev->phy_port_cnt)
		return PHY_INTERFACE_MODE_NA;
	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
	gbit = ksz9477_get_gbit(dev, data8);
	mode = ksz9477_get_xmii(dev, data8);
	switch (mode) {
	case 2:
		interface = PHY_INTERFACE_MODE_GMII;
		if (gbit)
			break;
977
		fallthrough;
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
	case 0:
		interface = PHY_INTERFACE_MODE_MII;
		break;
	case 1:
		interface = PHY_INTERFACE_MODE_RMII;
		break;
	default:
		interface = PHY_INTERFACE_MODE_RGMII;
		if (data8 & PORT_RGMII_ID_EG_ENABLE)
			interface = PHY_INTERFACE_MODE_RGMII_TXID;
		if (data8 & PORT_RGMII_ID_IG_ENABLE) {
			interface = PHY_INTERFACE_MODE_RGMII_RXID;
			if (data8 & PORT_RGMII_ID_EG_ENABLE)
				interface = PHY_INTERFACE_MODE_RGMII_ID;
		}
		break;
994
	}
995
	return interface;
996 997
}

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
				   u8 dev_addr, u16 reg_addr, u16 val)
{
	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
}

static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
{
	/* Apply PHY settings to address errata listed in
	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
	 * Silicon Errata and Data Sheet Clarification documents:
	 *
	 * Register settings are needed to improve PHY receive performance
	 */
	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);

	/* Transmit waveform amplitude can be improved
	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
	 */
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);

	/* Energy Efficient Ethernet (EEE) feature select must
	 * be manually disabled (except on KSZ8565 which is 100Mbit)
	 */
	if (dev->features & GBIT_SUPPORT)
		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);

	/* Register settings are required to meet data sheet
	 * supply current specifications
	 */
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
}

1054 1055
void ksz9477_get_caps(struct ksz_device *dev, int port,
		      struct phylink_config *config)
1056
{
1057 1058 1059 1060 1061
	config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
				   MAC_SYM_PAUSE;

	if (dev->features & GBIT_SUPPORT)
		config->mac_capabilities |= MAC_1000FD;
1062 1063
}

1064
void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1065 1066
{
	struct ksz_port *p = &dev->ports[port];
1067 1068 1069
	struct dsa_switch *ds = dev->ds;
	u8 data8, member;
	u16 data16;
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

	/* enable tag tail for host port */
	if (cpu_port)
		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
			     true);

	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);

	/* set back pressure */
	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);

	/* enable broadcast storm limit */
	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);

	/* disable DiffServ priority */
	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);

	/* replace priority */
	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
		     false);
	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
			   MTI_PVID_REPLACE, false);

	/* enable 802.1p priority */
	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);

	if (port < dev->phy_port_cnt) {
		/* do not force flow control */
		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
			     false);

1102
		if (dev->info->phy_errata_9477)
1103
			ksz9477_phy_errata_setup(dev, port);
1104 1105 1106 1107 1108 1109 1110 1111
	} else {
		/* force flow control */
		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
			     true);

		/* configure MAC to 1G & RGMII mode */
		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1112
		switch (p->interface) {
1113
		case PHY_INTERFACE_MODE_MII:
1114 1115
			ksz9477_set_xmii(dev, 0, &data8);
			ksz9477_set_gbit(dev, false, &data8);
1116 1117 1118
			p->phydev.speed = SPEED_100;
			break;
		case PHY_INTERFACE_MODE_RMII:
1119 1120
			ksz9477_set_xmii(dev, 1, &data8);
			ksz9477_set_gbit(dev, false, &data8);
1121 1122 1123
			p->phydev.speed = SPEED_100;
			break;
		case PHY_INTERFACE_MODE_GMII:
1124 1125
			ksz9477_set_xmii(dev, 2, &data8);
			ksz9477_set_gbit(dev, true, &data8);
1126 1127 1128
			p->phydev.speed = SPEED_1000;
			break;
		default:
1129 1130
			ksz9477_set_xmii(dev, 3, &data8);
			ksz9477_set_gbit(dev, true, &data8);
1131 1132
			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1133 1134
			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
			    p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1135
				data8 |= PORT_RGMII_ID_IG_ENABLE;
1136 1137
			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
			    p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1138
				data8 |= PORT_RGMII_ID_EG_ENABLE;
1139 1140 1141
			/* On KSZ9893, disable RGMII in-band status support */
			if (dev->features & IS_9893)
				data8 &= ~PORT_MII_MAC_MODE;
1142 1143 1144 1145 1146 1147
			p->phydev.speed = SPEED_1000;
			break;
		}
		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
		p->phydev.duplex = 1;
	}
1148

1149
	if (cpu_port)
1150
		member = dsa_user_ports(ds);
1151
	else
1152 1153
		member = BIT(dsa_upstream_port(ds, port));

1154 1155 1156 1157 1158 1159 1160
	ksz9477_cfg_port_member(dev, port, member);

	/* clear pending interrupts */
	if (port < dev->phy_port_cnt)
		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
}

1161
void ksz9477_config_cpu_port(struct dsa_switch *ds)
1162 1163 1164 1165 1166
{
	struct ksz_device *dev = ds->priv;
	struct ksz_port *p;
	int i;

1167 1168 1169
	for (i = 0; i < dev->info->port_cnt; i++) {
		if (dsa_is_cpu_port(ds, i) &&
		    (dev->info->cpu_ports & (1 << i))) {
1170
			phy_interface_t interface;
1171 1172
			const char *prev_msg;
			const char *prev_mode;
1173

1174
			dev->cpu_port = i;
1175
			p = &dev->ports[i];
1176

1177 1178 1179 1180 1181
			/* Read from XMII register to determine host port
			 * interface.  If set specifically in device tree
			 * note the difference to help debugging.
			 */
			interface = ksz9477_get_interface(dev, i);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
			if (!p->interface) {
				if (dev->compat_interface) {
					dev_warn(dev->dev,
						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
						 "Please update your device tree.\n",
						 i);
					p->interface = dev->compat_interface;
				} else {
					p->interface = interface;
				}
			}
1193
			if (interface && interface != p->interface) {
1194 1195 1196 1197 1198 1199 1200 1201 1202
				prev_msg = " instead of ";
				prev_mode = phy_modes(interface);
			} else {
				prev_msg = "";
				prev_mode = "";
			}
			dev_info(dev->dev,
				 "Port%d: using phy mode %s%s%s\n",
				 i,
1203
				 phy_modes(p->interface),
1204 1205
				 prev_msg,
				 prev_mode);
1206

1207 1208 1209 1210 1211 1212
			/* enable cpu port */
			ksz9477_port_setup(dev, i, true);
			p->on = 1;
		}
	}

1213
	for (i = 0; i < dev->info->port_cnt; i++) {
1214 1215 1216 1217
		if (i == dev->cpu_port)
			continue;
		p = &dev->ports[i];

1218
		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
		p->on = 1;
		if (i < dev->phy_port_cnt)
			p->phy = 1;
		if (dev->chip_id == 0x00947700 && i == 6) {
			p->sgmii = 1;

			/* SGMII PHY detection code is not implemented yet. */
			p->phy = 0;
		}
	}
}

1231
int ksz9477_enable_stp_addr(struct ksz_device *dev)
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
{
	u32 data;
	int ret;

	/* Enable Reserved multicast table */
	ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);

	/* Set the Override bit for forwarding BPDU packet to CPU */
	ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
			  ALU_V_OVERRIDE | BIT(dev->cpu_port));
	if (ret < 0)
		return ret;

	data = ALU_STAT_START | ALU_RESV_MCAST_ADDR;

	ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
	if (ret < 0)
		return ret;

	/* wait to be finished */
	ret = ksz9477_wait_alu_sta_ready(dev);
	if (ret < 0) {
		dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
		return ret;
	}

	return 0;
}

1261
int ksz9477_setup(struct dsa_switch *ds)
1262 1263 1264 1265
{
	struct ksz_device *dev = ds->priv;
	int ret = 0;

1266 1267 1268 1269
	/* Required for port partitioning. */
	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
		      true);

1270 1271 1272
	/* Do not work correctly with tail tagging. */
	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);

1273 1274 1275 1276 1277 1278 1279 1280
	/* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);

	/* Now we can configure default MTU value */
	ret = regmap_update_bits(dev->regmap[1], REG_SW_MTU__2, REG_SW_MTU_MASK,
				 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
	if (ret)
		return ret;
1281 1282 1283 1284

	/* queue based egress rate limit */
	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);

1285 1286 1287
	/* enable global MIB counter freeze function */
	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);

1288 1289 1290
	return 0;
}

1291
u32 ksz9477_get_port_addr(int port, int offset)
1292 1293 1294 1295
{
	return PORT_CTRL_ADDR(port, offset);
}

1296
int ksz9477_switch_init(struct ksz_device *dev)
1297 1298 1299 1300 1301 1302
{
	u8 data8;
	int ret;

	dev->port_mask = (1 << dev->info->port_cnt) - 1;

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	/* turn off SPI DO Edge select */
	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
	if (ret)
		return ret;

	data8 &= ~SPI_AUTO_EDGE_DETECTION;
	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
	if (ret)
		return ret;

1313
	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1314 1315 1316 1317 1318 1319
	if (ret)
		return ret;

	/* Number of ports can be reduced depending on chip. */
	dev->phy_port_cnt = 5;

1320 1321 1322
	/* Default capability is gigabit capable. */
	dev->features = GBIT_SUPPORT;

1323
	if (dev->chip_id == KSZ9893_CHIP_ID) {
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
		dev->features |= IS_9893;

		/* Chip does not support gigabit. */
		if (data8 & SW_QW_ABLE)
			dev->features &= ~GBIT_SUPPORT;
		dev->phy_port_cnt = 2;
	} else {
		/* Chip uses new XMII register definitions. */
		dev->features |= NEW_XMII;

		/* Chip does not support gigabit. */
		if (!(data8 & SW_GIGABIT_ABLE))
			dev->features &= ~GBIT_SUPPORT;
	}
1338

1339 1340 1341
	return 0;
}

1342
void ksz9477_switch_exit(struct ksz_device *dev)
1343 1344 1345 1346 1347 1348 1349
{
	ksz9477_reset_switch(dev);
}

MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
MODULE_LICENSE("GPL");